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1 Introduction and notations

In the whole papeb denotes a fundamental discriminant, i.e. a discriminant of

a quadratic number field. Lé¢ = Q(+/D) be the quadratic number field of dis-
criminantD. Denote by G} the ordinary class group ¢f and byCp the narrow

class group oK. We remark that these two groups are always the same<f0.

For a primep we denote by rk(A) := dimg (A/AP) the p-rank of an abelian
groupA. Furthermore we introduce the 4—ranlg(K) := rko(A?). In this paper we

prove many properties about the average behavior of the 4—rank of class groups of
quadratic number fields. In order to present the results we introduce the following

Definition 1 Let f(D) be a numerical function defined over the set of fundamental
discriminants. We say that(D) has a mean value over positive discriminants, if
there exists a real number/* (f (D)) such that, we have

<D< f(D
zoziix(l)a%*ﬁ(m).

If f is the characteristic function of a subset of positive fundamental discriminants,
we call.#*(f(D)) the density of the subset.
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The same definition extends to a mean value over negative discriminants (quo-
ted.#~(f(D)), and more generally to any infinite subset of the positive or of the
negative discriminants.

Let us state two of the main conjectures stated in [2, (C6), (C10)] extended to
p=2by]|[7].
Conjecture 1 For every prime number p and for every integet> 0 we have

Conj™(p, ) Ve pke(©B) — p)) =1
(0<|i_<|oc( ))

and

Conj"(p, ) //ﬁ( (pe(CB) — pi)) =p“

0<i<a

Actually, Cohen and Lenstra enunciated Conjecture 1 for any pdad with
c3 rep[aged by @ (note the equality r,k(CZD) = rkp(Cp) for odd p). By genus
theory it is clear that i(Cp) = 0(D) — 1, wherew counts the number of prime
factors. We remark that $kCp) — 1 < rk(Clp) < rk(Cp) (for more details, see
the discussion after Lemma 10). By averaging the corresponding expressions we
get
2”<2(C|D)7 orka(Cp) cXlogX,
0<£D<X 0<£D<X

for some positive constamt and for X tending to infinity. Frank Gerth [7] put
forward the idea to consid€3 instead ofCp. For p = 2 we get that rk(C3) =
rk4(CD).

Of course, Corij(p,0) is true for anyp. The case Cofj(p, 1) for odd primes
p corresponds to the normal average:

lim ZO<D§X prkp<CD>

=1+p*t
X—o  Yocpx1

and o)
rkp Cp
lim 20<-D<x P
X—e  3oc p<xl
where the sums are over discriminaitf quadratic fields. This result is only

proven forp = 3 as a consequence of the Davenport—Heilbronn theorem [3]. As a
special case of Theorem 1 we will get this average for the 4—rank, i.p.$0P:

:27

2rka(Cp)
lim ZO<D§X

=1+1/2 ()
X—e  3ocp<xl /

and (G
rk4(Cp
lim Soc-pex 2 =2 2)

X—o 3 ocpx 1
The aim of this paper is to prove the more general
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Theorem 1 The conjecture€onj™ (2, &) and Conj (2, ) are true for every in-
tegera > 0.

In order to do this we first prove in Proposition 1 that Conjecture 1 is closely
related to

Conjecture 2 Let p be a prime number and k be an integer. Denotefk, p)
the number of vector subspaceéFt'gf Then

CoNjoq(PoK) A (pR(B)) = (K, p),
and
Conjloq(P.K) M (PRCD)) = p K (K41, p) — A (K, D))

Then we show that Conjecture 2 is true foe= 2 and anyk > 0. Actually, we shall
prove a more precise statement for each of the six families of

D<0,D=1mod4 D>0,D=1mod4
{D<O,D50mod8 {D>0,D50mod8 3
D<0,D=4mod8 D>0,D=4mod8

For this we introduce the sums:
S (X,k,a,b) = Z 2krka(Cp)
0<—D<X
D=amodb

and
S™(X.k,a,b) := Z 2ktka(Co)
0<D<X
D=amodb
Then we show in Theorems 6-—11 that for every positive intkgard every posi-
tive £ the following equalities are true, wheRéX, £,k) := X (logX)~2 “*¢:

S (X,k 1,4) = 4 (k 2) ( Z 1) + O k(R(X, £,K)) (4)

D=1 mod 4

S*(X,k,1,4):%(W(k+l,2)—</1/(k,2))( Z 1)+o£,k(R(x,e,k)) (5)

D=1 mod 4

3(X,k,0,8)zﬂ/(k,2)< Z 1>+Og’k(R(X,e,k)) (6)

D=0 mod 8

S*(X,k,O,S):%(W(k+l,2)—</1/(k,2))( Z 1)+o£,k(R(x,s,k)) (7

D=0 mod 8

S (X,k,4,8) = 4 (K, 2)( Z 1) +Opk(R(X, £,K)) ®)

D=4 mod 8
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S*(X,k,4,8):2—1|((JV(k+1,2)—JV(k,2))( Z 1)+og,k(R(x,g,k)). 9)

These theorems, combined with (16) and Proposition 1 imply Theorem 1 di-
rectly.

Cohen-Lenstra heuristics contains also statements (see [2, (C5),(C9)]) about
the density of fundamental discriminamssuch that rk(C3) = r for some integer
r. Again, the conjecture for odawas extended tp = 2 by Gerth. In order to state
the conjecture we need to introduce the functign

k .
nk(t) := I'Il(l—tfl) for k a non-negative integer of co.
=

Conjecture 3 Let r be a non negative integer and p be a prime number. Then

1. The density of negative fundamental discriminants D suctrkRéE3) =r is
equal to

P NP1 (P) 2.

2. The density of positive fundamental discriminants D suchrtqac,%) =ris
equal to

p e (p)nr(p) Mrsa(p)

It is a very natural question if Conjecture 1 and 3 are related to each other. In [5]
we prove by techniques different from those presented in this work the following
theorem.

Theorem 2 Let p be a prime number. If Conjecture 1 is true for p andaalk 0

for positive fundamental discriminants, then Conjecture 3 for positive fundamen-
tal discriminants is true for p and all B 0. The analogous statement holds for
negative fundamental discriminants.

We remark that in general it is not true that the knowledge ok-athoments is
sufficient to get those average densities.
We apply this theorem fop = 2 and together with Theorem 1 we proved:

Theorem 3 Conjecture 3 is true for p=2and all r > 0.

1.1 Known results about 4—ranks

The 4—rank of class groups of quadratic fields was studied in several papers of
Redei, e.g. [16,17]. In [16] he defines an explicit matrix (the Redei matrix) over
IF, such that the rank corresponds to the 4—rarBfThis matrix is used in Gerth

[6] to compute probabilities that the 4-rank is a given number if we only consider
discriminantD with a fixed number of prime factors. Let us shortly describe these
results. We define the following quantities for> 0 squarefree, i.d® = mor 4m

in our notation.

A :={K=Q(v/—m) | exactlyt primes ramify inK},
At;X = {K e A | m< X}, At,r;X = {K c A{;x | rk4(K) = r}.
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Gerth proves that the following limits exist (and computes their values):

iy 1= lim 12X

X=o [Acx|

andds ;= lim d; .
: o G,

Denote byB, By:x, B rix, o andd{w the corresponding quantities when we con-
sider totally real fields. Then the main result of [6] is:

Theorem 4 (Gerth)

ooy = 2" (21 (2) 2 forr=0,1,2,...
d,, = 27" U (20 (2 Ipr1(2)7t forr=0,1,2,....

We remark that Theorem 4 gave a strong support for the correctness of Conjecture
3forp=2.

In order to prove the correctness of equations (1) and (2) we introduce the
following symbols.

Definition 2 Let (alb) : Q* x Q* — {0,1}, where(alb) = 1 if and only if the
equationx? — ay” — bZ = 0 has a solutiorfi0,0,0) # (x,y,z) € Q°.

The 4-rank of the narrow class group can be described by the following theorem.

Theorem 5
2a(Co) — %#{b| b > 0 squarefreeb | D, (b| —b') = 1},

where B € Z is squarefree such that bB b/c? for a suitable o= Z.

1.2 Sketch of the proof

The schedule of the proofs is as follows. The first quite new idea is to write, for
any p, the Cohen-Lenstra Heuristics Cé0p, «), in an equivalent form, where

the cardinalities of sets of vector spaces dégihave a crucial role (see Proposi-
tion 1 below). Such an interpretation shows that the geometry over finite fields is
subjacent in these heuristics. We are now obliged to restrict ourselyes & In

§3 we prove Theorem 5, which roughly speaking, establishes a strong link between
2k4(Co) and the number of representationddasD = ab, with a being a square
modulo|b| andb being a square modula| (see Lemma 6 (ii)). Then the symbol
(alb) can easily be transformed in terms of Jacobi symbols (see Lemma 6 and
equation (20), for instance f@ < 0 and= 1 mod 4). Since we are studying the
k—moment of #4(Co) we raise (20) to th&th power. This transformation gives
birth to a sum of products of*4Jacobi symbols, with numerator and denomina-
tor taken in a set of4independent variables. This expression is very intricate (see
(25)) and must be dealt in a global way. However, for small valuéglot= 1,2, 3)

it could be dealt by hand. One of the question is to know which Jacobi symbols
appear and which do not appear. We owe to E. Kowalski to have suggested that
the paper of Heath—Brown [10] would be useful to simplify our approach, since
this author met the same type of difficulty. Hence, we have incorporated several
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ideas contained in [10], in the present paper. The first one is to write variables as
Dy withu e IE‘%" and to use an homogeneous quadratic polynohjall, v) in two
variables inF3< to detect which Jacobi symbod%g) are present in the formulas
(see definition (27)). We are led to use some concepts of geometry in character-
istic 2. The error terms come from oscillations of the Jacobi symbols and cause
no trouble: as in [9,10], we appeal to Siegel-Walfisz Theorem and to a double
averaging over sums of real characters (see Lemmata 13 and 15 below). (Note
that the application of [9, Lemma 6] is erroneous on p. 180 : the inequality (6)
A;j > exp{k(loglogX)?} does not allow to apply Lemma 6, because of the con-
straint “q < log" x ”, which is not always satisfied in that case. A modification of
[9, (6)] into Ajj > X* (whereX* is defined below in (36)) is sufficient to correct
the proof. The same remark applies to [10, p. 343)).

