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1. Introduction

Let K/k be a finite separable field extension of degree n and α a primitive element
of K over k with minimal polynomial f ∈ k[x]. We explore the problem of computing
subfields of K which contain k. We prove that all such subfields (there might be more
than polynomially many) can be expressed as the intersections of at most n particular
subfields which we will call the ‘generating subfields’. We give an efficient algorithm to
compute these generating subfields. Subfields are used in finding the Galois group of
polynomials and can be used when simplifying expressions involving algebraic numbers
(see section 3.4 for an example).

Previous methods progress by solving combinatorial problems on the roots of f , such
as [4; 5; 8; 13]. Similar to our algorithm [11] starts by factoring f over K and then
tries to find all subfield polynomials (see Definition 5) by a combinatorial approach.
Such approaches can be very efficient, but in the worst cases they face a combinatorial
explosion. While [14] proceeds by factoring resolvent polynomials of degree bounded by
(

n
⌊n/2⌋

)

. By introducing the concept of generating subfields we restrict our search to a

small number of target subfields. This new fundamental object allows for polynomial
time algorithms.

We can find the generating subfields whenever we have a factorization algorithm for
f over K or any K̃/K and the ability to compute a kernel in k. For k = Q this implies
a polynomial-time algorithm as factoring over Q(α) and linear algebra over k = Q are
polynomial time. When one desires all subfields we give such an algorithm which is
additionally linear in the number of subfields.

For the number field case we are interested in a specialized and practical algorithm.
Thus we replace exact factorization over Q(α) by a p-adic factorization and the exact
kernel computation by approximate linear algebra using the famous LLL algorithm for
lattice reduction [15]. We take advantage of some recent practical lattice reduction re-
sults [19] and tight theoretical bounds to create an implementation which is practical on
previously difficult examples.

ROADMAP: The concept of the principal and generating subfields are introduced
in Section 2.1. In Section 2.2 we explain how to compute all subfields in a running time
which is linearly dependent on the number of subfields. For the number field case we will
use the LLL algorithm and this case is handled in detail in Section 3. Finally we compare
our approach with the state of the art in Section 4.

NOTATIONS: For a polynomial g we let ‖ g ‖ be the ℓ2 norm on the coefficient
vector of g. For a vector v we let v[i] be the ith entry. Unless otherwise noted ‖ · ‖ will
represent the ℓ2 norm.

2. A general algorithm

2.1. Generating subfields

In this section we introduce the concept of a generating set of subfields and prove
some important properties. Let K̃ be a field containing K. We remark that we can choose
K̃ = K, but in some case it might be better to choose a larger K̃ from an algorithmic
point of view. E.g. in the number field case we choose a p-adic completion (see Section 3).
Let f = f1 · · · fr be the factorization of f over K̃ where the fi ∈ K̃[x] are irreducible

2

Preliminary version – 3 June 2012



and f1 = x − α. We define the fields K̃i := K̃[x]/(fi) for 1 ≤ i ≤ r. We denote elements
of K as g(α) where g ∈ k[x] is a polynomial of degree < n, and define for 1 ≤ i ≤ r the
embedding

φi : K → K̃i, g(α) 7→ g(x) mod fi.

Note that φ1 is just the identity map id : K → K̃. We define for 1 ≤ i ≤ r:

Li := Ker(φi − id) = {g(α) ∈ K | g(x) ≡ g(α) mod fi}.
The Li are closed under multiplication, and hence fields, since φi(ab) = φi(a)φi(b) = ab
for all a, b ∈ Li.

Theorem 1. If L is a subfield of K/k then L is the intersection of Li, i ∈ I for some
I ⊆ {1, . . . , r}.

Proof. Let fL be the minimal polynomial of α over L. Then fL divides f since k ⊆ L,
and fL =

∏

i∈I fi for some I ⊆ {1, . . . , r} because L ⊆ K̃. We will prove

L = {g(α) ∈ K | g(x) ≡ g(α) mod fL} =
⋂

i∈I

Li.

If g(α) ∈ L then h(x) := g(x) − g(α) ∈ L[x] is divisible by x − α in K[x]. The set of
polynomials in L[x] divisible by x−α is the principal ideal (fL) by definition of fL. Then
h(x) ≡ 0 mod fL and hence g(x) ≡ g(α) mod fL. Conversely, g(x) mod fL is in L[x] (mod
fL) because division by fL can only introduce coefficients in L. So if g(x) ≡ g(α) mod fL

then g(α) ∈ K ∩ L[x] = L.
By separability and the Chinese remainder theorem, one has g(x) ≡ g(α) mod fL if

and only if g(x) ≡ g(α) mod fi (i.e. g(α) ∈ Li) for every i ∈ I. 2

Lemma 2. The set S := {L1, . . . , Lr} is independent of the choice of K̃.

Proof. Let f = g1 · · · gs ∈ K[x] be the factorization of f into irreducible factors over K.
Suppose that fi divides gl. Let L resp. Li be the subfield corresponding to gl resp. fi.
Assume g(α) ∈ L, in other words g(x) ≡ g(α) mod gl. Then g(x) ≡ g(α) mod fi because
fi divides gl. Hence g(α) ∈ Li.

Conversely, assume that g(α) ∈ Li. Now h(x) := g(x) − g(α) is divisible by fi, but
since h(x) ∈ Li[x] ⊆ K[x] it must also be divisible by gl since gl is irreducible in K[x]
and divisible by fi. So g(x) ≡ g(α) mod gl in other words g(α) ∈ L. It follows that
L = Li. 2

Definition 3. We call the fields L1, . . . , Lr the principal subfields of K/k. A set S of
subfields of K/k is called a generating set of K/k if every subfield of K/k can be written
as
⋂

T for some T ⊆ S. Here
⋂

T denotes the intersection of all L ∈ T , and
⋂ ∅ refers to

K. A subfield L of K/k is called a generating subfield if it satisfies the following equivalent
conditions

(1) The intersection of all fields L′ with L ( L′ ⊆ K is not equal to L.
(2) There is precisely one field L ( L̃ ⊆ K for which there is no field between L and L̃

(and not equal to L or L̃).
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The field L̃ in condition 2. is called the field right above L. It is clear that L̃ is the
intersection in condition 1., so the two conditions are equivalent.

The field K is a principal subfield but not a generating subfield. A maximal subfield of
K/k is a generating subfield as well. Theorem 1 says that the principal subfields form a
generating set. By condition 1., a generating subfield can not be obtained by intersecting
larger subfields, and must therefore be an element of every generating set. In particular,
a generating subfield is also a principal subfield.

If S is a generating set, and we remove every L ∈ S for which
⋂{L′ ∈ S|L ( L′}

equals L, then what remains is a generating set that contains only generating subfields.
It follows that

Proposition 4. S is a generating set if and only if every generating subfield is in S.

