
ALGORITHMS FOR FUNCTION FIELDSJ�URGEN KL�UNERSAbstra
t. Let K=Q(t) be a �nite extension. We des
ribe algorithms for
omputing sub�elds and automorphisms of K=Q(t). As an appli
ation we givean algorithm for �nding de
ompositions of rational fun
tions in Q(�). We alsopresent an algorithm whi
h de
ides if an extension L=Q(t) is a sub�eld ofK. In
ase [K : Q(t)℄ = [L : Q(t)℄ we obtain a Q(t)-isomorphism test. Furthermore,we des
ribe an algorithm whi
h 
omputes sub�elds of the normal 
losure ofK=Q(t). 1. Introdu
tionLet K=Q(t) be a �nite extension of fun
tion �elds. In this paper we developalgorithms for de
iding if K=Q(t) is a normal or even an abelian extension. Inthis 
ase we give a method for 
omputing all automorphisms of K=Q(t). Anotherproblem we 
onsider is the determination of all intermediate �elds of K=Q(t). Hereit is not ne
essary to assume that K=Q(t) is a normal extension.As an appli
ation we show how to obtain de
ompositions of rational fun
tionsusing the fa
t that rational fun
tions 
orrespond to rational fun
tion �elds. Fur-thermore we give an expli
it des
ription of the main algorithm in [KM00℄ in thefun
tion �eld 
ase. This yields a method for 
omputing sub�elds of the splitting�eld of a �nite extension of Q(t).All algorithms presented in this paper are based on the following idea: Letf 2 Z[t℄[x℄ be the minimal polynomial of a primitive element of K=Q(t). Then byHilbert's irredu
ibility theorem there are in�nitely many spe
ializations t0 2 Z su
hthat �f(x) := f(t0; x) 2 Z[x℄ is irredu
ible as well. After �nding su
h a t0, we solvethe 
orresponding problem in the residue 
lass �eld and then use lifting pro
eduresto get the solution of our initial problem. In 
ontrast to the 
ase of global �elds wehave the advantage that in the generi
 
ase the Galois group of the residue 
lass�eld is the same as the Galois group of the given �eld.In this paper we assume that the 
orresponding problems 
an be solved in thenumber �eld 
ase. Algorithms for the 
omputation of sub�elds of algebrai
 num-ber �elds are des
ribed in [KP97, Kl�u98℄. In [AK99, Kl�u97℄ algorithms for the
omputation of automorphisms of algebrai
 number �elds are explained.All algorithms are implemented in the 
omputer algebra system KANT [DFK+97℄.We give several examples to demonstrate the eÆ
ien
y of the algorithms.2. NotationsIn this paper we 
onsider �nite extensions of Q(t). We assume that these exten-sions are given by a primitive element � with minimal polynomial f of degree n.By applying suitable transformations we 
an assume that f is a moni
 polynomialin Z[t℄[x℄. The stem �eld Q(t)(�) of f is denoted by K and the splitting �eld of f is1



2 J�URGEN KL�UNERSdenoted by N . The zeros of f in N are denoted by � = �1; �2; : : : ; �n. Throughout,G = Gal(f) is the Galois group of f a
ting on the roots �1; : : : ; �n.In our algorithmi
 approa
h we need to 
onsider residue 
lass �elds. Thereforelet t0 2 Z be 
hosen in su
h a way that �f(x) := f(t0; x) 2 Z[x℄ is irredu
ible. Wedenote by �� the 
orresponding stru
tures in the residue 
lass �eld, i.e., �K denotesa stem �eld of �f , �N the splitting �eld of �f . �G is the Galois group of �f a
ting onthe roots �� = ��1; ��2; : : : ; ��n.3. Newton lifting and re
onstru
tionLet R be a 
ommutative ring with 1 and a an ideal of R. Furthermore let g 2 R[x℄be a polynomial and �0 2 R su
h that g(�0) � 0 mod a and g0(�0) is invertiblemodulo a. Then for every k 2 N we 
an 
ompute �k su
h that �k � �0 mod a andg(�k) � 0 mod a2k using the extended Newton lifting whi
h avoids divisions. Herewe only give the algorithm. Details 
an be found in [vzGG99, Algorithm 9.22℄.Let !0 be the inverse of g0(�0) modulo a. Then we 
an use the following doubleiteration for i = 0; : : : ; k � 1:�i+1 � �i � !ig(�i) mod a2i+1(1) !i+1 � !i[2� !ig0(�i+1)℄ mod a2i+1 :(2)Let f; �;K; and n be de�ned as in Se
tion 2. In the following we look at thespe
ial situation that R is the equation order Q[t℄[�℄ := Q[t℄+Q [t℄�+ � � �+Q[t℄�n�1and a := (t� t0) � R is the prin
ipal ideal generated by t� t0 2 Z[t℄.Lemma 1. (Newton lifting)Let g 2 Z[t℄[x℄ be a polynomial, t0 2 Z, and �0 2 Q[t℄[�℄ su
h that g(�0) �0 mod (t � t0) and a = (t � t0) - dis
(f) dis
(g). Then for every k 2 N we 
an
ompute an element �k 2 Q[t℄[�℄ with g(�k) � 0 mod a2k and �k � �0 mod a.Proof. From (t � t0) - dis
(f) dis
(g) we get that g0(�0) is invertible in R=a. Itsinverse !0 
an be 
omputed using the extended Eu
lidean algorithm. The elements�k are now obtained using the above double iteration. �In our algorithm we want to 
ompute an element of the form� = n�1Xi=0 bi�i (bi 2 Q(t));where we make the additional assumption that all denominators of the bi divide agiven polynomial d 2 Q[t℄. Now let M := t � t0 2 Z[t℄ be a polynomial whi
h isprime to d. For a; b; 
 2 Q[t℄ with g
d(M; b) = 1 we say that ab � 
 mod (Mk) ifand only if a � b
 modMk. We further say thatn�1Xi=0 bi�i � n�1Xi=0 
i�i mod ak if and only if bi � 
i mod (Mk) (0 � i � n� 1):In our appli
ations we are able to 
ompute 
 = Pn�1i=0 
i�i with � � 
 mod ak.Knowing that all denominators of the bi divide d the re
onstru
tion of � from 