The nature of the main term is highly combinatorial. As in [10], we check that
it can only come from the contribution of terms associated]@)ungk such that

exactly X variablesD,, are not equal to 1 and large (see Proposition 3). In particu-
lar, the associated indices build a coset of a vector space of diméngitaximal
unlinked subset of indicesee Lemma 18), on which a (non symmetric) bilinear
form L is identically equal to 0 (Lemmata 24 and 25). The proof is then reduced to
count such subspaces (Lemma 26). The combinatorial study is hardersforh

that the number-1 and 2 have a specific role, it is why the five last families of
the list (3) are studied in Sections 6 to 10. Hence, our proof has similarities with
[10] (for instance by the choice of the terminology) but the combinatorics and the
underlying geometry are different in several aspects.

The analytic methods involved in our work can be easily generalized to show
that the Cohen—Lenstra—Gerth heuristics for the 4-rank is true for more general
sequences of fundamental discriminabtse.g. wherD belongs to a fixed arith-
metic progression modulo an odd integer. Such extensions of this method should
be motivated by algebraic applications.

2 Cohen-Lenstra heuristics and cardinality of sets of vector subspaces
2.1 Counting vector subspaces in characteristic

The purpose of this section is to prove that Cd, o) can be expressed in terms

of the cardinality of vector subspaces]Rﬁfor somek. Before proving this equiv-
alent form, we first gather all the necessary properties of the funafikyt, p)
which denotes the number of linear subspaces of dimerﬁsiimﬂ’w"g. These prop-
erties will be also used in the combinatorial analysis of the main terms in the
formulas of Theorems 6-11 to express them with the help of the function

k

A (K, p) :=/;n(k,€, p),

which counts the number of the vector subspacé%kpmﬂ any dimension. We have
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Lemma 1 Let k and¢ be integers, then the functiarik, ¢, p) satisfies the equali-
ties
en(k ¢,p)=0fork<0, £<0or¢>Kk,
en(k ¢,p)=n(k,k—2¢,p) fork>0,
Y4 pkfi+1 -1
= rlli fork>0 and?¢ >0,
o I

“lp-p
en(k,(,p)=n(k—1,0—1,p)+p'nk—1,¢p) fork>1 and¢> 0.

Proof The three first equalities are classical. The fourth one is a direct conse-
quence of the third one and of the equality — 1) = (p’ — 1) + p‘(p* ‘- 1),
which is used in the case0/¢ < k. O

The proof of the following lemma is straightforward.

Lemma 2 Let k> 0 and ¢ be integers. Le€ be a non zero vector cB";,. Then
the number of vector subspacesIRﬁ of dimension¢ containingé is equal to
n(k—1,4—1p).

Now we collect some properties of the functiofi(k, p).

Lemma 3 For any k> 1, we have

N (k,p)+ (P = 1)A (k—1,p) = A (k+1,p), (10)
%p n(k,4,p =X (e/V(k+1 p)— A (k,p)), (11)

and )
;)p’fn(k,z, p) =4 (k+1,p) —. A (k,p). (12)

Proof By applying the third equality of Lemma 1 twice, we deduce the equality

(pk_é - l)n(k,ﬂ, p) = (pk - 1)11('(— 1’67 p)a

which is equivalent to
Zn(k7£7 p) + (pk - 1)n(k_ 1767 p) = (pk7£ + 1)n(k7£7 p)
Summing over alf, we get

k
N (k,p)+ (P = 1)A (k—1,p) = /Zj(p"*” +1)n(k2, p). (13)

We also have by symmetry (second equality of Lemma 1):

k k+1

/;(p”ﬂ n(k, ¢, p) lip—kl (k, £, p) = % n(k,t,p +;) n(k,(—1,p),
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and this is equal to
k+1

[z (p'n(k.¢,p) +n(k,¢—1,p)) = A (k+1,p),
/=0

by the fourth equality of Lemma 1. Combining with (13), we get (10).

For the proof of (11), we use the second and the fourth equality of Lemma 1
to write

k ‘ 1 k ‘ 1 k
4 4
> pink lp)=— > paklp)=— 5 (n(k+1,4,p) —n(k (—1,p)),

Hence the result. The proof of (12) works similarly. |

2.2 An equivalent form of Conjecture 1

We shall modify Conj(p, ) by appealing to the functiont” and by proving

Proposition 1 Let p be a prime number anah > 0. ThenConj" (p, a) is true for
every0 < a < op, if and only if.#+(p*™*»(CB)) exists and has the value

Conjiog(P, @) : M (pP(CD)) = p (A (a+1,p) — N (2, ),

forevery0 < a < ap.
Similarly, Conj~(p, o) is true for every0 < a < o, if and only if the mean
value.#~(p®™»(C)) exists and has the value

CoNjoq(P. @) - M (p6(%B)) = (e, ),
for every0 < a < ap.

Proof Itis an exercise in the theory of polynomials. ket 0 andQ p(X) be the
polynomial

k—1

Qk,p(x) = [L(X - pi)’

with the usual conventio@ , = 1. We have

Lemma 4 For every prime p and everyn 0, we have the equality

~+o0
X"= 3 n(nk p) Qp(X).
=
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Proof This lemma is true fon = 0. The proof is made by induction ovar By
the hypothesis of induction, the definition @k, 1 p, and the fourth equality of
Lemma 1, we have the equalities

XM — +zw n(nk, p)(X — P+ p*) Qi p(X)
- z n(n,k—1,p) + p*n(n,k, p)) Qp(X)

- k;)n(n—i- 1.k, p) Qup(X).

To prove Proposition 1, we first use Lemma 4 to write

perke(h) — znakp@<fk%5 (14)

Hence, if each term of the right hand side of (14) has a mean value, the left hand
side has also a mean value. By linearity of mean values, we have

A (D)) znakmﬂﬂ@<*°m) (15)

Now we see that assuming the truth of Gb(rp, for k < a implies the truth of
Conj 4(p, &) by the definition of 4" (e, p), in the case of# ~, or by (11), in the
case of Z*.

Reciprocally, suppose that Cﬁr&h(p,a) is true for every X a < ap. Let

0 < a < ag be the smallest number for which Cémp,a) is not true. Since
n(a, o, p) =1, the equality (15) then imply a contradiction. O

3 The4-rank of class groups of quadratic fields

The goal of this section is to prove Theorem 5. Furthermore we study the relation
between the ordinary and the narrow class group.

3.1 Properties ofa|b)

We start by collecting some properties of the symbol defined in Definition 2. We
remark that(alb) = 1 if and only ifb is a norm inQ(,/a). Note that in the case
thata is a square irQ the fieldQ(y/a) = Q and any element is trivially a norm.
We get the following easy properties:

Lemma5 Let ab,ce Q*. Then we have:
1. (alb) = (bja), (a|1) =1, (ac®|b) = (alb), (a] —a) =1,
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2. (alb) = (a] —ab).

Proof The first part is obvious from the definition. For the second part make the
following change of variables in the definition= ay,y = X,z= aZ and divide
by —a. ad

The proof of the next lemma can be found in [18, Theorem 8, p. 41]. This is a
particular case of Legendre’s theorem for ternary quadratic forms.

Lemma 6 Let a b be squarefree and coprime integers with-1. Then the fol-
lowing statements are equivalent:

1. (alb) =1.

2. aisasquare mod b and b is a square nald

Since every odd number is a square modulo 2 we immediately get the following
statement.

Lemma 7 Let a b be squarefree, odd, and coprime integers with 0. Then the
following statements are equivalent:
1. (2a2b) = 1.
2. 2ais a square mod b angb is a square modg|.

For a non—zero integdérwe denote byb| the squarefree integer wifh] = b
for a suitablec € Q*. Furthermore for a positive | D we definely := [bD] € Z.

We remark thab’ < 0 if and only if D < 0. Using this we can prove the following
lemma.

Lemma 8 Let b> 0 be a squarefree divisor of D. ThéD|b) = (b| — b).
Proof Using Lemma 5 we get:

(b| —b) = (blbb) = (blb[bD]) = (b|[b?D]) = (bD) = (D]b).

3.2 The narrow class group

We start by proving Theorem 5 which is already implicitly contained in [16, p.
56]. Denote byP in Cp, the class of principal ideals generated by totally positive
elementsa. We remark that in a real quadratic field an elemenwith positive
norm has the property that or —q is totally positive.

We remark that all primep which divide D are ramified. Furthermore all
classes of order 2 are generated by prime ideals lying above these primes. We
denote byps, ..., p; the prime divisors oD and byps,...,p; € Ok the unique
prime ideals of nornp; in the maximal order’x of K. In caset > 1 we get that
these prime ideals have order 2@g. Denote byD the squarefree number with

Q(vD) = Q(VD). Then there exists a principal ideal of not®| generated by

VD. Using this we get the only non—trivial relation of the grabyp/C3 of order

2t-1 generated by, ..., p;. If we look at the classes 'ﬁD/CE) represented by
B= bt @ €{0,1}, 1<i<t},

then each class is represented exactly twice.
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Lemma 9
1. 2ka(Co) = #/B? € Cp | B* = P}.
2. 2a®) = 1#{b € B | a? = ()b for suitablea and totally positiven}.

Proof The first part is obvious from the definition of the 4—rank. Using the first
part and the above discussion we get the second part. ad

Now we are able to prove Theorem 5.

Proof (Theorem 5)Ve use the second part of Lemma 9 and show that an ideal
b € % of normb has the desired property if and only(f| — b’) = 1.

Now assume that a squarefiee 0 dividingD has the property thgb| —b') =
1= (D|b) using Lemma 8. Therefofeis a norm inK = Q(v/D) and by clearing
denominators we find am € 0 such that# () = bw?, where.#” denotes the
norm function andv € N. Since./"(a) > 0 we get thatx or —« is totally positive.
W.l.o.g. we can assume thet/p ¢ 0k for all prime numbersp. Ideals of norm
p? are either principal ideals generated pyr a square of an ideal of norm
Sincea/p ¢ Ok no principal ideals generated by a pripélivide (o) and we get
(a) = ba?, whereb is the unique ideal of norh and.#"(a) = w.