Here we just want to illustrate the requirements for finding a generating set of subfields
in polynomial time. Suppose that K/k is a finite separable field extension and that one has
polynomial time algorithms for factoring over K and linear algebra over k (for example
when k = Q). Then applying Theorem 1 with K̃ = K yields a generating set S with
r ≤ n elements in polynomial time. We may want to minimize r by removing all elements
of S that are not generating subfields, then r ≤ n − 1.

Note that the computation of the principal subfields Li is trivial when we know a fac-
torization of f over K. In this case we get a k-basis of Li by a simple kernel computation.
In the number field case, the factorization of f over K is the bottleneck. Therefore for
some fields k we prefer to take a larger field K̃ ) K where the factorization is faster. In
Section 3 this is done for k = Q, but this can be generalized to an arbitrary global field.
Then we let K̃ be some completion of K. This reduces the cost of the factorization, how-
ever, one now has to work with approximations for the factors fi of f , which means that
we get approximate (if K̃ is the field of p-adic numbers then this means modulo a prime
power) linear equations. Solving approximate equations involves LLL in the number field
case and [2; 7] in the function field case.

2.2. All subfields

We would like to compute all subfields of K/k by intersecting elements of a generating
set S = {L1, . . . , Lr}. Figure 1 is an algorithm with complexity proportional to the
number of subfields of K/k. Unfortunately there exist families of examples where this
number is more than polynomial in n. Note that we represent our subfields k ≤ Li ≤ K
as k-vector subspaces of K. This allows the intersection L1 ∩ L2 to be found with linear
algebra as the intersection of two subspaces of a vector space. To each subfield L of K/k
we associate a tuple e = (e1, . . . , er) ∈ {0, 1}r, where ei = 1 if and only if L ⊆ Li.

Input: A generating set S = {L1, . . . , Lr} for K/k.
Output: All subfields of K/k.
1. Let e := (e1, . . . , er) be the associated tuple of K.
2. ListSubfields := [K].
3. Call NextSubfields(S, K, e, 0).
4. Return ListSubfields.

Fig. 1. AllSubfields Algorithm
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The algorithm of figure 2 returns no output but appends elements to ListSubfields,
which is used as a global variable. The input consists of a generating set, a subfield
L, its associated tuple e = (e1, . . . , er), and the smallest integer 0 ≤ s ≤ r for which
L =

⋂{Li | 1 ≤ i ≤ s, ei = 1}.

Input: S, L, e, s.
For all i with ei = 0 and s < i ≤ r do

1. Let M := L ∩ Li.
2. Let ẽ be the associated tuple of M .
3. If ẽj ≤ ej for all 1 ≤ j < i then

4. append M to ListSubfields and call NextSubfields(S, M, ẽ, i).

Fig. 2. NextSubfields Algorithm

Definition 5. Let L be a subfield of K/k. Then the minimal polynomial fL of α over L
is called the subfield polynomial of L.

Remark 6. Let g ∈ K[x] be a monic polynomial. Then the following are equivalent:
(1) g = fL for some subfield L of K/k.
(2) f1 | g | f and [Q(α) : Q(coefficients(g))] = degree(g).
(3) f1 | g | f and the Q–vector space {h(x) ∈ Q[x] | deg(h) < deg(f), h mod g = h

mod f1} has dimension deg(f)/deg(g).

Remark 7. For each subfield L, we can compute the subfield polynomial fL with linear
algebra. Testing if L ⊆ M then reduces to testing if fL is divisible by fM . For many fields
K this test can be implemented efficiently by choosing a non-archimedian valuation v of
K with residue field F such that the f mod v (the image of f in F[x]) is defined and
separable. Then fL is divisible by fM in K[x] if and only if the same is true mod v, since
both are factors of a polynomial f whose discriminant does not vanish mod v.

Subfields that are isomorphic but not identical are considered to be different in this
paper. For instance, let f = x6 + 3. Now Q[x]/(f) is isomorphic to the splitting field of
x3 − 3. This polynomial has 3 roots, 3

√
3, ω 3

√
3, ω2 3

√
3 where ω is a third root of unity.

Each of these roots gives a subfield of degree 3 that is isomorphic to Q[x]/(x3 − 3). We
consider these as 3 distinct subfields.

Let m be the number of subfields of K/k. Since S is a generating set, all subfields occur
as intersections of L1, . . . , Lr. The condition in Step (3) in Algorithm NextSubfields holds
if and only if M has not already been computed before. So each subfield will be placed
in ListSubfields precisely once, and the total number of calls to Algorithm NextSubfields
equals m. For each call, the number of i’s with ei = 0 and s < i ≤ r is bounded by r, so
the total number of intersections calculated in Step (1) is ≤ rm. Step (2) involves testing
which Lj contain M . Bounding the number of j’s by r, the number of subset tests is
≤ r2m. One can implement Remark 7 to keep the cost of each test low.

Theorem 8. Given a generating set for K/k with r elements, Algorithm AllSubfields
returns all subfields by computing at most rm intersections and at most r2m subset tests,
where m is the number of subfields of K/k.

5

Preliminary version – 3 June 2012



2.3. Quadratic subfields

As a theoretical application, to illustrate the framework of generating subfields, we
note that all quadratic subfields can be computed in polynomial time when we already
know the generating subfields. Note that during our discussion we encounter a field
extension with Galois group Cs

2 , which is the simplest example of a field extension which
has more than polynomially many subfields.

Let Q(K/k) denote the subfield generated over k by {a ∈ K|a2 ∈ k}, and let C2

denote the cyclic group of order 2. If K = Q(K/k), in other words the Galois group of
f is Cs

2 for some s, then n = 2s and f splits over K into linear factors f1 · · · fn where
f1 = x−α. Furthermore, there are precisely n− 1 generating subfields L2, . . . , Ln and n
principal subfields L1, . . . , Ln where L1 = K.

Conversely, suppose there are n principal subfields. Every principal subfield corre-
sponds to at least one factor of f over K, and hence to precisely one factor since f has
degree n. So f must split into linear factors, and each Li corresponds to precisely one
linear factor fi. Then the minimal polynomial of α over Li is f1fi when i ∈ {2, . . . , n}.
The degree of f1fi is 2, so there are n− 1 subfields of degree index 2, which implies that
the Galois group is Cs

2 for some s.

Theorem 9. If factoring over K and linear algebra over k can be done in polynomial
time then all quadratic subfields of K/k can be computed in polynomial time.

Note that a subfield of degree index 2 of K/k corresponds to an autmorphism of
K/k of order 2 which can be easily computed. Therefore the knowledge of all principal
subfields of Q(K/k) is equivalent to the knowledge of all automorphisms of the Galois
group. Hence, the quadratic subfields of Q(K/k) can be computed easily in polynomial
time. So it suffices to prove that the following algorithm computes Q(K/k) in polynomial
time.

Input: A separable field extension K/k where K = k(α).
Output: Q(K/k).

