
A DATABASE FOR FIELD EXTENSIONS OF THE RATIONALSJ�URGEN KL�UNERS AND GUNTER MALLEAbstra
t. We announ
e the 
reation of a database for number �elds. Wedes
ribe the 
ontents and the methods of a

ess, indi
ate the origin of thepolynomials and formulate the aims of this 
olle
tion of �elds.1. Introdu
tionWe report on a database of �eld extensions of the rationals, its properties andthe methods used to 
ompute it. At the moment the database en
ompasses roughly100,000 polynomials generating distin
t number �elds over the rationals, of degreesup to 15. It 
ontains polynomials for all transitive permutation groups up to thatdegree, and even for most of the possible 
ombinations of signature and Galoisgroup in that range. Moreover, whenever these are known, the �elds of minimaldis
riminant with given group and signature have been in
luded. The database 
anbe downloaded fromwww.iwr.uni-heidelberg.de/iwr/
ompalg/minimum/minimum.htmlor fromwww.mathematik.uni-kassel.de/~malle/minimum/minimum.htmland a

essed via the 
omputer algebra system Kant [10℄.One of the aims of the 
ompilation of this database was to test the limitations of
urrent methods for the realization of groups as Galois groups. It turned out thatthese methods have limitations if the signature of the resulting Galois extension isalso pres
ribed.2. Galois realizations with pres
ribed signatureLet K=Q be a number �eld of degree n. We denote by r1 the number of realembeddings of K and by r2 the number of pairs of 
omplex embeddings. Then wehave n = r1 + 2r2. The pair (r1; r2) is 
alled the signature of K. The extensionK=Q is 
alled totally real if r2 = 0. The solution of embedding problems oftenrequires the knowledge of �eld extensions with a pres
ribed signature. This is onereason for the attempt to realize all groups in all possible signatures.Now let G be the Galois group of the Galois 
losure of K=Q. Then for any em-bedding of K into C 
omplex 
onjugation is an element of G, that is, G in itspermutation representation on the 
onjugates of the �xed group of K 
ontains aninvolution with r1 �xed points. Clearly this restri
ts the signatures whi
h mayo

ur for a given Galois group. It leads to the following question:Given a �nite permutation group G and a 
onjuga
y 
lass C of involutions inG, does there exist a number �eld K=Q whose Galois 
losure has group G su
h thatthe image of 
omplex 
onjugation lies in 
lass C?1



2 J�URGEN KL�UNERS AND GUNTER MALLEObviously a positive solution to this problem would in parti
ular solve the inverseproblem of Galois theory. In a letter to Matzat, dated 20th of July 1992, Serre hasremarked that the 
onverse is true at least for totally real extensions:Proposition 1. (Serre) If all �nite groups o

ur as Galois groups over Q, then all�nite groups o

ur as Galois groups of totally real extensions of Q.Proof. Let G be a �nite group. We use a spe
ial 
ase of a result of Haran and Jarden[20℄, Cor. 6.2: There exists a �nite group ~G and an epimorphism � : ~G! G havingall involutions of ~G in the kernel. Indeed, assume that G is generated by r elements,and let  : Fr ! G be a 
orresponding epimorphism from the free pro�nite groupFr of rank r onto G. Then S := Fr n ker( ) is a 
ompa
t subset whi
h is invariantunder 
onjugation. Hen
e S2 := fg2 j g 2 Sg is 
ompa
t and invariant under
onjugation as well and 1 =2 S2. Thus there exists a normal subgroup ~N � Fr of�nite index with ~N \ S2 = ;. De�ning N := ~N \ ker( ) we have N \ S2 = ; andN has �nite index in Fr. Then ~G := Fr=N with � : ~G ! G indu
ed by  is asrequired.Now let K=Q be a Galois extension with group ~G and � : ~G ! G as abovewith H = ker(�). Assume that KH=Q is not totally real. Then some involutionof G a
ts as 
omplex 
onjugation. But by 
onstru
tion of ~G this involution lifts toan element of order bigger than 2 in ~G = Gal(K=Q), 
ontradi
ting the fa
t that
omplex 
onjugation has order 2. ThusKH=Q is a totally real realization for G. �For the expli
it 
onstru
tion of �elds with given signature, we may distinguishtwo 
ases. In the solvable 
ase, 
lass �eld theory may be used as in the generalinverse problem. The 
onstru
tion of extensions with non-solvable groups usuallyis done via the rigidity method. But this seems less adapted to the 
ase where inaddition the signature is pres
ribed. In fa
t, Serre [32℄, p.91, has shown, that rigid-ity with three bran
h points never gives totally real Galois extensions for groupsG 6= S3. At the moment we are redu
ed to ad ho
 methods for 
onstru
ting ex-tensions with arbitrary signature.2.1. Symmetri
 groups. Let's �rst treat the symmetri
 groups. We propose aneven stronger statement.Proposition 2. Let n 2 N, 0 � k � n=2, and fi 2 Qpi [X ℄ (i = 1; : : : ; r) separablepolynomials of degree n, where pi 6= pj for i 6= j. Then there exist in�nitelymany number �elds K=Q with Galois group Sn, signature (n�2k; k) and su
h thatK 
 Qpi �= Qpi [X ℄=(fi) for i = 1; : : : ; r.Proof. Let g0 2 Z[X℄ be a separable polynomial with n � 2k real and k pairs of
omplex zeros, for example the polynomial Qn�2ki=1 (X � i)Qki=1((X � i)2 + 1). Bythe main theorem on elementary symmetri
 fun
tions and Hilbert's irredu
ibilitytheorem there exist irredu
ible polynomials with group Sn arbitrarily 
lose to g0(for example with respe
t to the metri
 indu
ed by taking the maximal absolutevalue of the 
oeÆ
ients). To �nd su
h a polynomial 
onstru
tively, 
hoose threefurther primes pr+1; : : : ; ps, s := r + 3. Furthermore, let gi 2 Z[X℄, i = 1; : : : ; r,be separable polynomials su
h that Qpi [X ℄=(fi) �= Qpi [X ℄=(gi), i = 1; : : : ; r, andgr+1; : : : ; gs 2 Z[X ℄ separable su
h that the only non-linear irredu
ible fa
tor of the