an be done 
oeÆ
ientwise using the following lemma.



ALGORITHMS FOR FUNCTION FIELDS 3Lemma 2. (Pad�e approximation)Let 
;M = (t� t0)k 2 Q[t℄ and k1; k2 2 N with k1+k2 < k. If there exist a; b 2 Q[t℄with deg(a) � k1 and deg(b) � k2 su
h that ab � 
 mod (M) then a; b 
an be
omputed eÆ
iently based on an extended g
d-algorithm. Furthermore ab is uniquein this 
ase.The proof 
an be found in [vzGG99, Se
tion 5.9℄. If we want to use the abovelemma, it is important to have estimates for the degrees of a and b in order to
hoose the needed pre
ision k.We denote by j � j1 the negated degree valuation on Q(t), i.e. jab j1 = deg(a) �deg(b). Let N=Q(t) be a �nite extension. We know that there exists a valuationof N extending j � j1. We denote this valuation by j � j1, too. Let f 2 Q[t℄[x℄ bean irredu
ible polynomial. It is well known how to 
ompute the valuations of thezeros of f in a splitting �eld N of f .Theorem 1. Let f = xn+ a1xn�1+ � � �+ an 2 Q(t)[x℄ be a moni
 polynomial anddenote by �1; : : : ; �n the zeros in a splitting �eld. Then we 
an re
ursively de�ne1 � k1 < k2 < : : : < ks = n su
h that the following holds:(i) Let k1 2 f1; : : : ; ng be the largest number su
h thatjak1 j1k1 = max1�i�n jaij1i :Then v1 := jak1 j1k1 is the maximal negated degree valuation of a zero of f andthere are exa
tly k1 zeros with this valuation.(ii) Supposing ki < n we de�ne ki+1 2 fki + 1; : : : ; ng to be the largest numbersu
h thatjaki+1 j1 �Pi�=1 k�v�ki+1 � ki = maxki<j�n jaj j1 �Pi�=1 k�v�j � ki :Then vi+1 := jaki+1 j1�Pi�=1 k�v�ki+1�ki is the maximal negated degree valuation ofki+1 � ki zeros of f .Proof. W.l.o.g. we 
an assume that j�1j1 � : : : � j�nj1. The 
oeÆ
ients of f arethe elementary symmetri
 fun
tions in �1; : : : ; �n. Sin
e j � j1 is non-ar
himedeanit follows that jaij1 � ij�1j1 for 1 � i � k1. Furthermore we have that jaij1 <ij�1j1 for i > k1. Sin
e there is no 
an
ellation we get that jak1 j1 = k1j�1j1whi
h proves (i). The se
ond part 
an be proved in an analogous way. �Using the pre
eding theorem the valuations of the zeros of a polynomial f 2Q(t)[x℄ 
an easily be 
omputed.Lemma 3. Let K = Q(t)(�) be an extension of degree n of Q(t) and � 2 K.Furthermore let f 2 Q[t℄[x℄ be the minimal polynomial of � and denote by vj :=max(0; j�j j1), where w.l.o.g. �1; : : : ; �n are ordered in a way su
h that v1 � : : : �vn. Denote by w the maximal valuation of a zero of the minimal polynomial of �over Q(t). Then � = 1d n�1Xi=0 b̂i�i; with b̂i; d 2 Q[t℄;jb̂ij1 � jdj1 � 12 j dis
(f)j1 + n�1Xj=1(n� j)vj + w:



4 J�URGEN KL�UNERSProof. Clearly � = 1dPn�1i=0 b̂i�i for some b̂i; d 2 Q[t℄. Denote by �1; : : : ; �n the
onjugates of �. Then the 
onjugates of � are given by�j = 1d n�1Xi=0 b̂i�ij (1 � j � n):This de�nes a linear system of equations:1d 0B�1 �1 � � � �n�11... ... ...1 �n � � � �n�1n 1CA0B� b̂0...b̂n�11CA = 0B��1...�n1CA :Denote by A the above Vandermonde matrix, by A0; : : : ; An�1 the 
olumns of A,and de�ne B := (�1; : : : ; �n)tr. Using Cramer's rule, we obtain:bi = d det(A0; : : : ; Ai�1; B;Ai+1; : : : ; An�1)det(A) :We want to estimate det(A0; : : : ; Ai�1; B;Ai+1; : : : ; An�1) using the fa
t that thedeterminant is the sum of produ
ts of n fa
tors, where we have exa
tly one fa
torin ea
h row and in ea
h 
olumn. The worst 
ase is when we pla
e B in the �rst
olumn. Using det(A)2 = dis
(f) and that j � j1 is non-ar
himedean we get:jb̂ij1 � jdj1 � 12 j dis
(f)j1 + n�1Xj=1(n� j)vj + w for 0 � i � n� 1: �This estimate 
an be sharpened when f has zeros �i with negative valuation.Now we are able to give the following algorithm.Algorithm 1. (Root Finding)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t), a polynomial g 2 Z[t℄[x℄, t0 2 Z su
h that f(t0; x) andg(t0; x) are irredu
ible, and �� with g( ��) � 0 mod (t� t0).Output: � =Pn�1i=0 bi�i (bi 2 Q(t)) with g(�) = 0 and � � �� mod (t � t0), orindi
ation that su
h a � does not exist.Step 1: Compute the valuations v1 � : : : � vn of the zeros of f using Theorem1 (n = [K : Q(t)℄) and set vi := max(vi; 0).Step 2: Compute the maximal valuation w of the zeros of g using Theorem 1.Step 3: Compute the dis
riminant of f and its fa
torization dis
(f) = rQi=1 deiiin Q[t℄. Set d := rQi=1 db ei2 
i .Step 4: Compute ~k := jdj1� 12 j dis
(f)j1+Pn�1j=1 (n�j)vj+w:We get jb̂ij1 �~k using Lemma 3.Step 5: Set k := ~k + jdj1 + 1.



ALGORITHMS FOR FUNCTION FIELDS 5Step 6: Using Newton lifting (Lemma 1) 
ompute ~bi 2 Q[t℄ su
h thatg(n�1Xi=0 ~bi�i) � 0 mod (t� t0)k:Step 6: Using Lemma 2 retrieve the rational 
oeÆ
ients bi � ~bi mod (t� t0)k.Step 7: If � := n�1Pi=0 bi�i is a zero of g return �, otherwise return that � =2 K.The polynomial d 
omputed in Step 3 is a multiple of all denominators of thebi's. In 
ase a smaller polynomial with this property is known, this 
an be used toimprove the algorithm. We remark that Step 3 
an be improved by using squarefreefa
torization. The 
orre
tness of this algorithm follows from the 
onsiderations inthis se
tion. 4. AutomorphismsWe use the notations of Se
tion 2 and assume that K=Q(t) is a normal extensionof degree n. Our aim is to 
ompute the automorphism group of K=Q(t). Anautomorphism � of K=Q(t) is uniquely determined by its image� := �(�) = n�1Xi=0 bi�i with bi 2 Q(t):On
e we know this image it is easy to apply � to an element 
 = n�1Pi=0 
i�i with 
i 2Q(t), sin
e �(
) = n�1Xi=0 
i�(�)i:In 
ase we want to apply � more than on
e, it is desirable to store the normal formof �(�); �(�)2 ; : : : ; �(�)n�1 in order to save 
omputing time.Later in this se
tion we des
ribe how to 
ompute one single automorphism. Ifwe want to get the whole automorphism group A we have to 
ompute generators ofA. Afterwards we 
an apply Dimino's algorithm [But91, pages 14-23℄ to 
omputeall elements of A.By Hilbert's irredu
ibility theorem there exists t0 2 Z su
h that �f(x) := f(t0; x) 2Q[x℄ is irredu
ible. Then Gal(f) = Gal( �f). Denote as before by � the 
orrespondingstru
tures in the residue 
lass �eld of the prime ideal (t� t0). We obtain�(�) = � = n�1Xi=0 bi�i � ��(��) = n�1Xi=0 �bi��i mod (t� t0):Therefore, if we are able to 
ompute an automorphism in a residue 
lass �eld we 
anapply the Newton lifting and re
onstru
tion te
hniques of Se
tion 3 to determinethe 
orresponding automorphism of K=Q(t). [AK99℄ des
ribe how to 
omputeautomorphisms of an abelian number �eld. The author extended this algorithm tothe non abelian 
ase [Kl�u97℄.Now we are able to give the algorithm for 
omputing automorphisms of �niteextensions of Q(t).



6 J�URGEN KL�UNERSAlgorithm 2. (Computation of Automorphisms)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of a normalextension K=Q(t), t0 2 Z su
h that f(t0; x) is irredu
ible, and anautomorphism �� of the 
orresponding residue 
lass �eld extension.Output: An automorphism � of K=Q(t) su
h that �(�) � ��(��) mod (t� t0).Step 1: Call Algorithm 1 with f; f; t0; and �� = ��(��) and store the result in �.Step 2: Return the 
orresponding automorphism � with �(�) = �.The 
orre
tness of this algorithm follows from the 
onsiderations in this se
tion.We remark that the above algorithm 
an also be used to 
he
k if the extensionK=Q(t) is normal. In the negative 
ase n�1Pi=0 bi�i fails to be a zero of f .5. Embedding of SubfieldsThe situation is very similar to the one in the pre
eding se
tion. LetK = Q(t)(�)be a �nite extension of degree n of Q(t). Furthermore we have a �eld L = Q(t)(�)of degree m over Q(t). We denote by f and g the minimal polynomials of � and �,respe
tively. W.l.o.g. we assume that f; g 2 Z[t℄[x℄. We want to de
ide if L=Q(t)is a sub�eld of K=Q(t). In the latter 
ase we want to determine the embedding ofL in K whi
h 
an be done by expressing � in terms of �:� = n�1Xi=0 bi�i:Note that in the 
ase [K : Q(t)℄ = [L : Q(t)℄ this gives an Q(t)-isomorphism test.Let t0 2 Z su
h that �f(x) := f(t0; x) 2 Q[x℄ and �g(x) := g(t0; x) 2 Q[x℄ areirredu
ible. Denote by � the 
orresponding stru
tures in the residue 
lass �eld ofthe prime ideal (t� t0). If L is a sub�eld of K it follows that �L is a sub�eld of �K.We assume now that �L is a sub�eld of �K and that we are able to determine theembedding �� = n�1Xi=0 �bi ��i:If L is a sub�eld of K we know that there exist bi 2 Q(t) with� = n�1Xi=0 bi�i � �� mod (t� t0):Again, we 
an apply the Newton lifting and re
onstru
tion te
hniques of Se
tion 3to 
ompute the embedding. There are algorithms to solve the sub�eld problem inthe number �eld 
ase. One possibility is to use fa
torization of polynomials overnumber �elds to de
ide the problem. Another possibility is des
ribed in [Poh87℄.In our 
ontext we get this information as a part of the sub�eld algorithm des
ribedin Se
tion 7.Now we state the algorithm.