1. Let n := [K : k]. If n is odd then return k.
2. Compute the set S of generating subfields.
3. If K/k has n − 1 distinct subfields of degree index 2 then return K.
4. Choose a generating subfield Li ∈ S with degree index > 2,

and let L̃i be the field right above Li,

so Li ( L̃i :=
T

{Lj ∈ S |Li ( Lj}.

5. If [L̃i : Li] = 2 then return Q(L̃i/k),
otherwise return Q(Li/k).

Fig. 3. Algorithm Q

In the first call to Algorithm Q, we can compute a generating set in Step (2) in
polynomial time using Theorem 1 with K̃ := K. For the recursive calls we use:

Remark 10. If S is a generating set for K/k and if L is a subfield of K/k, then
{L⋂L′|L′ ∈ S} is a generating set of L/k.
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For Step (3) see the remarks before Theorem 9. If we reach Step (4) then K 6= Q(K/k).
The field Li in Step (4) exists by Lemma 11 below. Let L̃i be the field right above Li. If
[L̃i : Li] = 2 then L̃i 6= K so the algorithm terminates.

Let a ∈ Q(K/k). We may assume that a2 ∈ k. Now L̃i is contained in any subfield L′

of K/k that properly contains Li. So if a 6∈ Li then Li(a) contains L̃i and hence equals
L̃i since [Li : Li(a)] = 2. Then a ∈ L̃i. We conclude Q(K/k) ⊆ L̃i. If [L̃i : Li] 6= 2 then
the assumption a 6∈ Li leads to a contradiction since Li(a) can not contain L̃i in this
case. So Q(K/k) ⊆ Li in this case, which proves that Step (5) is correct.

Lemma 11. If K/k does not have n − 1 distinct subfields of degree index 2 then there
exists a generating subfield of degree index > 2.

Proof. Assume that every generating (and hence every maximal) subfield has degree
index 2. So the subfields of degree index 2 form a generating set. Let G be the automor-
phism group of K/k. If K/Li and K/Lj are Galois extensions, then so is K/(Li ∩ Lj)
since Li ∩ Lj is the fixed field of the group generated by the Galois groups of K/Li and
K/Lj . If [K : Li] = 2 then K/Li is Galois. Let k′ be the intersection of all subfields Li

of degree index 2. Then K/k′ is Galois. However, k′ must equal k, otherwise the set of
subfields of degree index 2 can not be a generating set. It follows that K/k is Galois.

If n is not a power of 2, then there exists a maximal subfield of odd degree index.
If n = 2s with s > 1 then the Galois group must have an element of order 4 (G can
not be Cs

2 since the number of subfields of degree index 2 is not n − 1). This element
of order 4 corresponds to a linear factor fi of f in K[x]. Let Li be its corresponding
principal subfield. Then Li is contained in m maximal subfields where m is either 1 or
3. Let f̌i be the minimal polynomial of α over Li. If m = 3 then every irreducible factor
of f̌i/(x−α) corresponds to a subfield of degree index 2. This is a contradiction since fi

divides f̌i/(x − α). 2

3. The number field case

3.1. Introduction

In this section we describe an algorithm for producing a generating set when K =
Q(α). Factoring f over K, though polynomial time, is slow, thus we prefer to use an
approximation of a p-adic factorization and LLL. We show that when the algorithm
terminates 1 , it returns the correct output.

For a prime number p, let Qp denote the field of p-adic numbers, Zp the ring of p-adic
integers, and Fp = Z/(p). We choose a prime number p with these three properties: p
does not divide the leading coefficient of f ∈ Z[x], the image f of f in Fp[x] is separable,
and has at least one linear factor which we denote f1 (asymptotically, the probability
that a randomly chosen prime p has these properties is ≥ 1/n, where equality holds when
K/k is Galois).

By factoring f in Fp[x] and applying Hensel lifting, we obtain a factorization of f =
f1 · · · fr over Qp where f1 has degree 1. By mapping α ∈ K to the root α1 of f1 in Qp

we obtain an embedding K → Qp, and so we can view K as a subfield of K̃ := Qp.

1 a bound for the running time can be obtained in a similar way as in [3]
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The advantage of taking Qp (instead of K) for K̃ is that it saves time on factoring

f over K̃. Since p does not divide the denominators of the coefficients of f , the factors

f1, . . . , fr of f over Qp lie in Zp[x]. We can not compute these factors with infinite

accuracy, but only to some finite accuracy a, meaning that f1, . . . , fr are only known

modulo pa.

For each of the factors, fi, we will need to find the principal subfield Li which was

defined in Section 2.1 as the kernel of φi − id. To do this we will make use of a knapsack-

style lattice in the style of [19]. To get the best performance we would like to design a

lattice such that boundably short vectors correspond to elements in Li.

A natural approach would be to use 1, α, . . . , αn−1 as a basis, and search for linear

combinations whose images under φi− id are 0 (mod pa). However, we will use a different

basis. Denote Z[α]<n := Z ·α0 + · · ·+Z ·αn−1 (note: if f is monic then this is simply Z[α]

but we do not assume that f is monic). Then the basis 1
f ′(α) , . . . ,

αn−1

f ′(α) of 1
f ′(α) · Z[α]<n

allows us to prove more practical bounds (this phenomena has also been observed in

other contexts [6]). Using this basis of K we prove the existence of a Q-basis of Li which

has a bounded representation. We delay the proof of this theorem until section 3.5.

Theorem 12. Let Li, the target principal subfield, have degree mi over Q. For β ∈
1

f ′(α) · Z[α]<n with β =
∑

bi
αi

f ′(α) we associate the vector vβ := (b0, . . . , bn−1). Then

there exists mi linearly independent algebraic numbers β1, . . . βmi
∈ Li ∩ 1

f ′(α) · Z[α]<n

each with ‖vβk
‖ ≤ n2‖f‖2.

3.2. The computation of a principal subfield

Now we can continue the description of the computation of the principal subfield Li

corresponding to the factor fi of degree di. As mentioned before we will represent our

elements in the basis 1
f ′(α) , . . . ,

αn−1

f ′(α) . Each of these basis elements will be represented as

the column of an identity matrix to which we attach entries for the image of that basis

element under φi − id. Since these images are only known modulo pa we must also adjoin

columns which allow for this modular reduction. Suppose the degree of fi is di, then our

lattice is spanned by the columns of the following (n + di) × (n + di) integer matrix:

Bi :=





























1

. . .

1

c0,0 . . . c0,n−1 pa

...
. . .

...
. . .

cdi−1,0 . . . cdi−1,n−1 pa





























(1)

where ck,j is the kth coefficient of xj

f ′(x)modfi − xj

f ′(x)modf1 reduced modulo pa. To in-

terpret a vector v in the column space of this matrix we take the first n entries b0, . . . , bn−1

and then compute (
∑

bjα
j)/f ′(α). A vector corresponding to an element in Li will have

its final di entries be 0 modulo pa. Thus Theorem 12 shows us that the lattice generated
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by columns of Bi contains a dimension mi sublattice which has a small basis. This al-
lows us to use the new sub-lattice reduction techniques of [19] on Bi. Thus, rather than
standard LLL, we use LLL with removals which performs lattice reduction but removes
any vectors in the final position whose G-S norm is above a given bound. The following
lemma is derived from [15] and justifies these removals.