A DATABASE FOR FIELDS 3redu
tion gi (mod pi) (r + 1 � i � s) has degree n, n� 1, 2 respe
tively.Write gi = nXj=0 ai;jXj for i = 0; : : : ; s:By the weak approximation theorem [25, Theorem 1.11℄ we may 
hoose b0; : : : ; bn 2Q su
h that f := nXi=0 biX i 2 Q[X ℄satis�es the following two 
onditions:� jbj�a0;j j (j = 0; : : : ; n) is suÆ
iently small so that f has the same signatureas g0,� jbj � ai;j jpi are suÆ
iently small so that Q[X ℄=(f) 
 Qpi �= Qpi [X ℄=(gi) fori = 1; : : : ; s. (Lemma of Krasner, [25, Proposition 5.5℄).Then f has the same signature as g0, and Q[X ℄=(f) 
 Qpi �= Qpi [X ℄=(fi), i =1; : : : ; r, are as required. Finally, fa
torization modulo pr+1; : : : ; ps shows thatGal(f) is 2-fold transitive, hen
e primitive, and 
ontains a transposition. By atheorem of Jordan this implies that Gal(f) = Sn.By varying the additional primes, respe
tively by enlarging the set of primes, wemay 
learly obtain in�nitely many examples. �2.2. Alternating groups. The 
ase of alternating groups is already more 
ompli-
ated, and it is the only other 
ase whi
h we 
an solve uniformly. We �rst rephrasea result of Mestre into a universal lifting property (see [2℄ for de�nitions and otherresults in this dire
tion):Theorem 3. The group An has the universal lifting property over �elds of 
hara
-teristi
 0. More pre
isely, if K is a �eld of 
hara
teristi
 0 and g(X) 2 K[X ℄a separable polynomial with square dis
riminant then there exists a polynomialf(t;X) 2 K(t)[X ℄ generating a regular Galois extension of K(t) with group An,n � 3, su
h that the splitting �elds of g(X) and f(0; X) 
oin
ide.Proof. Let g(X) 2 K[X ℄ of degree n � 3 with square dis
riminant. First assumethat n is odd. Then by the result of Mestre (see [24℄, IV.5.12) there exists apolynomial h(X) 2 K(X) of degree n � 1 su
h that f(t;X) := g(X) � th(X) 2K(t)[X ℄ has Galois group An over K(t).Now assume that n is even. Repla
ing X by X � a for a suitable a 2 K we mayassume that g1(X) := Xg(X) is separable. Sin
e g1 has again a square dis
riminantand odd degree, by the �rst part there exists a polynomial f1(t;X) = g1(X)�th(X)with group An+1. Note that this implies that h(0) 6= 0. By [24℄, IV.5.12(b), thepolynomial ~f(t;X) := (g1(X)h(t)� g1(t)h(X))=(X � t) 2 K(t)[X ℄has group An. Moreover, ~f(0; X) = Xg(X)h(0)=X = h(0)g(X) is a non-zero s
alarmultiple of g(X), so f(t;X) := ~f(t;X)=h(0) has all the required properties. �Note that the signature of a �eld with even Galois group is ne
essarily of theform (n � 2k; k) with k even. For alternating groups, all these signatures 
an berealized over Q.