Now assume that® = ()b with the above properties. Then

Therefore 1= (D|b) = (b| - b). 0

3.3 The ordinary class group

In order to compute {Clp) we need to know the relation betweernyGIndCp.
It is well known that we have an exact sequence

1-F,—Cp—Clp—1,

whereF, < Z/27. FurthermorgF.| = 2 if and only if D > 0 and./"(¢) = 1,
wheree is the fundamental unit 0Pk (see e.g. [15, Corollary 2, p. 112]). To
compare the structures 6 and Cp we use the following result (see e.g. [15,
Corollary 1, p. 457 and note 20, p. 483] and [13, Theorem 1, p. VII-6]).

Lemma 10 Let D > 0 be a discriminant withF.| = 2. Then the following two
statements are equivalent:

1. G =Z/2Z x Clp.

2. There exists a prime |[© such that p= 3 mod 4

: T R
In this case we have:&= CI3.

This immediately implies that when all odd prime divisordoére congruent
to 1 mod 4 the 2—-ranks @p and Ch coincide. If 4#'(¢) = 1, i.e.|F| = 2 this
means that there exists an> 1 such that rl (Cp) = rkor (Clp) + 1. We define
ep € {0,1} by the equation (Cp) = rka(Clp) + ep. We already proved that
ep = 0 if there is a prime congruent to 3 mod 4 dividibg or if the fundamental
unit has norm-1.

Now we are able to prove that our main statements remain true if we replace
CD by C|D.



12 Etienne Fouvry andiftgen Kliners

Corollary 1 The equation$4)~9) remain true when we replacexy the ordi-
nary class groufClp in the definition of S(X,k, a,b).

Proof We have nothing to prove for negative discriminants or for discriminants
D =4 mod 8. For positivé®d we deduce from Lemma 10 the inequalities

I’|(4(CD) -1< I’|(4(C|D) < I'k4(CD)

and if the equality ri(Cp) — 1 = rk4(Clp) holds, then all odd prime divisors &f
are congruent to 1 mod 4. In the cd3e= 1 mod 4 we get using dlder’s inequal-
ity that the error is bounded above by

2krk4(CD) S ( Z 1)1/&1( 2bkl‘k4(CD))1/b7
0<D<X,

0<D<X,D=1 mod 4 0<D<X,D=1 mod 4

p|D=>p=1 mod 4 p|D=-p=1 mod 4

whereb > 2 is an integer, and satisfiest + # = 1. Using Landau’s theorem (see
e.g. [1, Satz 1.8.2]) and equality (5) we get that the above expression for the error
is less than

X 1/a 1 1
XY <y X(logX) 2 X(logX)~2*¢
<bk ( \/W) <pk X(l0gX)™ 2 <k X(logX)
for every positivee, by choosingo large enough. A similar estimate can be given
for the casd = 0 mod 8. O

4 Analytic tools

Let us first recall some well known counting formulas of fundamental discrimi-
nants

2
1, 1= SX+0(X3),
T
(l< <X Of— <X
D=1 mod 4 D=1 mod 4 L . (16)
1, 1, 1, 1=-5X+0(X2),
0<D<X 0<-D<X 0<D<X 0<—-D<X 275

D=0 mod 8 D=0 mod 8 D=4 mod 8 D=4 mod 8

which are extensions of the well known formula
u2(n) = 2 X+0(X3)

which counts the number of squarefree integers X (hereu is the Mobius
function).

Our proof will start by a technical preparation of the integer variables. E.g. we
shall eliminate those with too many prime factors by appealing to a classical result
of Hardy and Ramanujan [8, Lemma A, p. 265]:
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Lemma 11 There exists an absolute constar, Buch that for every X 3, for
every/ > 0, we have

| L X (loglogX +Bo)*
cardin < X; w(n) =¢,u"(n) =1} < By logX o .

We shall frequently use the classical result:

Lemma 12 Lety be a positive real number. Then we have

7 < Y(logX)? 1,

X=Y<n<X
uniformly for2 < Xexp(—+/logX) <Y < X.

Proof Consider the Dirichlet serieB(s) := ¥ y*("n~S, use the classical zero—
free region for the Riemann zeta—function to expfeés in terms of{?(s) and
perform a complex integration with Perron formula. ad

For stronger results, see [19, Theorem 1] for instance.
We appeal to one of numerous forms of Siegel-Walfisz theorem [14, Corollary
5.29]:

Lemma 13 For every ¢> 2, for every primitive charactey modq, and for every
A> 0we have

> x(p) <a vax(logx) 4,

y<PEX
uniformly for x>y > 2.

We shall also benefit from double oscillation of characters by using the fol-
lowing result of Heath—Brown [11, Corollary 4, p. 238]. (However, some weaker
result having its origin in [12] would be sufficient for our purpose.)

Lemma 14 Let a, and k, be complex numbers of modulus less thafhen for
every M N > 1 and for every positive we have

5 Z\‘ambnuz(Zm)(%) <o MN(M™2 +-N72) (MN)?.

This result covers many of the cases we will encounter. However, to circumvent
the extra factofMN)¢ which causes trouble whevf andN are of completely
different sizes, we shall also use

Lemma 15 Let g, and Iy, be complex numbers of modulus less thafhen, for
every M N > 1 we have

> ¥ anbou”(2mu?(an) (1)

< MN min{(M*% +(N/M)’%)7 (Nf% + (M/N)f%)}v 17

and for every positive, we have

> Zwambnﬁ(zm)uz(zn)(%) <e MN(M™27 L N"2¥8). (18)
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Proof Formula (17) is a consequence of the large sieve for primitive characters
(see [14, Theorem 7.13], for instance). By Cauchy—Schwarz inequality and posi-
tivity, we have

DIPLLNECLVEENIE]
< M%{ ;\,,“2(2"]) ;Vuz(Zn)bn(:])r}

swi{s 5 | ()2} < mE (M2 NN

x primmodm n<

1
2

since, for odd squarefree positiue the applicatiom — (1) is a primitive char-
acter of conductom. The other part of the inequality of Lemma 15 comes from an
application of Cauchy—Schwarz inequalityq| > |, from large sieve inequality
and from the fact that for odd squarefree positiMine applicatiorm — (%) is a
primitive character of conductaror 4n.

Now (18) is an easy consequence of Lemma 14 and of (17). By symmetry, we
can suppose the inequality < N. Then ifM < N < M2, we apply Lemma 14 and
notice that MN)& < M3¢. Finally, forN > M?, (17) gives the bound

<MN(M™2+(N/M)"2) < MN-M2+€,

O
5 Proof of Theorem 1 in the case of odd negative discriminants.
5.1 From 4-ranks to products of Jacobi symbols.
In that section, we shall restrict to fundamental discrimiriasatisfying
D<0, D=1mod4 (29)

This is the simplest case since it does not take into account the quadratic structure
of —1 and 2 modul®. In Sections 6 to 10, we shall indicate how to extend these
results to other fundamental discriminants, negative or positive, odd or even.

We plan to study the moments of the quantit§*®o) over the set oD satis-
fying (19), which means to study the sum

S (X,k,1,4) = 2krka(Co)
0<-D<X
D=1 mod 4
for k a positive integer and foX — +. We shall prove

Theorem 6 For every positive integer k and every positsjave have

_ ok
S‘(X,k,1,4):W(k,2)(§<§§§41)+Oe,k(x(|09x) 2 “),

uniformly for X> 2.
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With the words of Definition 1, we shall prove that'(k, 2) is the mean value of
2¢k4(Cp) on the set of negative odd fundamental discriminénts

WhenD satisfies (19), we easily deduce from Theorem 5 and Lemma 6 the
following

Lemma 16 Let D be a fundamental discriminant satisfyi(i). Then we have
the equality

2k4(Co) — % #{(a,b) |a,b>1,—-D = ab, ais a squaremodb

and b is a squarenoda}.

Now we use the Jacobi symb@) (foroddb > 1) to detect ifais a square modb

with the formula
1 a 1 a
() - 30

clb

Using Lemma 16 we get

orka(Co) _ Wl(fm szzab (;) (i)) (% (5))) 7

which gives us with the change of variables= D,D3, b = DgD1, ¢ = Do, and
d = D3 the following:

g, B DR e

always under the assumption tliasatisfies (19).

Note that we do not yet appeal to the quadratic reciprocity law. We follow the
idea of Heath—Brown [10], to use the fieR} to create indices for the variables
on the right-hand side of (20) and then make geometry in characteristic 2. We
replace each index 0, 1, 2 and 3 by its expansion in basis 2 : 00, 01, 10, 11, which
are viewed as elements B. For (u,v) = (ug, Up,v1,V2) € F3 x 3, we consider
the polynomial

P1(u,V) = (U + V1) (U +V2).

