
J. Symbolic Computation (2000) 11, 1{23Galois Group Computation for Rational PolynomialsKATHARINA GEISSLER AND J�URGEN KL�UNERSTechnische Universit�at Berlin, Stra�e des 17. Juni 136, 10623 Berlin, GermanyUniversit�at Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany(Received 25 February 2000)We describe methods for the computation of Galois groups of univariate polynomialsover the rationals which we have implemented up to degree 15. These methods are basedon Stauduhar's algorithm. All computations are done in unrami�ed p-adic extensions.For imprimitive groups we give an improvement using sub�elds. In the primitive case weuse known subgroups of the Galois group together with a combination of Stauduhar'smethod and the absolute resolvent method.1. IntroductionLet f 2 Z[x] be a monic irreducible polynomial. Algorithms for the computationof the Galois group Gal(f) of f are an important tool of constructive number theory.Deterministic exponential time algorithmswere already used more than 100 years ago (see(Tschebotarew and Schwerdtfeger, 1950)). Nevertheless until today no general polynomialtime algorithm is known. In this paper we restrict ourselves to the case of univariate,irreducible polynomials over Q. By applying suitable transformations we assume that wehave monic polynomials with integer coe�cients.All practical algorithms use the classi�cation of transitive groups, which is known upto degree 31 (Hulpke, 1996). These algorithms can be divided into the absolute resolventmethod (Soicher, 1981; Soicher and McKay, 1985; Mattman and McKay, 1997) and themethod of Stauduhar (Stauduhar, 1973). From the coe�cients of the given polynomial itis possible to compute so-called absolute resolvents (Casperson and McKay, 1994). Thefactorization of these resolvents gives lots of information about the Galois group whichmay be enough to identify it. In general the degrees of these resolvents can be hugecompared to the degree of the given polynomial. Therefore for higher degrees (say largerthan 11) it is very expensive to compute these factorizations. Another disadvantageof this approach is that we only get the name of the Galois group, but no explicitaction on the roots. To know these actions is an important ingredient of the algorithmspresented in Kl�uners and Malle (2000). There are implementations of this method inMaple (Mattman and McKay, 1997) and Gap (Sch�onert et al., 1997).The Stauduhar method uses so-called relative resolvents which are computed using ap-proximations of the roots of the given polynomial. It computes the Galois group includingthe action on the roots. We give a detailed description of this method in the next section.There are implementations of this method in Pari (Eichenlaub and Olivier, 1995) (up to0747{7171/90/000000 + 00 $03.00/0 c
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2 K. Gei�ler and J. Kl�unersdegree 11) andKant (Gei�ler, 1997) (up to degree 15) which use complex approximationsof the roots. The disadvantage of complex approximations is that we need a very highprecision to get proven results. This makes this approach ine�cient. Yokoyama (1997)suggests using p-adic approximations. There is an implementation of this method in thecomputer algebra system Asir up to degree 8.In this paper we describe Stauduhar's method using p-adic approximations. Lookingat degrees 12 to 15 it turns out that the ordinary method is not e�cient enough tocompute the Galois group. The goal was to solve this defect in order to treat higher degreepolynomials within reasonable time. One important improvement is the use of sub�eldsof a stem �eld of f , that is the �eld extension of Q which we get by adjoining a root off to Q. Kl�uners and Pohst (1997), Kl�uners (1998) give e�cient algorithms to computesub�elds. Using this information we obtain that the Galois group is a subgroup of theintersection of suitable wreath products which can be computed easily. This intersectionis a good starting point for our algorithm. In the case of primitive groups this methodgives no improvement. Here we present a combination of the method of Stauduhar andthe absolute resolvent method to compute the Galois group. As mentioned before weuse p-adic approximations of the roots. The Frobenius automorphism of the underlyingp-adic �eld already determines a subgroup of the Galois group, which can be used tospeed up the computations dramatically.The algorithms presented in this paper are implemented in the computer algebra sys-tem Kant (Daberkow et al., 1997). We give examples for all transitive groups of degree12 to 15. In most examples the computing time is only a few seconds.We remark that in the case that the stem �eld is normal or even abelian there aree�cient algorithms to compute the automorphism group (Acciaro and Kl�uners, 1999;Kl�uners, 1997). Since the factorization of polynomials over number �elds is in polynomialtime (Lenstra et al., 1982; Landau, 1985) the computation of the automorphism groupof a normal �eld is possible in polynomial time. Landau and Miller (1985) show howto decide the question of solvability in polynomial time. To our knowledge there do notexist e�cient implementations of these polynomial time algorithms.2. The method of StauduharThe main purpose of this section is to recall the essential components of the methodof Stauduhar and to introduce some notation. In general, Stauduhar's method (seeStauduhar (1973)) is based on so-called resolvents, that is, polynomials whose split-ting �elds are sub�elds of the splitting �eld of the given polynomial f 2 Z[x], whoseGalois group we would like to calculate. The resolvents used in Stauduhar's algorithmare de�ned as follows:Consider the �elds L := Q(x1; : : : ; xn) of rational functions and M := Q(s1; : : : ; sn)of elementary symmetric functions in x1; : : : ; xn and let H � G � Sn be permutationgroups acting on fx1; : : : ; xng by permuting the indices. We denote by LH the �xed�eld of L under H. Since L=M is a Galois extension, LH=LG is �nite and separable.By the theorem of primitive elements, there exists a primitive element F 2 LH withLH = LG(F ). It is always possible to choose F integral over Q[s1; : : : ; sn]. Since theunique factorization domain Q[x1; : : : ; xn] is integrally closed in its quotient �eld, itfollows that F is an element of Q[x1; : : : ; xn]. By multiplication with a scalar in Z, F iseven an element of Z[x1; : : : ; xn]. The primitive element property of F is equivalent tothe fact that StabG(F ) = f� 2 G j �F = F g = H. The minimal polynomial of F over



Galois Group Computation for Rational Polynomials 3LG is given by Q�2G==H (X ��F ), where G==H denotes a full system of representativesof left cosets (by left cosets we mean cosets of the form �H). The minimal polynomialis called a generic relative resolvent. The following de�nition and the next theorem willshow the importance for the method of Stauduhar of the last two properties.We introduce the general de�nition of G- relative H-invariant resolvent polynomials,these are specialized generic relative resolvents.Definition 2.1. Let f 2 Z[x] be a polynomial with roots �1; : : : ; �n 2 Q and H � Gbe permutation groups acting on fx1; : : : ; xng. We call F 2 Z[x1; : : : ; xn] a G-relativeH-invariant polynomial if and only if1 �F = F for all � 2 H,2 �F 6= F for all � 2 G nH.In this case RG;H;F (X) := Y�2G==H(X � �F (�1; : : : ; �n))is called a G-relative H-invariant resolvent.Remark 2.2. For G = Sn, we call the G-relative H-invariant resolvent an absoluteresolvent.Theorem 2.3. Let f 2 Z[x] be a monic, irreducible polynomial of degree n. Moreover,let H � G � Sn such that Gal(f) � G and let � 2 G. The polynomial F 2Z[x1; : : : ; xn]is assumed to be a G-relative H-invariant polynomial. The roots of f are again denotedby �1; : : : ; �n 2 Q. Then:1 R(G;H;F )(X) = Q�2G==H(X � �F (�1; : : : ; �n)) 2Z[X].2 If Gal(f) is contained in �H��1, then (�F )(�1; : : : ; �n) 2Z.3 If on the other hand (�F )(�1; : : : ; �n) 2 Zand (�F )(�1; : : : ; �n) is a simple rootof R(G;H;F ), then Gal(f) � �H��1. In this case the roots of f can be rearrangedaccording to �0j = ��(j) such that Gal(f) � H.The main idea of Stauduhar's algorithm is the following: Suppose the Galois groupGal(f) � G with respect to the chosen ordering of the roots of the polynomial f . Initiallywe know that for G = Sn. Using 2 and 3 of Theorem 2.3, we can determine whetherGal(f) � �H��1 for some maximal subgroup H of G and some � 2 G==H. If Gal(f)is contained in no maximal subgroup of G, then Gal(f) = G. Otherwise, if Gal(f) ��H��1, we reorder the roots of f according to the permutation � such that Gal(f) � Hand repeat the procedure. Thus, the algorithm traverses the subgroup lattice of transitivepermutation groups of degree n from the largest group to the actual Galois group.Remark 2.4. 1 It is always possible to make the resolvent having no double integralroots by applying a suitable Tschirnhausen transformation to the polynomial f (see(Girstmair, 1983)).