4 J�URGEN KL�UNERS AND GUNTER MALLECorollary 4. Let n 2 N and 0 � k � n=2 even. Then there exist in�nitely manynumber �elds K=Q with Galois group An and signature (n� 2k; k).Proof. For 1 � i � k=2 let ui(X) 2 Z[X℄ be distin
t totally 
omplex polynomials ofdegree 4 with Galois groupA4, for example ui(X) = (X�i)4�7(X�i)2�3(X�i)+1.Then g(X) := n�2kYi=1 (X � i) k=2Yi=1ui(X)is separable with square dis
riminant and signature (n�2k; k). By Theorem 3 thereexists a polynomial f(t;X) 2 Q(t)[X ℄ with Galois group An su
h that f(0; X) =g(X). Sin
e g is separable, for any t0 
lose to 0 the spe
ialization f(t0; X) has thesame signature as g. By the Hilbert irredu
ibility theorem there exist in�nitelymany su
h t0 for whi
h the Galois group is preserved under spe
ialization. �Note that for symmetri
 and alternating groups the 
onjuga
y 
lasses of involu-tions are parameterized by the 
y
le types, so the pre
eding results show that anyinvolution in an alternating or symmetri
 group 
an o

ur as 
omplex 
onjugationin a Galois extension of the rationals.2.3. Further simple groups. The non-abelian simple groups with faithful permu-tation representations of degree at most 15 are L2(7);L2(8);L2(11);M11;M12;L3(3),L2(13) and the alternating groups. For the groups L2(7), L2(11), M11 and M12 to-tally real realizations were found in [23℄, by 
onstru
ting the Hurwitz spa
es for
ertain n-tuples of 
onjuga
y 
lasses, where n � 4. These 
onstru
tions involvea 
onsiderable amount of 
al
ulation and seem to be restri
ted to small degree.At the moment we are not aware of any totally real extensions of Q with groupL2(8);L3(3) or L2(13), nor with the almost simple groups P�L2(8), PGL2(11) orPGL2(13). 3. How to 
onstru
t polynomialsIn this se
tion we give a short overview about the methods we used to 
onstru
tthe polynomials 
ontained in the database.3.1. Methods from the geometry of numbers. Let K be a number �eld ofdegree n with absolute dis
riminantD. For � 2 K we denote by � = �1; : : : ; �n 2 Cthe 
onjugates of � and de�ne T2(�) := Pni=1 j�2i j. Now Theorem 6.4.2 in [7℄(attributed to Hunter) states that there exists an algebrai
 integer � 2 K n Q su
hthat T2(�) � B, where B only depends on n;D. This 
an be used to derive boundsfor the 
oeÆ
ients of the 
hara
teristi
 polynomial of a primitive element of K. Ades
ription of this method 
an be found in [8, Se
tion 9.3℄. In the 
ase that all
onjugates �1; : : : ; �n are real we have used a slightly di�erent approa
h.Let f(X) 2 Z[X ℄ be a totally real separable polynomial of degree n (that is,the stem �eld of f has n di�erent real embeddings). Then all derivatives of fare also totally real and separable. Conversely given a totally real polynomialg(X) 2 Z[X℄ of degree n�1 � 2 there are only �nitely many totally real polynomialsf(X) 2 Z[X℄ su
h that f 0 = g. Moreover the 
onstant terms of su
h polynomialsf 
onsist of all integers in an interval I whi
h 
an be 
omputed from g. Indeed,denote by �1 < : : : < �n�1 the (di�erent real) roots of g and let f0 denote any



