ALGORITHMS FOR FUNCTION FIELDS

JURGEN KLUNERS

ABsTrRACT. Let K/Q(t) be a finite extension. We describe algorithms for
computing subfields and automorphisms of K/Q(t). As an application we give
an algorithm for finding decompositions of rational functions in Q(a). We also
present an algorithm which decides if an extension L/Q(t) is a subfield of K. In
case [K : Q(t)] = [L : Q(t)] we obtain a Q(t)-isomorphism test. Furthermore,
we describe an algorithm which computes subfields of the normal closure of

K/Q(1).

1. INTRODUCTION

Let K/Q(t) be a finite extension of function fields. In this paper we develop
algorithms for deciding if K/Q(t) is a normal or even an abelian extension. In
this case we give a method for computing all automorphisms of K/Q(t). Another
problem we consider is the determination of all intermediate fields of K/Q(t). Here
it is not necessary to assume that K/Q(¢) is a normal extension.

As an application we show how to obtain decompositions of rational functions
using the fact that rational functions correspond to rational function fields. Fur-
thermore we give an explicit description of the main algorithm in [KMOO] in the
function field case. This yields a method for computing subfields of the splitting
field of a finite extension of Q(t).

All algorithms presented in this paper are based on the following idea: Let
f € Z[t][z] be the minimal polynomial of a primitive element of K/Q(t). Then by
Hilbert’s irreducibility theorem there are infinitely many specializations tg € Z such
that f(z) := f(to,x) € Z[x] is irreducible as well. After finding such a t, we solve
the corresponding problem in the residue class field and then use lifting procedures
to get the solution of our initial problem. In contrast to the case of global fields we
have the advantage that in the generic case the Galois group of the residue class
field is the same as the Galois group of the given field.

In this paper we assume that the corresponding problems can be solved in the
number field case. Algorithms for the computation of subfields of algebraic num-
ber fields are described in [KP97, Kl1i98]. In [AK99, Kli97] algorithms for the
computation of automorphisms of algebraic number fields are explained.

All algorithms are implemented in the computer algebra system KANT [DFK*97].
We give several examples to demonstrate the efficiency of the algorithms.

2. NOTATIONS

In this paper we consider finite extensions of (). We assume that these exten-
sions are given by a primitive element « with minimal polynomial f of degree n.
By applying suitable transformations we can assume that f is a monic polynomial
in Z[t][z]. The stem field Q(¢)(«) of f is denoted by K and the splitting field of f is

1

2 JURGEN KLUNERS

denoted by V. The zeros of f in N are denoted by @ = ay, s, ..., a,. Throughout,
G = Gal(f) is the Galois group of f acting on the roots ay, ..., ay,.

In our algorithmic approach we need to consider residue class fields. Therefore
let ty € Z be chosen in such a way that f(z) := f(to,z) € Z[x] is irreducible. We
denote by - the corresponding structures in the residue class field, i.e., K denotes
a stem field of f, N the splitting field of f. G is the Galois group of f acting on
the roots @ = ay,as, ..., a,.

3. NEWTON LIFTING AND RECONSTRUCTION

Let R be a commutative ring with 1 and a an ideal of R. Furthermore let g € R[x]
be a polynomial and By € R such that g(8y) = 0 mod a and ¢'(fp) is invertible
modulo a. Then for every k € N we can compute Sy such that 8 = Sy mod a and
9(Bx) = 0 mod a2’ using the extended Newton lifting which avoids divisions. Here
we only give the algorithm. Details can be found in [vzGG99, Algorithm 9.22].
Let wp be the inverse of ¢'(8y) modulo a. Then we can use the following double
iteration for i = 0,...,k — L

(1) Biv1 = Bi—wig(Bi) mod a
(2) Wi+1 = w,-[? — w,-g'(ﬂ,-+1)] mod a

9it1l

2i+1

Let f,a, K, and n be defined as in Section 2. In the following we look at the
special situation that R is the equation order Q[t][a] := Q[t] +Q[t]a+- - - + Q[t]a™*
and a := (t — t9) C R is the principal ideal generated by ¢t — to € Z[t].

Lemma 1. (Newton lifting)

Let g € Z[t][x] be a polynomial, ty € Z, and o € Q[t][a] such that g(Bo) =
Omod (t — tg) and a = (t — to) { disc(f) disc(g). Then for every k € N we can
compute an element By, € Q[t][a] with g(Br) = 0 mod a2 and Br = Bo mod a.

Proof. From (t — to) 1 disc(f) disc(g) we get that ¢'(fo) is invertible in R/a. Its
inverse wy can be computed using the extended Euclidean algorithm. The elements
B are now obtained using the above double iteration. d

In our algorithm we want to compute an element of the form

n—1
B=Y bia' (b €Q(t),
i=0
where we make the additional assumption that all denominators of the b; divide a
given polynomial d € Q[¢]. Now let M : =t — ¢y € Z][t] be a polynomial which is
prime to d. For a,b,c € Q[t] with ged(M,b) = 1 we say that ¢ = ¢ mod (M*) if
and only if @ = bc mod M*. We further say that
n—1 . n—1 .
> bia' = cia’ mod a* if and only if b; = ¢; mod (M*) (0 <i<n—1).
i=0 i=0

In our applications we are able to compute v = Z?;OI c;al with 8 = v mod ak.
Knowing that all denominators of the b; divide d the reconstruction of g from ~y
can be done coefficientwise using the following lemma.