4 K. Gei�ler and J. Kl�uners2 We have Gal(f) � An if and only if the discriminant of the polynomial f is arational integral square.3 If H is a maximal transitive subgroup of G, then for each G-conjugacy class of Hwe need to consider only one representative.4 Factorization of the polynomial f into distinct monic irreducible polynomials inFp [x] leads to cycle shapes of Gal(f). For each shape found in this manner, weeliminate all candidate groups which do not exhibit this shape. So it is possible tousually quickly determine if the Galois group of the polynomial f is the symmet-ric or alternating group by �nding shapes unique to these groups and using thediscriminant criterion.According to 2.4.3 we are left with the case that we have representatives of two con-jugacy classes which are maximal in G but which are not G-conjugate to one another.We have computed up to degree 15 that two maximal subgroups of G � Sn, which areconjugate to one another in Sn are already conjugate to one another inNSn (G) := f� 2 Sn j�G��1 = G gthe normalizer of G in Sn. Degree 16 is the �rst degree, where this does not hold anymore. For example the group 16T+640 has two maximal subgroups of transitive grouptype 16T+412, which are not conjugate to one another in NS16 (16T+640). For two maximalsubgroups H1;H2 of G, lying in the same NSn (G)-conjugacy class, the following holds(see (Eichenlaub and Olivier, 1995)):Theorem 2.5. Let H2 = �H1��1; � 2 NSn (G) and F be a G-relative H1-invariantpolynomial. Then �F is a G-relative H2-invariant polynomial andR(G;H2;�F )(X) = Y�2G==H1(X � ��F (�1; : : : ; �n))is a G-relative H2-invariant resolvent. In particular, if � 2 G, then R(G;H2;F )(X) =R(G;H1;�F )(X).We will close this section giving, for each degree, an overview of the necessary datawhich must be computed for this method. Given a list T of representatives for the Sn-conjugacy classes of transitive subgroups the following tasks have to be completed for allG 2 T:1 Find all T 2 T for which there exists a permutation � 2 Sn such that �T��1 ismaximal in G. Then we de�ne TG := f(T1; �1); : : : ; (Tk; �k)g.2 For each Ti 2 TG let Hi := �iTi��1i � G. Then H(G;Hi) := f�Hi��1 j� 2Sn and �Hi��1 � Gg is the set of subgroups of G of the same transitive group typeas Hi.3 NSn (G) operates by conjugation on H(G;Hi). Compute a G-relative Hi-invariantpolynomial Fi;j for each orbit Bi;j under this action. Since for n � 15 there isalways exactly one orbit, j = 1, and we simply write Fi instead of Fi;j.4 Compute coset representatives �i 2 G==Hi and �j 2 NSN (G)==G. The permuta-tions �j�i constitute a complete system of representatives for NSn (G)==Hi.



Galois Group Computation for Rational Polynomials 5In our current implementation the subgroup lattice, the �0is and the � 0js are precom-puted and stored. The coset representatives �i 2 G==Hi and most of the invariant poly-nomials are computed during the running time.2.1. The computation of G-relative H-invariant polynomialsIt is well known that G-relative H-invariant polynomials always exist:Lemma 2.6. For H � G � Sn and ~F (x1; : : : ; xn) = x11x22 � � �xn�1n�1 letF (x1; : : : ; xn) := X�2H � ~F:Then StabG(F ) = H.In practice it is not very e�cient to use this polynomial. Our aim is to �nd an invariantof small total degree. Let R := Q[x1; : : : ; xn]. We can decomposeR = 1Md=0Rd;where Rd denotes the homogeneous components of degree d. Clearly this gives a decom-position of the invariant ring RH = 1Md=0RHd :Rd is a Q-vector space of dimension �n+d�1n�1 �.Definition 2.7. Let S := RH . The Hilbert Series of S is the formal power seriesh(S; t) := 1Xd=0 dimQ(Sd) � td 2Z[[t]]:Choosing a G-relative H-invariant polynomial with smallest total degree d amongall invariants has major e�ects on the e�ciency of the program: multiplications arevery expensive, so we can speed up computations extremely by minimizing the numberof multiplications. On the other hand we also gain time during the lifting procedure(see Theorem 2:17) by using an invariant whose resolvent has smaller absolute valueroots. Since H is a maximal subgroup of G, d equals the smallest index such that thecorresponding coe�cients of h(RH ; t) and h(RG; t) are di�erent.Algorithm 2.8. (Computation of G-relative H-invariant polynomials)Input: A permutation group G � Sn, (n � 4) and a maximal transitive subgroup Hof G.Output: A homogeneous polynomial F of minimal degree d � n(n�1)2 with StabG(F ) =H.Step 1: Compute the Hilbert series h(RH ; t) and h(RG; t) and compute the smallestindex d such that the corresponding coe�cients are di�erent.



