
Étienne Fouvry and Jürgen Kl üners
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1 Introduction and notations

In the whole paperD denotes a fundamental discriminant, i.e. a discriminant of
a quadratic number field. LetK = Q(

√
D) be the quadratic number field of dis-

criminantD. Denote by ClD the ordinary class group ofK and byCD the narrow
class group ofK. We remark that these two groups are always the same ifD < 0.
For a primep we denote by rkp(A) := dimFp(A/Ap) the p–rank of an abelian
groupA. Furthermore we introduce the 4–rank rk4(A) := rk2(A2). In this paper we
prove many properties about the average behavior of the 4–rank of class groups of
quadratic number fields. In order to present the results we introduce the following

Definition 1 Let f(D) be a numerical function defined over the set of fundamental
discriminants. We say that f(D) has a mean value over positive discriminants, if
there exists a real numberM +( f (D)) such that, we have

∑0<D<X f (D)
∑0<D<X 1

−→
X→∞

M +( f (D)).

If f is the characteristic function of a subset of positive fundamental discriminants,
we callM +( f (D)) the density of the subset.
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The same definition extends to a mean value over negative discriminants (quo-
tedM−( f (D)), and more generally to any infinite subset of the positive or of the
negative discriminants.

Let us state two of the main conjectures stated in [2, (C6), (C10)] extended to
p = 2 by [7].

Conjecture 1 For every prime number p and for every integerα ≥ 0 we have

Conj−(p,α) M−
(

∏
0≤i<α

(
prkp(C2

D)− pi))= 1

and

Conj+(p,α) M +
(

∏
0≤i<α

(
prkp(C2

D)− pi))= p−α .

Actually, Cohen and Lenstra enunciated Conjecture 1 for any oddp and with
C2

D replaced by CD (note the equality rkp(C2
D) = rkp(CD) for odd p). By genus

theory it is clear that rk2(CD) = ω(D)−1, whereω counts the number of prime
factors. We remark that rk2(CD)−1≤ rk2(ClD) ≤ rk2(CD) (for more details, see
the discussion after Lemma 10). By averaging the corresponding expressions we
get

∑
0<±D≤X

2rk2(ClD), ∑
0<±D≤X

2rk2(CD) ∼ cX logX,

for some positive constantc and for X tending to infinity. Frank Gerth [7] put
forward the idea to considerC2

D instead ofCD. For p = 2 we get that rk2(C2
D) =

rk4(CD).
Of course, Conj±(p,0) is true for anyp. The case Conj±(p,1) for odd primes

p corresponds to the normal average:

lim
X→∞

∑0<D≤X prkp(CD)

∑0<D≤X 1
= 1+ p−1

and

lim
X→∞

∑0<−D≤X prkp(CD)

∑0<−D≤X 1
= 2,

where the sums are over discriminantsD of quadratic fields. This result is only
proven forp = 3 as a consequence of the Davenport–Heilbronn theorem [3]. As a
special case of Theorem 1 we will get this average for the 4–rank, i.e. forp = 2:

lim
X→∞

∑0<D≤X 2rk4(CD)

∑0<D≤X 1
= 1+1/2 (1)

and

lim
X→∞

∑0<−D≤X 2rk4(CD)

∑0<D≤X 1
= 2. (2)

The aim of this paper is to prove the more general
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Theorem 1 The conjecturesConj+(2,α) andConj−(2,α) are true for every in-
tegerα ≥ 0 .

In order to do this we first prove in Proposition 1 that Conjecture 1 is closely
related to

Conjecture 2 Let p be a prime number and k be an integer. Denote byN (k, p)
the number of vector subspaces ofFk

p. Then

Conj−mod(p,k) M−(pkrkp(C2
D)) = N (k, p),

and

Conj+mod(p,k) M +(pkrkp(C2
D)) = p−k(N (k+1, p)−N (k, p)).

Then we show that Conjecture 2 is true forp= 2 and anyk≥ 0. Actually, we shall
prove a more precise statement for each of the six families of

D < 0, D≡ 1 mod 4

D < 0, D≡ 0 mod 8

D < 0, D≡ 4 mod 8


D > 0, D≡ 1 mod 4

D > 0, D≡ 0 mod 8

D > 0, D≡ 4 mod 8.
(3)

For this we introduce the sums:

S−(X,k,a,b) := ∑
0<−D<X

D≡a modb

2krk4(CD)

and
S+(X,k,a,b) := ∑

0<D<X
D≡a modb

2krk4(CD).

Then we show in Theorems 6–11 that for every positive integerk and every posi-
tive ε the following equalities are true, whereR(X,ε,k) := X(logX)−2−k+ε :

S−(X,k,1,4) = N (k,2)
(

∑
0<−D<X

D≡1 mod 4

1
)

+Oε,k(R(X,ε,k)) (4)

S+(X,k,1,4) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡1 mod 4

1
)

+Oε,k(R(X,ε,k)) (5)

S−(X,k,0,8) = N (k,2)
(

∑
0<−D<X

D≡0 mod 8

1
)

+Oε,k(R(X,ε,k)) (6)

S+(X,k,0,8) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡0 mod 8

1
)

+Oε,k(R(X,ε,k)) (7)

S−(X,k,4,8) = N (k,2)
(

∑
0<−D<X

D≡4 mod 8

1
)

+Oε,k(R(X,ε,k)) (8)
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S+(X,k,4,8) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡4 mod 8

1
)

+Oε,k(R(X,ε,k)). (9)

These theorems, combined with (16) and Proposition 1 imply Theorem 1 di-
rectly.

Cohen–Lenstra heuristics contains also statements (see [2, (C5),(C9)]) about
the density of fundamental discriminantsD such that rkp(C2

D) = r for some integer
r. Again, the conjecture for oddp was extended top= 2 by Gerth. In order to state
the conjecture we need to introduce the functionηk:

ηk(t) :=
k

∏
j=1

(1− t− j) for k a non-negative integer or+∞.

Conjecture 3 Let r be a non negative integer and p be a prime number. Then

1. The density of negative fundamental discriminants D such thatrkp(C2
D) = r is

equal to

p−r2
η∞(p)ηr(p)−2.

2. The density of positive fundamental discriminants D such thatrkp(C2
D) = r is

equal to
p−r(r+1)

η∞(p)ηr(p)−1
ηr+1(p)−1.

It is a very natural question if Conjecture 1 and 3 are related to each other. In [5]
we prove by techniques different from those presented in this work the following
theorem.

Theorem 2 Let p be a prime number. If Conjecture 1 is true for p and allα ≥ 0
for positive fundamental discriminants, then Conjecture 3 for positive fundamen-
tal discriminants is true for p and all r≥ 0. The analogous statement holds for
negative fundamental discriminants.

We remark that in general it is not true that the knowledge of allk–moments is
sufficient to get those average densities.

We apply this theorem forp = 2 and together with Theorem 1 we proved:

Theorem 3 Conjecture 3 is true for p= 2 and all r≥ 0.

1.1 Known results about 4–ranks

The 4–rank of class groups of quadratic fields was studied in several papers of
Redei, e.g. [16,17]. In [16] he defines an explicit matrix (the Redei matrix) over
F2 such that the rank corresponds to the 4–rank ofCD. This matrix is used in Gerth
[6] to compute probabilities that the 4–rank is a given number if we only consider
discriminantsD with a fixed number of prime factors. Let us shortly describe these
results. We define the following quantities form> 0 squarefree, i.e.D = mor 4m
in our notation.

At := {K = Q(
√
−m) | exactlyt primes ramify inK},

At;X := {K ∈ At |m≤ X}, At,r;X := {K ∈ At;X | rk4(K) = r}.
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Gerth proves that the following limits exist (and computes their values):

dt,r := lim
X→∞

|At,r;X|
|At;X|

andd∞,r := lim
t→∞

dt,r .

Denote byBt ,Bt;X,Bt,r;X,d′t,r , andd′∞,r the corresponding quantities when we con-
sider totally real fields. Then the main result of [6] is:

Theorem 4 (Gerth)

d∞,r = 2−r2
η∞(2)ηr(2)−2 for r = 0,1,2, . . .

d′∞,r = 2−r(r+1)η∞(2)ηr(2)−1ηr+1(2)−1 for r = 0,1,2, . . . .

We remark that Theorem 4 gave a strong support for the correctness of Conjecture
3 for p = 2.

In order to prove the correctness of equations (1) and (2) we introduce the
following symbols.

Definition 2 Let (a|b) : Q∗ ×Q∗ → {0,1}, where(a|b) = 1 if and only if the
equationx2−ay2−bz2 = 0 has a solution(0,0,0) 6= (x,y,z) ∈Q3.

The 4–rank of the narrow class group can be described by the following theorem.

Theorem 5

2rk4(CD) =
1
2

#{b | b > 0 squarefree,b | D, (b|−b′) = 1},

where b′ ∈ Z is squarefree such that bD= b′c2 for a suitable c∈ Z.

1.2 Sketch of the proof

The schedule of the proofs is as follows. The first quite new idea is to write, for
any p, the Cohen–Lenstra Heuristics Conj±(p,α), in an equivalent form, where
the cardinalities of sets of vector spaces overFp have a crucial role (see Proposi-
tion 1 below). Such an interpretation shows that the geometry over finite fields is
subjacent in these heuristics. We are now obliged to restrict ourselves top = 2. In
§3 we prove Theorem 5, which roughly speaking, establishes a strong link between
2rk4(CD) and the number of representations ofD asD = ab, with a being a square
modulo|b| andb being a square modulo|a| (see Lemma 6 (ii)). Then the symbol
(a|b) can easily be transformed in terms of Jacobi symbols (see Lemma 6 and
equation (20), for instance forD < 0 and≡ 1 mod 4). Since we are studying the
k–moment of 2rk4(CD), we raise (20) to thek-th power. This transformation gives
birth to a sum of products of 4k Jacobi symbols, with numerator and denomina-
tor taken in a set of 4k independent variables. This expression is very intricate (see
(25)) and must be dealt in a global way. However, for small values ofk (k= 1,2,3)
it could be dealt by hand. One of the question is to know which Jacobi symbols
appear and which do not appear. We owe to E. Kowalski to have suggested that
the paper of Heath–Brown [10] would be useful to simplify our approach, since
this author met the same type of difficulty. Hence, we have incorporated several
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ideas contained in [10], in the present paper. The first one is to write variables as
Du with u∈ F2k

2 and to use an homogeneous quadratic polynomialΦk(u,v) in two
variables inF2k

2 to detect which Jacobi symbols(Du
Dv

) are present in the formulas
(see definition (27)). We are led to use some concepts of geometry in character-
istic 2. The error terms come from oscillations of the Jacobi symbols and cause
no trouble: as in [9,10], we appeal to Siegel–Walfisz Theorem and to a double
averaging over sums of real characters (see Lemmata 13 and 15 below). (Note
that the application of [9, Lemma 6] is erroneous on p. 180 : the inequality (6)
Ai j ≥ exp{κ(log logX)2} does not allow to apply Lemma 6, because of the con-
straint “q≤ logN x ”, which is not always satisfied in that case. A modification of
[9, (6)] into Ai j ≥ X‡ (whereX‡ is defined below in (36)) is sufficient to correct
the proof. The same remark applies to [10, p. 343]).

The nature of the main term is highly combinatorial. As in [10], we check that
it can only come from the contribution of terms associated to(Du)u∈F2k

2
such that

exactly 2k variablesDu are not equal to 1 and large (see Proposition 3). In particu-
lar, the associated indices build a coset of a vector space of dimensionk (maximal
unlinked subset of indices, see Lemma 18), on which a (non symmetric) bilinear
form L is identically equal to 0 (Lemmata 24 and 25). The proof is then reduced to
count such subspaces (Lemma 26). The combinatorial study is harder forD such
that the number−1 and 2 have a specific role, it is why the five last families of
the list (3) are studied in Sections 6 to 10. Hence, our proof has similarities with
[10] (for instance by the choice of the terminology) but the combinatorics and the
underlying geometry are different in several aspects.

The analytic methods involved in our work can be easily generalized to show
that the Cohen–Lenstra–Gerth heuristics for the 4–rank is true for more general
sequences of fundamental discriminantsD, e.g. whenD belongs to a fixed arith-
metic progression modulo an odd integer. Such extensions of this method should
be motivated by algebraic applications.

2 Cohen–Lenstra heuristics and cardinality of sets of vector subspaces

2.1 Counting vector subspaces in characteristicp

The purpose of this section is to prove that Conj±(p,α) can be expressed in terms
of the cardinality of vector subspaces ofFk

p for somek. Before proving this equiv-
alent form, we first gather all the necessary properties of the functionn(k, `, p)
which denotes the number of linear subspaces of dimension` in Fk

p. These prop-
erties will be also used in the combinatorial analysis of the main terms in the
formulas of Theorems 6–11 to express them with the help of the function

N (k, p) :=
k

∑̀
=0

n(k, `, p),

which counts the number of the vector subspaces ofFk
p of any dimension. We have
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Lemma 1 Let k and` be integers, then the functionn(k, `, p) satisfies the equali-
ties

• n(k, `, p) = 0 f or k < 0, ` < 0 or ` > k,

• n(k, `, p) = n(k,k− `, p) f or k≥ 0,

• n(k, `, p) =
`−1

∏
i=0

pk− pi

p`− pi =
`

∏
i=1

pk−i+1−1
pi −1

f or k≥ 0 and `≥ 0,

• n(k, `, p) = n(k−1, `−1, p)+ p`n(k−1, `, p) f or k≥ 1 and `≥ 0.

Proof The three first equalities are classical. The fourth one is a direct conse-
quence of the third one and of the equality(pk− 1) = (p`− 1) + p`(pk−`− 1),
which is used in the case 0≤ `≤ k. ut

The proof of the following lemma is straightforward.

Lemma 2 Let k≥ 0 and ` be integers. Letξ be a non zero vector ofFk
p. Then

the number of vector subspaces ofFk
p of dimensioǹ containingξ is equal to

n(k−1, `−1, p).

Now we collect some properties of the functionN (k, p).

Lemma 3 For any k≥ 1, we have

2N (k, p)+(pk−1)N (k−1, p) = N (k+1, p), (10)

k

∑̀
=0

p−`n(k, `, p) =
1
pk

(
N (k+1, p)−N (k, p)

)
, (11)

and
k

∑̀
=0

p`n(k, `, p) = N (k+1, p)−N (k, p). (12)

Proof By applying the third equality of Lemma 1 twice, we deduce the equality

(pk−`−1)n(k, `, p) = (pk−1)n(k−1, `, p),

which is equivalent to

2n(k, `, p)+(pk−1)n(k−1, `, p) = (pk−` +1)n(k, `, p).