Lemma 13. Given a basis b1, . . . ,bd of a lattice Λ, and let b∗
1, . . . ,b

∗
d be the output of

Gram-Schmidt orthogonalization. If ‖ b∗
d ‖ > B then any vector in L with norm ≤ B is

a Z-linear combination of b1, . . . ,bd−1.

This technique is common and is used in [10; 19]. As the removal condition requires
Gram-Schmidt norms we can state that LLL reduced bases tend to be numerically stable
for Gram-Schmidt computations so a floating point Gram-Schmidt computation could
be used for efficiency (see [20]). Also FLINT 1.6 [9] has an LLL with removals routine
which takes a bound and returns the dimension of the appropriate sub-lattice.

In this way using LLL with removals with the bound from Theorem 12 will allow us to
reduce the dimension. In Figure 4 we give a practical algorithm which will create a basis
of a subfield of K which is highly likely to be Li. We will use D := diag{1, . . . , 1, C, . . . , C}
as a matrix for scaling the last di rows of Bi by a scalar C. Since the vectors guaranteed by
Theorem 12 come from Li we know that the final di entries must be 0. Thus multiplication
on the left by D and removals will eventually ensure that vectors with zero entries are
found by LLL.

Input: fi

Output: hk which probably generate Li

1. Create lattice Bi from equation ((1))
2. A := LLL with removals(Bi, n

2 ‖ f ‖)
3. m := dim(A)
4. while ∃l > n, j such that A[l, j] 6= 0 :
5. A := D · A
6. A := LLL with removals(A, n2 ‖ f ‖)
7. m := dim(A)
8. if m ∤ n increase precision repeat principal

9. for 1 ≤ k ≤ m:

10. hk :=
Pn

j=1
A[j,k]xj−1

f ′(x)

Fig. 4. principal algorithm

Using LLL on the matrix entire Bi will suffice for this paper. However, in practice the
di final rows of Bi can also be reduced one at a time. In this way one could potentially
arrive at a solution without needing all rows of Bi. Such an approach is seen in [19] and
could be adapted to this situation.

The algorithm in figure 4 will produce m p-adic polynomials hk, which are likely to
correspond to algebraic numbers which generate Li as a Q-vector space. It is possible
that m is not mi but some other divisor of n. In particular, if the p-adic precision is
not high enough then there could be entries in the lattice basis which are 0 modulo
pa but not exactly 0. In that case one of the hk would not be from Li. Even so the

9
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Q-vector space generated by the hk must at least contain Li. The reason is that at
least mi linearly independent algebraic numbers from Li remain within the lattice after
LLL with removals thanks to the bound of Theorem 12 and Lemma 13.

Theorem 12 can also be used to make a guess for a starting precision of pa. Since any re-
duced basis has Gram-Schmidt norms within a factor 2n+di of the successive minima and
the determinant of Bi is pa·di then we should ensure that pa·di is at least (2n+din2‖f‖)n.

3.3. Confirming a principal subfield

In this section we will assume that we have elements which are likely to generate
a principal subfield (in other words, the output of the algorithm in Figure 4). At this
point it seems reasonable to discuss the possible paths forward. This must include a
discussion of the types of output that a user might want. We recommend outputting
the subfield polynomial represented in the αi/f ′(α) basis. This has the advantage of
certifying that the elements we have indeed generate the target Li. In addition it gives
us a representation of Li which can be stored on a relatively small number of bits.

It may also seem reasonable to ask for a primitive element of Li perhaps given as
the root of some minimal polynomial with coefficients in Z. The coefficients of the sub-
field polynomial are a good source of potential primitive elements which will have small
minimal polynomials. After all, the coefficients of the subfield polynomial must generate
Li. It might also be likely that such a minimal polynomial could be much larger than
our suggested representation of the subfield polynomial. For these reasons we will deal
primarily with finding the subfield polynomial, we do this in section 3.3.2.

Before that we treat the option of resuming the algorithm using the block methods
of [12; 13]. This makes some sense as the combinatorial explosion in that method might
already have been bypassed. This approach is discussed in section 3.3.1. The output of
that algorithm is a primitive element of the Li.

Then in section 3.4 we will give an illustrative example of the algorithm in action so
as to clarify the procedure. Finally in section 3.5 we prove the main technical theorem
which allowed us to provably bound the output of Figure 4.

3.3.1. Using block systems to confirm the subfield
In this section we show the connection with what we have computed so far and the

block systems approach of [12; 13]. We can use any of the non integral algebraic numbers
output by figure 4 to generate block systems if we would like to avoid doing more LLL
reduction. We try to combine the advantages of both methods. The big problem of the
method presented in [12; 13] is that we have to consider exponentially many possibilities
of potential block systems in the worst case. On the other hand this method is very
efficient as soon as we have found the right block system. After the computation done
in Figure 4 we get elements h1, . . . , hm and we are almost certain that these elements
generate our principal subfield. More precisely we expect that they form a vector space
basis of our prinicipal subfield Li. In order to be sure we need a proof for this statement.
Furthermore we would like to find a nice presentation of our subfield. Knowing the
elements h1, . . . , hm it is easy to write down the corresponding block system. Having the
actual block system in our hand we can apply the methods described in [12; 13] without
having the combinatorial explosion.

Before we explain this approach let us give a criterion which gives a check if a given
subfield L is equal to the principal subfield Li.

10

Preliminary version – 3 June 2012



Lemma 14. Let L = Q(β) be a subfield of K. Let β = g(α), where g(x) ∈ Q[x] is
a polynomial of degree smaller than n. As before denote by f = f1 · · · fr ∈ Qp[x] the
factorization of f into irreducible factors over Qp. Define T := {1 ≤ i ≤ r | g(x) ≡
g(α) mod fi}. Then the subfield polynomial fL =

∏

i∈T fi.

The proof of this lemma follows easily from the discussion before Theorem 1. Now L
is a subfield of Li if and only if i ∈ T . From the computation in Figure 4 we know that
Li has at most degree m. This means that our field L = Li, when we know that L ≤ Li

and the degree of L is m.
One approach could be to compute the minimal polynomials of the elements hi hoping

to quickly find a primitive element (of degree m). Then we test if L ≤ Li by using
Lemma 14. We remark that the test in Lemma 14 can be done modulo pk for a small
k (in most cases k = 1). We can increase k until we get that the degree of L times the
product of the degrees of the fi with i ∈ T equals n. In general the elements hi are
non-integral elements and their minimal polynomials are not nice at all. If we look at
our computation it is not necessary to compute the minimal polynomials. In order to
identify the right set T we can use the identity:

T = {1 ≤ i ≤ r | ∀1 ≤ j ≤ m : gj(x) ≡ gj(α) mod fi},
where hj = gj(α).