ALGORITHMS FOR FUNCTION FIELDS 7Algorithm 3. (Sub�eld Test)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t), minimal polynomial g 2 Z[t℄[x℄ of a primitive element �of an extension L=Q(t).Output: Embedding � = n�1Pi=0 bi�i, or indi
ation that L is not a sub�eld of K.Step 1: Find t0 2 Z su
h that f(t0; x) and g(t0; x) are irredu
ible.Step 2: Test, if �L is a sub�eld of �K. If this is the 
ase, 
ompute the embeddingof ��. Otherwise return that L is not a sub�eld of K.Step 3: Call Algorithm 1 with f; g; t0; and ��.Step 4: In 
ase the 
omputation of � was su

essful return the 
orrespondingembedding. Otherwise return that L is not a sub�eld of K.The 
orre
tness of this algorithm follows from the 
onsiderations in this se
tion.6. Zeros of Polynomials in Z[t℄[x℄We use the notations of Se
tion 2. In this se
tion we develop a method to
ompute approximations to the zeros of f . It is well known that all zeros of f 
anbe expressed as power series in �N [[t℄℄. In our appli
ations it is suÆ
ient to knowthese series modulo tl for a suitable l 2 N. We have the problem that 
omputationsin the splitting �eld �N of �f are not very 
onvenient. In our appli
ations we embed�N into some unrami�ed p-adi
 extension. Let p be the prime ideal of the valuationring of this p-adi
 �eld. We approximate p-adi
 numbers by trun
ated series modulopk. The ne
essary p-adi
 arithmeti
 is des
ribed in [Kl�u98℄.Using Newton lifting we 
an express � as a power series:(3) � = ��+ 1Xi=1 aidi ti; where ai 2 Z[��℄; di 2 N:Note that even if Z[��℄ is the maximal order of �K the denominators di are notne
essarily equal to 1. In the p-adi
 approa
h it is important to �nd a prime pwhi
h does not divide any denominator di as the following lemma shows.Lemma 4. Let p be a prime whi
h divides di for some i 2 N in the above powerseries. Then p divides dis
( �f).Proof. De�ne a0 := ��, d0 := 1, and 
i := iPj=0 ajdj tj . Using linear Newton lifting we�nd that
i+1 � 
i � f(
i)f 0(
0) mod ti+2 whi
h implies ai+1di+1 = 
i+1 � 
iti+1 � �f(
i)tif 0(
0) mod t:We see that all di must divide f 0(
0). Denote by N the norm fun
tion of the number�eld �K. Using f 0(
0) � �f 0(��) mod t and the fa
t that dis
( �f) = �N( �f 0(��)) we getthat all primes dividing �f 0(��) also divide dis
( �f). �From equation (3) we know that one root � of f 
an be expressed as a powerseries in �K[[t℄℄. We use the double iteration des
ribed in Se
tion 3 to �nd an