ALGORITHMS FOR FUNCTION FIELDS 3

Lemma 2. (Padé approzimation)

Let ¢, M = (t—to)* € Q[t] and ki, ks € N with ky +ko < k. If there exist a,b € Q|t]
with deg(a) < k1 and deg(b) < k2 such that § = cmod (M) then a,b can be
computed efficiently based on an extended gcd-algorithm. Furthermore § is unique
in this case.

The proof can be found in [vaGG99, Section 5.9]. If we want to use the above
lemma, it is important to have estimates for the degrees of a and b in order to
choose the needed precision k.

We denote by |- |« the negated degree valuation on Q(t), i.e. |§|e = deg(a) —
deg(b). Let N/Q(t) be a finite extension. We know that there exists a valuation
of N extending | - |oc. We denote this valuation by | - |«, too. Let f € Q[t][z] be
an irreducible polynomial. It is well known how to compute the valuations of the
zeros of f in a splitting field NV of f.

Theorem 1. Let f = 2" + a2 1 + - -+ a, € Q(t)[z] be a monic polynomial and
denote by ay,...,a, the zeros in a splitting field. Then we can recursively define
1<k <ky<...<ks=n such that the following holds:

(i) Let ky € {1,...,n} be the largest number such that

|k, |oo |@i] o
—= = max ——.
k1 1<i<n 1
Ak oo - . .
Then vy := Lol 5o the magimal negated degree valuation of a zero of f and

k1
there are exactly ki zeros with this valuation.

(ii) Supposing k; < n we define k;y1 € {k; +1,...,n} to be the largest number

such that
i i
|aki+1 |00 - Zu:l kVUV _ |aJ|0° B El/:l k”vl’
= max - .
kH—l — k; ki<j<n J—k;
lar; 1 loo—0 1 kuvy . . .
Then vy := —+ " ! is the mazimal negated degree valuation of
£ £

kiv1 — k; zeros of f.

Proof. W.l.o.g. we can assume that |a1]eo > ... > |@nloo. The coefficients of f are
the elementary symmetric functions in aq,...,a,. Since |- | is non-archimedean
it follows that |a;|c < i]ag]eo for 1 < i < ky. Furthermore we have that |a;|0 <
tla|eo for @ > ki. Since there is no cancellation we get that |ag, |co = k1|a1]co
which proves (i). The second part can be proved in an analogous way.

Using the preceding theorem the valuations of the zeros of a polynomial f €
Q(t)[z] can easily be computed.

Lemma 3. Let K = Q(t)(a) be an extension of degree n of Q(t) and f € K.
Furthermore let f € Q[t][x] be the minimal polynomial of o and denote by v; :=
max(0, |aj|oo), where w.lo.g. a1,...,an are ordered in a way such that vi > ... >
vn- Denote by w the maximal valuation of a zero of the minimal polynomial of B
over Q(t). Then

n—1

biot, with b;,d € Q[t],

1
P=is

2

Il
=]

n—1

. 1 .. .
bloe < ldlow = 51 disc(Ploo + D (0 =)0 +w:

j=1

4 JURGEN KLUNERS

Proof. Clearly 8 = %E?z_ol by for some b;,d € Q[t]. Denote by ar,...,a, the
conjugates of . Then the conjugates of § are given by

This defines a linear system of equations:

1 a1 s Oé?_l 80 ﬂl
1 N .
1 «ap - ag_l Bn—1 Bn

Denote by A the above Vandermonde matrix, by Ag,...,A,_1 the columns of A,
and define B := (B,...,8,)". Using Cramer’s rule, we obtain:

b — ddet(AO,...7Ai717B7Ai+1,...,An71)
e det(A) '

We want to estimate det(Ag,...,Ai—1,B,4i+1,...,A4,_1) using the fact that the
determinant is the sum of products of n factors, where we have exactly one factor
in each row and in each column. The worst case is when we place B in the first
column. Using det(A)? = disc(f) and that | - | is non-archimedean we get:

. 1 n—1
[biloo < dloo = 5l disc(£)loo + > (n—jwj+wfor 0<i<n-—1.
j=1

O

This estimate can be sharpened when f has zeros «; with negative valuation.
Now we are able to give the following algorithm.

Algorithm 1. (Root Finding)
Input: Minimal polynomial f € Z[t][x] of a primitive element o of an exten-
sion K/Q(t), a polynomial g € Z[t][x], to € Z such that f(to,x) and

g(to, x) are irreducible, and 5 with g(8) = 0 mod (¢t — to).

Output: 8= Z?:_Ol biat (b; € Q(t)) with g(8) =0 and B = B mod (t — ty), or
indication that such a 8 does not exist.