Now we explain how to compute the corresponding (potential) block system which
can be used by the method described in [13]. For this we use the notation of this paper.
Let α1, . . . , αn be the roots of f in some unramified p-adic extension of Qp. Let β = h(α)
be a primitive element of the subfield L of degree m, where h ∈ Q[x] is a polynomial
of degree less than n. Furthermore we denote by β1, . . . , βm the roots of g in the same
p-adic extension. Then the corresponding block system is given by Lemma 3.21 in [13]
via

∆i := {αj | h(αj) = βi, 1 ≤ j ≤ n}.
Now enter the subfield algorithm in [13] using this potential block system. If this algo-
rithm succeeds in computing a subfield L, then test if L = Li using Lemma 14. Note (see
equation (12) in [13]) that this algorithm computes the element δ1 =

∏

α∈∆1
α as a first

guess of a primitive element of our subfield. If this element fails to generate our subfield
then elements of the form

∏

α∈∆1
(α + k) for some k ∈ Z are chosen. Note that δ1 is, up

to the sign, the absolute coefficient of the subfield polynomial fL. It is easy to adapt the
algorithm described in [13] to use other coefficients of fL. In the case that

∑

α∈∆1
α is a

primitive element, this usually gives generators of small size.

3.3.2. Finding a small representation of the subfield polynomial using LLL
We give an algorithm which will construct the subfield polynomial g, of Li or return

failure, in which case more p-adic precision is needed. We choose the subfield polynomial
as it will provide a proof that we have a principal subfield and can be stored in a relatively
compact way thanks to our new basis. Of course other representations and proofs are
possible.

From here on our algorithmic objective will be to output the minimal polynomial
g ∈ Li[x] of α over Li. This g is the subfield polynomial of Li and its coefficients generate
Li. We know m elements hk modulo pa, we know that m|n and that (φi − id)(hk) ≡ 0
modulo pa for each k. Recall that the hk were from columns of a lattice basis A. First we
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will create a p-adic candidate subfield polynomial which we then subject to 3 certification

checks.

Candidate g: Create an index set T := {j|φj(hk) ≡ id(hk) mod pa∀hk}, that is find

the p-adic factors of f which also agree with f1 on the elements corresponding to the

basis from A. T will contain at least 1 and i. Now let gcand :=
∏

j∈T fj mod pa. This is

done in steps 1–5 of Figure 5

Input: h1 . . . hm, f1, . . . fr ∈ Qp[x], precision a
Output: g subfield poly, or fail

1. T := {}
2. for each 1 ≤ j ≤ r:
3. if (hk mod fj = hk mod f1) mod pa∀k then:
4. T := T ∪ j
5. gcand := lc(f) ·

Q

j∈T
fj mod pa

where lc(f) is the leading coefficient of f
6. Create lattice M using (2)
7. M :=LLL(M)
8. gtemp = 0

9. for each coefficient gk of xk in gcand:
10. create Mgk

lattice using (3)
11. Check 1 find v in LLL(Mgk

)
with v[n + 1] = 0 and v[n + 2] = 1

12. gtemp := gtemp +
Pn

j=1
v[j]αj−1

f ′(α)
xk

13. gcand := gtemp ∈ Q(α)[x]
14. Check 2 ensure gcand|f exactly
15. Check 3 ensure (hk mod gcand = hk mod f1) ∀k
16. return g := gcand

Fig. 5. final check algorithm

Check 1: Let Λ(A) ⊆ Z[α]<n

f ′(α) be the lattice generated by the algebraic numbers

corresponding with columns of A. We now attempt to find an exact representation of

gcand by converting each coefficient into an algebraic number in Λ(A) ∩ Z[α]<n

f ′(α) . We’ll do

this by attempting to find linear combinations of hk which exactly equal each coefficient

of gcand.

Note that this gcand is a polynomial with p-adic coefficients, these coefficients can be

quickly Hensel lifted using the fact that f = g · (f/g) mod pa if more precision is needed.

Now we want to express these coefficients in the basis Z[α]<n

f ′(α) ∩ Λ(A). To do this we will

use a lattice basis similar to A with a slight adjustment. Rather than finding algebraic

numbers whose images under φi − id are zero, we’ll find combinations of the hk whose

p-adic valuations match a coefficient of gcand.

Lets call vhk
the coefficient vector of hk, and the corresponding p-adic valuation

cj := hk(α1) (that is, hk modulo f1). Also we pick a large scalar constant C (to ensure

that LLL works on reducing the size of the p-adic row). We let the columns of the new

matrix be (vhj
, C · cj)T , and the column (0, . . . , 0, C · pa).
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M :=





vT
h1

. . . vT
hm

0

C · c1 . . . C · cm C · pa



 (2)

A vector in the column space of this matrix is a representation of a combination of the
elements from hk along with a p-adic valuation of that element. Now for each coefficient
we’ll use this matrix to find a combination which matches that coefficient. In practice we
LLL-reduce M before adjoining data from the coefficients of gcand, but here we present
an augmented M without altering the columns first (for clarity).

For each coefficient gk of gcand augment each column of M with a zero, then adjoin a
new column (0, . . . , 0, C · gk, 1)T . This is what the coefficient matching matrix looks like:

M :=











vT
h1

. . . vT
hm

0 0

C · c1 . . . C · cm C · pa C · gk

0 . . . 0 0 1











(3)

Run LLL on this matrix (provided C is large enough) then find the vector which has

its final two entries as 0,1, the first n entries are an expression of gk in Z[α]<n

f ′(α) . If this

works for every coefficient of gcand then the check has passed.
Check 2: Ensure that gcand|f in Q(α)[x].
Check 3: Ensure that hk mod gcand = hk mod f1 for each hk.

Theorem 15. If all checks pass then the Q-linear combination of the elements corre-
sponding to the lattice basis A generate Li the target principal subfield, and gcand is the
subfield polynomial of Li.

Proof. By construction of gcand and A we know that the span over Q of the elements
corresponding to A, the hk, contains Li. Let’s call this span V , so Li ⊆ V . Since gcand

divides f and fi divides gcand then h mod gcand = h mod f1 implies h mod fi = h
mod f1. By check 1 this implies that V ⊆ Li thus the span over Q of the elements from
the lattice is Li.

Now x−α, fi|gcand mod pa and gcand|f exactly then fi|gcand and (x−α)|gcand exactly.
Now by Remark 6 we know gcand is the subfield polynomial of Li. 2

If any check fails increase the p-adic precision via Hensel lifting and try again.

3.4. An illustrative example

Here we provide an example from a potential application of the algorithm. Suppose
that one is searching for solutions to the system of equations

a2 − 2ab + b2 − 8 = 0

a2b2 − (a2 + 2a + 5)b + a3 − 3a + 3 = 0.

