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ABSTRACT. We present a new polynomial decomposition which generalizes the
functional and homogeneous bivariate decomposition of irreducible monic poly-
nomials in (Q[¢]. With these decompositions it is possible to calculate the roots
of an imprimitive polynomial by solving polynomial equations of lower degree.

1. INTRODUCTION

The purpose of this paper is to introduce the norm decomposition which enables
us to compute the roots of a monic irreducible imprimitive polynomial f € Q[t] by
solving polynomial equations of lower degree. We call an irreducible polynomial f
imprimitive if the number field generated by a root of f contains non-trivial sub-
fields. We will see that for each subfield there exists a norm decomposition. The
norm decomposition generalizes the functional [Kozen and Landau, 1989] and ho-
mogeneous bivariate decomposition [von zur Gathen and Weiss, 1995]. There exist
imprimitive polynomials having neither a functional nor a homogeneous bivariate
decomposition. However, these polynomials always have a norm decomposition.
Furthermore, the computing times by our algorithm are much shorter than the
ones for a homogeneous bivariate decomposition.

If a functional decomposition f = g(h) with g,k € Q[t] exists we can calculate
the roots f1,..., Bm of g, and then the roots of A — 3; (1 < i < m) in order to get
the roots of f. Note that there are very efficient algorithms to compute functional
decompositions.

In the homogeneous bivariate decomposition the polynomial f is written in the
form f = g(h1, ho) where g € Q[t, u]is homogeneous and hy, hy € Q[t]. A drawback
of the known algorithms for computing a homogeneous bivariate decomposition is
that they require an expensive factorization of the polynomial f in K[t], where K
is the number field generated by a root of f. If f has a homogeneous bivariate
decomposition then f = hglg(z—;), where g(t) = g(t,1) and m = deg(g). Since f is
irreducible we obtain the roots of f by first computing the roots 51,...,5n of g
and then the roots of the polynomials by — Fiha (1 < i < m).

It is well known that the existence of subfields Q(3) C @Q(a)
[Casperson et al., 1996, Dixon, 1990, Hulpke, 1995, Kliiners and Pohst, 1997,
Lazard and Valibouze, 1993] is equivalent to f | g(h) where f g € QJt] are the
minimal polynomials of o resp. £, h € Q[t],deg(g) < deg(f). This is a
generalization of the functional decomposition. [Lazard and Valibouze, 1993]
illustrate by an example how to represent the roots of f by a “nested” system of
equations which can be obtained via computing subfields.

The functional decomposition of irreducible (and reducible) polynomials is very
useful for many applications. There are very efficient algorithms in theory and
practice [Kozen and Landau, 1989] to compute functional decompositions. Tt is
possible to compute functional decompositions of polynomials of degree 100 in less
than a minute.
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We want to look at polynomials where no functional decomposition is possible.
A first approach was done in [von zur Gathen and Weiss, 1995] who defined the
homogeneous bivariate decomposition. They describe in section 2 applications to
robotics, which was one motivation to look at decomposition algorithms. An other
application given in their paper is the relation to decompositions of rational func-
tions. The authors proved a connection between block systems and homogeneous
bivariate decompositions. It happens that there are polynomials with non-trivial
block systems but there exists no non-trivial homogeneous bivariate decomposition.

Our approach generalizes and improves the homogeneous bivariate decomposi-
tion in a way that for each block system there exists a norm decomposition. These
decompositions can be computed in a very efficient way using the subfield algo-
rithm presented in [Kliiners and Pohst, 1997]. We remark that this algorithm is
exponential time in the worst case. A lot of computed examples show that it works
very well in practice. We will discuss the efficiency in section 6.

The norm decomposition is an important step to the solvability by radicals. Simi-
lar to [Landau and Miller, 1985] the problem is reduced to primitive extension. The
reduction given in [Landau and Miller, 1985] is computed in polynomial time based
on factorization algorithms. In practice this approach is limited to polynomials of
small degree.

2. PRELIMINARIES

Let f € Q[t] be an irreducible monic polynomial of degree n, K = Q(«), and «
a root of f.