Summing over all̀ , we get

2N (k, p)+(pk−1)N (k−1, p) =
k

∑̀
=0

(pk−` +1)n(k, `, p). (13)

We also have by symmetry (second equality of Lemma 1):

k

∑̀
=0

(pk−`+1)n(k, `, p) =
k

∑̀
=0

(p`+1)n(k, `, p) =
k

∑̀
=0

p`n(k, `, p)+
k+1

∑̀
=0

n(k, `−1, p),
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and this is equal to

k+1

∑̀
=0

(
p` n(k, `, p)+n(k, `−1, p)

)
= N (k+1, p),

by the fourth equality of Lemma 1. Combining with (13), we get (10).
For the proof of (11), we use the second and the fourth equality of Lemma 1

to write

k

∑̀
=0

p−`n(k, `, p) =
1
pk

k

∑̀
=0

p`n(k, `, p) =
1
pk

k

∑̀
=0

(
n(k+1, `, p)−n(k, `−1, p)

)
,

Hence the result. The proof of (12) works similarly. ut

2.2 An equivalent form of Conjecture 1

We shall modify Conj±(p,α) by appealing to the functionN and by proving

Proposition 1 Let p be a prime number andα0 > 0. ThenConj+(p,α) is true for

every0≤ α ≤ α0, if and only ifM +(pα rkp(C2
D)) exists and has the value

Conj+mod(p,α) : M +(pα rkp(C2
D)) = p−α

(
N (α +1, p)−N (α, p)

)
,

for every0≤ α ≤ α0.
Similarly, Conj−(p,α) is true for every0≤ α ≤ α0, if and only if the mean

valueM−(pα rkp(C2
D)) exists and has the value

Conj−mod(p,α) : M−(pα rkp(C2
D)) = N (α, p),

for every0≤ α ≤ α0.

Proof It is an exercise in the theory of polynomials. Letk≥ 0 andQk,p(X) be the
polynomial

Qk,p(X) =
k−1

∏
i=0

(X− pi),

with the usual conventionQ0,p ≡ 1. We have

Lemma 4 For every prime p and every n≥ 0, we have the equality

Xn =
+∞

∑
k=0

n(n,k, p)Qk,p(X).
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Proof This lemma is true forn = 0. The proof is made by induction overn. By
the hypothesis of induction, the definition ofQk+1,p, and the fourth equality of
Lemma 1, we have the equalities

Xn+1 =
+∞

∑
k=0

n(n,k, p)(X− pk + pk)Qk,p(X)

=
+∞

∑
k=0

(
n(n,k−1, p)+ pkn(n,k, p)

)
Qk,p(X)

=
+∞

∑
k=0

n(n+1,k, p)Qk,p(X).

ut

To prove Proposition 1, we first use Lemma 4 to write

pαrkp(C2
D) =

α

∑
k=0

n(α,k, p)Qk,p(prkp(C2
D)). (14)

Hence, if each term of the right hand side of (14) has a mean value, the left hand
side has also a mean value. By linearity of mean values, we have

M±(pαrkp(C2
D))=

α

∑
k=0

n(α,k, p)M±(Qk,p(prkp(C2
D))
)
. (15)

Now we see that assuming the truth of Conj±(p,k) for k≤ α implies the truth of
Conj±mod(p,α) by the definition ofN (α, p), in the case ofM−, or by (11), in the
case ofM +.

Reciprocally, suppose that Conj±
mod(p,α) is true for every 0≤ α ≤ α0. Let

0 ≤ α ≤ α0 be the smallest number for which Conj±(p,α) is not true. Since
n(α,α, p) = 1, the equality (15) then imply a contradiction. ut

3 The4–rank of class groups of quadratic fields

The goal of this section is to prove Theorem 5. Furthermore we study the relation
between the ordinary and the narrow class group.

3.1 Properties of(a|b)

We start by collecting some properties of the symbol defined in Definition 2. We
remark that(a|b) = 1 if and only if b is a norm inQ(

√
a). Note that in the case

thata is a square inQ the fieldQ(
√

a) = Q and any element is trivially a norm.
We get the following easy properties:

Lemma 5 Let a,b,c∈Q∗. Then we have:

1. (a|b) = (b|a), (a|1) = 1, (ac2|b) = (a|b), (a|−a) = 1,
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2. (a|b) = (a|−ab).

Proof The first part is obvious from the definition. For the second part make the
following change of variables in the definition:x = ay′,y = x′,z= az′ and divide
by−a. ut

The proof of the next lemma can be found in [18, Theorem 8, p. 41]. This is a
particular case of Legendre’s theorem for ternary quadratic forms.

Lemma 6 Let a,b be squarefree and coprime integers with b> 0. Then the fol-
lowing statements are equivalent:

1. (a|b) = 1.
2. a is a square mod b and b is a square mod|a|.
Since every odd number is a square modulo 2 we immediately get the following
statement.

Lemma 7 Let a,b be squarefree, odd, and coprime integers with b> 0. Then the
following statements are equivalent:

1. (2a|2b) = 1.
2. 2a is a square mod b and2b is a square mod|a|.

For a non–zero integerb we denote by[b] the squarefree integer with[b] = bc2

for a suitablec∈ Q∗. Furthermore for a positiveb | D we defineb′ := [bD] ∈ Z.
We remark thatb′ < 0 if and only ifD < 0. Using this we can prove the following
lemma.

Lemma 8 Let b> 0 be a squarefree divisor of D. Then(D|b) = (b|−b′).

Proof Using Lemma 5 we get:

(b|−b′) = (b|bb′) = (b|b[bD]) = (b|[b2D]) = (b|D) = (D|b).

ut

3.2 The narrow class group

We start by proving Theorem 5 which is already implicitly contained in [16, p.
56]. Denote byP in CD, the class of principal ideals generated by totally positive
elementsα. We remark that in a real quadratic field an elementα with positive
norm has the property thatα or−α is totally positive.

We remark that all primesp which divide D are ramified. Furthermore all
classes of order 2 are generated by prime ideals lying above these primes. We
denote byp1, . . . , pt the prime divisors ofD and byp1, . . . ,pt ⊆ OK the unique
prime ideals of normpi in the maximal orderOK of K. In caset > 1 we get that
these prime ideals have order 2 inCD. Denote byD̃ the squarefree number with
Q(
√

D) = Q(
√

D̃). Then there exists a principal ideal of norm|D̃| generated by√
D̃. Using this we get the only non–trivial relation of the groupCD/C2

D of order
2t−1 generated byp1, . . . ,pt . If we look at the classes inCD/C2

D represented by

B := {pe1
1 · · ·p

et
t | ei ∈ {0,1}, 1≤ i ≤ t},

then each class is represented exactly twice.
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Lemma 9
1. 2rk4(CD) = #{B2 ∈CD | B4 = P}.
2. 2rk4(CD) = 1

2#{b ∈B | a2 = (α)b for suitablea and totally positiveα}.
Proof The first part is obvious from the definition of the 4–rank. Using the first
part and the above discussion we get the second part. ut

Now we are able to prove Theorem 5.

Proof (Theorem 5)We use the second part of Lemma 9 and show that an ideal
b ∈B of normb has the desired property if and only if(b|−b′) = 1.

Now assume that a squarefreeb> 0 dividingD has the property that(b|−b′) =
1 = (D|b) using Lemma 8. Thereforeb is a norm inK = Q(

√
D) and by clearing

denominators we find anα ∈ OK such thatN (α) = bw2, whereN denotes the
norm function andw∈N. SinceN (α) > 0 we get thatα or−α is totally positive.
W.l.o.g. we can assume thatα/p /∈ OK for all prime numbersp. Ideals of norm
p2 are either principal ideals generated byp or a square of an ideal of normp.
Sinceα/p /∈OK no principal ideals generated by a primep divide (α) and we get
(α) = ba2, whereb is the unique ideal of normb andN (a) = w.

Now assume thata2 = (α)b with the above properties. Then

N (α) = b
N (a)2

b2 .

Therefore 1= (D|b) = (b|−b′). ut

3.3 The ordinary class group

In order to compute rk4(ClD) we need to know the relation between ClD andCD.
It is well known that we have an exact sequence

1→ F∞ →CD → ClD → 1,

whereF∞ ≤ Z/2Z. Furthermore|F∞| = 2 if and only if D > 0 andN (ε) = 1,
whereε is the fundamental unit ofOK (see e.g. [15, Corollary 2, p. 112]). To
compare the structures ofCD and ClD we use the following result (see e.g. [15,
Corollary 1, p. 457 and note 20, p. 483] and [13, Theorem 1, p. VII-6]).

Lemma 10 Let D > 0 be a discriminant with|F∞| = 2. Then the following two
statements are equivalent:

1. CD
∼= Z/2Z×ClD.

2. There exists a prime p| D such that p≡ 3 mod 4.

In this case we have: C2D ∼= Cl2D.

This immediately implies that when all odd prime divisors ofD are congruent
to 1 mod 4 the 2–ranks ofCD and ClD coincide. IfN (ε) = 1, i.e. |F∞| = 2 this
means that there exists anr > 1 such that rk2r (CD) = rk2r (ClD) + 1. We define
εD ∈ {0,1} by the equation rk4(CD) = rk4(ClD) + εD. We already proved that
εD = 0 if there is a prime congruent to 3 mod 4 dividingD, or if the fundamental
unit has norm−1.

Now we are able to prove that our main statements remain true if we replace
CD by ClD.
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Corollary 1 The equations(4)–(9) remain true when we replace CD by the ordi-
nary class groupClD in the definition of S±(X,k,a,b).

Proof We have nothing to prove for negative discriminants or for discriminants
D≡ 4 mod 8. For positiveD we deduce from Lemma 10 the inequalities

rk4(CD)−1≤ rk4(ClD)≤ rk4(CD)

and if the equality rk4(CD)−1 = rk4(ClD) holds, then all odd prime divisors ofD
are congruent to 1 mod 4. In the caseD≡ 1 mod 4 we get using Ḧolder’s inequal-
ity that the error is bounded above by

∑
0<D<X,D≡1 mod 4

p|D⇒p≡1 mod 4

2krk4(CD) ≤ ( ∑
0<D<X,

p|D⇒p≡1 mod 4

1)1/a( ∑
0<D<X,D≡1 mod 4

2bkrk4(CD))1/b,

whereb≥ 2 is an integer, anda satisfies1
a + 1

b = 1. Using Landau’s theorem (see
e.g. [1, Satz 1.8.2]) and equality (5) we get that the above expression for the error
is less than

�b,k

(
X√

logX

)1/a

·X1/b �b,k X(logX)−
1
2a �ε,k X(logX)−

1
2+ε

for every positiveε, by choosingb large enough. A similar estimate can be given
for the caseD≡ 0 mod 8. ut

4 Analytic tools

Let us first recall some well known counting formulas of fundamental discrimi-
nants

∑
0<D<X

D≡1 mod 4

1, ∑
0<−D<X

D≡1 mod 4

1 =
2

π2 X +O
(
X

1
2
)
,

∑
0<D<X

D≡0 mod 8

1, ∑
0<−D<X

D≡0 mod 8

1, ∑
0<D<X

D≡4 mod 8

1, ∑
0<−D<X

D≡4 mod 8

1 =
1

2π2 X +O
(
X

1
2
)
,

(16)

which are extensions of the well known formula

∑
n≤X

µ
2(n) =

6
π2 X +O(X

1
2 ),

which counts the number of squarefree integersn ≤ X (here µ is the Möbius
function).

Our proof will start by a technical preparation of the integer variables. E.g. we
shall eliminate those with too many prime factors by appealing to a classical result
of Hardy and Ramanujan [8, Lemma A, p. 265]:
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Lemma 11 There exists an absolute constant B0, such that for every X≥ 3, for
every`≥ 0, we have

card{n≤ X ; ω(n) = `,µ
2(n) = 1} ≤ B0 ·

X
logX

· (log logX +B0)`

`!
.

We shall frequently use the classical result:

Lemma 12 Let γ be a positive real number. Then we have

∑
X−Y<n≤X

γ
ω(n) �Y(logX)γ−1,

uniformly for2≤ X exp(−
√

logX)≤Y < X.

Proof Consider the Dirichlet seriesF(s) := ∑γω(n)n−s, use the classical zero–
free region for the Riemann zeta–function to expressF(s) in terms ofζ γ(s) and
perform a complex integration with Perron formula. ut

For stronger results, see [19, Theorem 1] for instance.
We appeal to one of numerous forms of Siegel–Walfisz theorem [14, Corollary

5.29]:

Lemma 13 For every q≥ 2, for every primitive characterχ modq, and for every
A > 0 we have

∑
y≤p≤x

χ(p)�A
√

qx(logx)−A,

uniformly for x≥ y≥ 2.

We shall also benefit from double oscillation of characters by using the fol-
lowing result of Heath–Brown [11, Corollary 4, p. 238]. (However, some weaker
result having its origin in [12] would be sufficient for our purpose.)

Lemma 14 Let am and bn be complex numbers of modulus less than1. Then for
every M, N≥ 1 and for every positiveε we have

∑
m≤M

∑
n≤N

ambnµ
2(2m)

( n
m

)
�ε MN

(
M− 1

2 +N− 1
2
)
(MN)ε .