6 K. Gei�ler and J. Kl�unersStep 2: Compute all homogeneous invariants of H of total degree d.Step 3: Remove the invariants which are G-relative.Step 4: Return an invariant with the smallest number of monomials.For Steps 1 and 2 we use the algorithms implemented in Magma (Kemper and Steel,1999). Step 2 is the most expensive one of our algorithm. In the sequel we give threelemmata (see Eichenlaub (1996)), which are useful for obtaining computationally betterinvariant polynomials.Let us start with a result about wreath products.Lemma 2.9. Suppose G � G0 � S� and H � H0 � S� are transitive permutationgroups acting on � := f1; : : : ; lg resp. � := f1; : : : ;mg. Let yj := Pl�=1 x�;j andFj := F (x1;j; : : : ; xl;j) for j = 1; : : : ;m, where F is a G0-relative G-invariant polyno-mial. Furthermore let E be a H 0-relative H-invariant polynomial. ThenF1 + F2 + � � �+ Fm + E(y1; : : : ; ym)is a G0 o�H0-relative G o�H-invariant polynomial.Remark 2.10. If we have G = G0 in the last lemma, then E(y1; : : : ; ym) yields a G0o�H0-relative G o�H-invariant polynomial. Analogously F1+ � � �+Fm is su�cient for H = H0.We come to a statement about subgroups of index 2. Essentially we construct newinvariants for other subgroups of G of index 2 from known G-relative H-invariant poly-nomials F with [G : H] = 2. Thereby we try to change the known invariant polynomialsF , such that the corresponding resolvent is of the form X2 � F 2(�1; : : : ; �n), where the�0i s; (1 � i � n) again denote the roots of the polynomial f .Lemma 2.11. Let G be a permutation group with subgroups H1 and H2 of index 2. LetFi; (i = 1; 2) be G-relativeHi-invariant polynomials with �iFi = �Fi, (�i 2 GnHi). ThenH1 + H2 := (H1 \H2) [ ((GnH1) \ (GnH2)) � G and F1F2 is a G-relative H1 + H2-invariant polynomial.Remark 2.12. The condition �iFi = �Fi, (�i 2 GnHi) is no restriction. It can alwaysbe obtained by replacing Fi by F 0i = Fi � �iFi, �i 2 GnHi.The last lemma deals with wreath products of the form G = Sl o Sm. We classifysubgroups of G by consideration of stabilizers of symmetric polynomials: De�nedk := Y1�i<j�l(xi;k � xj;k); (1 � k � m) and D := Y1�i<j�m(yi � yj)with y0j s as in Lemma 2.9 and denote by sk; (1 � k � m) the k's elementary symmetricfunction. Then we have the followingLemma 2.13. The group Sl o� Sm with � := f1; : : : ;mg has at least three subgroupsof index 2: The stabilizers of sm(d1; : : : ; dm), D(y1; : : : ; ym) (that is Sl o� Am), andD(y1; : : : ; ym)sm(d1; : : : ; dm). Furthermore Sl o� Sm has a subgroup of index 2m�1 anda subgroup of index 2m, (Al o� Sm), which are the stabilizers of s2(d1; : : : ; dm) resp.s1(d1; : : : ; dm).



Galois Group Computation for Rational Polynomials 7Definition 2.14. Let G be a transitive permutation group acting on a �nite set 
. Asubset ; 6= � � 
 is called a block, if �\�� 2 f;;�g for all � 2 G. The orbit of a block� under G is called a block system. A group is called primitive, if it only has blocks ofsize 1 or j
j. Otherwise it is called imprimitive.Finally we give an example with combines the three lemmata to show the e�ect on theperformance.Example 2.15. Consider the group pair G = 12T260 and H = 12T 0235. In this exam-ple all 0-groups result from the groups in Conway et al. (1996) by conjugation with(2; 10; 12; 7)(3;4;11;6; 8). Using algorithm2.8 we obtain an invariant which needs 11�1152multiplications for this descent. By testing several subgroups of index two, we get T 0235 =T 0241 + T 0+236. Both groups T 0241 = S2 o F36(6) and T260 = S2 o F36(6) : 2 = S2 o (S3 o S2)are wreath products, that means we can use Theorem 2.9. Remark 2.10 shows, that itis su�cient to �nd an S3 o S2-relative F36(6)-invariant polynomial. Theorem 2.13 givesStabS3oS2 (Ds2) = F36(6) for n = 6. The groups T260 and T 0235 both have a block systemB = ff1; 7g; f2; 8g; f3; 9g; f4; 10g;f5;11g;f6;12gg according to the generators used inConway et al. (1996). Thus, we get yj = (xj + xj+6), dj = (xj � xj+6), j = 1; : : : ; 6 andDs2 = Y1�i<j�6(yi � yj) X1�i<j�6didj:Now we are left with the task to construct a T260-relative T 0+236-invariant polynomial.Since T 0+236 is an even permutation group, the polynomial s6 = d1d2d3d4d5d6 is stabilizedby all permutations from T 0+236 and permutations from T260nT 0+236 will change the sign ofs6. Both polynomials, Ds2 and s6 satisfy the assumptions of Theorem 2.11. Thus, weobtain as a T260-relative T 0235-invariant polynomialDs2s6;whose evaluation needs less than 40 multiplications.We have not said anything yet about the decision step of Stauduhar's algorithm.Thereare several possibilities for performing this step. Stauduhar proposed using high-precisionapproximations to the roots of f . Since the resolvent has integer coe�cients he approx-imated the roots to su�cient precision so that the resulting error in the absolute valueof the coe�cient of RG;H;F (X) is less than 12 . The required precision using numericalapproximations can be very large and therefore leads to bad performances. Another ap-proach is to use p-adic approximations of the roots of the polynomial f as suggested byYokoyama (1997). We decided to use p-adic approximations, because the advantages areguaranteed results combined with competitive times.2.2. The p-adic methodIn this section we will describe the p-adic decision step in the algorithm of Stauduharfor irreducible monic polynomials f 2Z[x]. Let p denote a prime integer such that f issquare-free modulo p. Denote the ring of p-adic integers byZp, the �eld of fractions ofZpby Qp, and an algebraic closure of Qp by �Qp. In order to compute approximations of theroots �1; : : : ; �n 2 Qp, we use the following lemma. The proof of it is straightforward.Kl�uners (1998) describes the p-adic arithmetic in much more detail.



8 K. Gei�ler and J. Kl�unersLemma 2.16. Let l 2 Zbe minimal such that f(t) mod p has n (distinct) roots in Fpl .Let g(t) 2 Z[t] be monic of degree l such that Fpl is generated by a root of g(t) mod pover Fp . Then g(t) is irreducible over Qp. Furthermore, let Np := Qp(!) and N := Q(!)with g(!) = 0. Np is the unique unrami�ed extension of Qp of degree l and is also thesplitting �eld of f(t) over Qp. The prime p is inert in N=Q, poN = p, and the p-adiccompletion of N equals Np.Let vp be the discrete valuation of Np=Qp. For all � 2 Np and k 2 Zthere is anapproximation �(k) 2 N such that vp �� � �(k)� � k holds. Using Newton lifting we areable to compute approximations �(k)1 ; : : : ; �(k)n 2 N of �1; : : : ; �n 2 Np. For y 2Zdenoteby bycpk the unique representative of y mod pk in [�(pk � 1)=2; pk=2 ]. We have chosenthe symmetric residue system to get small numbers modulo pk. Denote by �� 2 Np theroot of R(G;H;F )(X) belonging to � 2 G==H.Darmon and Ford (1989) used the following theorem to verify the Galois groups ofpolynomials having the Mathieu groups M11 and M12 as Galois groups.Theorem 2.17. Let M 2 R be an upper bound for the absolute values of the complexroots of R(G;H;F )(X). Let k 2 Zbe such that pk > (2M )[G:H]. If �� 2 Np is a root ofR(G;H;F )(X) subject to1 �(k)� 2Z,2 j b�(k)� cpk j < M ,3 �(k)� 6� �(k)~� mod pk for all ~� 2 G==H with ~� 6= �.Then �� = b�(k)� cpk 2Zis a simple root of R(G;H;F )(X).Proof. 1 �� is a root of RG;H;F (X). Thus,RG;H;F (�(k)� ) � RG;H;F (��) mod pk, RG;H;F (�(k)� ) � 0 mod pk:Since the left side is an element inZand p = p oN it follows:, RG;H;F (�(k)� ) � 0 mod pk:2 Because j b�(k)� cpk j < M , we may assume without loss of generality that j �(k)� j < M .From j�F (�1; : : : ; �n) j < M (for complex �i) it follows thatjRG;H;F (�(k)� ) j = Q�2G==H j �k� � �F (�1; : : : ; �n) j� Q�2G==H(2M )� (2M )[G:H]:Since pk jRG;H;F (�(k)� ) and pk > (2M )[G:H] we have RG;H;F (�(k)� ) = 0. Thus, �(k)� = �� .From assumption (iii) we get that �� is a simple root of RG;H;F (X). 2Some remarks are in order here.