This polynomial can be seen as the analoguB aked by Heath—Brown [10, p.
338]. The functiond; is useful to detect which Jacobi symbols appear in (20). We
have

oka(Co) _ L DU>‘I’1<“’V),

2.20(-D) (1)

—D=000§)1D10D11(U,V)GF‘2‘ Dy

since the equatiod;(u,v) = 1 has only solutions for the quadruplgs0,0,0),
(0,1,1,1), (1,1,0,0) and (0,0,1,1). In (21), we interpret the exponents 0 and
1eF,as 0 and E N, with the convention 9= 1. Since we study the—-moment,
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our next task is to raise (21) to tlketh power. Hence we have to parameterize the
solutions of thek—fold equation

S — (22)

u@erg ! uk erZ
To perform this we introduce the greatest common divisor (g.c.d.) of variables:

1 K
D,w 4k =gcd. (D) “vDL(J<)k))

R Ll(l) "
to write the factorization

D _

= T1 T[] Buw, w0, w0 (23)

These are the solutions of (22), provided thatlhe, |« satisfy the equality

-D=T] D,

1<n<ky(n) e[E‘%

u(k)- (24)

Reciprocally, starting from the decomposition (24)-eD into the product of 4
integers, we deduce solutions to (22), by grouping variables as in (23). Raising
(21) to thek—th power, we get

okrks(Cp) _ 1
~ 2k, gko(-D)
xS --- D&L )4)1(“(1) v®) L. DER) ) @1 (u vk
22 I_L D' D )
w0 (U v)er ) (ut9 v®0)ers Do

where theD 1), satisfy (24), and tth@) and theijZ) are defined by (23).
By the multiplicative properties of Jacobi symbols and the decomposition

given by equality (23), we obtain the equality

okrka(Cp) 1
_Zk,zkw(—D)
451(u<1),v(1>)+--~+d>1(u(k),v(k))
u@..uk
x = (25)
%1) u(zk> u Uu(k) (Dv(l) ..... v(k)>
""" )

We now introduce the elements (#3), u = (uM,...,u®) = (ug,---,ux) and
v= (v . vy = (vq,--- vy) € F3X, and we sum the formula (25) over all the
—D < X satisfying (19), to finally obtain
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Lemma 17 For every positive X we have the equality

Du ) ¢k(U,V) (26)

S (X,k,1,4) =27 ok (Dy) Dy
(Du)E.@z’(X.k) <|:| ) D,(DV

whereZ~ (X, k) is the set ofi*—tuples of squarefree, positive and coprime integers
(Du), withu = (UM, ... u®) € F2 satisfying

|'| Dy < X, |'| Dy=-1mod 4

uelrZ uelr3
and

Dy (u,v) = (D vB) 4y (U vy (27)
= (U +v1)(Us +V2) + - + (Upk_1+ Vok_1) (Upk_1 + VoK)

5.2 Linked variables.

Inspired by [10, p. 338], we say that the variallksandD,, (or the indicess and
v) arelinked if they satisfy the equality

Dy (u,V) + P(v,u) = 1.

In other words, this means that in (26), exactly one of the sym@@vls) or (%)
appears with exponent 1. LBtbe the quadratic form ové?%k defined by

k—1
P(w) = Z)sz+l(W2j+1 +Woj2).
j=

The quadratic forn® satisfies the equality(u +v) = &y (u,v) + Pk (v,u). Hence,
Dy andDy, are linked if and only ifP(u+Vv) = 1. They are unlinked if and only if
P(u+v)=0.

5.3 Number of prime factors of the variables.

Let
Q = e4(loglogX + By), (28)
with Bp defined in Lemma 11. Denote ly(n) the number of ways of writing the

integern as product ok positive integers.
Let X3 be the contribution to the right part of (26) of thu)ueﬁ%k which do

not satisfy
o(Dy) < Q,forallu e F&. (29)
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We writen = [, Dy, and we use the Cauchy—Schwarz inequality to see that

< p2(n)tu(n)2 ke « u2(n) Ty (n)

n< n<

o(n)>Q o(n)>Q
1

1
2 2 ko(n)\ 2
< ue(n 4 .
(3 wm)(g4")
o(n)>Q
By Lemmata 11 and 12 and by Stirling’s formula, this contribution also satisfies

X (loglogX + Bg)\ 3 & 1\ 2
< (Iogxé% 17 )" (x(togx)* )

< X(logx)Z* -1 (gg (lglogx +Bo 'of/f B")f) * < X(logx)?* 1 (gg 4+ :
< X27K2 (logx)Z* 1,
which, fork > 1, finally gives
2 < X(logX) ™1, (30)

by the choice (28).

5.4 Order of magnitude of the variables.

We dissect the set of variations of the variallgsin the definition of2~ (X, k)
to control their orders of magnitude and to mollify the constrigji?, < X. We
first introduce the dissection parameter

A=1+log 2X,

and for eachu € F3%, a numbe, of the form 1,4, A2, A3,...
ForA = (AU)UEF%k, we define the restricted sugiX,k,A) by the formula

Dy (u,
Dy ) (u V)’ (31)

S(X,k,A) =27k 2 ko(Du) —u
> () N,
where(D,) satisfies the conditions

(Du) € 27 (X,k), Ay <Dy < AA,, o(Dy) < Q for all u € F3¥.

Recall that?— (X,k) is defined in Lemma 17. Using equation (30) we decompose
S (X,k,1,4) by the formula

S (X,k,1,4) = ;S(X,k,A)—i—O(X(IogX)*l), (32)

whereA is such thalﬂungkAu < X. We remark that the sum in (32) contains
O((logX)#*(1+29) terms.
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We now define four families o& and prove that their contributions to the right
part of (32) are negligible.
The first family is defined by:

[ A4 ¥x (33)

2k
uels

By Lemma 12 and by the definition af, we see that

Z |S(X,k,A)‘§ z ‘u2(n),r4k(n)27kw(n>
A satisfies (33) A-¥X<n<x
< z ok (n)
A-¥x<n<x

< (1-A~*)X(logX)?1.
Using the expansiofil 4+ x)* = 1+ ax+ O(x?) for x — 0 we get:
A% = (1+1og 2 X) ¥ = 1— 4log 2 X + O(log 2" X).
Putting the last two formulas together we finally get:

Z |S(X,k,A)| < X(logX) ™. (34)
A satisfies (33)

Note that if (33) is not satisfied, the conditiofig < Dy < AA, imply [Ty Dy < X
automatically. This means that the sizes oftheare mutually independent now.
To define the three other families we introduce two numbiérandX* defined

by

Xt — (|ng)3[1+4k(1+2k)] (35)
X*is the leastn’ > exp(log™™® X). (36)

We shall choosey (k) as a small positive function & (see its definition before
the statement of Proposition 5). The second family is defined by

At most X — 1 of theA, are larger thaiX*. (37)

It is easy to see the inequality

X kA)| < 2 ke, (38)
AsatlsZes (37‘)8( } n(t?zuix I:'

where the sum is over thé4tuples(D,) which are squarefree, coprime and are
such that at most“2- 1 are larger thaX*. We dissect the above sum according
to the number < 2¢— 1 of D, which are larger thaX*. Let n be the product of
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thoseD,, which are larger thaX*, andmthe product of the remaining ones. With
these conventions and with Lemma 12, we transform (38) into

S(X,k,A)
A satiZe | |

sfies (37)
<y S Mg (m2kem™y p2(n)g (n)2 kel
o<r<2k—1 mg(x¢)4k—r n<X/m
< ¥ T M)z, (M2 M (x/m) (logx)™?

0<r<2K—1 me(x#)dk-r

< X( z (logx)rzflgl) ke (m) )

o<r<2k—1 m< (X¥)a
By Mertens formula, we finally get

Z |S(X,k,A)| < X(logX)Znk-2" (39)
A satisfies (37)

The third family ofA is defined by

The condition (33) is not satisfied and
(40)
there exist two linked indices andv such that\, andA, are> XT.

In that case the bound fd&(X,k,A) will be obtained as a consequence of
the double oscillations of the charac(@g whenD, andDy, vary independently
(see Lemma 15). IA satisfies (40), there exist two indicesand v such that
D (u,v) + P(v,u) = 1. Hence we can write the inequality

[S(Xk,A)| <

szw(DW)

(DW)w;éu.v W7£u v

gg (Du, (Dw)w-uy) (va(Dw)W#uv)(Bw

where

__ o—ke(Dy) Dy Pluw) Dy \ (W)
a(Dlh (DW)W#U,V) -2 ’ W!:UI,v<Dw> W7|:lll,v< Du )

anda(Dy, (Dw)w-u,v) is defined similarly. The coefficientsare always less than
1 in absolute value and the variables of summafgpare coprime, squarefree
and satisfy the conditions

Dw = —1 mod 4 ®(Dy) < Q andAy < Dy < AAy (W € F3),

2k
wels;
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with Ay, A, > XT. By fixing the classt1 mod 4 of eaclDy,, and by applying (18)
to the inner double sum of (41), we get the inequality

S(X,k,A)| <<( M AW) (AUAV(AJ% +A\7%)) <x(xh 3.

WU,V

It remains to sum over th@((logX) (1429 ) possibleA and to use the definition
of XT to finally get

Z |S(X,k,A)| < X(logX) ™. (42)
A satisfies (40)
The fourth family ofA is defined by

The condition (33) is not satisfied and there exist
(43)
two linked indicesu andv such that 2< A, < X andA, > X*.
To deal with such cases, we introdugen the following equations in order

to satisfy the conditiorf], Dy = —1 mod 4. Since (43) is satisfied, we have the
inequality

sonlze me, 3 g e ()

whereAy, < Dy < AAy (W € ]F%") andD, = x mod 4 andw(D,) < Q, with the
inequalitiesA, > X* and 2< A, < X'. Fixing the value/ of o(Dy) and writing
Dy = p1--- pr in ascending order, we transform (44) into

1 2 Dy
]S(X,k,A)|<<K=jr:‘q&rlnX0d4 > gogzggw’ > u(ZI_IDW)(DT),

, o (44)

(Dw)wtu,v Do D a Y
(45)
and the inner sum satisfies
D
2 u
2 Dw) (=2 ]
Py ( |;| w (DV>
Duy=k mod 4
Pe
SZ max ’ 'u2(2plp£ D )
k'==+1 mod 4%1_4@[_21 pﬁ,(zmod 4 Wl;lu <Dv>
(46)

andp, satisfiesA; < p1--- pr < AA,. Sincel is not too large{ < Q), the variable
p, satisfiesp, > Aé the interval of variation fopy is large enough, compared with
the modulus B, < 8XT, since we havé\é > exp(log?™/2X). Applying Lemma
13 withq = 4Dy, x= —2%__ ‘andA large we have

P1---Pr—1
‘ > H(2pi-p[]D )(gi) <<AVL(|ng>fAn<k)/z+_Q.

p,=k"mod 4 WU P1---Pr-1
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We remark that the2—term comes from th@—term, which may be zero, i,
divides one of theD,. Inserting this bound in (46), summing ovpf, ..., Pr—_1,
and then in (45), we finally get the inequality

|5(X,k,A)| < AUA\%( |‘| Aw) (|ogx)—An(k>/2 < X(XT)% (logX) —An(K)/2.