8 J�URGEN KL�UNERSapproximation modulo tl for some l 2 N. Now we des
ribe how to get all zeros off in a suitable 
ompletion. We start to express the zeros as power series in C [[t℄℄.The following lemma is an immediate 
onsequen
e of the above 
onsiderations.Lemma 5. Let �̂1; : : : ; �̂n 2 C be the zeros of �f . For 1 � i � n de�ne �i :�K[[t℄℄ ! C [[t℄℄; �� 7! �̂i; t 7! t. Furthermore let � be de�ned as in equation (3).Then ��i := �i(�) (1 � i � n) are the zeros of f in C [[t℄℄.Using 
omplex approximations it is very diÆ
ult to get proven results. Thereforewe only use 
omplex approximations to get bounds for the 
oeÆ
ients aidi . We needto �nd a representation for elements in the splitting �eld �N . As suggested in [Kl�u98℄we want to use p-adi
 approximations in unrami�ed p-adi
 extensions. Let p be aprime not dividing dis
( �f). From Lemma 4 we know that p does not divide anydenominator di of a 
oeÆ
ient of � in equation (3). Now let p be a prime ideal ofO �N lying above p. Therefore �f splits into linear fa
tors over �Np. Denote the zerosof �f in �Np by ��1; : : : ; ��n. For 1 � i � n de�ne i : �K[[t℄℄! �Np[[t℄℄; �� 7! ��i; t 7! t and �i :=  i(�):Then it is immediate that �1; : : : ; �n are the roots of f in �Np[[t℄℄ and we get thefollowing lemma.Lemma 6. For k; l 2 N and for 1 � i � n let�i = 1Xj=0 ai;jtj 2 �Np[[t℄℄ and ~�i = l�1Xj=0(ai;j mod pk)tj 2 �Np[t℄:Then ~�1; : : : ; ~�n are the zeros of f modulo (tl; pk) in �Np[t℄, i.e. f(~�i) � 0 mod(tl; pk).Using the above lemma approximations to the zeros of f 
an easily be 
omputed:(i) Compute p-adi
 approximations modulo pk of the zeros of �f .(ii) Using Newton lifting 
ompute � 2 �K[[t℄℄ modulo tl.(iii) Using  i and Lemma 6 to 
ompute approximations modulo (tl; pk) of thezeros of f .The approximations to the zeros of f are used in the sub�eld algorithm. In thenext se
tion we give an algorithm to 
ompute suÆ
iently large k and l.7. SubfieldsThe algorithm for 
omputing sub�elds is more 
ompli
ated than the ones pre-sented in the pre
eding se
tions. Similar to the other algorithms we want to usethe fa
t that we are able to 
ompute sub�elds in the residue 
lass �eld whi
h is anumber �eld. But from this 
omputation we do not have enough information to liftthe sub�elds. Therefore we have to re
all some properties of sub�elds. For moredetails see [KP97, Kl�u98℄.Let G be a transitive permutation group a
ting on 
 := f�1; : : : ; �ng. Re
allthat � � 
 is 
alled a blo
k of size j�j, if �� \ � 2 f;;�g for all � 2 G. Theorbit of a blo
k � under G is 
alled a blo
k system. The full set and all sets ofsize 1 are blo
ks, the so 
alled trivial blo
ks. Suppose that �1; : : : ; �n are the rootsof an irredu
ible polynomial f 2 Z[t℄[x℄ and G is the Galois group of f . Then thesub�elds of a stem �eld of f are in bije
tion with the groups G�1 � H � G, whereG�1 denotes the point stabilizer of �1. Therefore the following theorem establishesa bije
tion between sub�elds and blo
k systems.



ALGORITHMS FOR FUNCTION FIELDS 9Theorem 2. The 
orresponden
e � 7! G� := f� 2 G j �� = �g is a bije
tionbetween the set of blo
ks of size d whi
h 
ontain � and the set of subgroups of G ofindex m = n=d 
ontaining the subgroup G� of �.Proof. The proof of the theorem 
an be found in [Wie64, Theorem 2.3℄. �We use the notations of Se
tion 2. We want to determine the intermediate �eldsQ(t) < L < K using the 
orresponden
e to blo
k systems. The following diagramillustrates our situation:Q(t)(�1 ; : : : ; �n)
Q(t)(�1 ) G�1

fidg
f�1gdQ(t)(�) H H�1 = f�i1 ; : : : ; �idg = �1m = ndQ(t) G f�1; : : : ; �ngSuppose we are able to determine a blo
k system 
onsisting of blo
ks �1; : : : ;�mof size d. Then we 
an de�ne(4) g(t; x) := mYi=1(x� Y�2�i(�+ a)) 2 Z[t℄[x℄ (a 2 Z):It is an immediate 
onsequen
e of the de�nition of a blo
k system that g has
oeÆ
ients in Z[t℄. Instead of just taking produ
ts it is possible to 
onsider anarbitrary symmetri
 fun
tion of the zeros in a blo
k. The produ
t has the advantagethat we 
an prove that at most n 
hoi
es of a lead to a polynomial g whi
h hasmultiple zeros, e.g. [Kl�u98, Lemma 4.5℄. If the polynomial has no multiple zeros,it is irredu
ible and therefore we have found a minimal polynomial of a primitiveelement of the 
orresponding sub�eld L. Let t0 2 Z be 
hosen su
h that �f(x) :=f(t0; x) 2 Z[x℄ is irredu
ible. We assume w.l.o.g. that t0 = 0. We denote by �G theGalois group of �f and by ��1; : : : ; ��n the zeros of �f . Using the sub�eld algorithmfor number �elds we are able to 
ompute a blo
k system ��1; : : : ; ��m. We knowthat the zeros of f 
an be expressed as power series in �N [[t℄℄, where �N denotes thesplitting �eld of �f . We obtain�i = ��i + 1Xj=1 ai;jtj ; where ai;j 2 �N:



10 J�URGEN KL�UNERSIf we are able to 
ompute the power series (see Se
tion 6), we 
an establish the
orresponden
e between the �i and the ��i. For the 
omputation of the zeros wehave to �nd integers k and l su
h that it is suÆ
ient to 
ompute the zeros modulo(tl; pk). In a �rst step we give an estimate for l. As in Se
tion 3 we denote by j�j1 thenegated degree valuation on Q(t). For a polynomial f(t; x) = nPi=0 fi(t)xi 2 Q(t)[x℄we denote by jf j1 := max0�i�n(jfij1) the valuation of a polynomial.Theorem 3. Let g be de�ned as in equation (4). Then jgj1 � jf j1.Proof. Assume that a = 0 in equation (4). Thenjgj1 = j mYi=1(x� Y�2�i �)j1 = mXi=1 max(0; X�2�i j�j1) � mXi=1 X�2�imax(0; j�j1)= nXi=1 max(0; j�ij1) = j nYi=1(x� �i)j1 = jf j1:In 
ase a 6= 0 we get that j�i+aj1 = max(j�ij1; 0). Therefore the same argumentshows the assertion for arbitrary a. �Theorem 3 shows that we are allowed to do all 
omputations modulo tl, wherel = jf j1+1. The next step is to derive a bound for the real size of the 
oeÆ
ients.Let f(t; x) = nXi=0 fi(t)xi 2 Z[t℄[x℄, where fi = riXj=0 fi;jtj 2 Z[t℄:We denote by jjfijj1 := max1�j�ri(jfi;j j) the maximum norm of fi and by jjf jj1 :=max0�i�n(jjfijj1) the maximum norm of f . We are interested in 
omputing a boundfor jjgjj1.Theorem 4. Let f 2 Z[t℄[x℄ be a moni
 irredu
ible polynomial and denote by�i = 1Xj=0 ai;jtj 2 C [[t℄℄ (1 � i � n)the zeros of f . Let g be de�ned as in equation (4) where a = 0 and set l := jjf jj1+1.For 0 � j � l � 1 de�ne 
j := max1�i�n(djai;j je; 1). De�neh(t) := 
0 + 
1t+ � � �+ 
l�1tl�1 2 Z[t℄ and H(t; x) := (x+ h(t) nm )m mod tl:Then we have jjgjj1 � jjH jj1.Proof. From Theorem 3 we know jgj1 � jf j1 = l � 1. Sin
e jai;j j � 
j for0 � j � l � 1, it is immediate that jjgjj1 � jjH jj1. �Bounds for the 
i 
an easily be 
omputed using equation (3) and a bound for amaximal root of �f . Experien
e shows that 
l�1 tends to be larger than 
0.We are now able to give the whole algorithm for 
omputing sub�elds.



ALGORITHMS FOR FUNCTION FIELDS 11Algorithm 4. (Computation of sub�elds)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t).Output: All sub�elds Q(t) < L < K of K des
ribed by a pair (g; �), whereg 2 Z[t℄[x℄ is the minimal polynomial of � = n�1Pi=0 bi�i.Step 1: Compute t0 2 Z su
h that f(t0; x) is irredu
ible. By applying a lineartransformation to f we assume that t0 = 0.Step 2: Compute all sub�elds Q < �L < �K of �K and the 
orresponding blo
ksystems ��1; : : : ; ��m. Ea
h �L is des
ribed by a pair (�g; ��), where �g 2Z[x℄ is the minimal polynomial of �� = n�1Pi=0 �bi��i.Step 3: If there are no su
h �L return the empty list.Step 4: For ea
h �L do(i) Choose a prime p su
h that p - dis
( �f) dis
(�g).(ii) Compute l := jf j1 + 1 and a bound M su
h that jjgjj1 � Musing Theorem 4.(iii) Compute the smallest k 2 N su
h that pk � 2M .(iv) Compute ~�1; : : : ; ~�n modulo (tl; pk) using Lemma 6.(v) Identify the ~�i with the ��i to 
ompute the 
orresponding blo
ksystem ~�1; : : : ; ~�m 
onsisting of the zeros ~�i.(vi) Use equation (4) to 
ompute g 2 Z[t℄[x℄ modulo (tl; pkZ) takingthe symmetri
 residue system modulo pk.(vii) Call Algorithm 3 with f; g to test if L is a sub�eld of K. If thisis the 
ase return g and the 
omputed embedding �.Proof. The 
orre
tness of the algorithm follows from the above 
onsiderations. InTheorem 3 we have proven that jgj1 < l. Therefore we 
an perform all 
omputa-tions modulo tl. In Theorem 4 we have shown that jjgjj1 �M . Sin
e pk � 2M , we
an take the symmetri
 residue system to retrieve the true 
oeÆ
ients of g 2 Z[t℄[x℄from the 
omputed approximations. If L is a sub�eld of K, �L is a sub�eld of �K.The 
onverse is not ne
essarily true. Therefore in Step 4 (vi) we have 
omputed gmodulo (tl; pk) sin
e pk \Z= pkZ. In Step 4 (vii) we test if L is indeed a sub�eldof K. �We have given a simpli�ed version of the sub�eld algorithm. One improvement
ould be to try several t0 2 Z whi
h lead to irredu
ible polynomials �f . Afterwardswe 
an take the t0 whi
h 
orresponds to the �eld �K with minimal number ofsub�elds to avoid unne
essary 
allings of Algorithm 3.In pra
ti
e it is important to store the zeros ~�i 
omputed in Step 4 (iv). To usethe stored results it is important to 
hoose the same prime p for all sub�elds �L.For large examples it is a good idea to 
hoose the prime p in su
h a way that the
orresponding p-adi
 extension �Np has small degree. In the 
ase that the sub�eldalgorithm over Q has 
hosen a di�erent prime the blo
k systems in Step 2 
an be
omputed using the following lemma.



