
COMPUTING AUTOMORPHISMS OF ABELIAN NUMBERFIELDSVINCENZO ACCIARO AND J�URGEN KL�UNERSAbstract. Let L = Q[�] be an abelian number �eld of degree n. Most algo-rithms for computing the lattice of sub�elds of L require the computation ofall the conjugates of �. This is usually achieved by factoring the minimal poly-nomial m�(x) of � over L. In practice, the existing algorithms for factoringpolynomials over algebraic number �elds can handle only problems of moder-ate size. In this paper we describe a fast probabilistic algorithm for computingthe conjugates of �, which is based on p-adic techniques. Given m�(x) and arational prime p which does not divide the discriminant disc(m�(x)) ofm�(x),the algorithm computes the Frobenius automorphism of p in time polynomialin the size of p and in the size ofm�(x). By repeatedly applying the algorithmto randomly chosen primes it is possible to compute all the conjugates of �.1. IntroductionLet us assume that L = Q[�] is an abelian number �eld of degree n over Q, givenby the minimal polynomial m�(x) of � over Q, and without loss of generality letus assume that � 2 O, the ring of algebraic integers of L. The computation of theautomorphisms of L over Q is equivalent to the computation of all conjugates of� 2 L. Clearly, one can compute these conjugates by factoring m�(x) over L.The factorization ofm�(x) over L is computed using general purpose algorithms,which do not take into account the Galois structure of L. For example, H. W.Lenstra states [12, Corollary 3.3] that there is a polynomial time algorithm thatgiven a polynomial f(x) decides whether the splitting �eld of f(x) is abelian anddetermines the Galois group G if G is abelian and f(x) is irreducible. The proofis based on the observation that a transitive abelian permutation group of degreen has order n. Moreover, if f(x) is reducible, then G is abelian if and only if theGalois group of each irreducible factor is abelian. For monic irreducible f(x), thepolynomial factorization algorithm of S. Landau [9] is applied to f(x) over the �eldQ[x]=f(x)Q[x] in order to determine its Galois group.However, Lenstra's observation does not imply a very e�cient algorithm to testwhether f(x) is abelian. In fact, our experience in experiments conducted withPARI, Maple and KASH on a workstation Sun 20 suggests that none of the al-gorithms implemented in these packages for factoring polynomials over �nite non-trivial extensions of Q can be used to solve large problems. This fact should notsurprise us, if we consider the complexity of the existing factorization algorithmsover algebraic number �elds.Many of the existing algorithms for computing the lattice of sub�elds of L requirethe expensive factorization of m�(x) over L. The sub�eld algorithm described in1991 Mathematics Subject Classi�cation. Primary 11R37; Secondary 11Y40.Key words and phrases. computational number theory, abelian number �elds, automorphisms.1



2 VINCENZO ACCIARO AND J�URGEN KL�UNERS[7] does not require factorizations of polynomials over number �elds. However, inthe abelian case e�ciency issues still suggest to use the conjugates of � for thecomputation of the sub�elds of L.In this paper we propose a new technique for computing the conjugates of a root� of a monic abelian irreducible polynomial m�(x), which works well in practiceeven with polynomials of large size.Given m�(x) and a rational prime p which does not divide the discriminantdisc(m�(x)), the algorithm returns an automorphism of L = Q[�] over Q known asthe Frobenius automorphism of p.By repeatedly applying the algorithm to randomly chosen primes smaller thansome bound b, it is possible to compute all the conjugates of �. In x 2.6 we willshow that such a bound b exists, and we will give some estimates for it.A meaningful analysis of the expected number of times that the algorithms