Definition 2.1. Let g € Q[t] be an irreductble monic polynomial with zeros 5 =
Bi,..., Bm, and L = Q(f) an algebraic number field. We define

m—1 m—1
LS5 Q8): Z b — Z b;B] (b; € Q).
= e

We extend this definition to the polynomial algebra:

k k
O L] 5 QB Y et = S (D e Q).
7=0 7=0
For h € L[t] we define the norm
Ni(h) == Ng(h) = [[ r' € Q[1].
i=1

We remark that the norm of a polynomial h € L[t] does not depend on the choice
of a basis of L/Q.

Definition 2.2. Let [ € Q[t] be an irreductble monic polynomial of degree n.

1. We call f = g(h) with g,h € Q[t] and 1 < deg(g) < n a functional decompo-
sition.

2. We call f = §(h1, ha) with homogeneous § € Q[t, u], hy, ha € Q[t], deg(hy) <
2 (i =1,2), and 1 < m = deg(g) < n a homogeneous bivariate decomposi-
tion.

3. We call f = Ng(h) a (norm) decomposition if g € Q[t] is trreducible with
1 < deg(g) < n and h € L[t], where L is the number field generated by a zero

of g.

The functional decomposition can be regarded as a special case of a homogeneous
bivariate decomposition (hs = 1).
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Theorem 2.3. The functional decomposition and the homogeneous bivariate de-
composition of an irreducible monic polynomial f € Q[t] are special cases of a
norm decomposition.

Proof. Let f = g(h) with g,h € Q[t] and § be a root of g. Then we get
£ = gh) = TJh - 59) = Ny(h - ).
i=1
Assuming ¢ = g192 we get f = g1(h)ga(h). Since f is irreducible we get g is
irreducible.
Let f = g(h1,ha) be a homogeneous bivariate decomposition. Letting ¢(t) =
g(t,1) and m = deg(g) we get

hy
=R g(+—).
f 2 g( hZ)
Now f and ks have no common root since deg(hs) < deg(f), hence
hi (@)
=0.
a5 (a))
Thus there exists a root 8 = %(% of g such that hi(a) — Sha(a) = 0. Let h =

hy — Bhs and § be the minimal polynomial of 5. Since « is a root of Ng(/Nz) € Q[t]

we have Nj(h) = f. From deg(g) deg(h) < deg(f) and g | g it follows that § = g,
thus g 1s irreducible. O

In the next example we see that the norm decomposition is a strict generalization
of the homogeneous bivariate and the functional decomposition. It is easy to see
(Lemma 3.5) that norm decompositions of polynomials of degree 4 correspond to
homogeneous bivariate decompositions.

Example 2.4. Let f(t) = 5 — 125 + 54¢* — 134¢3 + 153t? — 162t + 81. We get
the norm decomposition f = Ny(h), where g(t) = t* — 18t* + 81¢ — 81 and h(t) =
2+ Wt 4+ 6 and B a zero of g. Using Lemmas 3.4 and 3.5 we see that
there is neither a homogeneous bivariate nor a functional decomposition of f.

Remark 2.5. For f = Ng(h) we can express the zeros of f in the following way:
First we calculate the zeros B1,...,Bm of g. In a second step we determine the
zeros of h(?) (1 < i< m). Instead of solving an equation of degree n we first solve
an equation of degree m and then m equations of degree -.

In the following we give a description of subfields Q(8) of Q(a). Let f and ¢ be
the minimal polynomials of o resp. 3. Then the subfield Q (/) can be described by a
pair (¢,w), where w € Q[t] and w(a) = 5. We call w the embedding polynomial (of
Q(B) in Q(«)). If we replace w with w mod f we can suppose that deg(w) < deg(f).
The following Lemma is an immediate consequence.