Galois Group Computation for Rational Polynomials 9Remark 2.18. In our implementationwe �rst lift the approximations up to the heuristicbound pk0 with k0 = min f 3 logp(2M ); [G : H] logp(2M ) g. Approximations �(k0)� mod p =2Fp cannot correspond to an integer root if l > 1, since this implies that �� 62 Qp. In asecond loop we lift the remaining roots up to the bound k. If the absolute value of therepresentative of �(j)� mod pj is bigger thanM for j � k, than either �(j)� is not an elementofZor j b�(j)� cpk j > M . Therefore �� can also be removed from the candidate list.2.3. Main problemsThe main problem of the relative resolvent method is that for growing n the �rstdescent from Sn resp. An becomes very large. For example, in degrees n = 13, 14 and 15we have the following indices of maximal transitive subgroups in Sn and An:[S13 : 13T6] = 39916800 [A13 : 13T+7 ] = 554400[A13 : 13T+5 ] = 39916800[S14 : 14T61] = 1716 [A14 : 14T+59] = 3432[S14 : 14T57] = 135135 [A14 : 14T+55] = 270270[S14 : 14T39] = 39916800 [A14 : 14T+30] = 39916800[S15 : 15T102] = 126126 [A15 : 15T+99] = 126126[S15 : 15T93] = 1401400 [A15 : 15T+89] = 1401400[A15 : 15T+72] = 32432400These indices increase exponentially in n, e.g. for n even we have[Sn : (Sn2 o S2)] = n!2(n2 )!(n2 )! and [Sn : (S2 o Sn2 )] = n!2n2 (n2 )! :For p prime we have PSL2(p) � Ap+1, where [Ap+1 : PSL2(p)] = (p � 2)!. For p 6=2; 3; 11; 23 we get that PSL2(p) is a maximal subgroup of Ap+1.One problem which occurs is that the coset computation takes a lot of time, and theinclusion test, too. Another problem is the veri�cation of the result. To verify the Galoisgroup we must lift the approximations to a bound k such thatpk > (2M )[G:H]:And there the index comes in. Both points seem to be extremely time consuming forlarge degrees n, thus our goal is to give improvements especially on these two points.3. Extension of the relative resolvent method using sub�eldsIn this section we develop an extension of the relative resolvent method. Previousinvestigations have shown that the �rst descent from Sn resp. An, is particularly timeconsuming. Thus it would be desirable to skip this �rst step by means of computingsuitable additional information. Using this information, we would like to change thestarting point of the algorithm in the subgroup lattice, to get as close as possible to theactual Galois group. In order for the method to work, we must be guaranteed that theGalois group Gal(f) � G chosen as the starting point. That means the Galois groupconsidered as a permutation group must be a subgroup of G with respect to the chosen



10 K. Gei�ler and J. Kl�unersordering of the roots of f . Such an extension can be realized for imprimitive transitivepermutation groups. By Krasner's and Kaloujnine's theorem (see (Meldrum, 1995)) atransitive, imprimitive permutation group with a block system, which consists ofm blocksof length l, can be embedded in a wreath product of the form Sl o Sm. If the imprimitivepermutation group has di�erent block systems, then it lies in the intersection of thesewreath products.How do we arrive at this information for a given polynomial f? Let � be a root of f .In the computer algebra system Kant there is a fast algorithm for computing sub�eldsof algebraic number �elds Q(�) (Kl�uners and Pohst, 1997; Kl�uners, 1998). The sub�eldsof Q(�) of degree m are in bijection with the blocks B of length l := nm of Gal(f) whichcontain �. Each sub�eld can be represented by a pair of polynomials (g; h) 2Z[x]�Q[x],where g is the minimalpolynomial of a primitive element � of a sub�eld and h(�) = �. Wecall h the embedding polynomial. To specialize this fact with respect to the applicationwe have in mind, we use the followingTheorem 3.1. Let E1 = Q(�), E2 = Q(�) be algebraic number �elds with Q� E1 � E2and g; f 2Z[x] be the minimal polynomials of � and �, respectively. Let h 2 Q[x] be theembedding polynomial with h(�) = �. Denote the conjugates of � and � in some algebraicclosure with �1; : : : ; �n and �1; : : : ; �m, respectively. De�ning Bi = f�jjh(�j) = �ig itfollows:1 B1; : : : ; Bm form a block system of Gal(f). Furthermore, n = jBijm.2 Gal(g) is isomorphic to the permutation representation of Gal(f) with respect toB1; : : : ; Bm under the mapping � : �i 7! Bi.Proof. (1) Let � 2 G and 
 2 Bi with �(�i) = �k. Then the following equivalenceshold: 
 2 Bi , h(
) = �i, �(h(
)) = h(�(
)) = �k, �(
) 2 Bk:From the above equivalence and the transitivity of G it follows n = jBi jm for 1 � i � m.(2) Gal(g) is equivalent to the permutation representation of G according to the Biunder the mapping � : �i 7�! Bi because Q(�i) = Q(�1; : : : ; �n)StabGal(f)(Bi). 2Because of Theorem 3:1 2 one knows, that the operation of the Galois group of f on theblocks Bi of length l; 1 � i � m, is equivalent to the operation of the Galois group ofthe minimal polynomial of the sub�eld on their roots. It follows that one can embed theGalois group in Sl oGal(g).Algorithm 3.2. (Galois group computation using sub�elds)Input: Monic, irreducible polynomial f of degree n with rational integer coe�cients,roots �1; : : : ; �n given in some p-adic completion.Output: Permutation group T 2 T and root ordering such that Gal(f) � T .Step 1: (Initialization) Compute roots of f and choose an arbitrary root ordering.Step 2: (Discriminant?) If disc(f) is a square in Z, then G An, else G Sn.