A DATABASE FOR FIELDS 5integral polynomial with derivative f 00 = g. Assume for de�niteness that the highest
oeÆ
ient of g is positive. Denote bym := maxff0(�n�1�2i) j 0 � i � (n� 2)=2gthe maximum of the minima of f0, and byM := minff0(�n�2�2i) j 0 � i � (n� 3)=2gthe minimum of the maxima. Then 
learly f0 � 
 is totally real if and only if
 2 I := f� 2 R j m � � �Mg.The above 
onsiderations show the following (see also [8, p. 448℄, for example):Lemma 5. For �xed an; an�1; an�2 2 Z there exist only �nitely many totally realpolynomials f(X) =Pni=0 aiX i 2 Z[X℄, and these may be enumerated e�e
tively.Indeed, su
h polynomials 
an only exist if f (n�2) is totally real. Sin
e f (n�2) ofdegree 2 is 
ompletely determined by an; an�1; an�2, there are only �nitely manypossibilities for f (n�3), and now indu
tion proves the assertion.By the theorem of Hunter any primitive extension K of Q of degree n 
an be gen-erated by a moni
 polynomial f(X) = Pni=0 aiX i 2 Z[X ℄ of degree n su
h that0 � an�1 � n=2 and with T2-norm bounded by a fun
tion in the dis
riminant d(K).Moreover the T2-norm bounds the third highest 
oeÆ
ient an�2.Hen
e Lemma 5 
an be used to enumerate totally real �elds of bounded dis
rimi-nants. It seems that this strategy produ
es mu
h fewer polynomials to be 
onsid-ered, as 
ompared to the approa
h whi
h �rst tries to bound the dis
riminant andthen to sieve for totally real polynomials. For example, in the 
ase of totally realdegree 8 extensions (see Theorem 13), only 869062 polynomials were produ
ed andhad to be pro
essed further. (Among the 
orresponding �elds only 4896 had Galoisgroup di�erent from S8.)3.2. Spe
ializing from polynomials over Q(t). Let G be a �nite group. We
all the �eld extension K=Q(t) a G-realization, if it is Galois with group G andregular, whi
h means that Q is algebrai
ally 
losed in K. When a group has a G-realization over Q, it is an immediate 
onsequen
e that there exist in�nitely manydisjoint number �elds L=Q with Galois group G: Suppose we have a polynomialf 2 Q(t)[X ℄ su
h that the splitting �eld of f is a regular extension with Galoisgroup G. By spe
ializing t to a 2 Q we get that Gal(f(a;X)) is a subgroup of G.Hilbert's irredu
ibility theorem states that Gal(f(a;X)) = G for in�nitely manya 2 Q. See for example [32, Se
tion 4.6℄ for a method to �nd in�nitely many a 2 Qwith that property. This allows to 
onstru
t polynomials with Galois group G overQ when we have an expli
it polynomial f 2 Q(t;X). In some lu
ky 
ases we areable to get proper subgroups of G.3.3. Methods from 
lass �eld theory. Suppose we want to 
onstru
t a polyno-mial f su
h that Gal(f) = G for some permutation group G. Furthermore supposethat in a 
orresponding �eld extension the stem �eld N of f has a sub�eld L su
hthat N=L is an Abelian extension with Galois group A. Then we 
an try the fol-lowing approa
h. The Galois group of (the splitting �eld of) L 
an be determinedgroup theoreti
ally and is denoted by H . Given a �eld L with Galois group H wegenerate relative Abelian extensions with Galois group A using 
lass �eld theory.The Galois groups over Q of su
h extensions are subgroups of the wreath produ
tA oH . Experiments show that most of the 
omputed �elds have the wreath produ
t



6 J�URGEN KL�UNERS AND GUNTER MALLEor the dire
t produ
t as Galois group. But we also get other Galois groups. Oneadvantage of this method is that we are able to 
ontrol the �eld dis
riminants of the
omputed �elds. Therefore we 
an prove minimal dis
riminants for su
h groups.E.g. this was applied su

essfully to degree 8 �elds having a degree 4 sub�eld [9℄.For a 
omplete des
ription we refer the reader to [8, Se
tion 9.2℄. We remark thatwe have used the 
lass �eld algorithm des
ribed in [15℄ and implemented in [10℄.Cohen [8, Theorem 9.2.6℄ remarks that the 
lass �eld methods 
an be extended to�elds where the Galois group of N=L is a dihedral group of order 2n, where n isodd. C. Fieker and the �rst author [16℄ 
an extend this method to the 
ase whereN=L is a Frobenius group with Abelian kernel. For example this applies to theFrobenius groups Zl o Zp, where p is prime and p j l � 1.3.4. Embedding obstru
tions. Suppose we want to 
onstru
t a �eld extensionof degree 4 with 
y
li
 group Z4 applying the methods of the pre
eding paragraphand take L := Q(p�1). Then we will �nd out that there are no extensions N=Lsu
h that Gal(N=Q) �= Z4. It would be ni
e to know in advan
e whether L is agood 
hoi
e or not. Let K be a number �eld and L=K be a �nite �eld extensionwith Galois group H and 1 �! U �! G �! H �! 1be an exa
t sequen
e of groups. Then a �eld N=L is 
alled a proper solutionof the embedding problem, if Gal(N=K) �= G. For the general theory we refer thereader to [24, Chapter IV℄. Here we restri
t ourselves to the spe
ial 
ase with kernelU �= Z2. Then U is a subgroup of the 
enter of G and we have the following result[24, IV.7.2℄.Proposition 6. Let N = L(p�) with � 2 L be a proper solution of the givenembedding problem with kernel Z2. Then all solution �elds are of the form Na :=L(pa�) with a 2 K�.Furthermore we get a lo
al-global prin
iple. Let L=K be a number �eld withGalois group H and suppose we have the embedding problem1 �! Z2 �! G �! H �! 1:Denote by PK the set of prime ideals of OK in
luding the in�nite ones. For p 2 PKand P a prime ideal of OL lying over p we denote by LP=Kp the 
orrespondinglo
al extension. We write �H for the Galois group of LP=Kp. We get the followingindu
ed embedding problem:1 �! Z2 �! �G �! �H �! 1:This embedding problem has a solution if it has a proper solution or if the exa
tsequen
e is split (see [24, p. 265℄ for the general de�nition of "solution").Proposition 7. Let L=K be a �nite extension with Galois group H. Then theembedding problem 1 ! Z2 ! G ! H ! 1 has a proper solution if and only ifthe indu
ed embedding problems have a solution for all p 2 PK with one possibleex
eption.Proof. The theorem follows from [24, Cor. IV.10.2℄ and the subsequent remark anda theorem of Ikeda [24, Th. IV.1.8℄. Re
all that split embedding problems withAbelian kernel have proper solutions [24, Th. IV.2.4℄. �



A DATABASE FOR FIELDS 7In our spe
ial 
ase with kernel Z2 it is easy to see that the indu
ed embeddingproblems have solutions for all p whi
h are unrami�ed in L or whi
h have oddrami�
ation index in L. If an in�nite prime p is rami�ed the indu
ed embeddingproblem is solvable if and only if it is split.These results give us a pra
ti
al method to 
he
k if an embedding problem withkernel Z2 has a proper solution. If there exists a solution �eld of the embeddingproblem it remains to 
ompute su
h a �eld.Proposition 8. Let N = L(p�) be a proper solution of an embedding problemwith kernel Z2. Let S � PK be a �nite subset 
ontaining all prime ideals with evenrami�
ation index in L=K, all in�nite primes, and all prime ideals lying above2Z. Furthermore assume that S 
ontains enough prime ideals to generate the 
lassgroup of OK . Then there exists a proper solution ~N=L whi
h is unrami�ed outside~S, where ~S := fP 2 PL j P � p for some p 2 Sg.Proof. Denote by Ŝ the set of all prime ideals in OL whi
h are rami�ed in N andare not 
ontained in ~S. All prime ideals in Ŝ are tamely rami�ed. Furthermore, ifP 2 Ŝ it follows that all 
onjugate prime ideals are 
ontained in Ŝ as well. De�ne ato be the produ
t of all prime ideals 
ontained in Ŝ. We get that a = bOL, where bis a square-free ideal in OK . Then there exist p1; : : : ; pr 2 S and e1; : : : ; er 2 N su
hthat bpe11 � � � perr is a prin
ipal ideal in OK with generator b, say. ThenNb := L(pb�)is a proper solution unrami�ed outside ~S. �Sin
e there are only �nitely many relative quadrati
 extensions unrami�ed out-side a �nite set, the above furnishes a method to expli
itly 
ompute a solution.We remark that in the 
ase K = Q the 
ondition about the in�nite primes 
anbe dropped. In the 
ase that L is totally real and L(p�) is totally 
omplex (bothextensions are normal over Q) the �eld L(p��) is a totally real solution �eld.Let us give a few examples how the solvability in the p-adi
 
ase 
an be de
ided.Example 1. (1) A degree 2 extension L=Q is embeddable into a Z4 extensionif and only if L is totally real and all odd primes p whi
h are rami�ed in Lare 
ongruent 1 mod 4.(2) Let L=Q be an extension with Galois group V4. Then L is embeddable intoa Q8 extension if and only if L is totally real and all odd primes p whi
hare rami�ed in L have the property that p � 1 mod 4 if and only if p hasodd inertia degree in L.(3) Let L=Q be an extension with Galois group L2(l), where l is a prime withl � 3 mod 8 or l � 5 mod 8. Then L is embeddable into an SL2(p) extensionif and only if L is totally real and all odd primes p whi
h are rami�ed in Lhave the property that p � 1 mod 4 if and only if p has odd inertia degreein L (see [5℄).The following example is more 
ompli
ated and demonstrates most of the e�e
tswhi
h may o

ur.There exists a subdire
t produ
t G = SL2(3)�A4 [42℄3 with a faithful transitivepermutation representation of degree 12, usually denoted 12T57. As we have notedin [21, 4.1℄ in order to 
onstru
t an extension with this group we have to �nd anA4-extension whi
h is embeddable both into an SL2(3)-extension and into a [42℄3-extension. For p 6= 2 the possible non-trivial lo
al Galois groups of an A4-extensionare Z2; Z3; Z2�Z2. Let E=Qp , p 6= 2, be a p-adi
 �eld. If the lo
al Galois group is