hasto be executed, with randomly chosen primes below b, in order to �nd all theconjugates of �, would require one to assume a very large bound b. For, in thiscase, Chebotarev Density Theorem tells us that the primes mapping to a �xedelement of the Galois group of L are approximately equidistributed in the set ofprimes smaller than b.We will restrict ourselves to show that, for a �xed prime p, the algorithm runsin time polynomial in the size of p and in the size of m�(x).The algorithm described in this paper has been implemented using the numbertheory package KASH [5], developed in Berlin by Prof. M. Pohst and his collabo-rators.For the terminology and the basic concepts of algebraic number theory used inthis paper we refer the reader to [11].2. Description of the methodLet p be a rational prime which does not divide the discriminant disc(m�(x)),and let P1; : : : ;Pr denote the prime ideals of O lying above p. Let f = n=r denotethe degree of inertia of Pi (1 � i � r).Let � be the Frobenius automorphism of P1 . It is well known that the Frobeniusautomorphisms of the prime ideals above p are conjugate to each other. Since theGalois group of L over Q is abelian, it follows that � turns out to be the Frobeniusautomorphismof P2; : : : ;Pr as well. For this reason � is called simply the Frobeniusautomorphism of p. Now, by de�nition�(�) � �p (mod P1); : : : ; �(�) � �p (mod Pr)and therefore �(�) � �p (mod pO)(1)Let g0(x) 2 Z[x] with deg g0(x) < n, such that g0(�) � �p (mod pO). Thepolynomial g0(x) can be computed e�ciently as follows. Let x denote the imageof x in (Z=pZ)[x]=m�(x)(Z=pZ)[x]. Take for g0(x) the representative of xp in Z[x]whose coe�cients are positive and bounded by p.We know that m�(�(�)) = 0, and it is clear that m�(g0(�)) 2 pO. In order to�nd � we will use p-adic lifting. Thus, for k = 1; 2; : : : we would like to compute anintegral polynomial gk(x) of degree less than n such that m�(gk(�)) 2 p2kO. Wewill show in x2.5 that, when k is large enough, it is possible to recover �(�) fromgk(�).



AUTOMORPHISMS OF ABELIAN NUMBER FIELDS 32.1. Automorphisms in (Z=pZ)[x]=m�(x)(Z=pZ)[x]. Our aim is to compute allthe automorphisms of L. The p-adic lifting of the computed Frobenius automor-phisms in O=pO is the most expensive part of our algorithm. We want to avoidthis lifting if there is no new contribution to the group of automorphisms.Let � be an automorphism of L which is represented in the form � = g(�) withg(x) = Pn�1i=0 aixi 2 Q[x]. We call g(x) the polynomial representation of �. Inthe usual way we de�ne for C;D;U;M 2Zwith (D;M ) = 1: C=D � U (mod M )if C � DU (mod M ). Then � is the image of � in (Z=pZ)[x]=m�(x)(Z=pZ)[x].There is a unique representation of � by g(x) =Pn�1i=0 aixi, where ai � ai (mod p).This de�nition makes sense because p does not divide the denominator of ai. LetA be a list of computed automorphisms of L and � an automorphism which isknown in (Z=pZ)[x]=m�(x)(Z=pZ)[x]. We want to check if � belongs to A. De�neA = f� j � 2 Ag.Lemma 1. � belongs to A if and only if the polynomial representation of � coin-cides with one of the polynomial representations of an automorphism of A.Proof. If � = � the polynomial representations of � and � coincide. Let �1; : : : ; �nbe the zeros of m�(x) and �1; : : : ; �n be the zeros of m�(x) � m�(x) (mod p).Since m�(x) has no double roots, there is an isomorphism between �i and �i, andit follows that � and � coincide if � and � coincide.2.2. Applying automorphisms. We represent an automorphism � by its imageon �, thus we have �(�) =Pn�1i=0 ai�i. Let � (�) =Pn�1i=0 bi�i be another automor-phism. We want to compute the image of �� on �. We have�� (�) = �(n�1Xi=0 bi�i) = n�1Xi=0 bi�(�i):The most expensive part is the computation of �(�i) or �(�)i. If we want to apply� more than once, then we have to save the images of � on �i (0 � i � n� 1). Theproof of the next lemma is immediate.Lemma 2. In order to apply an automorphism � to an element � , we need n � 2multiplications of algebraic numbers for the initialization of the automorphism, andn multiplications of a rational number times an algebraic number for the applicationof the automorphism.2.3. p-adic lifting. We show now how to perform the p-adic lifting. We want touse quadratic Newton lifting (see [10, pages 308{311] and [6, Appendix B]).Let �0 =Pn�1i=1 b0;i�i be an approximation of a zero of m�(x) modulo p. Sincep - disc(m�(x)) we can compute an element !0 which satis�es !0m0�(�0) � 1(mod pO), using the extended-gcd algorithm for polynomials over �nite �elds.In the following we construct two sequences of algebraic integers f�kg and f!kgwhich satisfy the relations:(i) �k+1 � �k (mod p2kO)(ii) !k+1 � !k (mod p2kO)(iii) m�(�k) � 0 (mod p2kO)(iv) !km0�(�k) � 1 (mod p2kO)This can be done by the following double iteration:(i) �k+1 � �k � !km�(�k) (mod p2k+1O)



4 VINCENZO ACCIARO AND J�URGEN KL�UNERS(ii) !k+1 � !k[2� !km0�(�k+1)] (mod p2k+1O)We remark that it is possible to compute �k by the following simple iteration:�k+1 � �k � m�(�k)m0�(�k) (mod p2k+1O):The double iteration has the advantage that we avoid the time consuming division.2.4. An upper bound for the number of iterations. Let d be the largestpositive integer whose square divides disc(m�(x)). It is well known that O �(1=d)Z[�]. We want to �nd a positive integer B such that all the conjugates of �can be expressed as m(x)=d, where the coe�cients of m(x) 2Z[x] are bounded inabsolute value by B. This gives us an upper bound for the number of iterations ofour algorithm, for we can stop the lifting process as soon as p2k > 2B2 (Lemma 4),that is after dlog logp 2B2e iterations. Let m�(x) = anxn+an�1xn�1+: : :+a1x+a0,where by hypothesis ai 2 Zfor i = 0; : : : ; n and an = 1. Recall that jm�(x)j isde�ned to be the Euclidean length of m�(x), that is (Pni=0 a2i )1=2, and jm�(x)jmaxis de�ned to be the height of m�(x), that is maxi jaij. For the proof of the followinglemma we refer the reader to [9, Theorem 1.3].Lemma 3. Let �1 = �; : : : ; �n denote the conjugates of �.Let �h = (1=d)Pn�1j=0 chj�j, with chj 2Z. Then jchjj < B for 0 � j < n; 1 � h �n, whereB = d(1 + jm�(x)jmax)n(n� 1)(n�1)=2jm�(x)jn�1j disc(m�(x))j�1=2(2)Note that the theoretical bound B given by Lemma 3 is a bit too conservative,and in practice it is possible to use some heuristic bounds which are much smaller[16, p. 332]. We remark that we do not compute d. We only need it just to derivethe theoretical bound B.2.5. Recovering �. So far we have shown how to compute for each k = 0; 1; : : :a polynomial gk(x) 2 Z[x] such that �(�) � gk(�) (mod p2kO). Without loss ofgenerality we can assume that gk(x) has positive coe�cients smaller than p2k. Thenext lemma tells us how to recover a rational number C=D from a modulo Mapproximation. For its proof, and the related algorithm, we refer the reader to [4].Lemma 4. Let U;M 2 N such that (U;M ) = 1. Then there exists an e�cientalgorithm to compute a pair of integers (C;D) such that C � DU (mod M ) withD > 0 and jCj; D < pM=2, if such a pair exists. Otherwise, an indication offailure is returned.Now we are able to compute the polynomial g(x) corresponding to �. We recoverthe polynomial g coe�cientwise from gk by Lemma 4. We remarked that the boundB grossly overestimates the size of the numerator of the coe�cients of g(x). Oneapproach in practice is to compute g(x) from gk(x) after each step and check ifm�(g(�)) = 0; however this is not a good idea since the test is very expensive ifg(�) is not a zero of m�. A better way is to determine g(x) after each iterationand compare this g(x) with the g(x) computed at the previous iteration. We onlyneed to check m�(g(�)) = 0 if g(x) remains invariant.