Galois Group Computation for Rational Polynomials 11Step 3: (Sub�elds) Compute minimal polynomials g1; : : : ; gs of all sub�elds of Q(�),(� a root of f), and embedding polynomials h1; : : : ; hs by using the sub�eldalgorithm.Step 4: (Primitivity?) If s = 0, then Gal(f) is a primitive permutation group. Outputof T  G and root ordering �1; : : : ; �n and terminate. Otherwise set i 1.Step 5: (Roots in blocks) Set mi  deg (gi) and li  n=mi. The Galois group has ablock system Bi = fB1; : : : ; Bmig with blocks of length li. Compute the rootpartitioning of f with respect to the blocks B1; : : : ; Bmi using the embeddingpolynomial hi (Theorem 3.1).Step 6: (Wreath product) Let Ki = Sli o Smi and determine the permutation � 2 Snwhich maps the block system of Ki onto the block system Bi.Step 7: (Conjugate wreath product) Set Ki  �Ki��1. Now Gal(f) � Ki.Step 8: (Next gi?) If i < s, then i i + 1 and repeat from step 5.Step 9: (Intersection) Set G G \ ( sTi=1Ki).Step 10: (Identi�cation) Identify G with T 2 T and determine permutation � suchthat G = �T��1.Step 11: (Adjust root ordering) Set �i  ��(i). Now Gal(f) � T . Output of T androot ordering �1; : : : ; �n.Remark 3.3. 1 If we compute the Galois group Gal(gi) acting on �1; : : : ; �mi instep 5 of the above algorithm, we can use the isomorphism � of Theorem 3.1 toimprove the above algorithm. After reordering the Bi according to � we can useKi = Sli oGal(gi) in step 6. The group T may become smaller, but we need somecomputing time to compute Gal(gi).2 A similar improvement can be done if we are able to compute the relative Galoisgroup G of m� over Q(�), where m� denotes the minimal polynomial of � overQ(�). In this case we can use Ki = G o Smi .4. Short coset systemsThe previous section gave an improvement of Stauduhar's method for imprimitivegroups. The primitive groups remain. In the sequel we give independent solutions for theproblems of large coset representative systems and high lifting bounds. In general, thesemethods apply to both, imprimitive and primitive groups. For large degrees (� 11) thebest results are obtained by combining the techniques of section 4 and section 5.Let us start by introducing short coset systems. Let f 2Z[x] be monic and irreducible,�1; : : : ; �n 2 �Q be the roots of f and set E := Q(�1; : : : ; �n). We look at Gal(f) as apermutation group on the roots of f and assume that we know a group G � Sn such thatGal(f) � G holds. For a maximal transitive subgroup H of G the method of Stauduharneeds to check whether Gal(f) � �H��1 for some � 2 G==H.Improvement: If we additionally know a permutation groupK � Gal(f), we can restrictto those � 2 G==H with K � �H��1.



12 K. Gei�ler and J. Kl�unersDefinition 4.1. Let H � G � Sn and K be a subgroup of the Galois group of f , viewedas a permutation group with respect to the chosen ordering of the roots of f . Then wecall the set (G=H)K := f �H 2 G=H j K � �H��1 gshort cosets. We denote by (G==H)K a full system of representatives of (G=H)K.Explicit permutation subgroups K � Gal(f) can be obtained as follows:Complex case: For �1; : : : ; �n 2 C we may take the cyclic subgroup K generated bythe complex conjugation. Complex conjugation is an automorphism of any sub�eld ofthe complex numbers and induces an element in Gal(f) of cycle type (2r2 ; 1r1), wherer1 denotes the number of real zeros and r2 is the number of complex conjugate pairs ofroots of f .p-adic case: For �1; : : : ; �n 2 �Qp we may take the cyclic subgroup K generated by theFrobenius automorphism. Assuming p - disc(f), all �i are di�erent modulo p. Thereforethe Frobenius automorphism � can be computed using the congruence � (�i) � �pi mod p.The Frobenius automorphism is an element of cycle type (deg(f1); : : : ; deg(fr)), wheref � f1 � � �fr mod p is the factorization of f modulo p.Even if the group K is of small order, this shortens the set of coset representativesextremely as the following example shows:Example 4.2. Let H be the group PSL2(p) which is maximal in G := Ap+1 for p 6=2; 3; 11; 23. It has index [G : H] = (p� 2)!. Let K be generated by an element of order p.Then we get j(G==H)Kj = 1.Here we see another advantage of the p-adic computation. If we have chosen a primenumber p for which we cannot reduce the coset system, we are able to take another primenumber. In the complex case there is no such possibility for totally real polynomials.Theorem 4.3. Let f 2 Z[x] be an irreducible monic polynomial and denote by E thesplitting �eld of f over Q. Let Gal(f) � G be a permutation groups acting on f�1; : : : ; �ngand H be a maximal subgroup of G. Furthermore let F (x1; : : : ; xn) be a G-relative H-invariant polynomial. If j(G==H)Kj � 2 and if the shortened resolventY�2(G==H)K (X � �F (�1; : : : ; �n)) 2 E[X]has a simple root a 2Z, then we must have Gal(f) � G.Proof. Supposing Gal(f) = G we get that 
 := F (�1; : : : ; �n) is an element of EHsince StabG(F ) = f� 2 G j �F = F g = H. Therefore we have for the characteristicpolynomial �
(X) of 
 in EH=Q:�
(X) = Q�2G==H (X � �F (�1; : : : ; �n))= R(G;H;F )(X):On the other hand we have�
 (X) = (m
 (X))k for some k 2 N;



Galois Group Computation for Rational Polynomials 13where m
 (X) denotes the minimal polynomial of 
 over Q. Since (X � a) j �
(X) =(m
 (X))k in Z[X] it follows that �
 (X) = (X � a)[G:H] which is a contradiction to thefact that there is a root b 6= a of R(G;H;F )(X). Thus Gal(f) � G. 2Remark 4.4. 1 In Theorem 4.3 it is enough to consider �1; �2 2 (G==H) with �1 6=�2 and �1F (�1; : : : ; �n) 2Zand �1F (�1; : : : ; �n) 6= �2F (�1; : : : ; �n).2 In the situation of Theorem 4.3 it does not follow that Gal(f) � H.Application 4.5. Consider all maximal subgroups of the group G with short coset sys-tems. If there is only one possible descent left, this descent is proven. Especially forprimitive groups of degree 11 � n � 15 in the most cases there is only one group whichis maximal in Sn resp. An.In the following we assume that K = h� i � Gal(f). A straight forward, but quiteimpracticable and time consuming method to compute a short coset system would beto �rst compute all coset representatives � 2 G==H and then �lter out the ones forwhich � 2 �H��1 hold. We are looking for other possibilities to make the program moree�cient. The next algorithm is a big improvement to the straight forward method forlarge indices. For this we have to use some basic group theory. For a permutation groupG and a permutation � denote by CG(� ) := f� 2 G j�� = �� g the centralizer of � in G.Algorithm 4.6. (Computation of a short coset system)Input: K � H � G � Sn with K = h� i.Output: (G==H)K.Step 1: Compute the set C of H-conjugacy classes of H which have the same cycletype as � .Step 2: For each C 2 C compute a � 2 G such that ��1�� 2 C, if � exists. The setof these � is denoted by G.Step 3: For each � 2 G compute the set A� := (CG(� )==C�H��1 (� )).Step 4: Output of f a� j � 2 G; a 2 A� g = (G==H)K.Proof. Correctness of the algorithm:1 For � 2 G we have h� i � �H��1 is equivalent to ��1�� 2 H. Therefore ��1�� 2 Hlies in one C 2 C.2 Let � 2 G with ��1�� 2 C. For ~� 2 G it follows that~��1� ~� 2 C () it exists � 2 H : ~��1� ~� = ��1��1���() ~� 2 CG(� )�H:Then f � 2 G j ��1�� 2 H g = _[�2GCG(� )�H with G such as in Algorithm 4.6.3 Since CG(� ) = _[a2A� aC�H��1 (� ) for every � 2 G and C�H��1 (� )�H = �H weobtain _[�2G CG(� )�H = _[�2G( _[a2A� a�H). The last union is disjoint, because:a1�H = a2�H () a1a�12 2 CG(� ) \ �H��1() a1a�12 2 C�H��1 (� )