8 J�URGEN KL�UNERS AND GUNTER MALLEtotally rami�ed with Galois group Z2 we get that both lo
al embedding problemsare solvable if p � 1 mod 4. If the lo
al Galois group is Z2 � Z2 it 
annot be atotally rami�ed extension (p 6= 2, Abhyankar's lemma [25, p. 236℄). In this 
asethe embedding problem into SL2(3) 
an only be solved when p � 3 mod 4. Butthen the 4th roots of unity are not 
ontained in Qp and the embedding probleminto [42℄3 
annot be solved. Therefore we get: Let L=Q be an extension whi
h isembeddable into a 12T57 extension. Then L is totally real and all odd primes pwhi
h are rami�ed have inertia degree 1 and satisfy p � 1 mod 4. The 
onverseis true when L is unrami�ed in 2 or the degree of the 
ompletion at 2 has degreedivisible by 3.Proposition 9. Let L=Q be an extension with Galois group A4. Then L is embed-dable into a 12T57 extension if and only if the following holds:(1) L is totally real.(2) If p 6= 2 is a rami�ed prime in L then p � 1 mod 4 and p has inertia degree1 in L.(3) If 2 is rami�ed, then the 
orresponding embedding problem for p = 2 issolvable.Denote by M the sub�eld of L whi
h has Galois group Z3. Suppose that L isembeddable into a 12T57 extension. Denote by S the set of prime ideals in OM
ontaining all prime ideals above 2Z, all in�nite primes, all prime ideals whi
h arerami�ed in L, and enough prime ideals to generate the 
lass group of OM . Thenthere exists a 12T57 extension 
ontaining L whi
h is unrami�ed outside ~S, where~S := fP 2 PL j P � p for some p 2 Sg.Proof. The �rst part of the theorem is already proved. We 
an solve the 
orre-sponding embedding problems independently. For the SL2(3)-part we 
an applyProposition 8. Denote by K one of the degree 6 sub�elds of L. As noted in [21,4.1℄ the embedding problem into [42℄3 is solvable if and only if K=M is embeddableinto a Z4-extension. Therefore we 
an again apply Proposition 8. �If 2 is rami�ed we 
annot de
ide the solvability of the embedding problem just bylooking at the rami�
ation behaviour. We have to determine if K=M is embeddableinto a Z4 extension, whi
h is the 
ase if and only if �1 is a norm in K=M . This
an be de
ided by applying the methods des
ribed in [1℄.3.5. Computing polynomials from other representations. Suppose we wantto 
ompute polynomials for a permutation group whi
h already has a faithful rep-resentation on fewer points, that is, we want to 
onstru
t a di�erent stem �eldof a given Galois extension. In [21, 3.3℄ we have des
ribed how to 
ompute su
hpolynomials when we know a polynomial belonging to the other representation. Inthis paper we strive to 
ontrol the dis
riminant of these �elds. The proof of thefollowing theorem 
an be found in [22, Proposition 6.3.1℄.Theorem 10. Let N=K be a normal extension with Galois group G and L be the�xed �eld of a subgroup H of G. Let P 6= (0) be a prime ideal of ON with rami�
a-tion index e and p := P\OK . Denote by DP and IP the de
omposition group andinertia group, respe
tively. Let RH := fg1; : : : ; gmg be a system of representativesof the double 
osets of H and DP in G, i.e. G = _Smi=1HgiDP. Then(1) The prime divisors of p in OL are pi := giP \ OL for 1 � i � m.(2) pOL =Qmi=1 peii , where ei := ejgiIPg�1i \Hj .



A DATABASE FOR FIELDS 9Corollary 11. Suppose that P is not wildly rami�ed over p. In this 
ase wedenote by � a generator of the 
y
li
 group IP. Then vp(dis
(L=K)) = ind(�),where ind(�) := [G : H ℄� number of orbits of � on G=H.Proof. Suppose that pOL = Qmi=1 peii . In the 
ase of tamely rami�ed extensionswe get that vp(dis
(L=K)) = Pmi=1 fi(ei � 1), where fi denotes the degree of theresidue �eld extension (OL=pi)=(OK=p). Obviously this formula does not dependon the number of primes lying above p or their inertia degrees, only on the indexof �. �Example 2. Let G = L2(7), the se
ond smallest non-abelian simple group. Thefollowing table illustrates the assertion of the previous Corollary. The two 
olumnsgive the 
y
le types of elements of G in the transitive degree 7 and degree 8 represen-tations, respe
tively. This allows to 
ompare the 
ontribution to the dis
riminantby tamely rami�ed prime ideals.Table 1. Permutation types for L2(7) in degrees 7 and 8n = 7 n = 817 1813 � 22 241 � 32 12 � 321 � 2 � 4 427 1 � 7We 
an see that independently of the 
y
le type the dis
riminant in the degree 8representation remains at least the same as in the degree 7 representation, in 
ase oftame rami�
ation. A 
ase by 
ase study shows that the same is true when wild ram-i�
ation o