AUTOMORPHISMS OF ABELIAN NUMBER FIELDS 52.6. Termination of the algorithm. Since the Galois group G of L over Q actsregularly on the set of roots of m�(x), it follows that, if we are given a root �j ofm�(x), there is exactly one element � of G such that � (�) = �j. Hence, we are ableto determine all the conjugates of � as soon as the Frobenius elements computed sofar form a complete set of generators of G. Therefore, the average number of Frobe-nius elements that must be computed is equal to the average number of elementsthat must be selected from G in order to obtain a complete set of generators.Even if the structure of G is not known, the estimates in [1] show that for anabelian group G the average number of elements that must be selected from G inorder to generate G is very close to the minimal number t(G) of generators of G.If n = Qki=1 peii , with pi distinct primes, then clearly t(G) �Pki=1 ei.Now, by the Chebotarev Density Theorem [11, Theorem 10, p. 169] the primesmapping to a �xed element of G have density 1=jGj = 1=n.Even if we do not know how to select at random a Frobenius automorphism �,it is possible to show that there exists a positive number b, depending on the �eldL, such that each element of the Galois group of L is the Frobenius automorphismof some prime p < b. E�ective bounds for b have been extensively studied in [8].The best possible estimates for b are obtained by assuming the validity of along standing conjecture in number theory, known as the Extended Riemann Hy-pothesis (ERH). If we assume the ERH, then the following lemma is an immediateconsequence of the explicit formulas of Bach and Sorenson [2, Thm 5.1]:Lemma 5 (ERH). Each element of the Galois group of L is the Frobenius auto-morphism of some prime p < (4 log jdLj+ 2:5n+ 5)2.Clearly, larger values of b yield a better sampling of the elements of G, that is adistribution of the Frobenius elements which is closer to the uniform distribution.Note that the knowledge of the structure of G could be used to handle someparticular instances of the problem very e�ciently. For example, if n is squarefreethen G is cyclic, and there are exactly �(n) generators of G. It can be shown [14,Exercise 1, p. 266] that for n � 3 we have �(n)=n � c(log logn)�1 for some c > 0,and hence a generator of G can be found by random sampling in G in an expectednumber of O(log logn) trials. Therefore, when n is squarefree it is advisable tosearch �rst for a prime p whose degree of inertia is equal to n, and then computeits Frobenius automorphism, which clearly generates G.3. ExamplesLet L be the abelian number �eld generated by the polynomial m�(x) = x16 �112x14+ 4532x12� 83472x10+ 730358x8� 2962896x6+ 4936148x4� 2507824x2+28561. The Galois group is isomorphic to C2 � C2 � C2 � C2. This is the hardestabelian group of order 16, since it requires at least four generators. In other words,we have to compute at least four Frobenius automorphisms. We computed all theautomorphisms in 2.0 seconds on a HP 735 using KASH 1.8 under HP-UX 9.01.We print one non trivial automorphism to give an idea of the size of the coe�cients.This automorphism sends � to1165905131392(�1460330046379�+ 3045184412874�3� 1986742065521�5+506400762490�7� 58437366385�9+ 3179647862�11� 78588459�13+ 701446�15)



6 VINCENZO ACCIARO AND J�URGEN KL�UNERSWe can compute the automorphism group of abelian �elds of much higher degreeas the following examples, which were given to us by [15], show. Letf(t) := tp�1 � pa and g(t) := tp � patwith p 2 P; a2Zand p - a. We de�nefn(t) := g(fn�1(t))where fn := f(fn�1) is de�ned recursively. What are the specializations for p and asuch that the Galois group Gal(fn) is abelian for all n 2 N? If we let p = 2; a = �1we get the 2n cyclotomic �elds. We computed some examples for p = 2; a = 1 andp = 3; a = 1.p a n degree time2 1 2 2 0.2 s2 1 3 4 0.4 s2 1 4 8 0.3 s2 1 5 16 0.8 s2 1 6 32 12.8 s2 1 7 64 103 s2 1 8 128 1224 s2 1 9 256 55685 s p a n degree time3 1 1 2 0.2 s3 1 2 6 0.2 s3 1 3 18 0.4 s3 1 4 54 14.1 s3 1 5 168 536 sThe computing times in the second table (p = 3) are slightly better since these �eldsare cyclic. In the �rst table (p = 2) the Galois group is isomorphic to C2 � C2n�2 .4. Complexity issuesIn this section we will discuss the cost of computing the Frobenius automorphismassociated to a prime p.For the sake of e�ciency it is advisable to carry out the computa-tion of