14 K. Gei�ler and J. Kl�unerswhich is not possible according to the choice of A� . 2In this section we have solved one of the two main problems, namely that the numberof cosets is too large. In Remark 2.18 we explained that it may happen that we candetect cosets which do not correspond to integral roots of the resolvent using a smallp-adic precision. The practice shows that in most cases we are left with at most one cosetwhich may correspond to an integral solution of the resolvent. If [G : H] is large theremaining problem is to prove that this coset indeed corresponds to an integral solution.Suppose that we have the additional information that Gal(f) � �H��1 for some �. Forinstance this can be the case when the polynomial was constructed in a special way.Then we know that the last remaining coset must correspond to an integral solution ofthe resolvent and we do not need to apply the method of the next section.5. Veri�cation of Stauduhar steps with large indexUp to now, we have solved the problem of large coset representative systems by meansof introducing short coset systems. In order to obtain veri�able results we have to liftthe p-adic approximations of the roots of up to a bound k, which strongly depends onthe index [G : H]. For running time reasons it would be desirable to avoid the liftingprocedure for the G : H step. Roughly speaking, this can be done in the following way:First, compute the Galois group with the method of Stauduhar using short coset systemsand a lower lifting bound for the �rst descent. This yields an unproven result. Secondly,verify the Galois group by using absolute resolvent methods.The absolute resolvent method uses mainly resolvents associated to intransitive per-mutation groups of the form H = Sr � Sn�r, (1 < r < n). For this kind of groups thereexist very simple Sn-relative Sr � Sn�r-invariant polynomials F . For instance, one canchoose F (x1; : : : ; xn) = x1 x2 � : : : � xr or F (x1; : : : ; xn) = x1 + x2 + : : :+ xr:Therefore absolute resolvents corresponding to groups of the form above are often calledr-set resolvents. These r-set resolvents are easy to compute, because for the computationover �elds of characteristic zero only the coe�cients of the polynomial f are needed (seeCasperson and McKay (1994)). Provided that the absolute resolvent is square-free, itis well known (see Soicher (1981), Soicher and McKay (1985)) that the degrees of theirreducible factors of the resolvent inZ[x] correspond to the lengths of the Gal(f)-orbitsof Sn==H. For each possible Galois group Gal(f) and each group H the degrees of theirreducible factors can be tabulated in advance. Such a table is called a partition table.For small degrees the Galois group can be identi�ed by comparing the irreducible factorsof the absolute resolvent belonging to the group H with the partition table. For higherdegrees n not all possible Galois groups can be distinguished using r-set resolvents andunfortunately, these resolvents are particularly hard to factor.Since the method of Stauduhar also provides the action of the group on the roots, wecan work in reverse: instead of factoring the r-set resolvent, we can write down the factorsand then test if the factors divide the r-set resolvent. In our current implementation, weuse this method for degrees n > 9. Instead of taking k as in Theorem 2.17, we have chosena heuristic bound for the �rst step to be k0 = minf10 logp(2M ) ; [G : H] logp(2M )g. Inthe sequel we describe the veri�cation step.



Galois Group Computation for Rational Polynomials 15Algorithm 5.1. (Veri�cation of Stauduhar steps with large index.)Input: A monic irreducible polynomial f 2 Z[x], H � Gal(f) � G as permutationgroups on the roots �1; : : : ; �n 2 �Qp of f , r 2 N such that the orbits of ther-sets under H and G are di�erent.Output: H 6= Gal(f) or G 6= Gal(f).Step 1: S := fA � f�1; : : : ; �ng j jAj = rg.Step 2: Compute an H-orbit O of S which is not a G-orbit.Step 3: Compute the r-set resolvent polynomial F 2Z[x].Step 4: f1 := XA2O Y�2A� mod p:Step 5: Compute f2 2Z[x] such that f � f1f2 mod p.Step 6: Check if f1 and f2 are coprime modulo p. If not, compute a suitable Tschirn-hausen transformation for f and go to Step 3.Step 7: Compute a bound M for the size of the coe�cients of the factors of F andk 2 N such that pk > 2M .Step 8: Lift F � f1f2 mod p to F � F1F2 mod pk.Step 9: Check, if F1 correspond to a true factor of F . In this case return that Gal(f) 6=G. Otherwise return that Gal(f) 6= H.In Step 7 of the above algorithm we use well known bounds of factorization algorithms(see e.g. (von zur Gathen and Gerhard, 1999)). For the transformations in Step 6 wechoose random �1; : : : ; �n 2Zin such a way that Pnj=1 �j�i is a primitive element andreplace �i byPnj=1 �j�i; 1 � i � n (see also (Girstmair, 1983)).Example 5.2. 1 Let H = 12T+295 = M12 and G = 12T+300 = A12. Looking at thefollowing table we have to take r = 6 to distinguish H and G. In this case H is amaximal subgroup of G. Therefore the output of the algorithm that Gal(f) 6= Gimplies Gal(f) = H.2 Let H = 15T+20 and G = 15T+103. From the following table we get that r = 2 su�cesto distinguish H and G. In this case H is not a maximal subgroup. We have thefollowing situation: 15T+20 < 15T+28 < 15T+47 < 15T+72 < 15T+103. The only unprovenstep in the algorithm is the step from 15T+103 to 15T+72. The other steps are provedusing Stauduhar's method provided the �rst step was correct. If the algorithmoutputs that Gal(f) 6= G = 15T+103 this proves that H = Gal(f). If we only use theabsolute resolvent method we have to use r = 4 to distinguish 15T+20 and 15T+28.In the following we give a partition table for the primitive groups of degree 12 to 15used for the veri�cation step. For the transitive groups of degree 9 to 11 tables can befound for instance in Eichenlaub (1996). In the following table 1103; 1322; 330 means thatthere are three factors of degree 110, two factors of degree 132, and one factor of degree330.



16 K. Gei�ler and J. Kl�unersDegree 12Gal(f) 2-set 3-set 4-set 5-set 6-set12T301 66 220 495 792 92412T+300 66 220 495 792 92412T+295 66 220 495 792 132; 79212T+272 66 220 165; 330 132; 660 22; 110; 79212T218 66 220 165; 330 132; 660 110; 220; 264; 33012T+179 66 220 165; 330 132; 660 1103; 1322; 330Degree 13Gal(f) 2-set 3-set 4-set 5-set 6-set13T9 78 286 715 1287 171613T+8 78 286 715 1287 171613T+7 78 52; 234 13; 234; 468 117; 468; 702 78; 234; 468; 93613T6 78 52; 78; 156 39; 52; 782; 1563 39; 782; 1567 26; 52; 783; 156913T+5 392 262; 392; 782 262; 395; 786 395; 7814 132; 262; 396; 781813T4 263 263; 524 133; 266; 5210 133; 266; 5221 2610; 522813T+3 392 134; 396 134; 3917 3933 136; 394213T+2 136 136; 268 1315; 2620 1315; 2642 1320; 265613T+1 136 1322 1355 1399 13132Degree 14Gal(f) 2-set 3-set 4-set 5-set 6-set 7-set14T63 91 364 1001 2002 3003 343214T+62 91 364 1001 2002 3003 343214T39 91 364 182; 273,546 364; 546,1092 91; 182; 546,10922 156; 364,728, 1092214T+30 91 1822 912; 273,546 1822, 5463 913; 5463,1092 782; 1822,3642, 5464