urs. This opens a way to determining the smallest �elds of degree 8 withGalois group L2(7) by 
omputing enough �elds of degree 7 with the 
orrespondingGalois group. 4. Minimal dis
riminants4.1. Results known to date. One goal of our database is to provide �elds withsmall (absolute value of the) dis
riminant for ea
h Galois group and signature. Insmall degrees it is even possible to determine the �eld(s) with smallest dis
riminant.Let's 
omment on the present state of knowledge in this area (whi
h is restri
tedto degrees less than 10).It is very easy to enumerate the dis
riminants of quadrati
 �elds. Belabas [3℄ givesa very eÆ
ient algorithm to enumerate 
ubi
 number �elds. For higher degreesmethods from the geometry of numbers and 
lass �eld theory are applied.In [6℄ all quarti
 �elds with absolute dis
riminant smaller than 106 are enumer-ated. There are huge tables of the smallest quinti
 �elds due to [31℄. These tablesare suÆ
ient to extra
t the smallest dis
riminants for all Galois groups and 
lassesof involutions for degrees 4 and 5.The general enumeration methods are not powerful enough to give the minimafor all Galois groups in degree 6. The minimal dis
riminants for all signatures ofdegree 6 are 
omputed in [30℄. [26, 17, 18, 19℄ have �nished the 
omputation ofminimal dis
riminants of all signatures and all primitive Galois groups of degree 6.[27, 4℄ 
ompute the minimal �elds for imprimitive groups of degree 6. This yields



10 J�URGEN KL�UNERS AND GUNTER MALLEenough information to determine the minimal �elds for all groups and all 
onjuga
y
lasses of that degree.In degree 7 the minimal �elds of ea
h signature are known due to [12, 14, 29℄.This 
overs all signatures of the symmetri
 groups. We 
omplete the determinationin degree 7 by proving the following:Theorem 12. The minimal dis
riminants for the possible pairs (G; r1) of Galoisgroup G and number of real pla
es r1 in degree 7 are as shown in Table 2.Table 2. Minimal dis
riminants in degree 7G r1 = 1 3 5 77 | | | 5948233217: 2 �357911 | | 1921000337: 3 | | | 18174874247: 6 �38014691 | | 12431698517L3(2) | 2007889 | 670188544A7 | 3884841 | 988410721S7 �184607 612233 �2306599 20134393Proof. The �elds generated in [12, 14, 29℄ are suÆ
ient to prove the minimal dis-
riminants for all signatures of the symmetri
 group and the non totally real di-hedral 
ase. The minima for A7 and L3(2) are found by using methods from thegeometry of numbers (see Se
tion 3.1) using the fa
t that the dis
riminant has tobe a square. The minimal dis
riminant for the 
y
li
 