This result covers many of the cases we will encounter. However, to circumvent
the extra factor(MN)ε which causes trouble whenM andN are of completely
different sizes, we shall also use

Lemma 15 Let am and bn be complex numbers of modulus less than1. Then, for
every M, N≥ 1 we have

∑
m≤M

∑
n≤N

ambnµ
2(2m)µ

2(2n)
( n

m

)
�MNmin

{(
M− 1

2 +(N/M)−
1
2
)
,
(
N− 1

2 +(M/N)−
1
2
)}

, (17)

and for every positiveε, we have

∑
m≤M

∑
n≤N

ambnµ
2(2m)µ

2(2n)
( n

m

)
�ε MN

(
M− 1

2+ε +N− 1
2+ε
)
. (18)



14 Étienne Fouvry and J̈urgen Kl̈uners

Proof Formula (17) is a consequence of the large sieve for primitive characters
(see [14, Theorem 7.13], for instance). By Cauchy–Schwarz inequality and posi-
tivity, we have∣∣∣ ∑

m≤M
∑

n≤N
ambnµ

2(2m)µ
2(2n)

( n
m

)∣∣∣
≤M

1
2

{
∑

m≤M
µ

2(2m)
∣∣∣∑
n≤N

µ
2(2n)bn

( n
m

)∣∣∣2} 1
2

≤M
1
2

{
∑

m≤M
∑

χ prim modm

∣∣∑
n≤N

µ
2(2n)bnχ(n)

∣∣2} 1
2 �M

1
2
(
(M2 +N)N

) 1
2 ,

since, for odd squarefree positivem, the applicationn 7→
(

n
m

)
is a primitive char-

acter of conductorm. The other part of the inequality of Lemma 15 comes from an
application of Cauchy–Schwarz inequality to∑n |∑m|, from large sieve inequality
and from the fact that for odd squarefree positiven the applicationm 7→

(
n
m

)
is a

primitive character of conductorn or 4n.
Now (18) is an easy consequence of Lemma 14 and of (17). By symmetry, we

can suppose the inequalityM ≤N. Then ifM ≤N≤M2, we apply Lemma 14 and
notice that(MN)ε ≤M3ε . Finally, forN > M2, (17) gives the bound

�MN
(
M− 1

2 +(N/M)−
1
2
)
�MN ·M− 1

2+ε .

ut

5 Proof of Theorem 1 in the case of odd negative discriminants.

5.1 From 4–ranks to products of Jacobi symbols.

In that section, we shall restrict to fundamental discriminantD satisfying

D < 0, D≡ 1 mod 4. (19)

This is the simplest case since it does not take into account the quadratic structure
of −1 and 2 modulop. In Sections 6 to 10, we shall indicate how to extend these
results to other fundamental discriminants, negative or positive, odd or even.

We plan to study the moments of the quantity 2rk4(CD) over the set ofD satis-
fying (19), which means to study the sum

S−(X,k,1,4) = ∑
0<−D<X

D≡1 mod 4

2krk4(CD),

for k a positive integer and forX →+∞. We shall prove

Theorem 6 For every positive integer k and every positiveε, we have

S−(X,k,1,4) = N (k,2)
(

∑
0<−D<X

D≡1 mod 4

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2.
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With the words of Definition 1, we shall prove thatN (k,2) is the mean value of
2krk4(CD) on the set of negative odd fundamental discriminantsD.

WhenD satisfies (19), we easily deduce from Theorem 5 and Lemma 6 the
following

Lemma 16 Let D be a fundamental discriminant satisfying(19). Then we have
the equality

2rk4(CD) =
1
2

#
{
(a,b) | a, b≥ 1,−D = ab, a is a squaremodb

and b is a squaremoda
}
.

Now we use the Jacobi symbol
(

a
b

)
(for oddb≥ 1) to detect ifa is a square modb

with the formula

1

2ω(b) ∏
p|b

(
1+
(

a
p

))
=

1

2ω(b) ∑
c|b

(a
c

)
.

Using Lemma 16 we get

2rk4(CD) =
1

2·2ω(−D) ∑
−D=ab

(
∑
c|b

(a
c

))(
∑
d|a

(
b
d

))
,

which gives us with the change of variablesa = D2D3, b = D0D1, c = D0, and
d = D3 the following:

2rk4(CD) =
1

2·2ω(−D) ∑
−D=D0D1D2D3

(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
, (20)

always under the assumption thatD satisfies (19).
Note that we do not yet appeal to the quadratic reciprocity law. We follow the

idea of Heath–Brown [10], to use the fieldF2 to create indices for the variables
on the right–hand side of (20) and then make geometry in characteristic 2. We
replace each index 0, 1, 2 and 3 by its expansion in basis 2 : 00, 01, 10, 11, which
are viewed as elements ofF2

2. For (u,v) = (u1,u2,v1,v2) ∈ F2
2×F2

2, we consider
the polynomial

Φ1(u,v) := (u1 +v1)(u1 +v2).

This polynomial can be seen as the analogue ofB used by Heath–Brown [10, p.
338]. The functionΦ1 is useful to detect which Jacobi symbols appear in (20). We
have

2rk4(CD) =
1

2·2ω(−D) ∑
−D=D00D01D10D11

∏
(u,v)∈F4

2

(Du

Dv

)Φ1(u,v)
, (21)

since the equationΦ1(u,v) = 1 has only solutions for the quadruples(1,0,0,0),
(0,1,1,1), (1,1,0,0) and (0,0,1,1). In (21), we interpret the exponents 0 and
1∈ F2 as 0 and 1∈N, with the convention 00 = 1. Since we study thek–moment,
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our next task is to raise (21) to thek–th power. Hence we have to parameterize the
solutions of thek–fold equation

−D = ∏
u(1)∈F2

2

D(1)
u(1) = · · ·= ∏

u(k)∈F2
2

D(k)
u(k) . (22)

To perform this we introduce the greatest common divisor (g.c.d.) of variables:

Du(1),...,u(k) := g.c.d.
(
D(1)

u(1) , . . . ,D
(k)
u(k)

)
to write the factorization

D(`)
u(`) = ∏

1≤n≤k
n6=`

∏
u(n)∈F2

2

Du(1),...,u(`),...,u(k) . (23)

These are the solutions of (22), provided that theDu(1),...,u(k) satisfy the equality

−D = ∏
1≤n≤k

∏
u(n)∈F2

2

Du(1),...,u(k) . (24)

Reciprocally, starting from the decomposition (24) of−D into the product of 4k

integers, we deduce solutions to (22), by grouping variables as in (23). Raising
(21) to thek–th power, we get

2krk4(CD) =
1

2k ·2kω(−D)

× ∑ · · ·∑
D

u(1),...,u(k)

∏
(u(1),v(1))∈F4

2

(D(1)
u(1)

D(1)
v(1)

)Φ1(u(1),v(1))
· · · ∏

(u(k),v(k))∈F4
2

(D(k)
u(k)

D(k)
v(k)

)Φ1(u(k),v(k))
,

where theDu(1),...,u(k) satisfy (24), and theD(`)
u(`) and theD(`)

v(`) are defined by (23).
By the multiplicative properties of Jacobi symbols and the decomposition

given by equality (23), we obtain the equality

2krk4(CD) =
1

2k ·2kω(−D)

× ∑ · · ·∑
D

u(1),...,u(k)

∏
u(1),...,u(k)

v(1),...,v(k)

(
Du(1),...,u(k)

Dv(1),...,v(k)

)Φ1(u(1),v(1))+···+Φ1(u(k),v(k))

. (25)

We now introduce the elements of(F2
2)

k, u = (u(1), . . . ,u(k)) = (u1, · · · ,u2k) and
v = (v(1), . . . ,v(k)) = (v1, · · · ,v2k) ∈ F2k

2 , and we sum the formula (25) over all the
−D≤ X satisfying (19), to finally obtain
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Lemma 17 For every positive X we have the equality

S−(X,k,1,4) = 2−k ∑
(Du)∈D−(X,k)

(
∏
u

2−kω(Du)
)

∏
u,v

(Du

Dv

)Φk(u,v)
, (26)

whereD−(X,k) is the set of4k–tuples of squarefree, positive and coprime integers
(Du), with u = (u(1), . . . ,u(k)) ∈ F2k

2 satisfying

∏
u∈F2k

2

Du ≤ X, ∏
u∈F2k

2

Du ≡−1 mod 4,

and

Φk(u,v) = Φ1(u(1),v(1))+ · · ·+Φ1(u(k),v(k)) (27)

= (u1 +v1)(u1 +v2)+ · · ·+(u2k−1 +v2k−1)(u2k−1 +v2k).

5.2 Linked variables.

Inspired by [10, p. 338], we say that the variablesDu andDv (or the indicesu and
v) arelinked, if they satisfy the equality

Φk(u,v)+Φk(v,u) = 1.

In other words, this means that in (26), exactly one of the symbols
(

Du
Dv

)
or
(

Dv
Du

)
appears with exponent 1. LetP be the quadratic form overF2k

2 defined by

P(w) =
k−1

∑
j=0

w2 j+1(w2 j+1 +w2 j+2).

The quadratic formP satisfies the equalityP(u+v) = Φk(u,v)+Φk(v,u). Hence,
Du andDv are linked if and only ifP(u+v) = 1. They are unlinked if and only if
P(u+v) = 0.

5.3 Number of prime factors of the variables.

Let
Ω = e4k(log logX +B0), (28)

with B0 defined in Lemma 11. Denote byτk(n) the number of ways of writing the
integern as product ofk positive integers.

Let Σ1 be the contribution to the right part of (26) of the(Du)u∈F2k
2

which do
not satisfy

ω(Du)≤Ω , for all u ∈ F2k
2 . (29)
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We writen = ∏u Du, and we use the Cauchy–Schwarz inequality to see that

Σ1 � ∑
n≤X

ω(n)≥Ω

µ
2(n)τ4k(n)2−kω(n) � ∑

n≤X
ω(n)≥Ω

µ
2(n)τ2k(n)

�
(

∑
n≤X

ω(n)≥Ω

µ
2(n)

) 1
2
(

∑
n≤X

4kω(n)
) 1

2
.

By Lemmata 11 and 12 and by Stirling’s formula, this contribution also satisfies

Σ1 �
( X

logX ∑
`>Ω

(log logX +B0)`

`!

) 1
2
(

X(logX)4k−1
) 1

2

� X(logX)22k−1−1
(

∑
`>Ω

( log logX +B0

`/e

)`) 1
2 � X(logX)22k−1−1

(
∑

`>Ω

4−k`
) 1

2

� X2−kΩ (logX)22k−1−1,

which, fork≥ 1, finally gives

Σ1 � X(logX)−1, (30)

by the choice (28).

5.4 Order of magnitude of the variables.

We dissect the set of variations of the variablesDu in the definition ofD−(X,k)
to control their orders of magnitude and to mollify the constraint∏Du ≤ X. We
first introduce the dissection parameter

∆ = 1+ log−2k
X,

and for eachu ∈ F2k
2 , a numberAu of the form 1,∆ , ∆ 2, ∆ 3,...

For A = (Au)u∈F2k
2

, we define the restricted sumS(X,k,A) by the formula

S(X,k,A) = 2−k ∑
(Du)

(
∏
u

2−kω(Du)
)

∏
u,v

(Du

Dv

)Φk(u,v)
, (31)

where(Du) satisfies the conditions

(Du) ∈D−(X,k), Au ≤ Du < ∆Au, ω(Du)≤Ω for all u ∈ F2k
2 .

Recall thatD−(X,k) is defined in Lemma 17. Using equation (30) we decompose
S−(X,k,1,4) by the formula

S−(X,k,1,4) = ∑
A

S(X,k,A)+O
(
X(logX)−1), (32)

whereA is such that∏u∈F2k
2

Au ≤ X. We remark that the sum in (32) contains

O
(
(logX)4k(1+2k)) terms.
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We now define four families ofA and prove that their contributions to the right
part of (32) are negligible.

The first family is defined by:

∏
u∈F2k

2

Au ≥ ∆
−4k

X. (33)

By Lemma 12 and by the definition of∆ , we see that

∑
A satisfies (33)

∣∣S(X,k,A)
∣∣≤ ∑

∆−4kX≤n≤X

µ
2(n)τ4k(n)2−kω(n)

� ∑
∆−4kX≤n≤X

2kω(n)

� (1−∆
−4k

)X(logX)2k−1.

Using the expansion(1+x)α = 1+αx+O(x2) for x→ 0 we get:

∆
−4k

= (1+ log−2k
X)−4k

= 1−4k log−2k
X +O(log−2k+1

X).

Putting the last two formulas together we finally get:

∑
A satisfies (33)

∣∣S(X,k,A)
∣∣� X(logX)−1. (34)

Note that if (33) is not satisfied, the conditionsAu ≤Du < ∆Au imply ∏u Du ≤ X
automatically. This means that the sizes of theDu are mutually independent now.

To define the three other families we introduce two numbersX† andX‡ defined
by

X† = (logX)3[1+4k(1+2k)] (35)

X‡ is the least∆ ` ≥ exp(logη(k) X). (36)

We shall chooseη(k) as a small positive function ofk (see its definition before
the statement of Proposition 5). The second family is defined by

At most 2k−1 of theAu are larger thanX‡. (37)

It is easy to see the inequality

∑
A satisfies (37)

∣∣S(X,k,A)
∣∣≤ ∑

(Du)
∏Du≤X

∏
u

2−kω(Du), (38)

where the sum is over the 4k–tuples(Du) which are squarefree, coprime and are
such that at most 2k−1 are larger thanX‡. We dissect the above sum according
to the numberr ≤ 2k−1 of Du which are larger thanX‡. Let n be the product of



20 Étienne Fouvry and J̈urgen Kl̈uners

thoseDu which are larger thanX‡, andm the product of the remaining ones. With
these conventions and with Lemma 12, we transform (38) into

∑
A satisfies (37)

∣∣S(X,k,A)
∣∣

≤ ∑
0≤r≤2k−1

∑
m≤(X‡)4k−r

µ
2(m)τ4k−r(m)2−kω(m) ∑

n≤X/m

µ
2(n)τr(n)2−kω(n)

� ∑
0≤r≤2k−1

∑
m≤(X‡)4k−r

µ
2(m)τ4k−r(m)2−kω(m)(X/m)

(
logX

)r2−k−1

� X
(

∑
0≤r≤2k−1

(
logX

)r2−k−1
)(

∑
m≤(X‡)4k

2kω(m)

m

)
.

By Mertens formula, we finally get

∑
A satisfies (37)

∣∣S(X,k,A)
∣∣� X(logX)2kη(k)−2−k

. (39)

The third family ofA is defined by
The condition (33) is not satisfied and

there exist two linked indicesu andv such thatAu andAv are≥ X†.

(40)

In that case the bound forS(X,k,A) will be obtained as a consequence of
the double oscillations of the character(Du

Dv
) whenDu andDv vary independently

(see Lemma 15). IfA satisfies (40), there exist two indicesu and v such that
Φk(u,v)+Φk(v,u) = 1. Hence we can write the inequality

|S(X,k,A)| ≤

∑
(Dw)w6=u,v

∏
w6=u,v

2−kω(Dw)

∣∣∣∣∣∑Du

∑
Dv

a(Du,(Dw)w6=u,v)a(Dv,(Dw)w6=u,v)
(Du

Dv

)∣∣∣∣∣ , (41)

where

a(Du,(Dw)w6=u,v) = 2−kω(Du) ∏
w6=u,v

(Du

Dw

)Φk(u,w)
∏

w6=u,v

(Dw

Du

)Φk(w,u)

anda(Dv,(Dw)w6=u,v) is defined similarly. The coefficientsa are always less than
1 in absolute value and the variables of summationDw are coprime, squarefree
and satisfy the conditions

∏
w∈F2k

2

Dw ≡−1 mod 4, ω(Dw)≤Ω andAw ≤ Dw < ∆Aw (w ∈ F2k
2 ),
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with Au,Av ≥ X†. By fixing the class±1 mod 4 of eachDw, and by applying (18)
to the inner double sum of (41), we get the inequality∣∣S(X,k,A)

∣∣�( ∏
w6=u,v

Aw

)(
AuAv(A

− 1
3

u +A
− 1

3
v )
)
� X(X†)−

1
3 .