Galois Group Computation for Rational Polynomials 17Degree 15Gal(f) 2-set 3-set 4-set 5-set 6-set 7-set15T104 105 455 1365 3003 5005 643515T+103 105 455 1365 3003 5005 643515T+72 105 35; 420 105; 420,840 168; 315,840, 1680 105; 280,420; 1680,2520 15; 120; 420,840, 2520215T+47 105 35; 420 105; 210,420, 630 42; 126,315; 420,840, 1260 70, 105, 210,4202; 1260,2520 15; 120; 420,6302; 840,1260315T+28 45; 60 15; 20,60; 1802 30; 45,602; 90,1802; 3602 6; 45; 60,72; 902; 120,1802, 3606 10; 15; 603,902; 120; 1803,3609, 720 15; 60; 902,1202; 1809,3606, 720315T+20 45; 60 15; 20,60; 1802 30; 45,602; 90,1804; 360 6; 362; 45,60; 902; 120,1806, 3604 10; 15; 605,902; 1807,3609 15; 60; 902,1202; 18015,36096. The entire algorithmIn this section we give a brief survey about the whole algorithm. One critical pointis the prime p chosen for the p-adic completion. Let f 2 Z[x] be a monic polynomialand p be a prime not dividing disc(f). Factorize f � f1 � � �fr mod p and de�ne dp :=lcm(deg(f1); : : : ; deg(fr)). Let TAn be the set of all transitive subgroups of An up toconjugation in Sn. Analogously, let TSn be the set of all transitive subgroups of Sn notcontained in An up to conjugation in Sn. When we say that a group is contained insuch a set we mean that there is a group in the set which is conjugated (in Sn) to ourgiven group. When we have �xed a prime p - disc(f), we have no multiple roots modulop. Therefore it is su�cient to compute the roots in the p-adic completion modulo p todistinguish them. When we need more precision Newton lifting can be used to lift theroots to the desired precision.Algorithm 6.1. (Computation of Galois groups)Input: Monic, irreducible polynomial f of degree n with rational integer coe�cients.Output: The Galois group of f including the action on the roots.Step 1: (Discriminant?) If disc(f) is a square in Zset T  TAn . Otherwise setT  TSn (Remark 2.4).Step 2: (Factorization mod p) Factorize f modulo some primes p - disc(f) (Remark2.4). Remove all groups from T which do not contain an element of the givencycle shape.



18 K. Gei�ler and J. Kl�unersStep 3: (Galois group found?) If jT j = 1 then return Gal(f) and an arbitrary orderingof the roots of f .Step 4: (Sub�elds) Compute the sub�elds of the stem �eld K of f .Step 5: If there are non-trivial sub�elds then go to Step 5.1, else go to Step 5.2.Step 5.1 (Galois group imprimitive) Remove all groups from T which do not haveblock systems of the computed shape. Choose a prime p such that dpis small. Compute the roots �1; : : : ; �n mod p. Apply Algorithm 3.2 tocompute G such that Gal(f) � G.Step 5.2 (Galois group primitive) Remove all imprimitive groups from T . Supposethat Gal(f) is the smallest group contained in T and �nd out, if there isa step H < G with a huge group index. In this case compute the r-setpolynomial F needed for the proof of the critical step (Algorithm 5.1).Choose a prime p with the following properties:1 F mod p is square-free.2 dp is small.3 [CG(� ) : CH (� )] is small, where � is the corresponding Frobeniusautomorphism.Compute the roots �1; : : : ; �n mod p and set G  Sn or G  An de-pending on Step 1.Step 6: (Traverse subgroup lattice) For all maximal subgroups H of G contained in Tapply the p-adic version of Stauduhar's algorithm (Section 2.2). If [G : H] >2000 use an unproven precision (say k = 10 logp(2M ), compare Theorem2.17). If Gal(f) � H then set G H and go to Step 6.Step 7: (Result unproven?) If there was an unproven step, apply Algorithm 5.1 toprove this step. In this case output G and the roots �1; : : : ; �n. If the un-proven step ~H < ~G was wrong, then remove ~H from T , set G ~G, and set�1; : : : ; �n to the ordering before the critical step.We remark that the ordering of the roots is changed in Steps 5 and 6. It may happenthat the r � set polynomial F computed in Step 5.2 is not square-free. In this case wehave to apply a suitable Tschirnhausen transformation (see Algorithm 5.1). In Step 5.22, 3 we have to �nd a good compromise between the degree of the corresponding p-adic�eld and the number of short cosets. Frobenius automorphisms of large degree usuallygive smaller short coset systems. 7. ExamplesWe tested about 70000 polynomials from degree 3 to 15. The running time of thealgorithm is dependent on the size of the coe�cients and the Galois group. Furthermoreit is dependent on the number of Tschirnhausen transformations which usually increasethe size of the coe�cients. We use the examples from degree 12 to 15 given in Kl�unersand Malle (2000). The given running times include all necessary computations to geta proven result. All computations were done on a 500MHz Intel Pentium III processorrunning under SuSE Linux 6.1 and are given in seconds.



Galois Group Computation for Rational Polynomials 19Degree 12Group Time Group Time Group Time Group Time Group Time1 0.8 45 0.7 89 1.5 133 2.5 177 3.82 0.8 46 3.9 90 1.5 134 0.7 178 3.13 0.4 47 4.4 91 1.0 135 0.7 179 39.04 0.5 48 0.8 92 1.2 136 0.9 180 5.25 0.7 49 5.4 93 1.7 137 0.8 181 12.06 1.3 50 0.7 94 4.9 138 1.4 182 4.57 0.9 51 0.9 95 0.7 139 1.3 183 5.38 0.3 52 6.2 96 1.9 140 1.0 184 0.79 0.7 53 0.7 97 1.6 141 1.3 185 1.610 0.7 54 5.4 98 2.3 142 1.0 186 1.111 0.9 55 1.4 99 7.0 143 1.7 187 0.812 0.6 56 1.3 100 2.5 144 1.4 188 0.813 0.8 57 1.4 101 1.2 145 6.1 189 7.814 0.7 58 0.8 102 6.4 146 2.0 190 1.615 0.4 59 1.1 103 1.1 147 2.5 191 1.016 0.5 60 1.6 104 6.1 148 8.6 192 12.017 0.7 61 1.2 105 0.8 149 2.8 193 0.418 1.3 62 1.2 106 0.7 150 1.2 194 2.219 1.6 63 1.1 107 1.1 151 7.6 195 3.320 0.8 64 2.6 108 1.2 152 4.9 196 2.221 0.4 65 1.5 109 0.9 153 5.9 197 0.922 1.2 66 2.5 110 1.6 154 5.4 198 0.723 0.9 67 1.6 111 1.5 155 0.7 199 1.924 0.8 68 1.3 112 1.4 156 2.4 200 1.725 0.7 69 0.7 113 0.8 157 11.0 201 1.726 1.7 70 7.6 114 1.9 158 4.3 202 3.027 13.0 71 7.4 115 1.9 159 2.7 203 0.728 0.3 72 2.7 116 2.4 160 1.6 204 2.329 1.0 73 2.6 117 7.0 161 2.8 205 2.130 1.1 74 1.8 118 2.6 162 1.7 206 2.831 1.4 75 5.1 119 2.5 163 1.4 207 3.432 1.1 76 1.1 120 2.7 164 2.8 208 0.833 1.2 77 0.4 121 2.3 165 2.3 209 3.434 1.8 78 1.0 122 3.5 166 5.2 210 4.735 0.5 79 0.7 123 0.9 167 2.6 211 1.836 1.2 80 0.9 124 1.9 168 7.0 212 7.237 1.3 81 1.2 125 0.4 169 2.5 213 1.738 1.3 82 1.6 126 1.6 170 2.3 214 3.139 1.3 83 0.4 127 2.2 171 4.1 215 3.240 1.0 84 5.2 128 2.7 172 4.0 216 3.641 1.6 85 2.9 129 2.1 173 3.7 217 2.042 1.3 86 0.7 130 7.4 174 4.7 218 10.043 0.3 87 1.5 131 2.5 175 2.0 219 0.344 0.7 88 1.0 132 2.7 176 5.2 220 7.1