Step 1: Compute the valuations vy > ... > v, of the zeros of f using Theorem

1 (n=[K:Q(t)]) and set v; :== max(v;,0).
Step 2: Compute the mazimal valuation w of the zeros of g using Theorem 1.
Step 3: Compute the discriminant of f and its factorization disc(f) = [] d;°
- i=1

in Qt]. Setd:=] diLTZJ.

i=1

Step 4: Compute k := |d|oo — 5| disc(f)|oo+2?;11 (n—j)vj+w. We get 1bi]00 <

k using Lemma 3.

Step 5: Set k =k + |d|oo + 1.

ALGORITHMS FOR FUNCTION FIELDS 5

Step 6: Using Newton lifting (Lemma 1) compute b; € Q[t] such that

|
_

n

g() biat) =0 mod (t —to)*.

i=0
Step 6: Using Lemma 2 retrieve the rational coefficients b; = b; mod (t—to)k.
n—1 .
Step 7: If B := > b;a® is a zero of g return [3, otherwise return that 8 ¢ K.
i=0

The polynomial d computed in Step 3 is a multiple of all denominators of the
b;’s. In case a smaller polynomial with this property is known, this can be used to
improve the algorithm. We remark that Step 3 can be improved by using squarefree
factorization. The correctness of this algorithm follows from the considerations in
this section.

4. AUTOMORPHISMS

We use the notations of Section 2 and assume that K /Q(t) is a normal extension
of degree n. Our aim is to compute the automorphism group of K/Q(t). An
automorphism o of K/Q(t) is uniquely determined by its image

n—1
Bi=0(a) =) b’ with b; € Q(t).
i=0
n—1 .
Once we know this image it is easy to apply o to an element v = Y ¢;a* with ¢; €
i=0

Q(t), since -
o) =Y cola)’

In case we want to apply o more than once, it is desirable to store the normal form
of o(a),o(a)?,...,0(a)” ! in order to save computing time.

Later in this section we describe how to compute one single automorphism. If
we want to get the whole automorphism group A we have to compute generators of
A. Afterwards we can apply Dimino’s algorithm [But91, pages 14-23] to compute
all elements of A.

By Hilbert’s irreducibility theorem there exists ty € Z such that f(z) := f(to,z) €
Q[z] is irreducible. Then Gal(f) = Gal(f). Denote as before by ~ the corresponding
structures in the residue class field of the prime ideal (¢t — ¢y). We obtain

n—1 n—1
ol@) == ba'=5(@) = ba' mod (t—ty)
=0 1=0

Therefore, if we are able to compute an automorphism in a residue class field we can
apply the Newton lifting and reconstruction techniques of Section 3 to determine
the corresponding automorphism of K/Q(t). [AK99] describe how to compute
automorphisms of an abelian number field. The author extended this algorithm to
the non abelian case [K1197].

Now we are able to give the algorithm for computing automorphisms of finite
extensions of Q(t).

6 JURGEN KLUNERS

Algorithm 2. (Computation of Automorphisms)

Input: Minimal polynomial f € Z[t][x] of a primitive element o of a normal
extension K/Q(t), to € Z such that f(to,x) is irreducible, and an
automorphism & of the corresponding residue class field extension.

Output: An automorphism o of K/Q(t) such that o(«) = (@) mod (t —to).

Step 1: Call Algorithm 1 with f, f,to, and 3 = &(@) and store the result in f3.

Step 2: Return the corresponding automorphism o with o(a) = .

The correctness of this algorithm follows from the considerations in this section.
We remark that the above algorithm can also be used to check if the extension

n—1 .
K/Q(t) is normal. In the negative case > b;a* fails to be a zero of f.
=0

5. EMBEDDING OF SUBFIELDS

The situation is very similar to the one in the preceding section. Let K = Q(t)(«)
be a finite extension of degree n of Q(¢). Furthermore we have a field L = Q(¢)(3)
of degree m over Q(t). We denote by f and ¢g the minimal polynomials of o and 3,
respectively. W.l.o.g. we assume that f,g € Z[t][z]. We want to decide if L/Q(t)
is a subfield of K/Q(t). In the latter case we want to determine the embedding of
L in K which can be done by expressing /5 in terms of a:

n—1
ﬁ = Z széZ
i=0

Note that in the case [K : Q(t)] = [L : Q(¢)] this gives an Q(t)-isomorphism test.

Let tg € Z such that f(z) := f(to,r) € Qz] and g(z) := g(to,z) € Qz] are
irreducible. Denote by ~ the corresponding structures in the residue class field of
the prime ideal (t —to). If L is a subfield of K it follows that L is a subfield of K.
We assume now that L is a subfield of K and that we are able to determine the
embedding

n—1
B = I_)Zo"/

i

If L is a subfield of K we know that there exist b; € Q(¢) with

n—1
B=> bl
i=0

Again, we can apply the Newton lifting and reconstruction techniques of Section 3
to compute the embedding. There are algorithms to solve the subfield problem in
the number field case. One possibility is to use factorization of polynomials over
number fields to decide the problem. Another possibility is described in [Poh87].
In our context we get this information as a part of the subfield algorithm described
in Section 7.