It remains to sum over theO
(
(logX)4k(1+2k)) possibleA and to use the definition

of X† to finally get

∑
A satisfies (40)

∣∣S(X,k,A)
∣∣� X(logX)−1. (42)

The fourth family ofA is defined by
The condition (33) is not satisfied and there exist

two linked indicesu andv such that 2≤ Av < X† andAu ≥ X‡.

(43)

To deal with such cases, we introduceκ in the following equations in order
to satisfy the condition∏u Du ≡ −1 mod 4. Since (43) is satisfied, we have the
inequality∣∣S(X,k,A)

∣∣≤ 2 max
κ=±1 mod 4

∑
(Dw)w6=u,v

∑
Dv

∣∣∣∑
Du

µ2
(
2∏w Dw)

2kω(Du)

(Du

Dv

)∣∣∣, (44)

whereAw ≤ Dw < ∆Aw (w ∈ F2k
2 ) andDu ≡ κ mod 4 andω(Du) ≤ Ω , with the

inequalitiesAu ≥ X‡ and 2≤ Av < X†. Fixing the valuè of ω(Du) and writing
Du = p1 · · · p` in ascending order, we transform (44) into∣∣S(X,k,A)

∣∣� max
κ=±1 mod 4

∑
(Dw)w6=u,v

∑
Dv

∑
0≤`≤Ω

1
2k`

∣∣∣ ∑
ω(Du)=`

Du≡κ mod 4

µ
2(2∏

w
Dw)

(Du

Dv

)∣∣∣,
(45)

and the inner sum satisfies∣∣∣ ∑
ω(Du)=`

Du≡κ mod 4

µ
2(2∏

w
Dw)

(Du

Dv

)∣∣∣
≤ 2 max

κ ′=±1 mod 4
∑ · · ·∑
p1···p`−1

∣∣∣ ∑
p`≡κ ′ mod 4

µ
2(2p1 · · · p` ∏

w6=u
Dw)

( p`

Dv

)∣∣∣,
(46)

andp` satisfiesAu ≤ p1 · · · p` < ∆Au. Since` is not too large (̀≤Ω ), the variable

p` satisfiesp`≥A
1
`
u , the interval of variation forp` is large enough, compared with

the modulus 4Dv ≤ 8X†, since we haveA
1
`
u ≥ exp

(
logη(k)/2X

)
. Applying Lemma

13 withq = 4Dv,x = ∆Au
p1···p`−1

, andA large we have∣∣∣ ∑
p`≡κ ′ mod 4

µ
2(2p1 · · · p` ∏

w6=u
Dw)

( p`

Dv

)∣∣∣� A
1
2
v

Au

p1 · · · p`−1

(
logX

)−Aη(k)/2 +Ω .
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We remark that theΩ–term comes from theµ2–term, which may be zero, ifp`

divides one of theDw. Inserting this bound in (46), summing overp1, ..., p`−1,
and then in (45), we finally get the inequality∣∣S(X,k,A)

∣∣� AuA
3
2
v

(
∏

w6=u,v
Aw

)(
logX

)−Aη(k)/2 � X
(
X†)

1
2
(
logX

)−Aη(k)/2
.

Now summing over all theA satisfying (43), and choosingA very large in terms
of k, we proved

∑
A satisfies (43)

∣∣S(X,k,A)
∣∣� X(logX)−1. (47)

It is now easy to deduce from (32), (34), (39), (42) and (47):

Proposition 2 For every k≥ 1, we have the equality

S+(X,k,1,4) = ∑
A satisfies(48)

S(X,k,A)+O
(
(X(logX)2kη(k)−2−k

)
,

where 

∏
u∈F2k

2

Au < ∆
−4k

X

At least2k indicesu satisfy Au > X‡,

Two indicesu andv with Au,Av > X† are always unlinked,

If Au and Av with Av ≤ Au are linked, then

either Av = 1 or (2≤ Av < X† and Av ≤ Au < X‡).

(48)

Actually, in proving Proposition 2, we did not enter into the properties of linked
indices. It is the purpose of the following subsection, to simplify the conditions
(48).

5.5 Geometry of unlinked indices.

We first prove

Lemma 18 Let k≥ 1 an integer and letU ⊂ F2k
2 be a set of unlinked indices.

Then#U ≤ 2k and for anyc ∈ F2k
2 , c+ U is also a set of unlinked indices. If

#U = 2k, then eitherU is a vector subspace ofF2k
2 of dimension k or a coset of

such a subspace of dimension k.

Proof We follow the proof of [10, Lemmata 7–8]. It is easy to see that ifU is
a set of unlinked indices, thenc+ U has the same property. We introduce the
symmetric bilinear form

p(u,v) = P(u+v)−P(u)−P(v) =
k−1

∑
j=0

(u2 j+1v2 j+2 +u2 j+2v2 j+1).
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Note that ifu andv are unlinked with0, thenu andv are unlinked if and only if
we havep(u,v) = 0.

Let U be a subset of unlinked indices. Hence for anyu andv ∈ U we have
P(u + v) = 0 and thereforeu + v is unlinked with0. Since the property of being
unlinked is stable under translation, we may suppose that0∈U . Hence, under the
assumption0∈ U we havep(u,v) = 0 for anyu andv ∈ U and p(u + v,w) =
p(u,w) + p(v,w) = 0 for any u, v and w ∈ U . Then we deduce thatu + v is
unlinked with anyw ∈ U . If we suppose thatU is maximal, we see thatU is
closed under addition, and is a vector subspace ofF2k

2 .
We now appeal to some results concerning the theory of bilinear forms on

vector spaces over fields with characteristic 2 (see [4, p.33 & 34] for instance). To
follow the the terminology of that theory,U is asingularspace for the non degen-
erate quadratic formP (which means thatP≡ 0 onU ). It follows that dimU ≤ k.

By [4, p. 23.4 & p.36] we know that all the maximal singular spaces have the
same dimension. We know the singular space of dimensionk which is generated
by the vectors(1,1,0, . . . ,0),(0,0,1,1,0. . . ,0), . . . ,(0,0, . . . ,0,1,1). Hence it is a
maximal singular space and all the maximal singular spaces have dimensionk.

ut

Now we can simplify the conditions of summation (48). LetA = (Au) satis-
fying (48) and letU be the set of indicesu, such thatAu > X‡. This is a set of
unlinked indices of cardinality≥ 2k. By Lemma 18 we know that its cardinality
is equal to 2k. Furthermore, by this lemma, it is also a maximal subset of unlinked
indices. Hence, for anyv /∈ U , there existsu ∈ U , such thatu andv are linked.
From the last condition in (48), we deduce thatAv = 1.

From this discussion,we simplify Proposition 2 into

Proposition 3 For every k≥ 1, we have the equality

S−(X,k,1,4) = ∑
A satisfies(49)

S(X,k,A)+O
(
X(logX)2kη(k)−2−k)

where 
∏

u∈F2k
2

Au ≤ ∆
−4k

X,

U = {u ; Au > X‡} is a maximal subset of unlinked indices,

Au = 1 for u /∈U .

(49)

Following the notations of Heath–Brown [10], we reserve the letterU for any sub-
set of 2k unlinked indices, taken inF2k

2 . We say thatA = (Au)u∈F2k
2

is admissable

for U , if it satisfies 
Au > X‡ ⇔ u ∈U

Au = 1⇔ u /∈U

∏Au ≤ ∆
−4k

X.

(50)

We remark thatAu = 1 impliesDu = 1. Foru ∈ U , let hu ∈ {±1 mod 4} such
that

∏
u∈U

hu ≡−1 mod 4. (51)
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Let A be admissable forU . The definition of unlinked indices, the quadratic reci-
procity law and the definition (31) imply the equality (Φk(u,v) = Φk(v,u) for u,v
unlinked):

S(X,k,A) = 2−k ∑
(hu)

(
∑
(Du)

µ
2( ∏

u∈U

Du) ∏
u∈U

2−kω(Du)
)(

∏
u,v

(−1)Φk(u,v)· hu−1
2 · hv−1

2

)
,

(52)
where the first sum is overhu satisfying (51) and the second sum is over(Du)u∈U
such that

Au ≤ Du < ∆Au, Du ≡ hu mod 4, ω(Du)≤Ω ,

and the last product is over unordered pairs{u,v} of elements ofU .
We now appeal to the following lemma, which is a consequence of the equidis-

tribution of primes in fixed arithmetic progressions.

Lemma 19 For κ = ±1 mod 4, for every A≥ 0 and for Y≥ y≥ 1, we have the
equality

∑
y≤n≤Y

n≡κ mod 4
ω(n)=`

µ
2(n0n) =

1
2 ∑

y≤n≤Y
ω(n)=`

µ
2(2n0n)+OA

(
(`+1)A+1Y(log2Y)−A+ω(n0)Y1− 1

`

)
,

uniformly for an odd squarefree integer n0, and`≥ 0.

Note that this lemma is of poor quality when` is large and trivial for̀ = 0.

Proof We supposè≥ 1 and writen= p1 · · · p` the decomposition ofn in increas-
ing odd primes. Note that we have the inequalityY/(p1 · · · p`−1)≥Y

1
` , otherwise

the sum is empty. Hence, we have the equality

∑
y≤n≤Y,n≡κ mod 4

ω(n)=`

µ
2(n0n) = ∑

p1···p`−1≤Y1− 1
`

µ
2(n0p1 · · · p`−1) ∑

max(p`−1,y/(p1···p`−1))<p`≤Y/(p1···p`−1)
p`≡κ/(p1···p`−1) mod 4

µ
2(2n0p`).

(53)
By the prime number theorem in arithmetic progressions modulo 4 written in the
form

∑
Z1<p≤Z2

p≡a mod 4

1 =
1
2 ∑

Z1<p≤Z2

1+O
(
Z2(log2Z2)−A),

uniformly for a odd and 1< Z1 < Z2 (see Lemma 13, withq = 4), we see that the
sum overp` in (53) is equal to

1
2 ∑

max(p`−1,y/(p1···p`−1))<p`
p`≤Y/(p1···p`−1)

µ
2(2n0p`)+O

(
ω(n0)+

Y
p1 · · · p`−1

(log−A(2Y
1
` )
))

,

then, summing this expression overp1 · · · p`−1 ≤ Y1− 1
` , we finish the proof of

Lemma 19. ut
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This lemma is used to transform the inner sum over(Du) in (52) in the following
way. We momentarily suppose that the setU is written in the form

U = {um; 1≤m≤ 2k},

with um∈ F2k
2 . Then we have

∑
(Du)

µ
2( ∏

u∈U

Du) ∏
u∈U

2−kω(Du) = ∑
Du1

2−kω(Du1)

×
(
∑
Du2

2−kω(Du2)
(
· · ·
(

∑
Du

2k

µ
2(Du1 · · ·Du2k )2

−kω(Du
2k )
)

. . .
))

,

(54)

where, for each 1≤ i ≤ 2k, the sum overDui satisfies

Aui ≤ Dui < ∆Aui , Dui ≡ hui mod 4, ω(Dui )≤Ω .

By fixing the valueω(Du2k ) = `, applying Lemma 19 withy = Au2k andY =
∆Au2k , and then summing over`≤Ω , we get the equality

∑
Du

2k

µ
2(Du1 · · ·Du2k )2

−kω(Du
2k ) =

1
2 ∑

Au
2k≤Du

2k <∆Au
2k

ω(Du
2k )≤Ω

µ
2(2Du1 · · ·Du2k )2

−kω(Du
2k ) +O

(
Au2k (logX)−1−4k(1+2k)).

Note that the congruence condition forDu2k has disappeared and that we used the

lower bound log(2Y) ≥ logAu2k ≥ (logX)η(k). Inserting this formula into (54),
inverting summations, and applying the same lemma to the variableDu2k−1

and so
on, we finally get the equality

∑
(Du)

µ
2( ∏

u∈U

Du) ∏
u∈U

2−kω(Du)

=
1

22k ∑
(Du),Au≤Du<∆Au

ω(Du)<Ω

µ
2(2 ∏

u∈U

Du
)

∏
u∈U

2−kω(Du) +O
(

X(logX)−1−4k(1+2k)
)
.

Inserting this formula into (52) and summing over allA admissable for a fixedU
and satisfying (49), we get

∑
A admissable forU

S(X,k,A) = 2−k−2k
{

∑
(hu)

(
∏
u,v

(−1)Φk(u,v)· hu−1
2 · hv−1

2

)}
×
{

∑
(Du)

µ
2(2 ∏

u∈U

Du) ∏
u∈U

2−kω(Du)
}

+O
(
X(logX)−1),

(55)
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where the sum is over the(Du) such thatω(Du) ≤ Ω and such that there is an
A = (Au) satisfying (50) andAu ≤ Du < ∆Au.

By a computation similar to the proof of (30), we can drop the condition of
ω(Du)≤Ω with an error term inO

(
X(logX)−1

)
.

By a computation already done to obtain (39) and (34), we transform the right–
hand side of (55) into

∑
(Du)

µ
2(2 ∏

u∈U

Du) ∏
u∈U

2−kω(Du) = ∑
n≤X

µ
2(2n)τ2k(n)2−kω(n) +O(X(logX)−1)

+O
(

∑
1≤`≤X‡

2−kω(`) ∑
1≤m≤X/`

2−kω(m)(2k−1)ω(m)
)

= ∑
n≤X

µ
2(2n)+O

(
X(logX)η(k)2−k−2−k

)
.

The first error term comes from equation (34). In the second error term we count
the numbers which have at least one factor` ≤ X‡. The sum overm is computed
by Lemma 9 usingγ = 1−2−k and the final sum using Mertens formula. By this
expression, by (16), and by (55) we get

Proposition 4 For every k, and for every maximal unlinked subsetU ⊂ F2k
2 , we

have

∑
A admissable forU

S(X,k,A) = 2−k−2k
γ(U )

4X
π2 +O

(
X(logX)η(k)2−k−2−k

)
,

with
γ(U ) = ∑

(hu)

(
∏
u,v

(−1)Φk(u,v)· hu−1
2 · hv−1

2

)
,

where the product is over unordered pairs{u,v}⊂U , and where(hu)u∈U ∈ {±1
mod 4}2k

satisfy(51).