Lemma 2.6. Let f g € Q[t] be monic, irreducible polynomials and «, 8 be a root
of [ resp. g. Forw € Q[t] the following is equivalent:

1. Q(B) is a subfield of Q(a) with w(a) = B.
2. flgw).

[Kliiners and Pohst; 1997] developed an efficient algorithm to compute all sub-
fields of an algebraic number field K = Q(«) given by the minimal polynomial f of
«. Fach subfield L = Q(/) is characterized by a pair of polynomials (g,w) where
g € Q[t] is the minimal polynomial of 5 and w € Q[t] is the embedding polynomial
with w(a) = 8. We remark that the subfield algorithm [Kliiners and Pohst, 1997]

works for monic irreducible polynomials in Z[t]. It can be extended to non-monic
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irreducible polynomials in Z[¢] which is equivalent to monic irreducible polynomials

in Q[t].
3. SUBFIELDS AND DECOMPOSITIONS

Using Lemma 2.6 we easily see that functional decomposition is a special case
of subfield computation. In this section we prove that there is a correspondence
between subfields and norm decompositions. Furthermore we give a method to
compute a norm decomposition which corresponds to a given subfield.

Lemma 3.1. Let f, g € Q[t] be monic, irreducible polynomials and «, 8 be a root
of f resp. g. Then the following 1s equivalent:

1. Q(B) is a subfield of Q(a) and h € Q(B)[t] is the minimal polynomial of o

over Q(5).
2. f=Ny(h).

Proof. Let () be a subfield of Q(«) and h be the minimal polynomial of « over
Q(B). It follows that « is a zero of Ny(h). Since deg(Ny(h)) = deg(f) and both
polynomials are monic it follows that f = Ny (k).

Letting f = N, (h) it follows that h(«) = 0. This implies that Q () is a subfield
of @(«) and h is the minimal polynomial of & over Q(23). O

We have seen that to each subfield there corresponds a decomposition and vice
versa. This leads to the following definition.

Definition 3.2. We call two decompositions equivalent if they correspond to the
same subfield.

The next theorem enables us to compute a norm decomposition corresponding
to a subfield in a very efficient way.

Theorem 3.3. Let L = Q(8) be a subfield of K = Q(a) and f,g € Q[t] be the
minimal polynomials of o resp. 5. Let w € Q[t] be the embedding polynomial with
w(a) = 4. Define

h = gedpp(f,w — B).

Then N4(h) is a norm decomposition of f.

Proof. From f(a) = 0 and w(a) — 8 = 0 it follows that h(a) = 0. The assertion
follows if we know that A is the minimal polynomial of « over L. Since h(a) = 0 it
suffices to prove that deg(h) < [K : L]. The only isomorphism from I to @ which
leaves [ invariant is the identity because § is a primitive element of L/Q. There
are exactly [K : L] isomorphisms from K to @ which leave $# invariant. Thus there
exist exactly [K : L] zeros & of f with w(&) = 3. Since h | w — § this implies
deg(h) < [K : L]. O

We compute the greatest common divisor of polynomials over number fields
by a modular algorithm presented in [Encarnacién, 1995]. The previous theorem
provides us with a decomposition of f from a subfield of K. It is interesting to note
that we are able to compute a functional or homogeneous bivariate decomposition
if it exists, in spite of the dependency on the generating polynomial g rather than
the corresponding subfield. The following Lemma is an immediate consequence of
Theorem 8 of [Kozen and Landau, 1989).

Lemma 3.4. Let f = Ny(h) be a norm decomposition. There exists an equivalent
funetional decomposition of f if and only if h :== h — h(0) € Q[t]. In that case we

obtain the functional decomposition f = §(h), where § is the minimal polynomial

of h(0) over Q.
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Lemma 3.5. Let f = Ny(h) be a norm decomposition. There exists an equivalent
homogeneous bivariate decomposition if and only if h = hy — Bhs with h; € QR (i =
1,2), and B € L. In this case let § the minimal polynomial of . Then f = g(h1, h2)
is a homogeneous bivariate decomposition, where § € QIt,u] is homogeneous and
ﬁ(t’ 1) = ﬁ(t)

Proof. If f has an equivalent homogeneous bivariate decomposition it follows from
the proof of Theorem 2.3 that h = h; — éhz.