Now we state the algorithm.

Il
=]

B mod (t — tg).

ALGORITHMS FOR FUNCTION FIELDS 7

Algorithm 3. (Subfield Test)

Input: Minimal polynomial f € Z[t][x] of a primitive element o of an exten-

- sion K/Q(t), minimal polynomial g € Z[t][z] of a primitive element (3
of an extension L[/Q(t).

n—1 .
Output: Embedding 8 =) b;a’, or indication that L is not a subfield of K.
i=0

Step 1: Find ty € Z such that f(to,z) and g(to,x) are irreducible.

Step 2: Test, if L is a subfield of K. If this is the case, compute the embedding
of B. Otherwise return that L is not a subfield of K.

Step 3: Call Algorithm 1 with f,g,to, and 3.

Step 4: In case the computation of B was successful return the corresponding

embedding. Otherwise return that L is not a subfield of K.

The correctness of this algorithm follows from the considerations in this section.

6. ZEROS OF POLYNOMIALS IN Z[t][z]

We use the notations of Section 2. In this section we develop a method to
compute approximations to the zeros of f. It is well known that all zeros of f can
be expressed as power series in N[[t]]. In our applications it is sufficient to know
these series modulo ¢ for a suitable { € N. We have the problem that computations
in the splitting field N of f are not very convenient. In our applications we embed
N into some unramified p-adic extension. Let p be the prime ideal of the valuation
ring of this p-adic field. We approximate p-adic numbers by truncated series modulo
p*. The necessary p-adic arithmetic is described in [K1ii98].

Using Newton lifting we can express « as a power series:

o0
(3) a:d+z%ti, where a; € Z[a], d; € N.
i1

Note that even if Z[a] is the maximal order of K the denominators d; are not
necessarily equal to 1. In the p-adic approach it is important to find a prime p
which does not divide any denominator d; as the following lemma shows.

Lemma 4. Let p be a prime which divides d; for some ¢ € N in the above power

series. Then p divides disc(f).

i .
Proof. Define ag := @, dp := 1, and ¢; :=) ;—;tj. Using linear Newton lifting we

j=0
find that

—f(ci)
flei) ito .. Qg1 Cipl — G :
il = ¢ — od 12 which implies = - =1t od t.
1 R e N YR

We see that all d; must divide f'(co). Denote by N the norm function of the number

field K. Using f'(co) = f'(@) mod t and the fact that disc(f) = £ N(f'(a@)) we get
that all primes dividing f’(@) also divide disc(f). O

From equation (3) we know that one root « of f can be expressed as a power
series in K[[t]]. We use the double iteration described in Section 3 to find an

8 JURGEN KLUNERS

approximation modulo #! for some [€ N. Now we describe how to get all zeros of
f in a suitable completion. We start to express the zeros as power series in C[[t]].
The following lemma is an immediate consequence of the above considerations.

Lemma 5. Let ay,...,&4, € C be the zeros of f. For 1 < i < n define ¢; :
K[[t]] = C[[t]], @~ &y, t — t. Furthermore let a be defined as in equation (3).
Then &; = ¢;() (1 <i < n) are the zeros of f in C[[t]].

Using complex approximations it is very difficult to get proven results Therefore
we only use complex approximations to get bounds for the coefficients 4-. We need
to find a representation for elements in the splitting field N. As suggested in [K1i98]
we want to use p-adic approximations in unramified p-adic extensions. Let p be a
prime not dividing disc(f). From Lemma 4 we know that p does not divide any
denominator d; of a coefficient of « in equation (3). Now let p be a prime ideal of
Oy lying above p. Therefore f splits into linear factors over Ny. Denote the zeros
of fin N, by ai,...,a,. For 1 <i<n define

(I K[[t]] — Np[[t]], a— a;, t = tand a; :=¥;(a).

Then it is immediate that a1, ...,q, are the roots of f in N,[[t]] and we get the
following lemma.

Lemma 6. For k,l € N and for 1 <i¢<mn let

0 -1
a; = Zai,jtj € Ny[[t]] and &; = Z(am mod p*)t/ € N, [1].
7=0 J=0

Then &, ...,a&y, are the zeros of f modulo (t,p*) in Ny[t], i.e. f(&) = 0 mod
(t', p*).
Using the above lemma approximations to the zeros of f can easily be computed:
(i) Compute p-adic approximations modulo p* of the zeros of f.
(ii) Using Newton lifting compute a € K[[t]] modulo #'.
(iii) Using ¢; and Lemma 6 to compute approximations modulo (#,p*) of the
zeros of f.

The approximations to the zeros of f are used in the subfield algorithm. In the
next section we give an algorithm to compute sufficiently large k£ and [.

7. SUBFIELDS

The algorithm for computing subfields is more complicated than the ones pre-
sented in the preceding sections. Similar to the other algorithms we want to use
the fact that we are able to compute subfields in the residue class field which is a
number field. But from this computation we do not have enough information to lift
the subfields. Therefore we have to recall some properties of subfields. For more
details see [KP97, K1ii98].