WU,V

Now summing over all thé satisfying (43), and choosing very large in terms
of k, we proved

Z |S(X,k,A)| < X(logX) ™. (47)
A satisfies (43)

It is now easy to deduce from (32), (34), (39), (42) and (47):

Proposition 2 For every k> 1, we have the equality

S"_(X,k7 1,4) = S()(J(,A)_’_O((X(Iogx)zkn(k)_z—k)7
A satisfieq48)
where
[ Av<a=X
uelrZ

At least2¥ indicesu satisfy A > X*,

Two indicesu andv with Ay, A, > X" are always unlinked
If Ay and A, with A, < A, are linked, then

either A = lor (2< A, < X" and A, < A, < X¥).

(48)

Actually, in proving Proposition 2, we did not enter into the properties of linked
indices. It is the purpose of the following subsection, to simplify the conditions
(48).

5.5 Geometry of unlinked indices.

We first prove

Lemma 18 Let k> 1 an integer and let C ng be a set of unlinked indices.
Then#% < 2 and for anyc € F3%, ¢+ % is also a set of unlinked indices. If

#% = 2%, then either is a vector subspace &< of dimension k or a coset of
such a subspace of dimension k.

Proof We follow the proof of [10, Lemmata 7-8]. It is easy to see tha¥ifis
a set of unlinked indices, thex % has the same property. We introduce the
symmetric bilinear form

k—
p(u,v) =P(U+V) —P(u) —=P(V) = ) (Uzj+1V2jt2 + Uzj+2V2j+1)-
j=

[any
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Note that ifu andv are unlinked with0, thenu andv are unlinked if and only if
we havep(u,v) = 0.

Let  be a subset of unlinked indices. Hence for angndv € % we have
P(u+v) = 0 and therefores + v is unlinked withO. Since the property of being
unlinked is stable under translation, we may supposedthe# . Hence, under the
assumptiord € % we havep(u,v) = 0 for anyu andv € %7 andp(u+v,w) =
p(u,w) + p(v,w) = 0 for anyu, v andw € %. Then we deduce that+ v is
unlinked with anyw € 7. If we suppose tha?/ is maximal, we see that/ is
closed under addition, and is a vector subspadegbf

We now appeal to some results concerning the theory of bilinear forms on
vector spaces over fields with characteristic 2 (see [4, p.33 & 34] for instance). To
follow the the terminology of that theoryy is asingularspace for the non degen-
erate quadratic forr® (which means tha® = 0 on%/). It follows that dimZ < k.

By [4, p. 23.4 & p.36] we know that all the maximal singular spaces have the
same dimension. We know the singular space of dimensiohich is generated
by the vectorg1,1,0,...,0),(0,0,1,1,0...,0),...,(0,0,...,0,1,1). Hence itis a
maximal singular space and all the maximal singular spaces have diménsion

O

Now we can simplify the conditions of summation (48). llet= (A,) satis-
fying (48) and letZ be the set of indices, such that, > X*. This is a set of
unlinked indices of cardinality- 2¢. By Lemma 18 we know that its cardinality
is equal to &. Furthermore, by this lemma, it is also a maximal subset of unlinked
indices. Hence, for any ¢ %, there existsl € %/, such thau andv are linked.
From the last condition in (48), we deduce that= 1.

From this discussion,we simplify Proposition 2 into

Proposition 3 For every k> 1, we have the equality

S (X,k1,4) = S(X,k,A) + O (X (logX) 210 -2")
A satisfieq49)
where
M A< A¥X
uerg

49)

U ={u; A, > X*} is a maximal subset of unlinked indices
Ay=1forug %.
Following the notations of Heath—Brown [10], we reserve the le#tdor any sub-
set of X unlinked indices, taken ifi3¢. We say thaA = (Au)ungk is admissable

for % , if it satisfies
A>Xteuew

Av=leudu (50)

A < A¥X.
We remark tha#\, = 1 impliesD, = 1. Foru € %, lethy € {+1 mod 4 such
that
hy = -1 mod 4 (51)
ueZ
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Let A be admissable fot/. The definition of unlinked indices, the quadratic reci-
procity law and the definition (31) imply the equalit®{(u,v) = & (v,u) for u,v
unlinked):

SXkA) = 27k(%) ((DZU)I.LZ(J;L Dy) ul;l/ 2*k“’(Du)> (UI—lN(fl)Q(u,v) i

(52)
where the first sum is ovéx, satisfying (51) and the second sum is o, )yca
such that

Au S Du <AAL|, Du Ehu m0d4 (D(Du) S.Q,

and the last product is over unordered pdirsv} of elements of% .
We now appeal to the following lemma, which is a consequence of the equidis-
tribution of primes in fixed arithmetic progressions.

Lemma 19 For k = +£1 mod 4 for every A> 0 and for Y>y > 1, we have the
equality

! 1
2 uz(non)zi > “2(2n0n)+OA<(€+1)A+1Y(|092Y)_A+a)(no)Y1—z)7
ysnsy y<nzY
n=x mod 4 o(n)=¢
w(n)=¢

uniformly for an odd squarefree integeg,rand/ > 0.
Note that this lemma is of poor quality whéris large and trivial fo = 0.

Proof We supposé > 1 and writen = p; - - - p; the decomposition afin increas-

ing odd primes. Note that we have the inequa¥it(py--- pr_1) > Y%, otherwise
the sum is empty. Hence, we have the equality

2 2 2
> ui(non)= % u(nopr---pr-1) > 1=(2nopy).
y<n<Y,n=k mod 4 -1 max(py_1.¥/(P1Pp—1))<Pe=Y/(PyPr_1)
o(n)=¢ PrPp—1<YT d pp=k/(p1--py_1) mod 4

(53)
By the prime number theorem in arithmetic progressions modulo 4 written in the
form

1
1=3 5 140(Z(log2zz) "),
21<P<Zp 21<p<Zp
p=a mod4
uniformly foraodd and 1< Z; < Z, (see Lemma 13, withy = 4), we see that the
sum overpy in (53) is equal to

1 Y 1
- S 12(2nopy) + O(a)(no) + 70094\(2\(7)))7
max(py_1.y/(Py++Py—1)) <Py Pr-Pe-1
Pe<Y/(P1Pp_1)

then, summing this expression over:--py_1 < Yl‘%, we finish the proof of
Lemma 19. O
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This lemma is used to transform the inner sum d@y) in (52) in the following
way. We momentarily suppose that the €efis written in the form

U = {um; 1< m< 25},

with up € F2X. Then we have

Z(ULl DU)UD/ o—ko(Dy) _ ; o—ka(Duy)
<(F e (F w02 ) )

(54)
where, for each X i < 2K, the sum oveD,, satisfies
A, <Dy < AAy,Dy =hy mod 4 w(Dy,) < Q.

By fixing the vaIuew(Duzk) = ¢, applying Lemma 19 witly = Auy andY =
APy and then summing ovér< Q, we get the equality

g

= p?(2Dy, Dy, )2 <

Au,y <Du_j <AAu2k
w(Duzk )<Q

UZk) + O(Auzk (logx)—1—4k(1+2k)) .

Note that the congruence condition ﬁ)g has disappeared and that we used the
lower bound log2Y) > logA,, > (IogX) ). Inserting this formula into (54),
inverting summations, and applylng the same lemma to the valmgjgl and so

on, we finally get the equality

1 K 1 ak(q40K
:ﬁ 2 I—! 2 (DDU)+O( (Iogx) 1 4(1+2 ))
(D )Au<Du<AAu
o(Du)<Q
Inserting this formula into (52) and summing over/alhdmissable for a fixed/
and satisfying (49), we get
1y
=)}

S(X,k,A) = 2*k*2k{ Z (
{3 n I_l @2—"‘0 ®o} 1 0(X(logx) ).

A admissable foz (hu uyv
Du>
(55)
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where the sum is over th@®,) such thato(D,) < £ and such that there is an
A = (A,) satisfying (50) and\, < Dy < AA,.

By a computation similar to the proof of (30), we can drop the condition of
o(Dy) < £ with an error term irD(X(logX)~1).

By a computation already done to obtain (39) and (34), we transform the right—
hand side of (55) into

S #(2 [] Du) 2-k“’<Du>=;u%zn)rzk(n)z—k“’(m+0<><<Iog><>—1>

(Du) ue? ue? n<

+0 szw(é) 27ka)(m)(2k _ l)a)(m)
1§%x?c 1§%X/f )

= ;uZ(Zn) + O(X(|OgX)ﬂ(k)2—k_2—k) |

The first error term comes from equation (34). In the second error term we count
the numbers which have at least one factst X*. The sum ovemis computed

by Lemma 9 using = 1— 2K and the final sum using Mertens formula. By this
expression, by (16), and by (55) we get

Proposition 4 For every k, and for every maximal unlinked subgetc IF%", we
have

_k—2kK 4X (k)27k727k
S(X,k,A) =2 7(%)—2+O(X(Iogx)" )
A admissable forz T

with

where the product is over unordered pafis,v} C %, and wherdhy),co € {+1
mod 42 satisfy(51).

Now we sum over all maximal unlinked se#s in Proposition 4, use Proposition
3 and chosey (k) = 27X, to finally write

Proposition 5 For every k> 1 and for every positive, we have the equality

22— k—2K

S (X.k14)= (;WZ/)) X +0(X(logx)~2*+*),

2

where the sum is over the set of maximal unlinked gets F3<.

5.6 Study of the coefficient of the main term.

By Proposition 5, the proof of Theorem 6 is reduced to the study the quantity
Sa V(% ). This is the purpose of this section, in which we follow the strategy of
the proof of [10]. By Lemma 18, we writé/ as% = c+ %, withc e ng and%y

a vector subspace &8« of dimensiork. Note thatZ is also a maximal unlinked
vector subspace.
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LetS= S, (hy)) be the set
S={ue%;hy=-1mod 4.