Now we assume that h = h; — éhz. Let a be a zero of h. From

h(a) = 0 = hi(a) — Bha(a) and §(B) = 0
it follows that j(hl(a) = 0. Let g € Q[t,u] be a homogeneous polynomial with

ha(a)

g(t,1) = §(t). This implies f = g(hy, ha). O

We remark that the subfield algorithm in [Kliiners and Pohst, 1997] calculates the
generating polynomial g in a way that we can choose § = g in Lemmas 3.4 and 3.5.
Therefore we find a functional or homogeneous bivariate decomposition if it exists.

In general, small coefficients of the generating polynomials of the computed sub-
fields yield decompositions with small coefficients as well. We use the OrderShort
function in Kash [Daberkow et al., 1997] which produces a shorter generating poly-
nomial for a number field together with the embedding from one representation to
the other. The algorithm is based on the LLL-algorithm [Lenstra et al., 1982] and
a slight modification of the algorithm presented in [Cohen, 1993, section 4.4.2].

4. TOWERS OF ALGEBRAIC NUMBER FIELDS

In this section we develop an algorithm which expresses the roots of a polynomial
f if we know a tower of subfields of K. We have the following situation: K = Q(«)
is a number field generated by the polynomial f, L = Q(/5) is a subfield of K
generated by g1, and M = Q(v) is a subfield of L generated by g of degree {. In
an optimal case we know the embedding polynomials wy,ws € Q[t] with wy(a) = 3
and wa(F) = v in which we can express the roots of f in the following way:

Lemma 4.1. Let hy = gedpp)(f,w1 — B) and ha = gedy(91, w2 — 7). Then we
obtain

f=Ng (k1) = Ny, (n,)(h1).

Proof. In Theorem 3.3 we proved f = Ny, (h1) and g1 = Ng,(h2). The assertion
follows immediately. O

In general, we have the following situation: Q C M =Q(v) C L =Q(8) C K =
Q(«) and we know the embeddings wi(a) = 3 and 7(«) = 5. In order to use the
above Lemma we have to calculate the embedding wa(3) = ~.

Lemma 4.2. Let v = Z?:_ol cial and B} = Z?:_ol bijal (0 < j<m-—1). Let

B = (bij) oci<n—1 ; € = (Coy... ,0n-1)", and T = (zo,...,2m-1)" with Bz = ¢.
0<jIm—1

Then v = Zj:_ol x]ﬂj.
Proof. The system of linear equations has exactly one solution since v € Q(5). O

After decomposing f = NNg2(h2)(h1) we have two representations for the poly-
nomial hy € L[t]. The first one represents the coefficients of hs in the basis
1,3,...,87 1. We call this an absolute representation. The other representa-
tion uses the basis {y/# | 0 <i<1—1,0<j < % —1}. We call this a relative
representation. In most cases the relative representation gives a shorter description
of the zeros. Our algorithm produces either representation.
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5. EXAMPLES

We give four examples to demonstrate how efficient this algorithm works.
[Hulpke, 1995] gave a list of examples which demonstrates that the other known
methods are limited to examples of small degree and small size of coefficients. The
first step of most of the other methods is the factorization of polynomials over
number fields. We give the computing time (if possible) for this factorization to
get an impression how complicate it is to factorize polynomials. All computations
were done on a Sun-Ultra-2 300 Mhz using KASH 1.9 under SunOS 5.6.

Let f(t) = & — 87 + 14485 — 85765 — 203394¢* + 8706003 + 3596804¢% —
8957592t + 4818366 which has five decompositions of the form f = Ny (s,)(h2).
The computation was done in 0.8 seconds. The corresponding factorization of f
over the number field generated by a zero of f took 0.7 seconds. One of these
decomposition is:

Logt)y=t*—12t+ 14

2. hi(t) =t*+ (-6 +8)t +5

3. ho(t) =2 — 2t + (£(—1970 + 7837 + 625+ — 224+3))

4. ho(t) =2 — 2t + ((325 — 2243) + (145 — 1255)7)