Using MAPLE’s [16] solve command the output is:

α = RootOf(x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x − 191)

a = α

b = −34α7 + 61α6 + 742α5 − 1757α4 − 3378α3 + 6013α2 + 6368α + 7175.
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By writing α in terms of generators of proper subfields of Q(α) we can greatly simplify

the expression to:

a =
√

3 +
4
√

2 −
√

2

b =
√

3 +
4
√

2 +
√

2.

This illustrates that computing subfields is an important step toward simplifying alge-

braic expressions.

Here we will give the various stages of the algorithm’s output using the minpoly of α,

f = x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x − 191, as our input.

The first step is to find a prime such that f is squarefree modulo p and has at least

one linear factor. The first acceptable prime is 23 and the factorization of f mod 23 is:

f ≡ (x + 3)(x − 4)(x + 10)(x − 6)(x2 + x + 1)(x2 − 4x − 1).

Now we must Hensel lift this factorization so that short vectors are not likely to be

because of a small modulus. To decide a target p-adic precision we refer to Theorem 12

which asserts that we are looking for vectors of norm ≤ n2 ‖ f ‖2= 64 · 302. One could

begin the algorithm with pa just above this bound and resume hensel lifting in the case of

failure; or one could begin well above the bound to minimize the chances of early failure.

In this particular case a modulus of p25 is always sufficient for solving the problem.

We will let the first linear local factor of f be labeled f1 (in this case the factor whose

image is x + 3 modulo 23). Recall that f1 is defined to be x − α so that the principal

subfield L1 := {g(α) ∈ Q(α)|g(x) ≡ g(α) mod f1} is simply Q(α). Thus L2 is potentially

the first non-trivial principal subfield, where f2 is the next factor (in this case the p-adic

factor whose image mod 23 is equivalent to x − 4).

Now we must construct the lattice from equation (1) whose columns correspond with

a basis of 1
f ′(α)Z≤n[α]. Specifically column i will be ei (the standard basis vector) aug-

mented with
(

xi−1

f ′(x) mod f2

)

−
(

xi−1

f ′(x) mod f1

)

, thus any element in L2 will have 0 as

the final entry. In the implementation we compute 1
f ′(x) mod f as an integer polynomial

with a single denominator at the beginning of the procedure and use its image modulo

the local factors in the various stages when it is needed.

For illustration we will show the lattice with low p-adic precision, so that the reader

can easily confirm the construction. In this case 1
f ′(α) mod 〈x + 3, 23〉 ≡ 3 and 1

f ′(α)

mod 〈x − 4, 23〉 ≡ 22. So ( x0

f ′(x) mod f2) − ( x0

f ′(x) mod f1) is 19. Repeat the process

for the other powers of x,
(

xi−1

f ′(x) mod f2

)

−
(

xi−1

f ′(x) mod f1

)

, to get the lattice from

equation (1) with 23-adic precision 1 (i.e. mod 23):
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BT
2 :=















































1 19

1 5

1 3

1 17

1 7

1 4

1 19

1 21

23















































.

Now this matrix does not have large enough p-adic entries to get valuable information
out of an LLL run. However LLL on B2 with higher p-adic precision will yield 4 vectors
of small norm and 5 vectors of large norm. When the precision is at least 2325 then the
G-S norms of the 5 final vectors will be large enough (more than 64 · 302) to prove, via
Lemma 13, that the span of 4 short vectors must contain the basis of L2 guaranteed by
Theorem 12. In this case the four short vectors are the transpose of:

















7 6 2 −20 −3 2 0 0 0

−18 12 1 5 8 10 −1 −1 0

5 −15 −18 11 −1 9 0 −1 0

−15 −35 3 −23 9 −7 −1 1 0

















.

These four vectors represent a potential basis of L2 ∩ 1
f ′(α)Z≤n[α]. The fact that 4

divides 8 is a simple first check that we have a potential subfield. Next the fact that each
of the last entries is 0 is a check that we might be looking at vectors inside of L2 (the
worst case is that two or four of these vectors happen to have last entry with an image
of 0 mod 2325 but this would not be exactly 0 at infinite precision). From here, there
are several paths we could take, namely: compute the subfield polynomial of L2, that
is the minimal polynomial of α over L2 (proving that we really have L2) or compute a
primitive element of L2 and prove that what we have is actually L2 in some other way.
See the discussion in section 3.3. Here we will compute the subfield polynomial.

The subfield polynomial must be the product of some subset of the p-adic factors of
f . We wish to find all factors which make up the subfield polynomial for L2. We do this
by checking which other p-adic factors of f agree with f1 on the four given elements. For

example to check the first vector one computes (7+6x+2x2−20x3−3x4+2x5)
f ′(x) modulo 〈fi, 2325〉

for all i. Then any fi which give the same output as f1 will be considered to agree on the
first element. In this case, none of the other factors agree with f1 and f2 on all 4 vectors
(although f5 agrees on two of the four elements).

So we now assume that the subfield polynomial is f1 · f2 until we can prove otherwise.
Since we have approximations of those factors to precision 2325 we compute the candidate
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for the subfield poly g = f1 · f2 mod 2325, this is gcand in figure 5. Now we have p-adic
numbers gi for each coefficient in gcand = g0 + g1x + g2x

2. The lattice from equation (3)
will help us find a representation of the gi in terms of α. This works by attempting to
find a linear combination of the short vectors which has the same p-adic image as one of
the coefficients of gcand. So if we let vi be the p-adic images of the four short vectors in
our example we could use a lattice like the transpose of this one for finding g0:





























0 0 0 0 0 0 0 0 2325 0

0 0 0 0 0 0 0 0 g0 1

7 6 2 −20 −3 2 0 0 v1 0

−18 12 1 5 8 10 −1 −1 v2 0

5 −15 −18 11 −1 9 0 −1 v3 0

−15 −35 3 −23 9 −7 −1 1 v4 0





























.

In this case we also suggest scaling the column containing pa, vj , and gi by some
large constant (in the implementation we used 240), so that LLL is more likely to
find a vector which ends with 0 and 1. This particular lattice yields such a vector,
(0,−24,−368,−136, 32, 424,−16,−40, 0, 1). We interpret this to say that

g0 =
(−24α − 368α2 − 136α3 + 32α4 + 424α5 − 16α6 − 40α7)

f ′(α)
.

By constructing the same lattice for g1 and g2 we can get a representation of gcand in L2[x]
which uses the αi/f ′(α) basis. That representation could be encoded in the transpose of
the following:











0 −24 −368 −136 32 424 −16 −40

1552 1824 208 −192 −816 −32 80 0

208 24 −96 −392 −80 120 0 −8











.