By (51), the cardinalitys of Sis odd. We directly obtain

YU) = Z (—1)%9, (56)
with
(S =Y &(u,v), (57)

where the sum is over unordered pafisv} C S. Of course, since(S) € Fy,
we interpret(—1)®9 as an element d, in the natural way. For the purpose of
the next sections, we generalig€% ) by introducing forv = 0 or 1 mod 2, the
following

W= 3 (—1)°9. (58)
s=v mod 2

Now we decompose the polynomid in a sum of a bilinear form, the qua-
dratic formP and two linear forms, in the following way

Dy (U,v) = L(u,v) +P(v) +A(u) +A(v), (59)
with
k-1
L(u,v) = Z}U2j+l(V2j+1+V2j+2)a (60)
J:
k-1
P(v) =% V2jia(Veji1+V2jt2),
]:
and
1 k-1
Au)= 3 Wy =) Uzjs1.
2507
Note that

L(u,u) = P(u) (Vu € F3¥). (61)
The quadratic fornf is almost linear in the following sense:
Lemma 20 Let S be a subset @¢ of cardinality s ando := ¥ csu. Then
1. For s odd we get that(¢) = L(o,0) = u%SP(U).

2. L(G,6)+S< 5 P(u)) ~0.

uesS
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Proof Whens= 1, (i) is a consequence of (61). For other aldhis is a con-
sequence of the general formula true for any quadratic f@rm/erIng, and for
everyu, v, andw:

Qu+v+w)=QUu+V)+Qu+w)+Q(V+w)+Q(u)+Q(V) + Q(w),
which forQ = P andu, v, andw € % gives
P(u+v+w)=P(u)+P(v)+P(w),

where we use®(u+v) = 0 for u andv unlinked. This proves the second equality
for sodd. In the even case we note tlwt %4 andP(c + 0) = 0 sinceu and0
are unlinked. ad

We now want to evaluate the functie(S) defined in (57) in a suitable way.

We shall require some notations from set theory Zif is a set, we denote
by 2(%Z") the set of subsets of2". For 2 finite and forv = 0 or 1 mod 2,
Py(Z) is the set of subsets of", with cardinalities= v mod 2. The symmetric
difference operator is denoted By and shall frequently use the facts tha{ .2")
and (%) are abelian groups with the law, and that#%,(2") operates on
P1(Z) by the lawA in a simply transitive way.

For anySandT € &(% ), with cardinalities odd or even, we define

eST) =€ +eT)+e(SAT). (62)

&ST) = ugsv; Dy (U, V). (63)

The proof of (63) is in [10, p. 351]. Another direct proof is to check that (63) is
correct forS=T = 0 and to prove it by induction on the cardinality 80 T. In
other words, we check that for amye % butw ¢ SUT, the equality (63) remains
true if we replacesandT respectively bySU {w} andT, by SandT U {w}, or
by SU{w} andT U {w}. We only require the properties thdj(u,u) = 0 and
@Dy (u,v) = P¢(v,u) for anyu andv € 7.

In the following 6 andt always denote the sum of elementsSandT, re-
spectively. Furthermore the size $fandT is denoted bys andt, which will be
interpreted as elementsiiy by reducing mod 2.

Then we have

Lemma 21 For all subsets S and T &% we have:

e(ST)=L(o,7)+s < er(V)) +tA(o)+sA(7).

Proof This follows directly from (59) and (63) using linearity. a
Squaring (58), we have the equality

f(%,v): z Z (_1)e(8)+e(s')

SScw
s,g=v mod 2

_ z Z (71)e(MS)+e(S,S)' (64)

SSc#
s,g=v mod 2
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Instead of summing ove8, we sum oveil = SAS, which has even cardinality.
By Lemma 21, by linearity and blyeven, we have

(AT, 9 =L(c+7,0)+ (S+t)(zSP(u)) +SA(6+71) + (s+1)A(0)

= L(’LG)+L(G,G)+SZSP(U)+SA(T) (65)

ZA u= zSqu Zru:tﬂ—r.
UESAT ue ue

Using Lemma 20 we can even more simplify:

since

&(S,S) = e(AT,S) = L(t,0) +sA(1). (66)
By (66), (64), and usind = SAS we get
Pavy= 5 (F)AAOL(Ty), (67)

TC% .t even

where
Z(T,v) = (-9, (68)
SC% ,s=v mod 2

For everyS € Z(% ) and corresponding suoy we get by linearity the equality

Z(T, V) _ (_1)L(T,6+60)
SC% ,s=v mod 2

which gives us the equation
E(T,v) = (-0 5(T,v)
for everyS € Po(% ). HenceX (T, v) = 0 unless
L(t,00) = O for everyS € Po(%). (69)

If (69) is satisfied, then with the choi&® = {c}AS we havel(t,0) = L(z,c)
for everySe &1(%). This implies thal.(t,c) = sL(r,c), for anySc %, with

sodd or even. Since?o(% ) and 221 (% ) have cardinality equal 0221, we get
the equality (still assuming (69)):

Z(T, V) _ 22k—1(_1)VL(T,C)

which transforms (67) into
P, v) =221 3 (_1)e(T)+v<A(r)+L(r,c))7 (70)
TeT

where 7 is the set of subsef§ of % with even cardinality such that (69) is
satisfied.
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Note that.7 contains all subseff of %, witht even andr = 0, and that7
is a group with symmetric difference operator. Note also that Lemma 21 implies
e(T,T') =0 for everyT andT’ € .7 and by the way using (62), the application

T (=1)T)
is a multiplicative character on that group, and also the map
T (_1>e(T)+v(A(T)+L(T,C)).
From (70) we deduce that% ,v) vanishes unless
e(T) =v(L(t,c) + A(1)),
forall T € 7. By restriction to thel € & with T =0, we proved

Lemma 22 Let% be a maximal unlinked subset®*. Then we have
(y(% ,0) or y(%,1) #0) = (&(T) =0VT C Z witht even andt =0).
This lemma is a weak form of the following

Lemma 23 Let % be a maximal unlinked set @& written in the form% =
Cc+%. Then we have

(v(% ,0) or y(% ,1) #0) = (&(S) = (1+5)(L(0,c) + A(0)) VSC %).

Proof We suppose that(% ,v) #0 forv=0 or forv=1mod 2. LetSC %
such thasis odd. We fixT = SA{c}. Sincesis odd,c is an element of/. We
also haver = o + o = 0. By Lemma 22, we have(T) = 0 and by Lemma 21 we
get

e(S{o})=L(o,0)+sP(o)+A(c)+sA(c) =0.

Combining this relation with (62), we get
&S =e({o})+e(T)+e(S{c}) =0,

which gives Lemma 23 whesis odd.

We now consider the case whsiis even. Ifo = 0, then Lemma 22 implies
thate(S) = 0 and Lemma 23 is correct in that case. Nowyif£ 0, we consider
the sefl = SA{c,c+ o}, which satisfies even andr = 0. Lemma 22 gives

e(T)=0. (71)
By definition (57), by (61) and by linearity, we have

e({c,c+0}) = d(c,c+o0)
=L(c,c+0)+P(c+0)+A(c)+A(c+0)
=L(c+c+o,c+0)+A(0)=L(0,0)+L(o,c)+A(0),

which gives the equality

e({c,c+0})=L(o,c)+A(0), (72)
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sinceo € % andL(o,0) = P(c +0) = 0 (s even). By applying Lemma 21 we
get (sandt are even):

e(S{c,c+o})=L(0o,0)=0. (73)
Using (62) and the three equalities (71), (72), (73), we get that

e(S) =e(S{c,c+0o})+e({c,c+o})+eT)
=L(o,c)+A(0o),

which finishes the proof of Lemma 23. a
We push further the study of subsékssuch thaty(%,v) # 0:

Lemma 24 Let% be a maximal unlinked subset* written in the formz =
C+ %. Then we have

(v(% ,0) # 0or y(%,1) # 0) = Ligyx, = O.
Proof Let ¢ andt be two non zero elements @fy. We see that they are the sums
of the elements of the following subsets#f S:= {c,c+c} andT :={c,c+7}.

These two subsets have even cardinality. By Lemma 21 and equation (62) we
deduce

L(o,7)=e(ST)=e(9 +&(T)+e(SAT)
= (L(0,¢)+A(0)) + (L(7,¢) + A(1)) + (L(0 + 7,0) + A(0+T)),

the last line being a triple application of Lemma 23. By linearity, we finally get
thatL(c,7) = 0. O

As Heath—Brown [10, p.354], we say that the vector subspgacef IF%k is
good when it has dimensiokand when the bilinear forra is identically zero on
Uy X 2. Note the implication

%, good=- ¢+ %o is maximal unlinked for alt € IF%",
since, for every andv € %4, we have
P((c+u)+(c+Vv)) =P(u+Vv)=L(u+v,u+v)=0.
We extend Lemma 23 in the following way:

Lemma 25 Let% = c+ % be a maximal unlinked subsetB*. Then we have
the implication

U good = e(S) = (1+5)(L(0,c) + A(0)) VSC % .

In particular, if s is odd, we have(8) =
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Proof This lemma is true fos= 0 or 1, sincee(S) = 0 in both cases. F@= 2,
itis a consequence of (72). The rest of the proof is made by inductiors et
with s> 2. We decompos8=TAS, withs' =s—2,t =2, andy ,gu=c’. By
definition (62), by induction hypothesis and by Lemma 21, we have

e(S) =e(TAS) =¢(T) +€&(9S) +e(T,S)

= (L(1,0) +A(1)) + (1+8)(L(0",0) +A(0")) + (L(7.0") +SA(7))

= (L(r,¢)+ (1+9)L(0’,c) +L(1,0 )) (1+5)A(o).
If sands’ are odd we get:

&S =L(r,¢)+L(r,0') =L(zr,c+0")=0
sincet,c+ o’ € %. If sands are even we get:
&S =L(t,¢)+L(o’,c)+L(t,06")+A(c) =L(o,¢c) +A(0)

because + ¢’ = ¢ andL(t,0’) = 0 sincer, o’ € %. 0

In order to precise the main term in Proposition 5, we must study the coeffi-
cientSy, V(%)= y(%, 1). By decomposition and by Lemma 24, we have

;Y(%) ?/ogoo Z 7 JZ/onotgood ; Y(%>

coset of 7 coset ofzg

) good

coset OW/O

By Lemma 25, we know that eacke Z1(c+ %) with % is good, satisfies
e(S) = 0. From this, we deduce

;y #{Scusodd} =221 5 1,
7/0 good 7 good
coset ofz

which finally gives the equality

; YU ) = 22149 good ). (74)

5.7 Counting the number of good subspaces

As in [10, Lemma 6], we are now led to a problem of linear algebra and we prove

Lemma 26 Letk> 1, and consider the vector spaée= IF%". Let L be the bilinear
form defined o€ x & by the formula
k-1
L(u,v) = Z)U21+1(V21+1+V2j+2)~
J:

Letd #I C{1,...,k}. Then the following holds:
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(i) There is a bijection between the set of good vector subspagesf & as
defined before Lemma 25, and the set of vector subspa&¥s of
(i) The number of good subspacesdris equal to./(k, 2).
(iif) The number of good subspacés in & such that 5 (uy_1+ uy) = 0 for all
el

ue€ %isequaltot (k—1,2).
(iv) The number of good subspacgsin & suchthaty uy_;=0forallue %

el
is equal to.#" (k—1,2).