12 J�URGEN KL�UNERSLemma 7. Let �L = Q( �� ) be a sub�eld of �K = Q(��) with 
orresponding minimalpolynomials �g and �f . Let �� = n�1Pi=0 �bi ��i and de�ne �h(x) := n�1Pi=0 �bixi 2 Q[x℄. Denoteby ��1; : : : ; ��n; ��1; : : : ; ��m the zeros of �f and �g in a suitable 
losure, respe
tively.De�ne ��i := f��j j �h(��j) = ��ig:Then ��1; : : : ; ��m form a blo
k system of Gal( �f) a
ting on the roots ��1; : : : ; ��n
orresponding to the sub�eld �L.Proof. Let � 2 Gal( �f) with �( ��i) = ��k. Then�
 2 ��i , �h(�
) = ��i , �(�h(�
)) = �h(�(�
)) = ��k , �(�
) 2 ��k:Consequently, ��1; : : : ; ��m is a blo
k system. Assuming ��1 2 ��1, we �nd thatthe subgroups �xing ��1 and ��1 
oin
ide. Therefore the blo
k system ��1; : : : ; ��m
orresponds to �L. �8. Rational De
ompositionsLet t = a(�)b(�) 2 Q(�) with a; b 2 Q[�℄ moni
 and g
d(a; b) = 1 be a rationalfun
tion. Re
all that the degree of a rational fun
tion a(�)b(�) is de�ned to be themaximum of the degrees of a(�) and b(�). It is an interesting question to determineif there exist rational fun
tions u; v 2 Q(�) with 1 < deg(u); deg(v) < deg(t) su
hthat t = u Æ v. It is an immediate 
onsequen
e of a theorem of L�uroth (see e.g.[Ja
80℄) that su
h a de
omposition 
orresponds to a proper sub�eld Q(t) < L <Q(�). Therefore it is natural to apply the sub�eld algorithm of the last se
tion to
ompute su
h de
ompositions.De�ne f(t; x) := a(x) � tb(x) 2 Q[t℄[x℄. Sin
e a and b have no 
ommon divisor,f has to be irredu
ible. Furthermore f is the minimal polynomial of � over Q(t).By applying suitable transformations we assume that f is a moni
 polynomial inZ[t℄[x℄. Now assume that we have 
omputed a sub�eld Q(t) < L < Q(t; �) = Q(�)using Algorithm 4. The algorithm returns a polynomial g 2 Z[t℄[x℄ whi
h is aminimal polynomial of � = n�1Pi=0 bi(t)�i, where � is a zero of f . Sin
e we know thatjf j1 = 1, Theorem 3 implies that jgj1 = 1 as well. We remark that from L�uroth'stheorem it is 
lear that su
h a polynomial g exists, but it is not a priori 
lear thata general sub�eld algorithm will produ
e su
h a g. Sin
e jgj1 = 1 we 
an writeg(t; x) = 
(x)� td(x) with 
; d 2 Z[x℄. Then for a root � of g we have t = 
(�)d(�) andQ(�) is a sub�eld of Q(�) 
ontaining Q(t). It remains to express � as a rationalfun
tion in �. We have � = n�1Pi=0 bi(t)�i. Repla
ing t by a(�)b(�) we 
an express � as arational fun
tion in �, say � = �(�)�(�) with �; � 2 Q[�℄ and g
d(�; �) = 1.Altogether this shows a(�)b(�) = 
(�)d(�) Æ �(�)�(�) .The algorithm for rational fun
tion �elds 
an be improved 
ompared to thegeneral sub�eld algorithm. Experiments on a 
omputer show that the embeddingpart, i.e. the 
omputation of � is the most time 
onsuming part. This step 
anbe improved as follows. At some point of the 
omputations we know the rationalfun
tions t = a(�)b(�) and t = 
(�)d(�) and would like to know the rational fun
tion � =
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e a(�)b(�) = 
(�)d(�) we 
onsider the polynomial a(�)d(�) � b(�)
(�) 2 Q[�; �℄.If Q(�) is a sub�eld of Q(�) this polynomial has a linear fa
tor �(�)� � �(�),where deg(�(�)�(�) ) = [Q(�) : Q(�)℄. Therefore we have to �nd linear fa
tors in � ofa(�)d(�) � b(�)
(�) 2 Q[�; �℄, whi
h 
an be done using well known methods.Note that there are spe
ialized algorithms for the rational fun
tion �eld 
ase,e.g. [AGR95℄. Experiments show that the perfoman
e of the algorithms dependson the examples (see Se
tion 10).9. The 
omputation of subfields of a splitting fieldIn [KM00, Se
tion 3.3℄ we explained how to 
ompute a sub�eld L of a �eld ex-tension of the rationals whi
h was given by a minimal polynomial f 2 Z[x℄ of aprimitive element. In the same paper we also explained how to 
ompute a polyno-mial RG;H;F [x1; : : : ; xn℄[x℄, where G is the Galois group of f , H is the stabilizer of asub�eld of the splitting �eld, and n is the degree of f . F is a so-
alled H-invariantG-relative polynomial [KM00, De�nition 3.1℄. Let �1; : : : ; �n be the roots of f .Then it is shown that RG;H;F (�1; : : : ; �n) 2 Z[x℄ is the 
hara
teristi
 polynomialof an element of L over Q. If this polynomial is not squarefree, i.e. the element isnot primitive, a suitable transformation on the �i yields a primitive element. Ba
kto our fun
tion �eld setting we aim at 
omputing RG;H;F (�1; : : : ; �n) 2 Z[t℄[x℄ us-ing approximations to the �i as before. We have explained in Se
tion 6 how torepresent the roots �i of a polynomial f 2 Z[t℄[x℄. The remaining problem is todetermine suÆ
iently large k; l (see Lemma 6). We have to use Theorem 1 to getthe (degree-)valuations of the roots of f . Unfortunately we are not in the ni
esituation of Theorem 3. After determining the degree bound we have to 
ompute abound for the p-adi
 approximations. Let us explain this pro
edure by an example.Let f(t; x) := x7 � 3x6 � x5 + 3x4 + (�t + 1)x3 + (t + 1)x2 � 5x + 4 be thepolynomial with Galois group G = PSL2(7) given in [MM99, p. 405℄. We want to
ompute one of the (isomorphi
) degree 8 sub�elds of the splitting �eld of f . Firstwe 
ompute the following F (x1; : : : ; x7) := x1x2x7 + x1x3x6 + x1x4x5 + x2x3x4 +x2x5x6+x3x5x7+x4x6x7: Denote by H a subgroup of index 8 in G and let R be afull system of representatives of (left) 
osets of G=H . Furthermore we assume thatG a
ts in the same way on the xi as G a
ts on the roots of f . Then we getRG;H;F = Y�2R(x � F �):The next step is to 
ompute the ne
essary bounds. Using Theorem 1 we �nd thedegree valuations of the roots of f : [ 14 ; 14 ; 14 ; 14 ; 0;� 12 ;� 12 ℄. Unfortunately, we haveno 
han
e to determine whi
h root has whi
h valuation. Sin
e ea
h summand ofF has valuation less than or equal to 34 (after substituting the �i's), we see thatthe 
oeÆ
ients of RG;H;F have valuations whi
h are less than or equal to 8 34 = 6.Now we 
ompute the zeros of f as power series in C [[t℄℄ (
ompare Theorem 4). Itis suÆ
ient to 
ompute these series modulo t7. The polynomial h(t) in Theorem 4
an still be 
omputed as before. Sin
e F 
onsists of seven monomials of degree 3we de�ne ~H(t; x) := (x + 7h(t)3)8 mod t7. The largest 
oeÆ
ient of H gives us abound for the real norm. In our example we get the bound 1491576722650942160and 
ompute everything modulo 4112. The �nal result is the following (irredu
ible)polynomial:



14 J�URGEN KL�UNERSx8 � 18x7 + (14t+ 237)x6 + (�4t2 � 168t� 1563)x5 + (�2t3 + 125t2 + 2008t+9773)x4 + (�10t3 � 966t2 � 9231t� 32724)x3 + (6t4 + 383t3 + 7002t2 + 48745t+124283)x2+(4t5�38t4�1757t3�18994t2�90189t�179511)x+ t6+24t5+754t4+8030t3 + 60349t2 + 226389t+ 576706.The whole 
omputation takes about three se
onds (
f. next se
tion).10. ExamplesIn this se
tion we give the running times of some examples to demonstrate the ef-�
ien
y of our algorithms. All 
omputations were done on a 500MHz Intel PentiumIII pro
essor running under SuSE Linux 6.1.We start with an example of degree 12. Let K = Q(t)(�) be de�ned by thefollowing minimal polynomial of �:f(t; x) = x12�36x11+450x10�2484x9+3807x8+25272x7+(27t2+299484)x6+227448x5 + 308367x4 � 1810836x3 + 2952450x2 � 2125764x+ 531441:This �eld has two proper sub�elds des
ribed by the following (g; �). The 
om-putations are done in 2.4 se
onds.(i) g(t; x) = x3 + 96x2 � 3840x� 27t2 � 409600,� = �452+ 936�� 690�2+160�3+ ( 1243 t2 + 33556243 )�4 + ( 8729 t2 + 91544729 )�5 +29327 �6 + 284243�7 � 686729�8 + 3882187�9 � 956561�10 + 819683�11:(ii) g(t; x) = x6 � 24x5 + 96x4 + 1024x3 � 9984x2 + 30720x+ 27t2 + 409600,� = �26+49�� 923 �2+ 479 �3+ 10427 �4+( 12187 t2+ 110922187 )�5+ 104243�6+ 47729�7�922187�8 + 506561�9 � 46561�10 + 159049�11:Now let f(t; x) := a(x) � tb(x) be a polynomial of degree 36, where a(x)b(x) is thefollowing rational fun
tion:a(x)b(x) := (x3 + 4)3(x3 + 6x2 + 4)3(x6 � 6x5 + 36x4 + 8x3 � 24x2 + 16)3(x � 2)6x6(x + 1)3(x2 � x+ 1)3(x2 + 2x+ 4)6 :We use the methods of Se
tion 8 to 
ompute the rational de
ompositions 
or-responding to the sub�elds. There are 10 nontrivial ones and the 
omputing timewas 186 se
onds. In order to save spa
e we only give one de
omposition:a(x)b(x) = �(x3 � 12x2 + 24x� 16)3(x3 + 24x� 16)3(x � 4)6(x� 1)3x6 Æ �x(x� 2)x+ 1 :We have not used the improvements whi
h are possible in the rational fun
tion�eld 
ase as des
ribed in Se
tion 8. Using these improvements all de
ompositions
an be 
omputed within 60 se
onds. The spe
ialized pa
kage FRAC [AGR95℄ needs20 minutes for the 
omputation of all rational de
ompositions.Let a(x)b(x) be the rational fun
tion of degree 60 shown below. We only give one ofits de
ompositions (whi
h was not known before) to save spa
e:a(x)b(x) := (x4 + 228x3 + 494x2 � 228x+ 1)3x(x2 � 11x� 1)5 Æ x4 � 2x3 + 4x2 � 3x+ 1�x(x4 + 3x3 + 4x2 + 2x+ 1)We need 31 minutes to 
ompute the three non trivial rational de
ompositions.Without using the improvements of Se
tion 8, the 
omputation would take about85 minutes. Here the pa
kage FRAC needs 114 se
onds to 
ompute all rationalde
ompositions.
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