Note that the final row is actually the coefficients of f ′(α) so this is a monic poly-
nomial. In general the coefficients of g, the subfield polynomial, will have much smaller
minimal polynomials than the elements from the short vectors. If one needs to compute
a primitive element of L2 then we suggest taking coefficients of g and testing if they
are primitive elements. For instance g1 and g0 have minimal polynomials of degree 4,
so either will generate L2 because g has degree 2 and [Q(α) : Q] = 8. In this case the
minimal polynomial of g1, corresponding to the second row above, is x4 − 40x2 + 16. If
this fails then try small combinations of the coefficients.

3.5. Bounds for the coefficients

The only aim of this section is to prove Theorem 12. The techniques described in this
section are not used in the algorithm.

In order to get our desired bounds it is useful to introduce the notation of a codifferent,
see [17, Chapter 4.2] for more details.
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Lemma 16. Let f ∈ Z[x] be primitive and irreducible, with degree n. Let α be a root

of f . Let OK be the ring of integers in K = Q(α) and let O∗
K be the co-different which

is defined as:

O∗
K = {a ∈ K|∀b∈OK

Tr(ab) ∈ Z}.
Then

O∗
K ⊆ 1

f ′(α)
Z[α]<n. (4)

Proof. Let a ∈ O∗
K , so Tr(ab) ∈ Z for any b ∈ OK . The content of a polynomial

g = c0x
0 + · · ·+ cdx

d ∈ K[x] is defined as the fractional ideal c(g) = OKc0 + · · ·+OKcd.

Let g1 = x−α and g2 = f/g1. Gauss’ lemma says c(g1)c(g2) = c(g1g2). Then c(g1)c(g2) =

c(f) = OK , (f is primitive) and since g1 has a coefficient equal to 1 it follows that

c(g2) ⊆ OK , in other words g2 ∈ OK [x]. Now ag2 ∈ a · OK [x]<n and by definition of O∗
K

we see that Tr(ag2) ∈ Z[x]<n. So

Tr(a
f(x)

x − α
) =

∑

a(i) f(x)

x − α(i)
∈ Z[x]<n

where a(i) and α(i) denote the conjugates of a and α. Evaluating the right-hand side at

x = α = α(1) gives af ′(α) ∈ Z[α]<n and hence a ∈ 1/f ′(α) · Z[α]<n. 2

Now suppose that we have a β ∈ O∗
K , then we can write

f ′(α)β =

n−1
∑

i=0

biα
i with bi ∈ Z. (5)

In our applications β is an element of a principal subfield and we would like to bound

the size of bi. In the following we need the complex embeddings and some norms of

algebraic numbers.

Definition 17. Let K = Q(α) be a number field of degree n and f be the minimal poly-

nomial of α. Then we denote by φ1, . . . , φn : K → C, α 7→ αi the n complex embeddings,

where α1, . . . , αn are the complex roots of f . We assume that α1, . . . , αr1
are real and

the complex roots are ordered such that αr1+i = ᾱr1+r2+i for 1 ≤ i ≤ r2.

For β ∈ K we define the norms

‖β‖1 :=

n
∑

i=1

|φi(β)| and ‖β‖2 :=

√

√

√

√

n
∑

i=1

|φi(β)|2.

Note the well known estimates:

‖β‖2 ≤ ‖β‖1 ≤ √
n‖β‖2.

We are able to give the promised bounds.

Lemma 18. Let β be given as in (5) with coefficient vector b := (b0, . . . , bn−1). Then

we have ‖b‖2 ≤ n‖β‖1‖f‖2 ≤ n1.5‖β‖2‖f‖2.
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Proof. Let h(x) :=
∑n−1

i=0 bix
i. Let αi := φi(α) and βi := φi(β), then we get: h(αi) =

βif
′(αi) for 1 ≤ i ≤ n. Using Lagrange interpolation we get:

h(x) =

n
∑

i=1

βif
′(αi)

f(x)/(x − αi)

f ′(αi)
=

n
∑

i=1

βi
f(x)

x − αi
.

Now:

‖b‖2 = ‖h‖2 =
n
∑

i=1

|βi|‖f/(x − αi)‖2

≤ max
i

‖f/(x − αi)‖2

n
∑

i=1

|βi| ≤ n‖f‖2‖β‖1,

‖f/(x−αi)‖2 ≤ n‖f‖2 is proved in [18, cor4.7]. The second estimate follows then trivially
from ‖ · ‖1 ≤ √

n ‖ · ‖2. 2

Now our goal is the following. Let L be a principal subfield of degree m which we would
like to compute. We want to find a Q-basis of L represented in our 1

f ′(α)Z[α]<n–basis.

Note that O∗
L ⊆ O∗

K ⊆ 1
f ′(α) · Z[α]<n. In order to apply Lemma 18 we need to bound

‖βi‖2 for m linearly independent elements β1, . . . , βm ∈ L. We will use the following
theorem.

Theorem 19 (Banaszczyk). Let Λ ⊂ Rm be a lattice and denote by Λ∗ := {y ∈ Rm |
∀x ∈ Λ : 〈x, y〉 ∈ Z} the dual lattice. Furthermore denote by λi, λ∗

i the i-th successive
minima of Λ, Λ∗, respectively. Then λiλ

∗
m+1−i ≤ m for 1 ≤ i ≤ m.

The proof can be found in [1, Theorem 2.1]. In our application λ1 =
√

m, so we get
the upper bound λ∗

m ≤ √
m. There are canonical ways to map number fields to lattices,

but we have the slight problem that the bilinear form L×L → Q, (x, y) 7→ Tr(xy) is not
positive definite, if L has non-real embeddings. We assume the same order of the complex
embeddings of L as in Definition 17, so we have m = r1 + 2r2. Defining γi = φi(γ) and
δi = φi(δ) we get:

Tr(γδ) =
m
∑

i=1

γiδi.

The corresponding scalar product looks like:

〈γ, δ〉 :=

m
∑

i=1

γiδ̄i.

For totally real number fields L those two notions coincide. The dual lattice equals O∗
L

and we can apply Theorem 19 directly to get the desired bounds. First we introduce the
canonical real lattice Λ := Ψ(OL) ⊆ Rm associated to 〈γ, δ〉 via

Ψ : L → Rm, (6)

β 7→ (β1, . . . , βr1
,
√

2ℜ(βr1+1), . . . ,
√

2ℜ(βr1+r2
),√

2ℑ(βr1+1), . . . ,
√

2ℑ(βr1+r2
)).

Note that now the standard scalar product of Rm coincides with the (complex) scalar
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product defined above. This is the reason for the weight
√

2 in the above definition.
Denote by 〈·, ·〉1 the standard scalar product of Rm. Furthermore denote by

〈x, y〉2 :=

r1+r2
∑

i=1

xiyi −
m
∑

i=r1+r2+1

xiyi.

Then we have

〈γ, δ〉 = 〈Ψ(γ), Ψ(δ)〉1 and Tr(γδ) = 〈Ψ(γ), Ψ(δ)〉2.
Now we are able to compare our two dual objects, the dual lattice Λ∗ of Λ corresponding
to 〈·, ·〉1 and the codifferent.