Proof Let {ey,...,ex} be the canonical basis &f, and let# the basis defined

by # = {b1,...,bx} = {e1+e,e,...,ex_1+€x,ex} of &. In this new basis,
we have
k—1

L(u,v) = Z)X2H1Y2j+27
]:

where(x;) and (y;) are the components aof andv in %. Let X andY be the
subspaces of defined by

-

k-1

ijzj+1b2j+1 | Xoj+1 € Fz},
J:

and
k-1
Y= {ZDY2j+zsz+2 | Y2j42 € Fz}.
J:

From the decompositiof = X @Y, we define two projectionsx andmy overX
andY, respectively. Note the general identity

L(7x (u), my (v)) = L(u,v). (75)

We now prove that, for any subspdéef X there is exactly one subspagég C &
of dimensionk, such that. |, .4, = 0 andnx (%) = F. Supposezy has this
property. By (75), we obtain that

L(?‘L’x(u), ﬂy(V)) = 07

for all u andv € %p. This implies thatry (%) C F+, whereF+ is the vector
subspace of with dimF+ = k — dimF, defined by

Ft={veY;L(uv)=0YueF}.

We deduce?y C nx (%) @ ny(%) C F @ F+, hence, by reasoning on dimen-
sions, we see thaty = F ® F+ and% is uniquely determined. The application
U — 7x (%) is the bijection claimed in the first part. We remark that the inverse
mapping is given bf¥ — % :=F & F*.

The second part follows immediately by the first part and the definition of
AN (K, 2).
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For the third part we note thathas the following coordinates in the new basis:
Zpr_1 = Ug_1 and zyy := Uyy_1 + Uy for £ = 1,... k. Therefore the condition
becomes:

/Z Zy =0forallu € 2.
er

This is equivalent to the fact that the vector

> bora
lel”

belongs to074. This vector certainly also belongs ¥owhich by the bijection of
the first part means that we have to count all vector subspac¢ésaftaining one
given vector. Using Lemma 2 we get the desired result.

For the fourth part of the lemma we get the following condition in the new
basis:

/z Zy_1 =0forallu € 2.
er

Since this introduces one relation, the number of vector subspaeesaiisfying
this condition is equal to#"(k—1,2). O

To prove Theorem 6, it remains to put together Proposition 5, Lemma 26, (16) and
(74).

6 The case of odd positive discriminants.

The purpose of this section is to modify the methodg®fo treat the case of
fundamental discriminan® satisfying

D>0,D=1mod4 (76)
and to prove an analogue of Theorem 6 for the sum
S"(X,k,1,4) == g 2krka(Co),
0<D<X
D=1 mod 4
We shall prove

Theorem 7 For every positive integer k and every positsjave have

s+(x7k,1,4):%(W(k+1,2)—JV(k,2))( 3 1)+ Oei(X(logx) 2 "+%).

D=1 mod 4

uniformly for X> 2. The same expansion remains true if we replace the narrow
class groupCp by the ordinary class grou@lp, in the definition of $(X,k,1,4).

As before, the starting point of the proof of Theorem 7 is Theorem 5 and Lemma
6. Therefore Lemma 16 has to be modified into
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Lemma 27 Let D be a fundamental discriminant satisfyi(i¢s). Then we have
the equality

1 .
2ka(Co) — > #{(a,b)|a,b>1,D =ab, —ais asquaremodb

and b is a squarenoda}.

When we use Jacobi symbols, we now introduce the symibb) and (20) is
modified into

e BRI

e S (DR o

for D satisfying (76). Let

A1(U) = ugUp,
be the two variable polynomial ov&b. The analogue of (21) is now

1 =1\ A(u) Dy ®1(uv)
2rk4(CD>: 2,2a)(D) D=Doo|;olD10D11{u|€_I|F%(Du> l }{ I_l (Ht) 1 }

(uv)eFs

(78)

Let Ax be the polynomial in Rvariables
k _ k—1
M(u) = A(ut)y = %U2j+1U2j+27 (79)
=1 =
withu = (u®, ... u) andul) € F3. The analogue of Lemma 17 is
Lemma 28 For every positive X we have the equality
—1\ () Dy \ ®(uv)
SH(X,k,1,4) =27 2 ko(Du) —= —u ,
(Du)e;(x,k)(lzl ) <|:| ( Du ) > UV ( Dv)
(80)

where2t (X, k) is the set ofi*—tuples of squarefree, positive and coprime integers
(Du), withu = (U, ... u) € F2 satisfying

[1 Du<X, [] Du=1mod4

2k 2k
ueF3 uer3

The analysis of the error terms is the same as above, however remark that, in the
proof of the analogues of (42) and (47), the value(sg—:u]f) is fixed, since we have
blocked the congruence classf modulo 4. In the same way, we use the notion
of maximal unlinked subset® of F3¢. We also define for such &,

hy—1 hy—1

+ = _)Ak(W)- = Dy (uyy)-hut L
ron=3 (M ev ) (e ) e

RY
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where the sum is ovéh,)ycz € {£1 mod 42k now satisfying

hy =1 mod 4 (82)

uc%

and the product is over unordered pditsv} C % .
With these conventions the analogue of Proposition 5 is

Proposition 6 For every k> 1 and for every positive, we have the equality

22— k—2k

S Xk 14) ="

(;W(%)) X+ O(X(Iogx)‘z_k+£),

where the sum is over the set of maximal unlinked gets F3<.

6.1 Analysis of the coefficient of the main term.

We follow the study already made §5.6 but we have to take into account the
coefficientAx(u) and also the fact that the s8tC % of indicesu whereh, =
—1 mod 4 has a cardinaliyy which is now even, because of (82). IS5t Z(%)
with sum of elements and cardinalitys. We definee® (S) by the formula

e (9= ESQLK(U) + Y P(u,v), (83)

where the last sum is over unordered pdirsv} C S. With this definition, (81) is

written as .
Y (%)= Z (-1)° .
SCu

ForanyS T C % we define
et (ST) :=e" (9 +e"(T)+e"(AT). (84)

zslk(u)Jr Zrlk(u)+ ;le(u) =0,

for anySandT subsets of, we have the equalities

e"(ST)=¢ST), (85)

Using the fact that

and

e (S =¢(9 + Zslk(u), (86)

wheree(S) ande(S, T) are defined in (57) and (62).
More generally, fov = 0 or 1 mod 2 and fofZ maximal unlinked, we study
the quantity

YU V)= > (—1)°° . (87)

SCU
s=v mod 2
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Similarly as (64), by squaring (87) we have

Yrwvy= Yy Y (-)TE9 () ES,
Se Py (U )SePy(U)

Instead of summing ove®, we sum ovell = SAS which has even cardinality.
Hence

,y+2 02/7‘/ — -1 et (T) -1 et (AT,
(%,v) T; (=1) S; (=1)

t=0 mod 2 s=v mod 2

— -1 e*(T) -1 G(MT,S)
2 1 2 b

t=0 mod 2 s=v mod 2

— (71)VA(T)+G+(T) 2(T7V), (88)

TC%
t=0 mod 2

by appealing to (66), (68) and (85). In particular, (88) can be written as

VAU V) = 521 z <7l)e+(T)+v(A(r)+L(r,c))’ (89)
TeT

which is the analogue of (70). By (84), (85) and Lemma 21, we get the equalities
e (TAT ) =e"(T)+e"(T) +eT,T)=€e"(T) +e"(T')

which are true for anyf andT’ € .7, where.7 is defined after (70). This implies
that the application

T — (_1)e+(T)+v(A(r)+L(r,c)>

is a multiplicative character on the gro(f’, A). From this remark and from (89),
we obtain the analogue of Lemma 22:

Lemma 29 Let# be a maximal unlinked subset®. Then we have
(y"(#%,0) or y* (% ,1) #0) = (" (T) =0VT C % witht even and = 0).
We now wish an analogue of Lemma 23. It is given by

Lemma 30 Let % be a maximal unlinked subspace®§¢ written in the form
U = Cc+%. Then we have

(y"(#,0) or y* (% ,1) #0)

= (e"(S) = A(0) + (1+9)(L(c.0) + A(0)) ¥YSC %).