We remarked in the introduction that the norm decomposition reduces the prob-
lem of solvability by radicals to primitive extensions. If the degree of these exten-
sions is not bigger than four it is easy to express the roots by radicals. In our
example we use the printed decomposition and get:

B12 =6+ e1V22 with g = £1.
8- 62\/5

Yir g2 = 3 — — with €3 = %1, hence
—€1V 22 —|— 62\/§
Y1,2,3,4 = -5

with ¢; = £1,¢5 = £1.

gy, =1+ 63\/—324 + 2245 — 145y 4+ 1255~ with €3 = %1, hence,

] 2345678=

140,01

1+ 63\/—324+224(6+61\/§)—145(M)+125(6+61\/§)(M)
with ¢; = £1,¢5 = %1, 63 = 1.

Let f(t) = 124911 + 3410 —73¢° — 17748 — 267¢" — 31545 — 267> — 177¢* — 7313 +
3t2 4+ 9t + 1 be the polynomial given in [Lazard and Valibouze, 1993]. We compute
three inequivalent norm decompositions without any prior knowledge about the
polynomial.

After 3.1 seconds we get the following three decompositions of the form
Ny, (n,)(h2) in an absolute representation (or a relative representation,
respectively). The factorization of f over the number field generated by a zero
of f took 5.9 seconds. We remark that the “nested” equations in
[Lazard and Valibouze, 1993] give a shorter representation of the zeros of f. The
main reason 1is that they choose optimal polynomials for this special example. In
the following § and = denote zeros of g and hy, respectively. For reasons of space
we only give one decomposition.

Log(t)=t*—-3t—3

2. hi(t) =2+ (=2+pB)t+1

3. ha(t) =3+ (64+5y -7 =¥+ (1+y—29%)t -1
4 ha(t) =+ ((9=B) + (=3 + 209 + B+ (=3 +20)9)t - 1
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Now we consider two larger examples.

f(5) = %% — 326°0 4 496t°° — 4888t%° 4 34340t7% — 183880t%7 + 786400t%° —
2779240t%° 4 8268310t%* — 20688072t%7 + 42882496t%% — 72010200t>' + 9763234820 —
97228120t1° — 33958464('1% + 705826648t17 — 2475191663t'° 4+ 5229698952¢°
7657389040t + 11103317744t — 18441575432t1% 4 23625143936t — 2686129440t'° —
79950368240t + 226681340832t% — 351779300352t" + 4143124266838t° — 379633855232t° +
329006420544t* — 240737112960t° + 1541359285764% — 63365093120t + 18408410368.

The number field generated by a zero of f has three non-trivial subfields, two
of degree 4 and one of degree 16. We computed two decompositions of the form
NNg(hl)(hz) in 46 seconds. About 40% of the time was used to find shorter repre-
sentations for the subfields (OrderShort). The factorization of f over the number
field generated by a zero of f was impossible within 3 days. One decomposition is:

1. g(t) = t* + 863 + 24¢* 4 31¢ + 16

2. hi(t) =tr 4+ (=2 — )3 + v

3. ho(t) = 24 (555 (—21732 — 20736y — 1584292 — 958343 + 25248~ + 24342+ +
1480575 +1357277 — 1056673 —55657° — 7776710 — 6198~y +343~12 + 1444~ 13 +
12967 4+ 1033715))t 4 (135 (17676 + 174165 4 148667 4 92377 — 253367 —
236385 — 142637° — 138047 + 1208673 4 5519° + 814410 4 664211 —
493712 — 1612413 — 144841 — 1171419))

4. ho(t) =7 + (((4 4+ 48) + (=30 — 408 — 1687 — 26%)7% + (23 + 248 + 84% +
BHYNE+ (3((12 + 128 + 487) + (=56 — 968 — 4837 — 83%)y + (34 + 243 —
23%)9? + (374 563 + 243% + 30%)7°))

This example demonstrates that the relative representation is much shorter than
the absolute one.