Let G be a transitive permutation group acting on := {aq,...,a,}. Recall
that A C Q is called a block of size |A], if AT NA € {§,A} for all 7 € G. The
orbit of a block A under G is called a block system. The full set and all sets of
size 1 are blocks, the so called trivial blocks. Suppose that aq, ..., a, are the roots
of an irreducible polynomial f € Z[¢][z] and G is the Galois group of f. Then the
subfields of a stem field of f are in bijection with the groups G, C H C GG, where
G, denotes the point stabilizer of ;. Therefore the following theorem establishes
a bijection between subfields and block systems.

ALGORITHMS FOR FUNCTION FIELDS 9

Theorem 2. The correspondence A — Ga = {17 € G | AT = A} is a bijection
between the set of blocks of size d which contain o and the set of subgroups of G of
index m = n/d containing the subgroup G, of .

Proof. The proof of the theorem can be found in [Wie64, Theorem 2.3]. O
We use the notations of Section 2. We want to determine the intermediate fields

Q(t) < L < K using the correspondence to block systems. The following diagram
illustrates our situation:

Q(t) (al) :an) {ld}
Q(t)(ar) Goy {ai}
d
Qt)(B) H Hay ={ai;,...,qi, } = A
m=7
Q(t) G {a1,...,an}
Suppose we are able to determine a block system consisting of blocks Ay, ..., A,
of size d. Then we can define
(4) g(t,x) == [J(@—] (@ +a) € Z{t]z] (a €2).
=1 a€A;

It is an immediate consequence of the definition of a block system that g has
coefficients in Z[¢]. Instead of just taking products it is possible to consider an
arbitrary symmetric function of the zeros in a block. The product has the advantage
that we can prove that at most n choices of a lead to a polynomial g which has
multiple zeros, e.g. [K1i98, Lemma 4.5]. If the polynomial has no multiple zeros,
it is irreducible and therefore we have found a minimal polynomial of a primitive
element of the corresponding subfield L. Let ty € Z be chosen such that f(z) :=
f(to,z) € Z[z] is irreducible. We assume w.l.o.g. that ¢, = 0. We denote by G the
Galois group of f and by ay,...,a&, the zeros of f. Using the subfield algorithm
for number fields we are able to compute a block system Aj, ..., A,,. We know
that the zeros of f can be expressed as power series in N[[t]], where N denotes the
splitting field of f. We obtain

o0
a; = a; + E a; ;t’, where a;; € N.
i=1

10 JURGEN KLUNERS

If we are able to compute the power series (see Section 6), we can establish the
correspondence between the «; and the @;. For the computation of the zeros we
have to find integers k and [such that it is sufficient to compute the zeros modulo
(t!,p*). In a first step we give an estimate for [. As in Section 3 we denote by || the

negated degree valuation on Q(¢). For a polynomial f(t,z) = 3 fi(t)a? € Q(t)[z]
i=0

we denote by |fleo := Jnax (|filoo) the valuation of a polynomi;l.
<i<n

Theorem 3. Let g be defined as in equation (4). Then |gloo < |floo-

Proof. Assume that a = 0 in equation (4). Then

|g|oo=|H(:U— H |Oo—2max0 Z || o) SZZmaxO|a|oo
i=1 i=1 a€A;

aEA; aEA;

n

= Zmax(o, |ailoo) = | H(ﬂf = aj)]oo = | floo-
i=1 i=1

In case a # 0 we get that |a; + a|eoc = max(|a;|so, 0). Therefore the same argument
shows the assertion for arbitrary a. O

Theorem 3 shows that we are allowed to do all computations modulo #, where
I =|floo +1. The next step is to derive a bound for the real size of the coefficients.
Let

Ti

= filt)z' € L[t][x], where f; = > fit € L[t].

i=0 7j=0
We denote by || filleo := nax. (Ifi,;]) the maximum norm of f; and by ||f]|e =

Orga%x (1filleo) the maximum norm of f. We are interested in computing a bound

for {|gfco-
Theorem 4. Let f € Z[t][z] be a monic irreducible polynomial and denote by

o0
;=Y ai ;) €Clt]] (1<i<n)
=0
the zeros of f. Let g be defined as in equation (4) where a = 0 and setl := || f]|oc+1.
For 0 <j <l-1 definec; := 1rgax ([las,511,1). Define
h(t) :=co+cit+---+c 1t € Z[t] and H(t,x) := (x + h(t)=)™ mod t.

Then we have ||g||oo < [|H||co-

Proof. From Theorem 3 we know |¢gloc < |floo = I — 1. Since |a;;] < ¢; for
0 <j<l-1,itis immediate that ||g||co < ||H||co- O

Bounds for the ¢; can easily be computed using equation (3) and a bound for a
maximal root of f. Experience shows that ¢;_; tends to be larger than cp.
We are now able to give the whole algorithm for computing subfields.