Now we sum over all maximal unlinked setsU in Proposition 4, use Proposition
3 and choseη(k) = 2−kε, to finally write

Proposition 5 For every k≥ 1 and for every positiveε, we have the equality

S−(X,k,1,4) =
22−k−2k

π2

(
∑
U

γ(U )
)
·X +O

(
X(logX)−2−k+ε

)
,

where the sum is over the set of maximal unlinked setsU ⊂ F2k
2 .

5.6 Study of the coefficient of the main term.

By Proposition 5, the proof of Theorem 6 is reduced to the study the quantity
∑U γ(U ). This is the purpose of this section, in which we follow the strategy of
the proof of [10]. By Lemma 18, we writeU asU = c+U0, with c∈ F2k

2 andU0

a vector subspace ofF2k
2 of dimensionk. Note thatU0 is also a maximal unlinked

vector subspace.
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Let S= S(U ,(hu)) be the set

S= {u ∈U ; hu ≡−1 mod 4}.

By (51), the cardinalitys of S is odd. We directly obtain

γ(U ) = ∑
S⊂U
s odd

(−1)e(S), (56)

with

e(S) = ∑
u,v

Φk(u,v), (57)

where the sum is over unordered pairs{u,v} ⊂ S. Of course, sincee(S) ∈ F2,
we interpret(−1)e(S) as an element ofZ, in the natural way. For the purpose of
the next sections, we generalizeγ(U ) by introducing forν = 0 or 1 mod 2, the
following

γ(U ,ν) = ∑
S⊂U

s≡ν mod 2

(−1)e(S). (58)

Now we decompose the polynomialΦk in a sum of a bilinear form, the qua-
dratic formP and two linear forms, in the following way

Φk(u,v) = L(u,v)+P(v)+Λ(u)+Λ(v), (59)

with

L(u,v) =
k−1

∑
j=0

u2 j+1(v2 j+1 +v2 j+2), (60)

P(v) =
k−1

∑
j=0

v2 j+1(v2 j+1 +v2 j+2),

and

Λ(u) =
k−1

∑
j=0

u2
2 j+1 =

k−1

∑
j=0

u2 j+1.

Note that

L(u,u) = P(u) (∀u ∈ F2k
2 ). (61)

The quadratic formP is almost linear in the following sense:

Lemma 20 Let S be a subset ofU of cardinality s andσ := ∑u∈Su. Then

1. For s odd we get that P(σ) = L(σ ,σ) = ∑
u∈S

P(u).

2. L(σ ,σ)+s

(
∑

u∈S
P(u)

)
= 0.
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Proof Whens = 1, (i) is a consequence of (61). For other odds, this is a con-
sequence of the general formula true for any quadratic formQ overF2k

2 , and for
everyu, v, andw:

Q(u+v+w) = Q(u+v)+Q(u+w)+Q(v+w)+Q(u)+Q(v)+Q(w),

which forQ = P andu, v, andw ∈U gives

P(u+v+w) = P(u)+P(v)+P(w),

where we usedP(u+v) = 0 for u andv unlinked. This proves the second equality
for s odd. In the even case we note thatσ ∈ U0 andP(σ + 0) = 0 sinceu and0
are unlinked. ut

We now want to evaluate the functione(S) defined in (57) in a suitable way.
We shall require some notations from set theory : ifX is a set, we denote

by P(X ) the set of subsets ofX . For X finite and forν = 0 or 1 mod 2,
Pν(X ) is the set of subsets ofX , with cardinalities≡ ν mod 2. The symmetric
difference operator is denoted by∆ , and shall frequently use the facts thatP(X )
andP0(X ) are abelian groups with the law∆ , and thatP0(X ) operates on
P1(X ) by the law∆ in a simply transitive way.

For anySandT ∈P(U ), with cardinalities odd or even, we define

e(S,T) := e(S)+e(T)+e(S∆T). (62)

Then we have
e(S,T) = ∑

u∈S
∑
v∈T

Φk(u,v). (63)

The proof of (63) is in [10, p. 351]. Another direct proof is to check that (63) is
correct forS= T = /0 and to prove it by induction on the cardinality ofS∪T. In
other words, we check that for anyw∈U butw /∈S∪T, the equality (63) remains
true if we replaceS andT respectively byS∪{w} andT, by S andT ∪{w}, or
by S∪{w} andT ∪{w}. We only require the properties thatΦk(u,u) = 0 and
Φk(u,v) = Φk(v,u) for anyu andv ∈U .

In the following σ andτ always denote the sum of elements inS andT, re-
spectively. Furthermore the size ofS andT is denoted bys andt, which will be
interpreted as elements inF2 by reducing mod 2.

Lemma 21 For all subsets S and T ofU we have:

e(S,T) = L(σ ,τ)+s

(
∑
v∈T

P(v)

)
+ tΛ(σ)+sΛ(τ).

Proof This follows directly from (59) and (63) using linearity. ut

Squaring (58), we have the equality

γ
2(U ,ν) = ∑ ∑

S,S′⊂U
s,s′≡ν mod 2

(−1)e(S)+e(S′)

= ∑ ∑
S,S′⊂U

s,s′≡ν mod 2

(−1)e(S∆S′)+e(S′,S). (64)
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Instead of summing overS′, we sum overT = S∆S′, which has even cardinality.
By Lemma 21, by linearity and byt even, we have

e(S∆T,S) = L(σ + τ,σ)+(s+ t)
(

∑
u∈S

P(u)
)

+sΛ(σ + τ)+(s+ t)Λ(σ)

= L(τ,σ)+L(σ ,σ)+s∑
u∈S

P(u)+sΛ(τ) (65)

since
∑

u∈S∆T

u = ∑
u∈S

u+ ∑
u∈T

u = σ + τ.

Using Lemma 20 we can even more simplify:

e(S′,S) = e(S∆T,S) = L(τ,σ)+sΛ(τ). (66)

By (66), (64), and usingT = S∆S′ we get

γ
2(U ,ν) = ∑

T⊂U , t even

(−1)e(T)+νΛ(τ)
Σ(T,ν), (67)

where
Σ(T,ν) = ∑

S⊂U ,s≡ν mod 2

(−1)L(τ,σ). (68)

For everyS0 ∈P0(U ) and corresponding sumσ0 we get by linearity the equality

Σ(T,ν) = ∑
S⊂U ,s≡ν mod 2

(−1)L(τ,σ+σ0)

which gives us the equation

Σ(T,ν) = (−1)L(τ,σ0)Σ(T,ν)

for everyS0 ∈P0(U ). HenceΣ(T,ν) = 0 unless

L(τ,σ0) = 0 for everyS0 ∈P0(U ). (69)

If (69) is satisfied, then with the choiceS0 = {c}∆S, we haveL(τ,σ) = L(τ,c)
for everyS∈P1(U ). This implies thatL(τ,σ) = sL(τ,c), for anyS⊂U , with
s odd or even. SinceP0(U ) andP1(U ) have cardinality equal to 22k−1, we get
the equality (still assuming (69)):

Σ(T,ν) = 22k−1(−1)νL(τ,c),

which transforms (67) into

γ
2(U ,ν) = 22k−1 ∑

T∈T

(−1)e(T)+ν

(
Λ(τ)+L(τ,c)

)
, (70)

whereT is the set of subsetsT of U with even cardinality such that (69) is
satisfied.
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Note thatT contains all subsetsT of U , with t even andτ = 0, and thatT
is a group with symmetric difference operator. Note also that Lemma 21 implies
e(T,T ′) = 0 for everyT andT ′ ∈T and by the way using (62), the application

T 7→ (−1)e(T)

is a multiplicative character on that group, and also the map

T 7→ (−1)e(T)+ν

(
Λ(τ)+L(τ,c)

)
.

From (70) we deduce thatγ(U ,ν) vanishes unless

e(T) = ν
(
L(τ,c)+Λ(τ)

)
,

for all T ∈T . By restriction to theT ∈T with τ = 0, we proved

Lemma 22 LetU be a maximal unlinked subset ofF2k
2 . Then we have(

γ(U ,0) or γ(U ,1) 6= 0
)
⇒
(
e(T) = 0 ∀T ⊂U with t even andτ = 0

)
.

This lemma is a weak form of the following

Lemma 23 Let U be a maximal unlinked set ofF2k
2 written in the formU =

c+U0. Then we have(
γ(U ,0) or γ(U ,1) 6= 0

)
⇒
(
e(S) = (1+s)

(
L(σ ,c)+Λ(σ)

)
∀S⊂U

)
.

Proof We suppose thatγ(U ,ν) 6= 0 for ν = 0 or for ν = 1 mod 2. LetS⊂ U
such thats is odd. We fixT = S∆{σ}. Sinces is odd,σ is an element ofU . We
also haveτ = σ +σ = 0. By Lemma 22, we havee(T) = 0 and by Lemma 21 we
get

e(S,{σ}) = L(σ ,σ)+sP(σ)+Λ(σ)+sΛ(σ) = 0.

Combining this relation with (62), we get

e(S) = e({σ})+e(T)+e(S,{σ}) = 0,

which gives Lemma 23 whens is odd.
We now consider the case whens is even. Ifσ = 0, then Lemma 22 implies

that e(S) = 0 and Lemma 23 is correct in that case. Now, ifσ 6= 0, we consider
the setT = S∆{c,c+σ}, which satisfiest even andτ = 0. Lemma 22 gives

e(T) = 0. (71)

By definition (57), by (61) and by linearity, we have

e({c,c+σ}) = Φk(c,c+σ)
= L(c,c+σ)+P(c+σ)+Λ(c)+Λ(c+σ)
= L(c+c+σ ,c+σ)+Λ(σ) = L(σ ,σ)+L(σ ,c)+Λ(σ),

which gives the equality

e({c,c+σ}) = L(σ ,c)+Λ(σ), (72)
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sinceσ ∈ U0 andL(σ ,σ) = P(σ + 0) = 0 (s even). By applying Lemma 21 we
get (s andt are even):

e(S,{c,c+σ}) = L(σ ,σ) = 0. (73)

Using (62) and the three equalities (71), (72), (73), we get that

e(S) = e(S,{c,c+σ})+e({c,c+σ})+e(T)
= L(σ ,c)+Λ(σ),

which finishes the proof of Lemma 23. ut

We push further the study of subsetsU such thatγ(U ,ν) 6= 0:

Lemma 24 LetU be a maximal unlinked subset ofF2k
2 written in the formU =

c+U0. Then we have(
γ(U ,0) 6= 0 or γ(U ,1) 6= 0

)
⇒ L|U0×U0

≡ 0.

Proof Let σ andτ be two non zero elements ofU0. We see that they are the sums
of the elements of the following subsets ofU : S:= {c,c+σ} andT := {c,c+τ}.
These two subsets have even cardinality. By Lemma 21 and equation (62) we
deduce

L(σ ,τ) = e(S,T) = e(S)+e(T)+e(S∆T)

=
(
L(σ ,c)+Λ(σ)

)
+
(
L(τ,c)+Λ(τ)

)
+
(
L(σ + τ,c)+Λ(σ + τ)

)
,

the last line being a triple application of Lemma 23. By linearity, we finally get
thatL(σ ,τ) = 0. ut

As Heath–Brown [10, p.354], we say that the vector subspaceU0 of F2k
2 is

good, when it has dimensionk and when the bilinear formL is identically zero on
U0×U0. Note the implication

U0 good⇒ c+U0 is maximal unlinked for allc∈ F2k
2 ,

since, for everyu andv ∈U0, we have

P
(
(c+u)+(c+v)

)
= P(u+v) = L(u+v,u+v) = 0.

We extend Lemma 23 in the following way:

Lemma 25 Let U = c+U0 be a maximal unlinked subset ofF2k
2 . Then we have

the implication

U0 good ⇒ e(S) = (1+s)
(
L(σ ,c)+Λ(σ)

)
∀S⊂U .

In particular, if s is odd, we have e(S) = 0.
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Proof This lemma is true fors= 0 or 1, sincee(S) = 0 in both cases. Fors= 2,
it is a consequence of (72). The rest of the proof is made by induction. LetS⊂U
with s≥ 2. We decomposeS= T∆S′, with s′ = s−2, t = 2, and∑u∈S′ u = σ ′. By
definition (62), by induction hypothesis and by Lemma 21, we have

e(S) = e(T∆S′) = e(T)+e(S′)+e(T,S′)

=
(
L(τ,c)+Λ(τ)

)
+(1+s′)

(
L(σ ′,c)+Λ(σ ′)

)
+
(
L(τ,σ ′)+s′Λ(τ)

)
=
(
L(τ,c)+(1+s′)L(σ ′,c)+L(τ,σ ′)

)
+(1+s′)Λ(σ).

If s ands′ are odd we get:

e(S) = L(τ,c)+L(τ,σ ′) = L(τ,c+σ
′) = 0

sinceτ,c+σ ′ ∈U0. If s ands′ are even we get:

e(S) = L(τ,c)+L(σ ′,c)+L(τ,σ ′)+Λ(σ) = L(σ ,c)+Λ(σ)

becauseτ +σ ′ = σ andL(τ,σ ′) = 0 sinceτ,σ ′ ∈U0. ut

In order to precise the main term in Proposition 5, we must study the coeffi-
cient∑U γ(U ) = ∑U γ(U ,1). By decomposition and by Lemma 24, we have

∑
U

γ(U ) = ∑
U0 good

∑
U

coset ofU0

γ(U )+ ∑
U0 not good

∑
U

coset ofU0

γ(U )

= ∑
U0 good

∑
U

coset ofU0

γ(U ).

By Lemma 25, we know that eachS∈ P1(c+ U0) with U0 is good, satisfies
e(S) = 0. From this, we deduce

∑
U

γ(U ) = ∑
U0 good

∑
U

coset ofU0

#{S⊂U ;s odd}= 2k ·22k−1 ∑
U0 good

1,

which finally gives the equality

∑
U

γ(U ) = 22k+k−1#{U0 good}. (74)

5.7 Counting the number of good subspaces

As in [10, Lemma 6], we are now led to a problem of linear algebra and we prove

Lemma 26 Let k≥ 1, and consider the vector spaceE = F2k
2 . Let L be the bilinear

form defined onE ×E by the formula

L(u,v) =
k−1

∑
j=0

u2 j+1(v2 j+1 +v2 j+2).