Lemma 20. Using the above notations. Then θ : Rm → Rm,

(x1, . . . , xm) 7→ (x1, . . . , xr1+r2
,−xr1+r2+1, . . . ,−xm)

induces an isomorphism Λ∗ → Ψ(O∗
L) of Z–modules.

Proof. θ is linear and has the property

〈x, y〉1 = 〈x, θ(y)〉2 for all x, y ∈ Rm.

We need to show that θ(Λ∗) = Ψ(OL). Note that θ2 is the identity and therefore this
is equivalent to θ(Ψ(OL)) = Λ∗. Denote by ω1, . . . , ωm a Z–basis of OL. Then Λ =
ZΨ(ω1) + . . . + ZΨ(ωm). Choose γ ∈ O∗

L arbitrarily. Then Tr(ωiγ) ∈ Z for 1 ≤ i ≤ m
and therefore

〈Ψ(ωi), θ(Ψ(γ))〉1 = 〈Ψ(ωi), Ψ(γ))〉2 = Tr(ωiγ) ∈ Z.

Therefore θ(Ψ(γ)) ∈ Λ∗ and we have shown θ(Ψ(O∗
L)) ⊆ Λ∗. Denote by τ1, . . . , τm ∈ O∗

L

the dual basis of ω1, . . . , ωm. Because of duality (e.g. see [17, Proof of Prop. 4.14]) we know
that disc(τ1, . . . , τm) = disc(ω1, . . . , ωm)−1 = d−1

L . Furthermore θ(Ψ(τi)) (1 ≤ i ≤ m) are
linearly independent elements of Λ∗ and the discriminant of the Z–module generated by
those elements is |d−1

L | since the corresponding determinants differ by a power of −1
because we have to consider the twists between our two bilinear forms. Therefore we
know a subset θ(Ψ(O∗

L)) ⊆ Λ∗ which has the correct lattice discriminant. Therefore we
get equality. 2

Now we are able to get our bound by applying Lemma 20 and Theorem 19.

Lemma 21. Let L be a number field of degree m. Then O∗
L contains m Q–linearly

independent elements γ1, . . . , γm such that ‖γi‖2 ≤ √
m for 1 ≤ i ≤ m.

Proof. As before let Λ := Ψ(OL), where Ψ is defined in (6). Now we claim that the first
successive mimimum λ1 equals

√
m by taking the element Ψ(1). Let γ ∈ OL. Then

1 ≤ |Norm(γ)| =

(

m
∏

i=1

|γi|2
)1/2

≤
(∑m

i=1 |γi|2
m

)m/2

=

( 〈Ψ(γ), Ψ(γ)〉1
m

)m/2

,

19

Preliminary version – 3 June 2012



where the inequality is the one between geometric and arithmetic means. Now we get

that 〈Ψ(γ), Ψ(γ)〉1 ≥ m which finishes the proof that λ1 =
√

m.

Applying Theorem 19 we find m linearly independent elements y1, . . . , ym ∈ Λ∗ with

euclidean length bounded by m/
√

m =
√

m. By using Lemma 20 we find elements θ(yi) ∈
Ψ(O∗

L) which have the same euclidean length. By choosing γi := Ψ−1(θ(yi)) for 1 ≤ i ≤ m

we finish our proof. 2

Now we are able to prove our theorem. Note that the field L takes the role of the

principal subfield Li in the statement.

Proof. [of Theorem 12] Using Lemma 21 we find mi linearly independent elements βj

in O∗
L with 2-norm bounded by

√
mi. When we interpret those elements in K, we get

n/mi copies of the complex embeddings, which gives that the 2-norm as elements of K

is bounded by
√

n. Now apply Lemma 18. 2

4. CPU time in Magma

The aim of this section is to compare our algorithm with the state of the art, to be

precise, to compare it with [12]. We use the computer algebra system Magma for this

comparison, as it has an implementation of both [12] and the algorithm in this paper.

The algorithm from [12] uses a combinatorial approach in order to find block systems

corresponding to subfields. Each combination is processed very quickly, however, it is

possible that exponentially many combinations need to be tried. The number of com-

binations depends on the cycle structures of the elements of the Galois group, i.e., it

depends on the number of factors of f mod prime numbers, and the degrees of these

factors.

To keep the table below simple, we do not list these cycle structures, but list only r,

n and lf . Here r is the minimal number of monic irreducible factors of f in Fp[x] (taken

over all p that do not divide the leading coefficient or the discriminant of f). The degree

of f is denoted by n, while lf denotes log10(||f ||2).

Note that these polynomials are not chosen at random. Most polynomials have large

Galois groups, and consequently, have small r. For small r, [12] is much faster than the

algorithm in this paper (however, if r is large, then [12] becomes exponentially slow, and

our algorithm will be faster). To get a good comparison, we constructed examples with

a variety of values for r and n. To ensure that r is not very small, these examples are

chosen to have Galois groups whose orders are not much greater than n. The table lists

the CPU time (in seconds) for [12] and for the algorithm in this paper. Those marked

“N/F” are computations that did not (yet) finish at the time of writing, and have been

running for days, while “N/A” means not attempted.
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r n lf [12] HKN r n lf [12] HKN

6 36 5.4 1.3 30.7 13 75 32.4 228796.3 2911.2

7 75 10.6 75.2 453.2 14 81 13.1 16281.8 1849.3

8 48 4.4 15.5 101.2 15 81 14.0 31478.1 1644.1

8 56 11.2 3161.2 192.2 16 32 5.5 N/F 170.8

10 50 9.3 212.6 95.3 16 64 8.3 N/F 609.1

11 60 11.1 262.9 458.0 16 80 16.6 N/A 4195.9

12 60 15.0 5746.7 746.2 16 96 10.0 N/A 5494.3

12 64 10.5 277.4 417.1 18 90 21.5 N/A 4053.2

12 72 4.3 9575.4 785.9 20 100 28.2 N/A 43376.6

Observe that [12] was faster on all examples with r < 8, as well as some with r ≤ 12,
while our algorithm (the columns HKN) was faster on all examples with r > 12, as
well as some with r ≥ 8. We list two of the examples here: r = 12, n = 72, f =
x72 + 4x68 + 62x64 + 346x60 + 2077x56 + 3367x52 + 6647x48 + 6536x44 + 6634x40 +
5773x36 + 6634x32 + 6536x28 + 6647x24 + 3367x20 + 2077x16 + 346x12 + 62x8 + 4x4 + 1.
r = 16, n = 32, f = x32 − 161x28 + 25345x24 − 92414x20 + 305854x16 − 92414x12 +
25345x8 − 161x4 + 1.
The remaining f ’s can be copied from http://www.math.fsu.edu/~hoeij/subfields/

where some other details (Magma commands, memory usage, processor) are given as
well.
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