ALGORITHMS FOR FUNCTION FIELDS 11

Algorithm 4. (Computation of subfields)

Input: Minimal polynomial f € Z[t][x] of a primitive element o of an exten-
sion K/Q(t).
Output: All subfields Q(t) < L < K of K described by a pair (g,5), where

n—1 .
g € Z[t][z] is the minimal polynomial of § = Y bia’.
i=0

Step 1: Compute ty € Z such that f(tg,) is irreducible. By applying a linear
transformation to f we assume that to = 0.
Step 2: Compute all subfields Q < L < K of K and the corresponding block

systems A1,...,Ap,. Each L is described by a pair (g, 3), where g €
_ n—1 _ .
Z[x] is the minimal polynomial of = Y b;a’.
=0

Step 3: If there are no such L return the empty list.

Step 4: For each L do
(i) Choose a prime p such that p{ disc(f) disc(g).
(i) Compute I := |f|oc + 1 and a bound M such that ||g|lcc < M

using Theorem 4.
(iii) Compute the smallest k € N such that p* > 2M.

(iv) Compute a1, ..., a, modulo (t',p*) using Lemma 6.
(v) Identify the &; with the @; to compute the corresponding block
system Ay, ..., A, consisting of the zeros &;.

(vi) Use equation (4) to compute g € Z[t][x] modulo (t',p*7Z) taking
the symmetric residue system modulo p*.

(vil) Call Algorithm 8 with f,g to test if L is a subfield of K. If this
is the case return g and the computed embedding (3.

Proof. The correctness of the algorithm follows from the above considerations. In
Theorem 3 we have proven that |g|oo < I. Therefore we can perform all computa-
tions modulo #. In Theorem 4 we have shown that ||g||.c < M. Since p* > 2M, we
can take the symmetric residue system to retrieve the true coefficients of g € Z|t][z]
from the computed approximations. If L is a subfield of K, L is a subfield of K.
The converse is not necessarily true. Therefore in Step 4 (vi) we have computed g
modulo (#,p*) since p¥* NZ = p*Z. In Step 4 (vii) we test if L is indeed a subfield
of K. O

We have given a simplified version of the subfield algorithm. One improvement
could be to try several ty € Z which lead to irreducible polynomials f. Afterwards
we can take the ¢y which corresponds to the field K with minimal number of
subfields to avoid unnecessary callings of Algorithm 3.

In practice it is important to store the zeros &; computed in Step 4 (iv). To use
the stored results it is important to choose the same prime p for all subfields L.
For large examples it is a good idea to choose the prime p in such a way that the
corresponding p-adic extension N, has small degree. In the case that the subfield
algorithm over Q has chosen a different prime the block systems in Step 2 can be
computed using the following lemma.

12 JURGEN KLUNERS

Lemma 7. Let L = Q(B3) be a subfield of K = Q(a) with corresponding minimal
_ _ n—1 _ . _ n—1 _ .
polynomials g and f. Let § = > b;a* and define h(z) := > bz’ € Qz]. Denote
i=0

=0
by a1,...,Qn,0B1,---,0m the zeros of f and g in a suitable closure, respectively.
Define

A= {a; | h(ay) = Bi}.
Then Ay,...,A,, form a block system of Gal(f) acting on the roots ai,...,an,
corresponding to the subfield L.

Proof. Let o € Gal(f) with o(3;) = B. Then
7€ A & h(F) = Bi & o(h(¥)) = h(o(7)) = Br & 0(7) € A

Consequently, Aj,...,A,, is a block system. Assuming @; € A;, we find that
the subgroups fixing 4, and A; coincide. Therefore the block system Aj,... A,
corresponds to L. d

8. RATIONAL DECOMPOSITIONS

Let t = Z((z)) € Q(a) with a,b € Q[a] monic and ged(a,b) = 1 be a rational

function. Recall that the degree of a rational function ‘;E—g) is defined to be the
maximum of the degrees of a(a) and b(«). It is an interesting question to determine
if there exist rational functions u,v € Q) with 1 < deg(u), deg(v) < deg(t) such
that t = wowv. It is an immediate consequence of a theorem of Liiroth (see e.g.
[Jac80]) that such a decomposition corresponds to a proper subfield Q(¢t) < L <
Q(a). Therefore it is natural to apply the subfield algorithm of the last section to
compute such decompositions.

Define f(t,z) := a(z) — tb(z) € Q[¢t][z]. Since a and b have no common divisor,
f has to be irreducible. Furthermore f is the minimal polynomial of « over Q(¢).
By applying suitable transformations we assume that f is a monic polynomial in
Z[t][x]. Now assume that we have computed a subfield Q(t) < L < Q(¢,) = Q(«)
using Algorithm 4. The algorithm returns a polynomial g € Z[t][z] which is a

minimal polynomial of g = Z b;(t)at, where a is a zero of f. Since we know that

|floo = 1, Theorem 3 1mp11es that |9lcc = 1 as well. We remark that from Liiroth’s
theorem it is clear that such a polynomial g exists, but it is not a priori clear that
a general subfield algorithm will produce such a g. Since |g|oo = 1 we can write

g(t,x) = c(x) —td(x) with ¢,d € Z[z]. Then for a root § of g we have t = % and

Q(pB) is a subfield of Q(«) containing Q(t). It remains to express 3 as a rational

n—1 .
function in «. We have 8 = Y b;(t)a’. Replacing ¢ by Z((z)) we can express 3 as a
i=0

rational function in «, say 8 = % with u,v € Qo] and ged(p,v) = 1.