Let /0 6= Γ ⊆ {1, . . . ,k}. Then the following holds:
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(i) There is a bijection between the set of good vector subspacesU0 of E as
defined before Lemma 25, and the set of vector subspaces ofFk

2.
(ii) The number of good subspaces inE is equal toN (k,2).

(iii) The number of good subspacesU0 in E such that ∑
`∈Γ

(u2`−1 +u2`) = 0 for all

u ∈U0 is equal toN (k−1,2).
(iv) The number of good subspacesU0 in E such that ∑

`∈Γ

u2`−1 = 0 for all u ∈U0

is equal toN (k−1,2).

Proof Let {e1, . . . ,e2k} be the canonical basis ofE , and letB the basis defined
by B = {b1, . . . ,b2k} = {e1 +e2,e2, . . . ,e2k−1 +e2k,e2k} of E . In this new basis,
we have

L(u,v) =
k−1

∑
j=0

x2 j+1y2 j+2,

where(xi) and (y j) are the components ofu and v in B. Let X andY be the
subspaces ofE defined by

X =
{k−1

∑
j=0

x2 j+1b2 j+1 | x2 j+1 ∈ F2

}
,

and

Y =
{k−1

∑
j=0

y2 j+2b2 j+2 | y2 j+2 ∈ F2

}
.

From the decompositionE = X⊕Y, we define two projectionsπX andπY overX
andY, respectively. Note the general identity

L
(
πX(u),πY(v)

)
= L(u,v). (75)

We now prove that, for any subspaceF of X there is exactly one subspaceU0⊂ E
of dimensionk, such thatL|U0×U0

≡ 0 andπX(U0) = F. SupposeU0 has this
property. By (75), we obtain that

L
(
πX(u),πY(v)

)
= 0,

for all u and v ∈ U0. This implies thatπY(U0) ⊂ F⊥, whereF⊥ is the vector
subspace ofY with dimF⊥ = k−dimF, defined by

F⊥ =
{

v ∈Y ; L(u,v) = 0 ∀u ∈ F
}
.

We deduceU0 ⊂ πX(U0)⊕ πY(U0) ⊂ F ⊕F⊥, hence, by reasoning on dimen-
sions, we see thatU0 = F ⊕F⊥ andU0 is uniquely determined. The application
U0↔ πX(U0) is the bijection claimed in the first part. We remark that the inverse
mapping is given byF 7→U0 := F⊕F⊥.

The second part follows immediately by the first part and the definition of
N (k,2).
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For the third part we note thatu has the following coordinates in the new basis:
z2`−1 := u2`−1 and z2` := u2`−1 + u2` for ` = 1, . . . ,k. Therefore the condition
becomes:

∑
`∈Γ

z2` = 0 for all u ∈U0.

This is equivalent to the fact that the vector

∑
`∈Γ

b2`−1

belongs toU0. This vector certainly also belongs toX which by the bijection of
the first part means that we have to count all vector subspaces ofX containing one
given vector. Using Lemma 2 we get the desired result.

For the fourth part of the lemma we get the following condition in the new
basis:

∑
`∈Γ

z2`−1 = 0 for all u ∈U0.

Since this introduces one relation, the number of vector subspaces ofX satisfying
this condition is equal toN (k−1,2). ut

To prove Theorem 6, it remains to put together Proposition 5, Lemma 26, (16) and
(74).

6 The case of odd positive discriminants.

The purpose of this section is to modify the methods of§5 to treat the case of
fundamental discriminantsD satisfying

D > 0, D≡ 1 mod 4, (76)

and to prove an analogue of Theorem 6 for the sum

S+(X,k,1,4) := ∑
0<D<X

D≡1 mod 4

2krk4(CD).

We shall prove

Theorem 7 For every positive integer k and every positiveε, we have

S+(X,k,1,4) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡1 mod 4

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2. The same expansion remains true if we replace the narrow
class groupCD by the ordinary class groupClD, in the definition of S+(X,k,1,4).

As before, the starting point of the proof of Theorem 7 is Theorem 5 and Lemma
6. Therefore Lemma 16 has to be modified into
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Lemma 27 Let D be a fundamental discriminant satisfying(76). Then we have
the equality

2rk4(CD) =
1
2

#
{
(a,b) | a, b≥ 1,D = ab, −a is a squaremodb

and b is a squaremoda
}
.

When we use Jacobi symbols, we now introduce the symbol(−1
· ) and (20) is

modified into

2rk4(CD) =
1

2·2ω(D) ∑
D=D0D1D2D3

(−1
D0

)(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
=

1

2·2ω(D) ∑
D=D0D1D2D3

(−1
D3

)(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
, (77)

for D satisfying (76). Let
λ1(u) = u1u2,

be the two variable polynomial overF2. The analogue of (21) is now

2rk4(CD) =
1

2·2ω(D) ∑
D=D00D01D10D11

{
∏

u∈F2
2

(−1
Du

)λ1(u)}{
∏

(u,v)∈F4
2

(Du

Dv

)Φ1(u,v)}
.

(78)
Let λk be the polynomial in 2k variables

λk(u) =
k

∑
j=1

λ1(u( j)) =
k−1

∑
j=0

u2 j+1u2 j+2, (79)

with u = (u(1), · · · ,u(k)) andu( j) ∈ F2
2. The analogue of Lemma 17 is

Lemma 28 For every positive X we have the equality

S+(X,k,1,4) = 2−k ∑
(Du)∈D+(X,k)

(
∏
u

2−kω(Du)
)(

∏
u

(−1
Du

)λk(u))
∏
u,v

(Du

Dv

)Φk(u,v)
,

(80)
whereD+(X,k) is the set of4k–tuples of squarefree, positive and coprime integers
(Du), with u = (u(1), . . . ,u(k)) ∈ F2k

2 satisfying

∏
u∈F2k

2

Du ≤ X, ∏
u∈F2k

2

Du ≡ 1 mod 4.

The analysis of the error terms is the same as above, however remark that, in the
proof of the analogues of (42) and (47), the values of(−1

Du
) is fixed, since we have

blocked the congruence class ofDu modulo 4. In the same way, we use the notion
of maximal unlinked subsetsU of F2k

2 . We also define for such anU ,

γ
+(U ) = ∑

(hu)

(
∏

u∈U

(−1)λk(u)· hu−1
2

)(
∏
u,v

(−1)Φk(u,v)· hu−1
2 · hv−1

2

)
, (81)
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where the sum is over(hu)u∈U ∈ {±1 mod 4}2k
now satisfying

∏
u∈U

hu ≡ 1 mod 4, (82)

and the product is over unordered pairs{u,v} ⊂U .
With these conventions the analogue of Proposition 5 is

Proposition 6 For every k≥ 1 and for every positiveε, we have the equality

S+(X,k,1,4) =
22−k−2k

π2

(
∑
U

γ
+(U )

)
·X +O

(
X(logX)−2−k+ε

)
,

where the sum is over the set of maximal unlinked setsU ⊂ F2k
2 .

6.1 Analysis of the coefficient of the main term.

We follow the study already made in§5.6 but we have to take into account the
coefficientλk(u) and also the fact that the setS⊂ U of indicesu wherehu ≡
−1 mod 4 has a cardinalitys, which is now even, because of (82). LetS∈P(U )
with sum of elementsσ and cardinalitys. We definee+(S) by the formula

e+(S) := ∑
u∈S

λk(u)+∑
u,v

Φk(u,v), (83)

where the last sum is over unordered pairs{u,v} ⊂ S. With this definition, (81) is
written as

γ
+(U ) = ∑

S⊂U
s even

(−1)e+(S).

For anyS,T ⊂U we define

e+(S,T) := e+(S)+e+(T)+e+(S∆T). (84)

Using the fact that

∑
u∈S

λk(u)+ ∑
u∈T

λk(u)+ ∑
u∈S∆T

λk(u) = 0,

for anySandT subsets ofU , we have the equalities

e+(S,T) = e(S,T), (85)

and
e+(S) = e(S)+ ∑

u∈S

λk(u), (86)

wheree(S) ande(S,T) are defined in (57) and (62).
More generally, forν = 0 or 1 mod 2 and forU maximal unlinked, we study

the quantity
γ

+(U ,ν) := ∑
S⊂U

s≡ν mod 2

(−1)e+(S). (87)
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Similarly as (64), by squaring (87) we have

γ
+2(U ,ν) = ∑

S∈Pν (U )
∑

S′∈Pν (U )
(−1)e+(S∆S′)(−1)e+(S′,S).

Instead of summing overS′, we sum overT = S∆S′ which has even cardinality.
Hence

γ
+2(U ,ν) = ∑

T⊂U
t≡0 mod 2

(−1)e+(T) ∑
S⊂U

s≡ν mod 2

(−1)e+(S∆T,S)

= ∑
T⊂U

t≡0 mod 2

(−1)e+(T) ∑
S⊂U

s≡ν mod 2

(−1)e(S∆T,S)

= ∑
T⊂U

t≡0 mod 2

(−1)νΛ(τ)+e+(T)
Σ(T,ν), (88)

by appealing to (66), (68) and (85). In particular, (88) can be written as

γ
+2(U ,ν) = 22k−1 ∑

T∈T

(−1)e+(T)+ν

(
Λ(τ)+L(τ,c)

)
, (89)

which is the analogue of (70). By (84), (85) and Lemma 21, we get the equalities

e+(T∆T ′) = e+(T)+e+(T ′)+e(T,T ′) = e+(T)+e+(T ′)

which are true for anyT andT ′ ∈T , whereT is defined after (70). This implies
that the application

T 7→ (−1)e+(T)+ν

(
Λ(τ)+L(τ,c)

)
is a multiplicative character on the group(T ,∆). From this remark and from (89),
we obtain the analogue of Lemma 22:

Lemma 29 LetU be a maximal unlinked subset ofF2k
2 . Then we have(

γ
+(U ,0) or γ

+(U ,1) 6= 0
)
⇒
(
e+(T) = 0 ∀T ⊂U with t even andτ = 0

)
.

We now wish an analogue of Lemma 23. It is given by

Lemma 30 Let U be a maximal unlinked subspace ofF2k
2 written in the form

U = c+U0. Then we have(
γ

+(U ,0) or γ
+(U ,1) 6= 0

)
⇒
(
e+(S) = λk(σ)+(1+s)

(
L(c,σ)+Λ(σ)

)
∀S⊂U

)
.

Note the inversion of the arguments insideL(., .) by comparison with Lemma 23.
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Proof We discuss on the parity ofs.
• If S∈P1(U ), we haveσ ∈U . We apply Lemma 29 withT = S∆{σ} (hence
t is even andτ = 0) and obtain

e+(T) = 0. (90)

However, by the definition (84) and (85) we have

e+(S) = e+(T)+e+({σ})+e(T,{σ}). (91)

We trivially have
e+({σ}) = λk(σ), (92)

and by Lemma 21, we have

e(T,{σ}) = L(0,σ)+Λ(0) = 0. (93)

Gathering (90), (91), (92) and (93), we obtain the truth of Lemma 30 for odds.
• If S∈P0(U ) andσ = 0, Lemma 29 gives Lemma 30 in that case.
• If S∈ P0(U ) andσ 6= 0, we considerT = S∆{c,c+ σ}. Such aT satisfies
T ⊂U , t even andτ = 0. By the definition (84) and by (85), we have the equality

e+(S) = e+(T)+e+({c,c+σ})+e(T,{c,c+σ}). (94)

By Lemma 29, we have (90) again and

e(T,{c,c+σ}) = 0, (95)

by Lemma 21. By (72) and (86) we get:

e+({c,c+σ}) = λk(c)+λk(c+σ)+L(σ ,c)+Λ(σ). (96)

To see that (94), (95) and (96) imply Lemma 30 in the cases even andσ 6= 0, it
remains to prove the equality

L(σ ,c)+L(c,σ) = λk(c)+λk(σ)+λk(c+σ).

The above equality is a particular case of the general equality

L(u,v)+L(v,u) = λk(u)+λk(v)+λk(u+v), (97)

which is true for anyu andv ∈ F2k
2 . A direct proof of (97), is to use the explicit

definitions ofL andλk (see (60) and (79)). The proof of Lemma 30 is now com-
plete. ut

The analogue of Lemma 24 is the following

Lemma 31 LetU be a maximal unlinked subset ofF2k
2 written in the formU =

c+U0. Then we have(
γ

+(U ,0) 6= 0 or γ
+(U ,1) 6= 0

)
⇒ L|U0×U0

≡ 0.
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Proof Let σ andτ be two non zero elements ofU0. We apply Lemma 30 with
the choicesS= {c,c+σ} andT = {c,c+ τ}, which are subsets ofU with even
cardinalities. We have the three equalities

e+(S) = λk(σ)+L(c,σ)+Λ(σ),

e+(T) = λk(τ)+L(c,τ)+Λ(τ),

e+(S∆T) = λk(σ + τ)+L(c,σ + τ)+Λ(σ + τ).

Summing these three equalities, using linearity and (84), we get the equality

e+(S,T) = λk(σ)+λk(τ)+λk(σ + τ).

Lemma 21 and (85) imply thate+(S,T) = e(S,T) = L(σ ,τ) and we get

L(σ ,τ) = λk(σ)+λk(τ)+λk(σ + τ).

This implies
L(τ,σ) = 0,

by combination with (97). ut

We recall that a subspaceU0 of dimensionk of F2k
2 is said to begoodif L|U0×U0

≡
0. We now prove an extension of Lemma 30. It is also an analogue of Lemma 25
and shows thate+(S) depends onσ only, under some assumptions.

Lemma 32 LetU = c+U0 a maximal unlinked subset ofF2k
2 . Then we have

U0 good ⇒ e+(S) = λk(σ)+(1+s)
(
L(c,σ)+Λ(σ)

)
∀S⊂U .

Proof We prove it by induction ons. It is true fors= 0 ands= 1 by definition
(83) ofe+(S). Let S= {u,v} be a subset ofU . By definition (83) and by (59), we
have

e+(S) = λk(u)+λk(v)+Φk(u,v)
= λk(u)+λk(v)+L(u,v)+P(v)+Λ(σ)

=
{

λk(σ)+L(u,v)+L(v,u)
}

+L(u+v,v)+Λ(σ), (98)

the last line being a consequence of (61) and (97). Using linearity, and the facts
thatU0 is good and thatu+v ∈U0, we get thatL(u,v)+L(v,u)+L(u+v,v) =
L(u,u + v) = L(c,σ). Inserting this equality into (98), we complete the proof of
Lemma 32 fors= 2.