20 K. Gei�ler and J. Kl�unersDegree 12Group Time Group Time Group Time Group Time Group Time221 1.4 238 1.0 255 1.0 272 16.0 289 0.3222 1.8 239 2.4 256 1.8 273 0.9 290 0.4223 7.8 240 0.9 257 1.7 274 0.5 291 1.7224 1.2 241 0.7 258 1.7 275 1.7 292 0.9225 4.4 242 4.9 259 14.0 276 1.0 293 0.3226 0.3 243 3.3 260 0.4 277 1.0 294 0.4227 0.7 244 4.1 261 0.6 278 3.9 295 337.0228 5.4 245 6.7 262 1.2 279 3.6 296 1.7229 2.7 246 26.0 263 1.3 280 1.6 297 0.4230 0.9 247 8.8 264 1.0 281 0.7 298 2.0231 1.9 248 1.6 265 1.9 282 1.2 299 1.4232 5.5 249 3.4 266 0.4 283 1.1 300 0.1233 2.8 250 1.6 267 0.9 284 1.3 301 0.0234 5.2 251 2.2 268 1.9 285 0.3235 0.9 252 2.7 269 1.4 286 1.1236 0.6 253 2.0 270 2.3 287 0.8237 2.5 254 4.3 271 1.5 288 3.1Degree 13Group Time Group Time Group Time Group Time Group Time1 8.2 3 2.1 5 1.4 7 2.7 9 0.02 6.3 4 14.0 6 3.6 8 0.2Degree 14Group Time Group Time Group Time Group Time Group Time1 1.5 14 5.4 27 6.7 40 5.5 53 1.12 1.1 15 5.1 28 4.8 41 5.2 54 1.73 1.9 16 4.0 29 4.7 42 4.7 55 0.84 1.4 17 2.8 30 5.9 43 2.2 56 1.05 1.4 18 2.8 31 2.7 44 3.5 57 1.16 2.3 19 1.6 32 2.2 45 2.0 58 1.37 1.4 20 3.4 33 4.2 46 1.1 59 0.58 3.9 21 2.1 34 2.0 47 1.2 60 1.69 4.1 22 5.4 35 2.0 48 5.5 61 0.410 2.0 23 2.8 36 3.2 49 0.5 62 0.011 1.8 24 6.7 37 2.4 50 1.8 63 0.012 2.4 25 7.4 38 3.1 51 2.113 3.1 26 4.9 39 9.1 52 4.2



Galois Group Computation for Rational Polynomials 21Degree 15Group Time Group Time Group Time Group Time Group Time1 1.4 22 0.7 43 4.1 64 7.5 85 5.62 1.4 23 1.0 44 4.7 65 45.0 86 3.73 1.4 24 1.6 45 3.9 66 26.0 87 9.74 1.5 25 4.7 46 3.1 67 11.0 88 1.45 3.1 26 3.6 47 15.0 68 5.2 89 0.66 1.1 27 5.5 48 7.4 69 1.5 90 1.47 1.2 28 3.0 49 6.0 70 2.4 91 1.48 1.3 29 0.4 50 3.0 71 2.9 92 1.99 5.5 30 3.9 51 3.1 72 9.8 93 1.010 5.1 31 6.7 52 7.7 73 4.8 94 1.511 1.1 32 5.1 53 1.6 74 11.0 95 1.712 4.1 33 4.8 54 4.7 75 5.8 96 1.913 3.0 34 2.6 55 4.2 76 1.6 97 2.114 5.5 35 4.0 56 4.3 77 1.6 98 1.315 3.6 36 3.0 57 20.0 78 2.0 99 0.516 1.3 37 43.0 58 28.0 79 4.2 100 1.617 14.0 38 8.1 59 5.8 80 2.7 101 1.218 4.7 39 8.1 60 5.3 81 5.0 102 0.619 5.2 40 9.9 61 2.1 82 5.6 103 0.120 7.1 41 5.0 62 1.4 83 1.5 104 0.121 7.4 42 5.1 63 2.5 84 4.9For all primitive groups of degree 14 and 15 (excepting A14; S14; A15; S15), and all ex-amples with more than ten seconds running time we give more details. In the followingtable Sub�eld denotes the running time for Algorithm 3.2, which includes sub�eld com-putation and group theoretic computations. For primitive groups we give the runningtime needed for the computation of the resolvent including the necessary transforma-tions. Factor gives the running time for �nding the factors of the computed resolvents.In Stauduhar we give the computing time for the Stauduhar steps. The column \All"gives the complete running time rounded to seconds. Looking at the primitive groups wesee that the resolvent part is not critical. The worst case is M12 = 12T+295 since we needan invariant of degree 924. We remark that the coe�cients of the polynomials for 15T65and 15T66 are huge compared to the other ones.Group Sub�eld Resolvent Stauduhar Factor All12T27 0.2 12.8 1312T+157 0.7 9.3 1012T+179 0.0 5.2 10.8 23.0 3912T+181 0.3 11.6 1212T192 0.2 11.8 1212T218 0.0 2.1 2.4 5.2 1012T246 0.6 24.6 26



22 K. Gei�ler and J. Kl�unersGroup Sub�eld Resolvent Stauduhar Factor All12T+259 0.3 13.5 1412T+272 0.0 3.7 6.4 5.6 1612T+295 0.0 130.2 6.6 200.5 33713T4 0.0 0.1 11.8 0.1 1214T+30 0.0 0.1 5.6 0.1 614T39 0.0 0.8 2.8 4.9 915T+17 0.5 13.5 1415T+20 0.1 0.1 6.6 0.2 715T+28 0.1 0.1 2.5 0.2 315T+37 0.4 42.6 4315T+47 0.1 3.6 6.1 4.7 1515T+57 0.9 18.7 2015T+58 0.4 27.5 2815T65 2.0 42.9 4515T66 1.8 24.2 2615T+67 0.6 10.4 1115T+72 0.0 2.9 2.5 4.4 1015T74 0.6 10.4 11These examples show the e�ciency of our algorithm. For the groups 13T6, 13T+5 ,14T39, and 14T+30 the index [G : H] is 39916800. Without using short cosets it wasimpossible to apply Stauduhar's method to these cases. One advantage of the p-adicversion of Stauduhar's method is that the algorithm is in polynomial time in the size ofthe coe�cients. The example polynomial f for the group 15T65 has huge coe�cients andour algorithm needs 45s to compute the Galois group. We applied the same algorithm tof (including the use of sub�elds) but using complex approximations. The following tablegive the running times and the computed result depending on the used precision:Precision Result Time100 82 12200 82 32300 82 64400 65 1118From this table we see another problem of the complex version of Stauduhar's algo-rithm. When we want to get proven results we have to think about estimations for theused precision. Using a precision which will give proven results the running time will beworse.
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