Altogether this shows % = ;EZ; o ‘;Ez;

The algorithm for rational function fields can be improved compared to the
general subfield algorithm. Experiments on a computer show that the embedding
part, i.e. the computation of J is the most time consuming part. This step can
be improved as follows. At some point of the computations we know the rational

functions t = % and t = % and would like to know the rational function g =

ALGORITHMS FOR FUNCTION FIELDS 13

‘;Ez; Since Z((Z‘)) = ZEZ‘)) we consider the polynomial a(a)d(8) — b(a)c(B) € Qa, B].

If Q(B) is a subfield of Q(«) this polynomial has a linear factor v(a)f8 — p(a),
where deg(42)) = [Q(a) : Q(B)]. Therefore we have to find linear factors in 3 of

v(a)
a(a)d(B) — b(a)c(B) € Qla,], which can be done using well known methods.
Note that there are specialized algorithms for the rational function field case,
e.g. [AGR95]. Experiments show that the perfomance of the algorithms depends

on the examples (see Section 10).

9. THE COMPUTATION OF SUBFIELDS OF A SPLITTING FIELD

In [KMOO, Section 3.3] we explained how to compute a subfield L of a field ex-
tension of the rationals which was given by a minimal polynomial f € Z[z] of a
primitive element. In the same paper we also explained how to compute a polyno-
mial Rg g, r[z1,...,Tn][z], where G is the Galois group of f, H is the stabilizer of a
subfield of the splitting field, and n is the degree of f. F'is a so-called H-invariant
G-relative polynomial [KMO0O, Definition 3.1]. Let aq,...,a, be the roots of f.
Then it is shown that Rg g r(oa,-..,a,) € Z[z] is the characteristic polynomial
of an element of L over Q. If this polynomial is not squarefree, i.e. the element is
not primitive, a suitable transformation on the «; yields a primitive element. Back
to our function field setting we aim at computing Rg a,r(a1,...,an) € Z[t][z] us-
ing approximations to the «; as before. We have explained in Section 6 how to
represent the roots a; of a polynomial f € Z[t][x]. The remaining problem is to
determine sufficiently large k,! (see Lemma 6). We have to use Theorem 1 to get
the (degree-)valuations of the roots of f. Unfortunately we are not in the nice
situation of Theorem 3. After determining the degree bound we have to compute a
bound for the p-adic approximations. Let us explain this procedure by an example.

Let f(t,z) := a7 — 325 — 2 + 32* + (=t + 1)a® + (t + 1)2® — 5z + 4 be the
polynomial with Galois group G = PSLy(7) given in [MM99, p. 405]. We want to
compute one of the (isomorphic) degree 8 subfields of the splitting field of f. First
we compute the following F(x1,...,27) := T1Z227 + T1T3T6 + T1T4T5 + T2T3Tq +
ToX5T¢ + T3T52T7 + Taxgx7. Denote by H a subgroup of index 8 in G and let R be a
full system of representatives of (left) cosets of G/H. Furthermore we assume that
G acts in the same way on the z; as G acts on the roots of f. Then we get

RG7H,F = H (:L“ - FJ).
0cER
The next step is to compute the necessary bounds. Using Theorem 1 we find the
degree valuations of the roots of f: [%, %, %, %, 0, —%, —%] Unfortunately, we have
no chance to determine which root has which valuation. Since each summand of
F has valuation less than or equal to 2 (after substituting the a;’s), we see that
the coefficients of R g, r have valuations which are less than or equal to 8% = 6.
Now we compute the zeros of f as power series in C[[t]] (compare Theorem 4). It
is sufficient to compute these series modulo ¢". The polynomial h(t) in Theorem 4
can still be computed as before. Since F' consists of seven monomials of degree 3
we define H(t,z) := (z + Th(t)®)® mod t7. The largest coefficient of H gives us a
bound for the real norm. In our example we get the bound 1491576722650942160
and compute everything modulo 41'2. The final result is the following (irreducible)

polynomial:

14 JURGEN KLUNERS

o8 — 1827 + (14t + 237)28 + (—4t> — 168t — 1563)x° + (—2t3 + 125t + 2008t +
9773)z* + (=103 — 966t> — 9231t — 32724)2> + (6t* + 383t3 + 7002t> + 48745t +
124283) 22 + (4> — 38t — 17573 — 18994t — 90189t — 179511)x + 0+ 24¢> + 754t +
8030t* + 60349t + 226389t + 576706.

The whole computation takes about three seconds (cf. next section).