ase 
an easily be determinedusing the theorem of Krone
ker-Weber and the fa
t that a rami�ed prime p musteither be 7 or p � 1 mod 7. All the other groups are Frobenius groups, where we
an apply 
lass �eld theory as des
ribed in [16℄ to prove the minima. �The polynomialX7 � 2X6 � 7X5 + 11X4 + 16X3 � 14X2 � 11X + 2generates a totally real A7-extension with minimal dis
riminant, whileX7 � 8X5 � 2X4 + 15X3 + 4X2 � 6X � 2generates one of the two totally real L3(2)-extension with minimal dis
riminant(the other one is arithmeti
ally equivalent to the �rst one, whi
h means that thesetwo non-isomorphi
 �elds have the same Dedekind �-fun
tion).The smallest totally real o
ti
 number �eld is 
omputed in [28℄. Diaz y Diaz[13℄ determined the smallest totally 
omplex o
ti
 number �eld. To the best ofour knowledge the smallest totally real o
ti
 �eld with symmetri
 Galois group waspreviously unknown. The following theorem 
an be proved using the methods ofSe
tion 3.1.Theorem 13. The minimal dis
riminant for a totally real primitive �eld of de-gree 8 is given by d = 483345053. The 
orresponding extension is unique up toisomorphism, with Galois group S8, generated by the polynomialX8 �X7 � 7X6 + 4X5 + 15X4 � 3X3 � 9X2 + 1 :For imprimitive o
ti
 �elds with a quarti
 sub�eld [9℄ 
ompute huge tables using
lass �eld theory whi
h 
over all imprimitive groups and all possible signatures su
hthat the 
orresponding �eld has a quarti
 sub�eld. These tables are not suÆ
ientto �nd all minimal �elds of that shape su
h that 
omplex 
onjugation lies in a given
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lass of involutions. In [16℄ the minima for o
ti
 �elds having a quadrati
 sub�eldare 
omputed.It remains to say something about primitive groups in degree 8. In the followingtable we give the primitive groups and the smallest dis
riminants we know. If thereis no � or � sign this means that this entry is proven to be minimal. The totallyreal S8 
ase is already proved in Theorem 13. The minima for the groups 8T25 and8T36 are proved in [16℄.Table 3. Minimal dis
riminants of primitive groups in degree 8G r1 = 0 2 4 6 88T25 594823321 | | | 97455852912648T36 1817487424 | | | 64235077672968T37 � 37822859361 | | | � 81656590022092968T43 � 418195493 � �1997331875 | | � 3123494887403528T48 � 32684089 | � 351075169 | � 813664215048T49 � 20912329 | � 144889369 | � 466642083618T50 � 1282789 � �4296211 � 15908237 � �65106259 483345053If we knew enough �elds of degree 7 with Galois group L2(7) it would be possibleto 
ompute the minima for the groups 8T37 �= L2(7) and 8T48 �= 23:L2(7).Diaz y Diaz and Olivier [11℄ have applied a relative version of the geometry ofnumbers methods to 
ompute tables of imprimitive �elds of degree 9. These tablesdo not 
over all imprimitive Galois groups of that degree.5. The databaseIn this se
tion we report on the 
ontent of the database. As mentioned inthe introdu
tion it 
ontains about 100,000 polynomials generating distin
t number�elds over the rationals. Espe
ially in smaller degrees (up to degree 5) there alreadyexist mu
h larger tables of number �elds 
overing all �elds up to a given dis
riminantbound. It is not very surprising that most of these �elds have symmetri
 Galoisgroup. The aim of our database is di�erent. We want to 
over all groups. Morepre
isely we want to look at the following problems of in
reasing diÆ
ulty:(1) For ea
h transitive group G �nd a polynomial f 2 Z[x℄ su
h that Gal(f) =G.(2) For ea
h transitive group G and ea
h 
lass C of involutions �nd a polyno-mial f 2 Z[x℄ su
h that Gal(f) = G and 
omplex 
onjugation lies in 
lassC.(3) For ea
h transitive group G and ea
h 
lass C of involutions �nd a polyno-mial f 2 Z[x℄ su
h that Gal(f) = G and 
omplex 
onjugation lies in 
lassC and the stem �eld K of f has minimal absolute dis
riminant subje
t tothese restri
tions.We have a positive answer to problem 1 for all transitive groups up to degree15, as shown in [21℄. Problem 2 is already mu
h more diÆ
ult. Let us �rst look ata slightly easier variant of problem 2. Here we only ask that 
omplex 
onjugation
overs all 
y
le types of involutions in G. The easier problem has a positive answerfor all transitive groups but the following possible ex
eptions:



12 J�URGEN KL�UNERS AND GUNTER MALLETable 4. Reality types for non-solvable groups
Group Number of real zeroes9T27 = L2(8) 99T30 = P�L2(8) 912T218 = PGL2(11) 1213T7 = L3(3) 1313T8 = A13 5,9,1314T30 = L2(13) 1414T39 = PGL2(13) 1414T62 = A14 615T103 = A15 7,11,15

The missing signatures for the alternating groups are only a pra
ti
al problemas we have proved in Theorem 3. In all the other 
ases the missing signature is thetotally real one; we don't even know a theoreti
al argument that su
h an extensionshould exist.Let us 
ome ba
k to problem 2. Write N := NSn(G) for the normalizer in Sn ofG � Sn. Let L=K be an extension of degree n generated by a polynomial f su
hthat G is the Galois group of the Galois 
losure of L=K as permutation group on theroots of f . Then 
onjugation of G by an element of N amounts to a renumberingof the roots of f . In parti
ular, if C1; C2 are two 
onjuga
y 
lasses of G fused inN , then whenever we have found an extension su
h that 
omplex 
onjugation liesin 
lass C1, a simple renumbering provides an extension with 
omplex 
onjugationin C2. Thus in problem 2 we may restri
t ourselves to 
onsideration of 
lasses of Gmodulo the a
tion of N . We have 
onstru
ted extensions for all these possibilitiesup to degree 11 with the three above mentioned ex
eptions.Problem 3 is 
ompletely solved up to degree 7. In degree 8 most transitive groupsare 
overed but there are some primitive groups left where we 
annot prove thatwe have found the minimal dis
riminant.We 
lose by giving a table 
ontaining some statisti
s about the number of polyno-mials in ea
h degree. The # Classes 
olumn denotes the total number of 
onjuga
y
lasses of elements of orders 1 and 2 up to 
onjugation in the symmetri
 normalizer.Table 5. Content of the database
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