The last example I got from Daniel Lazard. The number field given by a zero
of f has two non trivial subfields, one of degree 5 and one of degree 8. It took 19
minutes to compute the decompositions. In this example we do not have included
the time to find nicer representations. We do not give any output to save space.
One problem of our algorithm 1s to choose a good prime to do the computations.
In this examples the chosen prime was not the best one. If we choose the prime by
hand we can do the computation within 102 seconds. The factorization of f over
the number field generated by a zero of f was impossible within 3 days.

f(£) = 6436343t*° — 34700284+%° — 905589810t°% 4 34088955737 + 593308766597 —
1146090112877 — 2146765884442t + 581668312493t 4+  47966892655022t2
58086065686110¢°! - 664273174842926t%° - 1793570319828018t2°
4914461478555900t%® 4+ 25106824391937532(%7  —  2093649224751164¢2°
173336635271317655t°  —  254426897796933790t%* 4 392882585322815188t%7 4
1781903363906052715t%%  + 2300821073721698022t*1  —  3044251267070794660t°
19453432571061340687¢1° — 202506919175311619544'% 4+ 55227774448506262996t7 +
135619533598051236796t™° — 36220213376169001613t'° — 366983017878149748835¢™* —
189737074857945494650t™° + 514466502292905094369t'2 4 578377903845523688438t! —
309701724291250465911¢1° — 734169416313703303879t° — 83270519500276293878t% +
4594512165197146565267 + 230165980213575319883t° — 112015867904431532196t° —
117712533422275973284t* — 11355446119881189384t% 4 18171476841490003710t% +
7152980982346226040t + 811597135529898169

+ +

6. COMPARISON

The algorithms for computing functional decompositions
[Kozen and Landau, 1989] are very efficient in theory and in practice. We want to
look at irreducible polynomials in @Q[¢] where no functional decomposition exists.
We give a concept of decomposition which is the best possible in the sense that to
every block system there exists a decomposition. One advantage of our
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representation is that we describe the decomposition in an elegant way by an
equation (f = N, (h)).

Most of the known algorithms [Landau and Miller, 1985, Hulpke, 1995], and
[Lazard and Valibouze, 1993] are based on the factorization of polynomials over
number fields resp. the factorization of polynomials of high degree over the ra-
tionals. These factorizations are known to be in polynomial time [Landau, 1985,
Lenstra et al., 1982]. Tt is well known that in practice the factorization method
based on Hensel’s lemma and the recombination procedure is used. This approach
1s exponential time in the worst case but it works well in practice. Therefore
we have a problem where polynomial time algorithms are known but many com-
puted examples show that these algorithms are limited to small examples. We
computed a lot of examples up to degree 60 to demonstrate the efficiency of the
algorithm. We have a lot of examples where it is possible to compute all de-
compositions within a minute and it is impossible to factorize the minimal poly-
nomial over the number field within a day. We remark that the algorithm pre-
sented in [Casperson et al., 1996] needs no factorization. It is directly based on
the lattice reduction [Lenstra et al.; 1982]. Practical experiments [Hulpke, 1995,
Kliiners and Pohst, 1997] show that this method is limited to small examples, too.

The algorithm presented in this paper is mainly based on two steps. First the
computation of subfields and second the computation of greatest common divisors
of polynomials over number fields (Theorem 3.3). The second step can be done
in a very efficient way using modular algorithms presented in [Encarnacién, 1995].
We give a short analysis of the used subfield algorithm [Kliiners and Pohst, 1997].
Roughly speaking the algorithm can be divided into two parts. First a combina-
torical approach is used to find the block systems. Once a block system is known
the efficient Hensel lifting resp. Newton lifting procedure is used to determine the
corresponding subfield. The latter part of the algorithm is in polynomial time. Tt
may happen in the worst case that exponentially many combinations have to be
considered to determine the block systems. The number of combinations is depen-
dent on the degree and the Galois group of the given field. It turns out that we are
in the worst case if the Galois group is elementary Abelian. In the Abelian case
there is a very efficient algorithm [Acciaro and Kliiners, 1998] which computes all
automorphisms of the given field. Knowing this it is easy to compute the subfields.
Since the number of combinations is not dependent on the size of the coefficients
the subfield algorithm is polynomial time in the size of the coefficients.
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