10. EXAMPLES

In this section we give the running times of some examples to demonstrate the ef-
ficiency of our algorithms. All computations were done on a 500MHz Intel Pentium
IIT processor running under SuSE Linux 6.1.

We start with an example of degree 12. Let K = Q(t)(a) be defined by the
following minimal polynomial of a:

f(t,) = 2'? =362 + 450210 — 24842% + 380728 + 2527227 + (27¢% +299484)2® +
2274482 + 308367z — 181083623 + 295245022 — 21257642 + 531441.

This field has two proper subfields described by the following (g,). The com-
putations are done in 2.4 seconds.

(i) g(t,o) = 2® + 9622 — 3840z — 27t* — 409600,

B = —452 4 936c — 6900” + 1600” + (53t* + 2358)at + (Bgt? + 2552)a® +
293 6 4 284 7 _ 686 8 388 .9 95 (10 4 _8

27 243 — 729 a” - 19633

292 T 3187 6561 a'l

(ii) g(t,z) = 2° — 242 + 962 + 10242° — 99842 + 30720z + 27¢2 + 409600,
6922 —826 +54%)9a9— 93—2a42 + %oﬁ +1¥2i7‘1a141+ (sig7t” + SR)a® + §5a + #ha” —
757 T eser® T wer® T 55049

Now let f(t,z) := a(z) — tb(z) be a polynomial of degree 36, where “%) is the

6561
b(a
following rational function:

a(z) (2% +4)%(@® + 622 + 4)°(2% — 62° + 362" + 82° — 2422 + 16)°
b(z) (x —2)028(x + 1)3 (22 — x + 1)3(2? + 2z + 4)6

]

We use the methods of Section 8 to compute the rational decompositions cor-
responding to the subfields. There are 10 nontrivial ones and the computing time
was 186 seconds. In order to save space we only give one decomposition:

a(r) —(2® —122% + 242 — 16)*(2® + 242 — 16)> —z(z — 2)
b(z) (z — 4)5(z — 1)329 Tl
We have not used the improvements which are possible in the rational function
field case as described in Section 8. Using these improvements all decompositions
can be computed within 60 seconds. The specialized package FRAC [AGR95] needs
20 minutes for the computation of all rational decompositions.
Let Z((;”)) be the rational function of degree 60 shown below. We only give one of

its decompositions (which was not known before) to save space:

a(z) _ (o' +2282° +4940° — 2282 +1)° 2t —22° +42® — 30 +1
b(z) x(z? — 11z — 1)° —x(zt + 323 + 422 4+ 22 + 1)

We need 31 minutes to compute the three non trivial rational decompositions.
Without using the improvements of Section 8, the computation would take about
85 minutes. Here the package FRAC needs 114 seconds to compute all rational
decompositions.

ALGORITHMS FOR FUNCTION FIELDS 15

ACKNOWLEDGEMENT

I would like to thank John Cannon and the Magma group. I implemented most
of the above algorithms during a two months stay in Sydney.

[AGR95]
[AK99]
[But91]
[DFK197]

[Jac80]
[K1ii97]

[K1ii98]
[KMOO]
[KP97]
[MM99]
[Poh87]
[v2GG99]

[Wie64]

REFERENCES

C. Alonso, J. Gutierrez, and T. Recio. A rational function decomposition algorithm
by near-separated polynomials. J. Symb. Comput., 19(6):527-544, 1995.

V. Acciaro and J. Kliiners. Computing automorphisms of abelian number fields. Math.
Comput., 68:1179-1186, 1999.

G. Butler. Fundamental Algorithms for Permutation Groups. LNCS 559. Springer,
1991.

Mario Daberkow, Claus Fieker, Jiirgen Kliiners, Michael Pohst, Katherine Roegner,
and Klaus Wildanger. KANT V4. J. Symb. Comput., 24(3):267-283, 1997.

N. Jacobson. Basic Algebra 1I. Freeman and Company, 1980.

J. Kliiners. Uber die Berechnung von Automorphismen und Teilkorpern algebraischer
Zahlkorper. Dissertation, Technische Universitdt Berlin, 1997.

J. Kliiners. On computing subfields - a detailed description of the algorithm. Journal
de Théorie des Nombres de Bordeauz, 10:243-271, 1998.

Jiirgen Kliiners and Gunter Malle. Explicit Galois realization of transitive groups of
degree up to 15. J. Symb. Comput., 30:675-716, 2000.

J. Kliiners and M. Pohst. On computing subfields. J. Symb. Comput., 24(3):385-397,
1997.

Gunter Malle and Bernd H. Matzat. Inverse Galois Theory. Springer Verlag, Heidel-
berg, 1999.

Michael E. Pohst. On computing isomorphisms of equation orders. Math. Comput.,
48(177), 1987.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999.

H. Wielandt. Finite Permutation Groups. Academic Press, New York and London,
1964.

UNIVERSITAT HEIDELBERG, IWR, IM NEUENHEIMER FELD 368, 69120 HEIDELBERG, GERMANY.
E-mail address: klueners@iwr.uni-heidelberg.de