Now let S⊂U with cardinalitys≥ 3. LetT be a subset ofSwith cardinality
2. We decomposeS into S= S′∆T. By assumption of induction, we have

e+(S′) = λk(σ ′)+(1+s)
(
L(c,σ ′)+Λ(σ ′)

)
,

e+(T) = λk(τ)+L(c,τ)+Λ(τ).

We also have by Lemma 21 and (85) the equality

e+(T,S′) = e(T,S′) = L(τ,σ ′)+sΛ(τ).
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By (84) and the three above equalities we deduce

e+(S)= λk(σ ′)+λk(τ)+(1+s)L(c,σ ′)+L(c,τ)+L(τ,σ ′)+(1+s)Λ(σ). (99)

We now appeal to (97) and linearity to transform (99) into

e+(S) = λk(σ)+L(σ ′,τ)+(1+s)L(c,σ ′)+L(c,τ)+(1+s)Λ(σ).

It is now clear that, in order to complete the proof of Lemma 32, it remains to
check the equality

L(σ ′,τ)+(1+s)L(c,σ ′)+L(c,τ) = (1+s)L(c,σ). (100)

• If s is odd,c+σ ′ andτ are elements ofU0, this implies the equalityL(σ ′,τ)+
L(c,τ) = L(c+σ ′,τ) = 0, sinceU0 is good. Hence, (100) is true fors odd.
• If s is even, thenσ ′ andτ belong toU0, henceL(σ ′,τ) = 0. By linearity, we
also haveL(c,σ ′)+L(c,τ) = L(c,σ). Hence, (100) is true fors even.

The proof of Lemma 32 is complete. ut

The coefficient of the main term of Proposition 6 is (see definition (87)):

∑
U

γ
+(U ) = ∑

U

γ
+(U ,0) = ∑

U
∑

S⊂U
s even

(−1)e+(S).

By decomposing with good subspaces and by applying Lemma 31, we have

∑
U

γ
+(U ) = ∑

U0 good
∑
U

coset ofU0

γ
+(U ,0)+ ∑

U0 not good
∑
U

coset ofU0

γ
+(U ,0)

= ∑
U0 good

∑
U

coset ofU0

∑
S⊂U
s even

(−1)e+(S).

We writeU = c+U0, apply Lemma 32, and sum over all thec∈ F2k
2 to write

∑
U

γ
+(U ) = 2−k ∑

U0 good
∑

c∈F2k
2

∑
S⊂c+U0

s even

(−1)λk(σ)+L(c,σ)+Λ(σ). (101)

The applicationS 7→ µ(S) := σ is a group homomorphism between the groups(
P0(c+U0),∆

)
and(U0,+). Sinceσ ∈U0,σ 6= 0 satisfiesσ = µ({c,c+ σ}),

µ is a surjective application. This implies that the equationµ(S) = x, with x given
in U0 has exactly 22

k−1/2k solutions inS∈P0(c+U0). This simplifies (101) into

∑
U

γ
+(U ) = 22k−2k−1 ∑

U0 good
∑

σ∈U0

∑
c∈F2k

2

(−1)λk(σ)+L(c,σ)+Λ(σ). (102)

We sum overc first. It is a 2k–dimensional geometric progression. Most of the
time the sum overc is zero, unless we have

σ1 +σ2 = · · ·= σ2k−1 +σ2k = 0. (103)



On the 4-rank of class groups of quadratic number fields 41

Note that the assumption (103) impliesλk(σ)+Λ(σ) = 0. With these remarks we
simplify (102) into

∑
U

γ
+(U ) = 22k−1 ∑

U0 good

# {σ ∈U0 ; σ satisfies (103)}. (104)

We go back to the proof of Lemma 26 in§5.7 and follow the notations intro-
duced there. Recall that a good subspaceU0 is characterized by its projection
F = πX(U0). In U0 we want to count the elementsσ satisfying (103). This con-
dition is equivalent toσ ∈ X. The only elements ofU0 which satisfy (103) are the
elements ofF , which is anF2–vector space of dimensioǹ. With these observa-
tions, we transform (104) into

∑
U

γ
+(U ) = 22k−1

k

∑̀
=0

2` n(k, `,2) = 22k−1(N (k+1,2)−N (k,2)
)
, (105)

by appealing to (12).
Putting (105) into Proposition 6, and using (16), we complete the proof of the

first part of Theorem 7.
To pass from the function CD to ClD, we use Corollary 1. This ends the proof

of Theorem 7.

7 Negative discriminants divisible by8

We are now concerned with fundamental discriminantsD satisfying

D < 0, D≡ 0 mod 8, (106)

in other words with the sum

S−(X,k,0,8) = ∑
0<−D<X

D≡0 mod 8

2krk4(CD).

We want to prove

Theorem 8 For every positive integer k and every positiveε, we have

S−(X,k,0,8) = N (k,2)
(

∑
0<−D<X

D≡0 mod 8

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2.

The strategy is as above. Using Theorem 5 and Lemma 7, we see that the
analogue of Lemma 16 now is

Lemma 33 Let D be a fundamental discriminant satisfying(106). Then we have
the equality

2rk4(CD) = #
{
(a,b) | a, b≥ 1,−D = 8ab, 2a is a squaremodb

and b is a squaremoda
}
.
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Using now Jacobi symbols, the analogue of (20) is

2rk4(CD) =
1

2ω(−D/8) ∑
−D=8D0D1D2D3

( 2
D3

)(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
, (107)

and the analogue of Lemmata 17 and 28 is

Lemma 34 For every positive X we have the equality

S−(X,k,0,8)= ∑
(Du)∈D±(X/8,k)

(
∏
u

2−kω(Du)
) (

∏
u

( 2
Du

)λk(u))
∏
u,v

(Du

Dv

)Φk(u,v)
,

(108)
whereD±(X,k) = D+(X,k)∪D−(X,k).

Note that there is no more coefficient 2−k in front of the right hand side of (108),
and thatλk is defined in (79). By recalling the definition (58), we write the ana-
logue of Proposition 5.

Proposition 7 For every k≥ 1 and for every positiveε, we have the equality

S−(X,k,0,8) =
22−2k

π2

{
∑
U

(
γ(U ,0)+ γ(U ,1)

)}
· X

8
+O

(
X(logX)−2−k+ε

)
,

(109)
where the sum is over the set of maximal unlinked setsU ⊂ F2k

2 , such thatλk(u) =
0, for all u ∈U .

Proof We follow the proof of Proposition 5 and give quick indications of the
modifications to incorporate. The first one is to notice that we are summing over
(Du)u∈U such that their product is congruent to±1 mod 4, we must consider sub-
setsS of U , with even or odd cardinalities. The second one concerns the effect

of the symbol
(

2
Du

)λk(u)
. Suppose we haveλk(u) = 1 for someu ∈U . Then we

meet the sum

∑
Du≡hu mod 4

2−kω(Du)
( 2

Du

)
=

∑
Du≡hu mod 8

2−kω(Du)
( 2

Du

)
+ ∑

Du≡hu+4 mod 8

2−kω(Du)
( 2

Du

)
.

Sincehu = ±1 the Jacobi symbol in the first sum is identically 1, whereas the
Jacobi symbol in the second sum is identically−1. We see the wanted cancellation
by a suitable application of Lemma 19 modified to modulus 8. Sinceu ∈ U ,
the variableDu has a large enough domain of variations (see conditions (49)) to
consider congruences ofDu mod 8. Therefore we can reject the corresponding
term in the error term. This explains the restriction on the summation to theU ,
such thatλk ≡ 0 onU , in the formula (109). ut

The first step to pass from Proposition 7 to Theorem 8 is
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Lemma 35 We have

S1 := ∑
U

γ(U ,1) = 22k−1N (k,2),

where the sum is over maximal unlinked subsets ofU ⊂ F2k
2 such thatλk is iden-

tical to 0 onU .

Proof We first restrict the sum to theU of the formc+U0, whereU0 is good (see
Lemma 24). We shall use the following description of theU appearing in Lemma
35, in terms of the point

ρ := (0,1,0,1. . . ,0,1) ∈ F2k
2 .

by the following

Lemma 36 Let U0 be a good subspace ofF2k
2 . Let U a subspace of the form

c+U0. Thenλk(u) ≡ 0 identically onU , if and only ifU is of the formU =
ρ +U0.

Proof Write c = (c1,c2, . . . ,c2k). The conditionλk(u) ≡ 0 onU is equivalent to
both conditionsλk(c+u) = λk(c) for all u∈U0 andλk(c) = 0. The first condition
is equivalent to

(c2u1 +c1u2 +u1u2)+ · · ·+(c2ku2k−1 +c2k−1u2k +u2k−1u2k) = 0,

but, sinceU0 is good, this equation simplifies into

(c2 +1)u1 +c1u2 + · · ·+(c2k +1)u2k−1 +c2k−1u2k = 0.

SinceU0 is a vector space of dimensionk, the set of(c1,c2+1, . . . ,c2k−1,c2k +1)
satisfying the above equation for everyu ∈U0 is a vector subspaceV of dimen-
sion k. It is easy to see that this vector space containsU0, since for allu and
v ∈U0, we have

v2u1 +v1u2 + · · ·+v2ku2k−1 +v2k−1u2k = L(u,v)+L(v,u) = 0,

sinceU0 is good. Hence, we haveV = U0. Finally, we check thatλk(ρ) = 0. ut

We return to the study ofS1. By Lemma 36, we have

S1 = ∑
U0 good

∑
S⊂ρ+U0
s≡1 mod 2

(−1)e(S),

by Lemma 25, we have

S1 = ∑
U0 good

∑
S⊂ρ+U0
s≡1 mod 2

1 = 22k−1 ∑
U0 good

1.

Lemma 26 completes the proof of Lemma 35. ut

The second step to pass from Proposition 7 to Theorem 8 is
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Lemma 37 We have

S0 := ∑
U

γ(U ,0) = 22k−1N (k,2),

where the sum is over maximal unlinked subsets ofU ⊂ F2k
2 such thatλk is iden-

tical to 0 onU .

Proof By Lemmata 24, 25 and 36, we now have the equalities

S0 = ∑
U0 good

∑
S⊂ρ+U0

s≡0 mod 2

(−1)L(σ ,ρ)+Λ(σ)

= ∑
U0 good

∑
S⊂ρ+U0

s≡0 mod 2

1

= 22k−1 ∑
U0 good

1,

and the second part of Lemma 26 completes the proof of Lemma 37. ut

Gathering Proposition 7, Lemma 35, Lemma 37 and (16), we finish the proof of
Theorem 8.

8 Positive discriminants divisible by8

We are now concerned with fundamental discriminantsD satisfying

D > 0, D≡ 0 mod 8, (110)

in other words with the sum

S+(X,k,0,8) = ∑
0<D<X

D≡0 mod 8

2krk4(CD).

We want to prove

Theorem 9 For every positive integer k and every positiveε, we have

S+(X,k,0,8) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡0 mod 8

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2. The same expansion remains true if we replace the narrow
class groupCD by the ordinary class groupClD, in the definition of S+(X,k,0,8).

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is
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Lemma 38 Let D a fundamental discriminant satisfying(110). Then we have the
equality

2rk4(CD) =
1
2

#
{
(a,b) | a, b≥ 1,D = 8ab, −2a is a squaremodb

and b is a squaremoda
}

+
1
2

#
{
(a,b) | a, b≥ 1,D = 8ab, −a is a squaremodb

and2b is a squaremoda
}
.

The fact that 2rk4(CD) is the sum of two terms generates extra difficulty. Using
again Jacobi symbols, we have the equality

2rk4(CD) =
1

2·2ω(D/8)

× ∑
D=8D0D1D2D3

( 2
D3

)(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)[(−1
D0

)
+
(−1

D3

)]
, (111)

for anyD satisfying (110). Letξ1(u) be the polynomial in two variables overF2
defined byξ1(u) = (u1 +1)(u2 +1). We write (111) in the following way

2rk4(CD) =
1

2·2ω(D/8) ∑
D=8D00D01D10D11

{
∏

u∈F2
2

( 2
Du

)λ1(u)}{
∏

(u,v)∈F4
2

(Du

Dv

)Φ1(u,v)}
×
[{

∏
u∈F2

2

(−1
Du

)λ1(u)}
+
{

∏
u∈F2

2

(−1
Du

)ξ1(u)}]
. (112)

Raising (112) to thek–th power, we see that the analogue of Lemma 34 is

Lemma 39 For every positive X we have the equality

S+(X,k,0,8) =
1
2k ∑

Γ⊂{1,...k}
SΓ (113)

with SΓ =

∑
(Du)∈D±(X/8,k)

(
∏
u

2−kω(Du)
)(

∏
u

( 2
Du

)λk(u))(
∏
u

(−1
Du

)QΓ (u))
∏
u,v

(Du

Dv

)Φk(u,v)
,

where QΓ is a polynomial overF2k
2 defined by

QΓ (u1,u2, . . . ,u2k) = ∑
`∈Γ

u2`−1u2` + ∑
1≤`≤k
`/∈Γ

(u2`−1 +1)(u2` +1)

= λk(u)+ ∑
`/∈Γ

(u2`−1 +u2`)+k−#Γ .
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We follow the same arguments as before to arrive at the formula

SΓ =
22−2k

π2

{
∑
U

∑
S⊂U

(−1)eΓ (S)
}
· X

8
+O

(
X(logX)−2−k+ε

)
, (114)

where the sum is over maximal unlinked subsets, such thatλk(u) = 0, for all
u ∈U , and whereeΓ (S) is defined by the formula

eΓ (S) = ∑
u∈S

QΓ (u)+∑
u,v

Φk(u,v),

where the second sum is over unordered pairs{u,v} ⊂ S, without any hypothesis
on the parity ofs. This equality is the analogue of the formula (109). Actually,
using the hypothesisλk(u) = 0 concerningU , the functioneΓ is simplified to

eΓ (S) = e(S)+s(k−#Γ )+VΓ (σ), (115)

wheree(S) is defined in (57) and where

VΓ (σ) = ∑
`/∈Γ

(σ2`−1 +σ2`) = ∑
u∈S

∑
`/∈Γ

(u2`−1 +u2`).