gk(x), at the kth iteration of the lifting process, in the �nite ring(Z=p2kZ)[x]=m�(x)(Z=p2kZ)[x], in order to avoid an unacceptable growth of thecoe�cients involved. This is allowed since if gk(x) = Pn�1i=0 bixi 2 Z[x] satis�esm�(gk(x)) � 0 (mod p2kO), then any l(x) = Pn�1i=0 cixi 2 Z[x] such that ci � bi(mod p2k) for i = 0; : : : ; n� 1 satis�es m�(l(x)) � 0 (mod p2kO), as well.If k 2 N; k > 0, let us assume that the multiplication of two elements ofZ=p2kZrequires O(log2 p2k) bit operations, and that the multiplication of two elements of(Z=p2kZ)[x]=m�(x)(Z=p2kZ)[x] requires O(n2 log2 p2k) bit operations.Let us consider �rst the cost of computing �. The computation of �jp is car-ried out using the binary powering algorithm (see [3, p.8]); hence this step requiresO(log p) multiplications in (Z=pZ)[x]=m�(x)(Z=pZ)[x], and therefore O(n2 log3 p)bit operations. The next step consists in the initialization of the automor-phism � (Lemma 2). This step requires n � 2 multiplications of two elementsof (Z=pZ)[x]=m�(x)(Z=pZ)[x], and therefore O(n3 log2 p) bit operations. In orderto apply the automorphism � we need n2 multiplications of two elements ofZ=pZ,and hence O(n2 log2 p) bit operations. In the worst case the computation of �nrequires O(n3 log3 p) bit operations.Let us consider now the computation of the inverse ofm0�(g1(�)) modulo pO. Wecompute it by applying the extended Euclidean gcd algorithm to two polynomials



AUTOMORPHISMS OF ABELIAN NUMBER FIELDS 7in (Z=pZ)[x] of degree n and n� 1. Euclid's algorithm needs O(n2) multiplicationsof two elements ofZ=pZ, and therefore O(n2 log2 p) bit operations.Let us consider next the cost of the p-adic lifting. It is clear thatthe cost of the kth iteration is dominated by the cost of computingm�(gk�1(�)). Using Horner's rule, this task requires O(n) operations in the ring(Z=p2kZ)[x]=m�(x)(Z=p2kZ)[x]. The update of !k requires O(n) operations in thering (Z=p2kZ)[x]=m�(x)(Z=p2kZ)[x], too. Hence O(n322k log2 p) bit operations arerequired at the kth iteration.If s iterations are required, then the overall cost of the lifting is O(n3 log2 p(4 +42+: : :+4s�1+4s)) bit operations, that is O(n3(log2 p)4s+1) bit operations. Now, ifwe let s = dlog(logp 2B2)e = dlog ((log 2+2 logB)=log p)e, we obtain O(n3(log2B))bit operations.Finally, Mahler's bound on the discriminant of a polynomial [13, p. 261] showsthat, if m�(x) = Pni=0 aixi then j disc(m�(x))j < nn(Pni=0 jaij)2n�2 and henced < nn=2(Pni=0 jaij)(2n�2)=2. Therefore the cost of computing � from gs(x) isdominated by the cost of computing gs(x), and we obtain an overall complexity ofO(n3((log2B) + log3 p))bit operations. By applying Lemma 3 we conclude that the algorithm runs in timepolynomial in the size of p and of m�(x), for a given p.AcknowledgementsThe �rst author wishes to thank Prof. V.L. Plantamura for his support.References[1] V. Acciaro, The probability of generating some common families of �nite groups, UtilitasMathematica 49 (1996), 243{254.[2] E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65(1996), 1717{1735.[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin,1993.[4] G.E. Collins and M.J. Encarnaci�on,E�cient rational number reconstruction, J. Symb. Com-put. 20 (1995), 287{297.[5] M. Daberkow, C. Fieker, J. Kl�uners, M. Pohst, K. Roegner, M. Sch�ornig, K. Wildanger,KANT V4, J. Symb. Comput., Vol 24, No 3, 1997, 267{283.[6] J.D. Dixon, Computing sub�elds in algebraic number �elds, J. Austral. Math. Soc. 49 (1990),434{448.[7] J. Kl�uners and M. Pohst, On computing sub�elds, J. Symb. Comput., Vol 24, No 3, 1997,385{397.[8] J.C. Lagarias and A.M. Odlyzko, E�ective versions of the Chebotarev density theorem, Al-gebraic number �elds (A. Fr�ohlich, ed.), Academic Press, 1977, 409{464.[9] S. Landau, Factoring polynomials over algebraic number �elds, SIAM J. Comput. 14 (1985),184{195.[10] S. Lang, Algebra, Addison-Wesley, Reading, Massachusetts, 1974.[11] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1994.[12] H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992),211-244.[13] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964),257-262.[14] M. Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New York, 1992.[15] F. Nicolae, private communication, Berlin, 1997.[16] P.S. Wang, Factoring multivariate polynomials over algebraic number �elds, Math. Comp.30 (1976), 324{336.
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