As usuals andσ are the cardinality and the sum of elements ofS, respectively.
Using (115), we see that the coefficient of (114) can be written as

∑
U

∑
S⊂U

(−1)eΓ (S) = ∑
U

{
∑

S⊂U
s≡0 mod 2

(−1)e(S)+VΓ (σ) +(−1)k−#Γ ∑
S⊂U

s≡1 mod 2

(−1)e(S)+VΓ (σ)
}

,

(116)
where the sum is over maximal unlinked subsetsU of F2k

2 , on which the function
λk is identically equal to zero. We are in a similar position as in§5.6, when we
studied the functionsγ(U ,0) andγ(U ,1). However we have to follow the effect
of the coefficientVΓ (σ) on that study. It is easy to see that ifU = c+U0, with
U0 not good, then both sums

∑
S⊂U

s≡0 mod 2

(−1)e(S)+VΓ (σ), ∑
S⊂U

s≡1 mod 2

(−1)e(S)+VΓ (σ)

are zero (analogue of Lemma 24).
We are reduced to the cases ofU = ρ +U0, with U0 good. By Lemma 25 we

havee(S) = (1+ s)
(
L(σ ,ρ)+Λ(σ)

)
= 0 for all S⊂ U sinceL(σ ,ρ) = Λ(σ).

With these remarks we simplify (116) into

∑
U

∑
S⊂U

(−1)eΓ (S) = ∑
U0 good

{
∑

S⊂ρ+U0
s≡0 mod 2

(−1)VΓ (σ) +(−1)k−#Γ ∑
S⊂ρ+U0
s≡1 mod 2

(−1)VΓ (σ)
}
.

Summing over theS with the sameσ ∈ U0 (s even) or the sameσ ∈ ρ +U0 (s
odd), we also have

∑
U

∑
S⊂U

(−1)eΓ (S) = 22k−k−1 ∑
U0 good

{
∑

u∈U0

(−1)VΓ (u) +(−1)k−#Γ ∑
u∈U0

(−1)VΓ (ρ+u)
}

= 22k−k ∑
U0 good

∑
u∈U0

(−1)VΓ (u), (117)
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sinceVΓ (ρ) = k−#Γ . AssumeΓ = {1, . . . ,k}. ThenVΓ ≡ 0 and we get

∑
U

∑
S⊂U

(−1)eΓ (S) = 22k
N (k,2),

by the second part of Lemma 26. ForΓ 6= {1, . . . ,k}, (117) leads to

∑
U

∑
S⊂U

(−1)eΓ (S) = 22k
#{U0 good ;u ∈U0 ⇒VΓ (u) = 0}= 22k

N (k−1,2),

by the third part of Lemma 26. Putting these last two equations in (114) and in
(113), and then summing overΓ ⊂ {1, . . . ,k} we get the following main term for
S+(X,k,0,8):

1
2k ·

4
π2

(
N (k,2)+(2k−1)N (k−1,2)

)
· X

8
.

By (16) and (10), we see that this main term coincides with the main term an-
nounced in Theorem 9. To pass from the function CD to ClD, we use Corollary
1.

9 Negative discriminantsD≡ 4 mod 8

We are now concerned with fundamental discriminantsD satisfying

D < 0, D≡ 4 mod 8, (118)

in other words with the sum

S−(X,k,4,8) = ∑
0<−D<X

D≡4 mod 8

2krk4(CD).

We want to prove

Theorem 10 For every positive integer k and every positiveε, we have

S−(X,k,4,8) = N (k,2)
(

∑
0<−D<X

D≡4 mod 8

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2.

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is

Lemma 40 Let D a fundamental discriminant satisfying(118). Then we have the
equality

2rk4(CD) =
1
2

#
{
(a,b) | a, b≥ 1,−D = 4ab, a is a squaremodb

and b is a squaremoda
}

+
1
2

#
{
(a,b) | a, b≥ 1,−D = 4ab, 2a is a squaremodb

and2b is a squaremoda
}
.
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With this lemma, the analogue of (111) is

2rk4(CD) =
1

2·2ω(−D/4) ∑
−D=4D0D1D2D3

(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)[
1+
( 2

D0

)( 2
D3

)]
,

(119)
and, using the polynomial(λ1 +ξ1)(u) = u1 +u2 +1, we get

2rk4(CD) =
1

2·2ω(−D/4) ∑
−D=4D00D01D10D11

{
∏

(u,v)∈F4
2

(Du

Dv

)Φ1(u,v)}
×
[
1+
{

∏
u∈F2

2

( 2
Du

)(λ1+ξ1)(u)}]
. (120)

Raising (120) to thek–th power, we see that the analogue of Lemma 39 is

Lemma 41 For every positive X we have the equality

S−(X,k,4,8) =
1
2k ∑

Γ⊂{1,...k}
TΓ (121)

with

TΓ = ∑
(Du)∈D+(X/4,k)

{
∏
u

2−kω(Du)
} {

∏
u

( 2
Du

)VΓ (u)+(k−#Γ )}{
∏
u,v

(Du

Dv

)Φk(u,v)}
,

where VΓ is the polynomial overF2k
2 defined by

VΓ (u1,u2, . . . ,u2k) = ∑
`/∈Γ

(u2`−1 +u2`).

By the same transformations as before, we arrive at

TΓ =
22−2k

π2

{
∑
U

∑
S⊂U

s≡0 mod 2

(−1)e(S)
}
· X

4
+O

(
X(logX)−2−k+ε

)
, (122)

where the sum is over maximal unlinked subsetsU , such thatVΓ (u)+(k−#Γ ) =
0, for all u ∈U , and where the functione(S) was defined in (57).

As before, we restrict the sum over theU = c+ U0 such thatU0 is good.
Then Lemma 25 gives for suchS⊂U with even cardinality, the equalitye(S) =
L(σ ,c)+Λ(σ). From this, we gather all theS⊂ U with even cardinality, with
the same value ofσ ∈ U0. We deduce that the coefficient of (122) satisfies the
equality {

∑
U

∑
S⊂U

s≡0 mod 2

(−1)e(S)
}

= 22k−k−1∑
U

∑
u∈U0

(−1)L(u,c)+Λ(u),
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where the sum is over the maximal unlinkedU such thatVΓ (U ) = {k−#Γ } and
such that the associatedU0 is good. WritingU = c+U0, summing over all thec
instead of summing over theU , we get{

∑
U

∑
S⊂U

s≡0 mod 2

(−1)e(S)
}

= 22k−k−1∑
c

∑
U0 good

1,

wherec andU0 also satisfy the conditions{
L(u,c)+Λ(u) = 0 ∀u ∈U0,

VΓ (c+u) = k−#Γ ∀u ∈U0.

These conditions are equivalent to
L(u,c)+Λ(u) = 0 ∀u ∈U0,

VΓ (u) = 0 ∀u ∈U0,

VΓ (c) = k−#Γ .

(123)

• WhenΓ = {1, . . . ,k}, we haveVΓ ≡ 0 and we separate the case :c2 j−1 +c2 j +
1 = 0 for all 1≤ j ≤ k, to find that the number of(c,U0) verifying (123) is equal
to

2kN (k,2)+(22k−2k)N (k−1,2) (124)

by the second and fourth part of Lemma 26.
• WhenΓ 6= {1, . . . ,k} and whenc2 j−1 + c2 j + 1 = 0 for all 1≤ j ≤ k, then we
haveVΓ (c) = k− #Γ , and the corresponding number of(c,U0) verifying (123)
and the just above condition is equal to

2kN (k−1,2). (125)

by the third part of Lemma 26.
• Now supposeΓ 6= {1, . . . ,k} andc2 j−1 +c2 j +1 6= 0 for at least one 1≤ j ≤ k.
The second condition of (123) gives us by using the proof of the third part of
Lemma 26 that the vector

∑
`/∈Γ

(e2`−1 +e2`)

belongs toU0, where{e1, . . . ,e2`} is the canonical basis. We need to check, if this
vector satisfies the first equation of (123):

∑
`/∈Γ

(c2`−1 +c2` +1) = 0⇔ ∑
`/∈Γ

(c2`−1 +c2`) =−(k−#Γ ).

Therefore our vector belongs toU0, if the last condition of (123) is satisfied. Using
the (proof of the) fourth part of Lemma 26, theU0 satisfying the first condition
of (123) are parametrized by all vector subspaces of a vector space of dimension
k− 1. In order to satisfy the second equation we only need to count those sub-
spaces, which contain the above mentioned vector. Therefore using Lemma 2 we
haveN (k−2,2) possibilities forU0. ForΓ 6= {1, . . . ,k} the last condition is sat-
isfied for 22k−1 choices ofc by choosing the remaining coordinate in a way such
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that the last condition of (123) is satisfied. Since we already consider 2k of those
possibilities in the caseΓ = {1, . . . ,k} we have

(22k−1−2k)N (k−2,2) = 2k(2k−1−1)N (k−2,2)

different(c,U0) satisfying (123).
Gathering with (125), we see that whenΓ 6= {1, . . . ,k}, the total number of

solutions to (123) is equal to

2k(N (k−1,2)+(2k−1−1)N (k−2,2)
)

= 2k(N (k,2)−N (k−1,2)
)
, (126)

by (10). We now incorporate the values (124) and (126) of the coefficient of the
main term ofTΓ (see (122)) to see that the main term ofS−(X,k,4,8) is, by (121),
after summation overΓ , equal to

1
2k ·

22−2k

π2 ·22k−k−1 ·2k
(
N (k,2)+(2k−1)N (k−1,2)

+(2k−1)
(
N (k,2)−N (k−1,2)

))
· X

4

=
2

π2 ·N (k,2) · X
4

.

By (16), we complete the proof of Theorem 10.

10 Positive discriminantsD≡ 4 mod 8

Finally, we are now concerned with fundamental discriminantsD satisfying

D > 0, D≡ 4 mod 8, (127)

in other words with the sum

S+(X,k,4,8) = ∑
0<D<X

D≡4 mod 8

2krk4(CD).

We want to prove

Theorem 11 For every positive integer k and every positiveε, we have

S+(X,k,4,8) =
1
2k

(
N (k+1,2)−N (k,2)

)(
∑

0<D<X
D≡4 mod 8

1
)

+Oε,k

(
X(logX)−2−k+ε

)
,

uniformly for X≥ 2. The same expansion remains true if we replace the narrow
class groupCD by the ordinary class groupClD, in the definition of S+(X,k,4,8).

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is
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Lemma 42 Let D a fundamental discriminant satisfying(127). Then we have the
equality

2rk4(CD) =
1
2

#
{
(a,b) | a, b≥ 1,D = 4ab, −a is a squaremodb

and b is a squaremoda
}

+
1
2

#
{
(a,b) | a, b≥ 1,D = 4ab, −2a is a squaremodb

and2b is a squaremoda
}
.

With this lemma, we obtain an analogue of (119) as

2rk4(CD) =
1

2·2ω(D/4)

× ∑
D=4D0D1D2D3

(−1
D3

)(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)[
1+
( 2

D0

)( 2
D3

)]
, (128)

and, using the polynomialsλ1 andξ1 we get the equality

2rk4(CD) =
1

2·2ω(D/4) ∑
D=4D00D01D10D11

{
∏

(u,v)∈F4
2

(Du

Dv

)Φ1(u,v)}{
∏

u∈F2
2

(−1
Du

)λ1(u)}
×
[
1+
{

∏
u∈F2

2

( 2
Du

)(λ1+ξ1)(u)}]
. (129)

Raising (129) to thek–th power, we see that the analogue of Lemma 41 is

Lemma 43 For every positive X we have the equality

S+(X,k,4,8) =
1
2k ∑

Γ⊂{1,...k}
RΓ (130)

with

RΓ = ∑
(Du)∈D−(X/4,k)

{
∏
u

2−kω(Du)
} {

∏
u∈F2

2

(−1
Du

)λk(u)}
×
{
∏
u

( 2
Du

)VΓ (u)+(k−#Γ )}{
∏
u,v

(Du

Dv

)Φk(u,v)}
,

where VΓ is defined in Lemma 41.

By the same transformations as before, we arrive at

RΓ =
22−2k

π2

{
∑
U

∑
S⊂U

s≡1 mod 2

(−1)e+(S)
}
· X

4
+O

(
X(logX)−2−k+ε

)
, (131)
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where the sum is over maximal unlinked subsets, such thatVΓ (u)+(k−#Γ ) = 0,
for all u ∈ U , and wheree+(S) is defined in (86). As before, by Lemma 31, we
restrict the sum over thec+U such thatU0 is good. Sinces is odd, Lemma 32
gives the equalitye+(S) = λk(σ).

As usual we gather all theS⊂U with an odd cardinality with the same value
of σ ∈ c+U0 to write that the coefficient of (131) satisfies the equality{

∑
U

∑
S⊂U

s≡1 mod 2

(−1)e+(S)
}

= 22k−k−1 ∑
U0 good

∑
u∈U

(−1)λk(u),

where the sum is over all theU cosets ofU0 such thatVΓ (u)≡ k−#Γ onU . We
now sum over all thec such thatU = c+U0, to write the equality{

∑
U

∑
S⊂U

s≡1 mod 2

(−1)e+(S)
}

= 22k−2k−1 ∑
U0 good

∑
c

∑
u∈U0

(−1)λk(c+u),

where the sum is over thec andU0 such thatVΓ (c) = k−#Γ andVΓ (u) ≡ 0 on
U0. SinceU0 is good, we use the equality

λk(c+u) = (c2 +1)u1 +c1u2 + · · ·+(c2k +1)u2k−1 +c2k−1u2k +λk(c).

Hence the associated sum∑u∈U0
(−1)λk(c+u) is non zero if and only if we have

(c2 +1)u1 +c1u2 + · · ·+(c2k +1)u2k−1 +c2k−1u2k ≡ 0

on U0, which is equivalent toc∈ ρ +U0 (see the proof of Lemma 36). Noticing
also thatλk(ρ) = VΓ (ρ)− (k−#Γ ) = 0, we finally get the equality{

∑
U

∑
S⊂U

s≡1 mod 2

(−1)e+(S)
}

= 22k−1#
{
U0 good ;VΓ ≡ 0 onU0

}
. (132)

• WhenΓ = {1, . . . ,k}, the cardinality of suchU0 is N (k,2) sinceVΓ ≡ 0.
•WhenΓ 6= {1, . . . ,k}, the cardinality of suchU0 is N (k−1,2) by the third part
of Lemma 26.

We insert these values in (132) and in (131). Then we sum over allΓ ⊂
{1, . . . ,k} in (130) in order to obtain the equality

S+(X,k,4,8) =
1
2k ·

2
π2

(
N (k,2)+(2k−1)N (k,2)

)X
4

+O
(

X(logX)−2−k+ε

)
,

which gives Theorem 11 by appealing to formulas (16) and (10). In this case the
4–ranks of the ordinary class group and the narrow class group always coincide
since there is at least one prime divisor ofD which is congruent to 3 mod 4 (see
Lemma 10).
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