Note the inversion of the arguments insidg, .) by comparison with Lemma 23.
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Proof We discuss on the parity &f
o If Se 221(%), we haveo € 7. We apply Lemma 29 witfil = SA{c} (hence
t is even and = 0) and obtain

e"(T) =0. (90)
However, by the definition (84) and (85) we have
e’(5)=e"(T)+e" ({o}) +e&(T,{o}). (91)

We trivially have
e"({o}) = (o), (92)

and by Lemma 21, we have
e(T,{o})=L(0,0)+A(0)=0. (93)

Gathering (90), (91), (92) and (93), we obtain the truth of Lemma 30 forsodd

o If Se (%) ando =0, Lemma 29 gives Lemma 30 in that case.

o If Se Po(%) ando # 0, we considel = SA{c,c+ c}. Such aT satisfies

T C %,t even andr = 0. By the definition (84) and by (85), we have the equality

e' (9 =e"(T)+e"({c,c+0})+eT,{cc+0}). (94)

By Lemma 29, we have (90) again and
eT,{c,c+0o}) =0, (95)

by Lemma 21. By (72) and (86) we get:
e"({c,c+0}) = &(Cc) + (c+ o) +L(o,c) +A(0). (96)

To see that (94), (95) and (96) imply Lemma 30 in the caseen ando # 0, it
remains to prove the equality

L(o,c)+L(c,0) = Ak(c) + Ak(o) + Ak(c+ o).
The above equality is a particular case of the general equality
L(u,v)+L(v,u) = A(u) + Ak (V) + A(u+V), (97)

which is true for anyu andv € F2¥. A direct proof of (97), is to use the explicit
definitions ofL and Ay (see (60) and (79)). The proof of Lemma 30 is now com-
plete. a

The analogue of Lemma 24 is the following

Lemma 31 Let% be a maximal unlinked subset* written in the formz =
¢+ 2. Then we have

(v (#,0)#00ry" (%,1) #0) = Ligyua, =O.
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Proof Let o andt be two non zero elements &%. We apply Lemma 30 with
the choicesS= {c,c+ o} andT = {c,c+ 7}, which are subsets & with even
cardinalities. We have the three equalities
e+(S) = lk(o_) + L(07 O-) +A (O-)a
e"(T) = () +L(c,7) +A(7),
e" (AT) =&(o+1)+L(c,0+7)+A(0+7).

Summing these three equalities, using linearity and (84), we get the equality
e (ST) = (o) +A(7) + Ak(0 + 7).
Lemma 21 and (85) imply tha&" (S, T) =e(ST) =L(o,7) and we get
L(o,7) = &k(0o) + A&(7) + Ak(0 + 7).
This implies
L(t,0) =0,
by combination with (97). O
We recall that a subspadi of dimensiork of F3< is said to begoodif Lizox 2 =

0. We now prove an extension of Lemma 30. It is also an analogue of Lemma 25
and shows that™ (S) depends o only, under some assumptions.

Lemma 32 Let% = ¢+ % a maximal unlinked subset Eﬁ". Then we have
U good = e (S) = (o) + (1+9)(L(c,0) + A(0)) VSC % .

Proof We prove it by induction ors. It is true fors= 0 ands = 1 by definition
(83) ofe™ (S). LetS= {u, v} be a subset of/. By definition (83) and by (59), we
have

€7(S) = Ak(u) + (V) + x(u,V)
= A(u) + A(v) + L(u,v) + P(v) + A(0)
= {&(0) +L(u,v) +L(v,u)} +L(u+v,v) +A(0), (98)
the last line being a consequence of (61) and (97). Using linearity, and the facts
that% is good and thati + v € %, we get that (u,v) + L(v,u) +L(u+v,v) =
L(u,u+v) = L(c,0). Inserting this equality into (98), we complete the proof of
Lemma 32 fors= 2.

Now letSc % with cardinalitys> 3. LetT be a subset db with cardinality
2. We decomposginto S= SAT. By assumption of induction, we have

€' (S) = &(o") +(1+5s)(L(c,0") +A(d")),
e (T) = (1) +L(c,7) + A(7).

We also have by Lemma 21 and (85) the equality
e"(T,S)=¢(T,S) =L(r,0') +sA(1).
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By (84) and the three above equalities we deduce
et (S) = M&(0") + M&(7)+ (1+9)L(c,0")+L(c, 7)+L(7,0')+ (1+S)A(0). (99)
We now appeal to (97) and linearity to transform (99) into
e (S = &(o)+L(c6’,7) + (1 +5s)L(c,0') +L(c,7) + (1+95)A(0).

It is now clear that, in order to complete the proof of Lemma 32, it remains to
check the equality

L(c’,7)+ (1+9)L(c,0’) +L(c,7) = (1+9)L(c,0). (100)

e If sis odd,c+ ¢’ andz are elements o4, this implies the equality.(o’, 7) +
L(c,t) =L(c+0’,7) =0, sinceZy is good. Hence, (100) is true ferodd.
e If sis even, thers’ and t belong to%p, henceL(c’,7) = 0. By linearity, we
also have (c,06’) +L(c,7) = L(c, ). Hence, (100) is true faseven.

The proof of Lemma 32 is complete. O

The coefficient of the main term of Proposition 6 is (see definition (87)):
Y (%)=S yH(%,0) = ~1)%'®,
rn=grwo-3 3 -y

By decomposing with good subspaces and by applying Lemma 31, we have

ZWMH= > v %0+ % Y (%.0)
v 7 good g not good

/ uw
coset of 7 coset of %

= —1)¢'®,
o 2 2

coset ofZfy s even

We write % = c+ %, apply Lemma 32, and sum over all tbe IF%" to write

,y+ (%) = 2~k (_1>Ak(0)+L(c,0)+A(o). (101)
; %Q;Od Cg%%k SCCZFZ;O

The applicatiorS— u(S) := o is a group homomorphism between the groups
(Po(c+ %), A) and(%,+). Sinceo € %, o # 0 satisfiess = pu({c,c+0c}),
U is a surjective application. This implies that the equati¢8) = x, with x given

in % has exactly %k*1/2k solutions inSe Zy(c+ %). This simplifies (101) into

Z,}ﬁ-(%) _ 22k—2k—1 (_1)lk((7)+L(C.G)+A(O'). (102)
U

% good G;/o ce]}?gk

We sum overc first. It is a x—dimensional geometric progression. Most of the
time the sum ovec is zero, unless we have

01+ 02 == 0x_1+0x=0. (103)
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Note that the assumption (103) impligg o) +A (o) = 0. With these remarks we
simplify (102) into

;W(%) =21 S #{ocW; osatisfies (103, (104)
% o good

We go back to the proof of Lemma 26 §%.7 and follow the notations intro-
duced there. Recall that a good subspé@geis characterized by its projection
F = nx(%). In % we want to count the elementssatisfying (103). This con-
dition is equivalent ta> € X. The only elements o# which satisfy (103) are the
elements of, which is anlF,—vector space of dimensiagh With these observa-
tions, we transform (104) into

;f(%) =2%-1 i 2 n(k,£,2) = 221N (k+1,2)—.#(k2), (105)
=0

by appealing to (12).

Putting (105) into Proposition 6, and using (16), we complete the proof of the
first part of Theorem 7.

To pass from the function£to Clp, we use Corollary 1. This ends the proof
of Theorem 7.

7 Negative discriminants divisible by8

We are now concerned with fundamental discrimin@htatisfying
D<0,D=0mod 8 (106)
in other words with the sum
S (X,k,0,8) = Z 2krka(Co),

0<—D<X

D=0 mod 8
We want to prove
Theorem 8 For every positive integer k and every positajeve have

S (X,k,0,8) = 4 (k2 1) + O k(X (logX) 2 “+¢),
(xk08=A (k2§ 1)+Oex(X(ogx) 2 ")
D=0 mod 8

uniformly for X> 2.

The strategy is as above. Using Theorem 5 and Lemma 7, we see that the
analogue of Lemma 16 now is

Lemma 33 Let D be a fundamental discriminant satisfyi(i6). Then we have
the equality

2a(Co) — #!(a,b) |a,b>1,—D = 8ab, 2a is a squaremodb
and b is a squarenoda}.
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Using now Jacobi symbols, the analogue of (20) is

w3 (Z2)EE)E)E).

and the analogue of Lemmata 17 and 28 is

orka(Cp) _

Lemma 34 For every positive X we have the equality

- . 2\ AW Dy B(u)
S(X7k70,8):(Du)€@Z( (2 (|:|<Du) ) u,v(D\L:) :

X/8k) U
(108)
where2*(X,k) = 2+ (X,k)U 2~ (X,K).

Note that there is no more coefficient'2in front of the right hand side of (108),
and thatly is defined in (79). By recalling the definition (58), we write the ana-
logue of Proposition 5.

Proposition 7 For every k> 1 and for every positive, we have the equality

S (X,k,0,8) = th_zzk { ;(}/(%,0) _H/(%’l))} - g +O<X(|09X)72?k+8),

(109)
where the sum is over the set of maximal unlinked®ets F3%, such that(u) =
0, forallue %.

Proof We follow the proof of Proposition 5 and give quick indications of the
modifications to incorporate. The first one is to notice that we are summing over
(Du)uez such that their product is congruenttd mod 4, we must consider sub-
setsS of %, with even or odd cardinalities. The second one concerns the effect

A
of the symboI(D%) k<u). Suppose we havg(u) = 1 for someu € % . Then we

meet the sum
o—ko(Dy) (i) _
Dy=hy mod 4 Dy

2—kw<Du)(£)+ 3 2—kw<Du>(£)_

Dy=hy mod 8 Dy Dy=hy+4 mod 8 Dy

Sincehy = £1 the Jacobi symbol in the first sum is identically 1, whereas the
Jacobi symbol in the second sum is identically. We see the wanted cancellation
by a suitable application of Lemma 19 modified to modulus 8. Sinee%,

the variableD, has a large enough domain of variations (see conditions (49)) to
consider congruences @f, mod 8. Therefore we can reject the corresponding
term in the error term. This explains the restriction on the summation t@the
such thatly = 0 on%, in the formula (109). ad

The first step to pass from Proposition 7 to Theorem 8 is
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Lemma 35 We have

Si= 3 1) = 2214 (k,2),

where the sum is over maximal unlinked subset® af F2¢ such thatly is iden-
ticaltoOon% .

Proof We first restrict the sum to th#” of the formc+ %, where%4 is good (see
Lemma 24). We shall use the following description of #eappearing in Lemma
35, in terms of the point

p:=(0,1,0,1...,0,1) € F3*.
by the following

Lemma 36 Let %, be a good subspace dﬂ%“. Let 7 a subspace of the form
C+ %. Theni(u) = 0 identically on%, if and only if% is of the form% =
p + .

Proof Write ¢ = (cg,Cy,...,Cx). The conditiony(u) = 0 on% is equivalent to
both conditionsik(c+u) = Ak(c) for all u € %% andA(c) = 0. The first condition
is equivalent to

(Caug 4 C1U2 + UgU2) + - - - 4 (CokUk—1 + Cok—1 U2k + Uk—1Ux) = O,
but, since?Z4 is good, this equation simplifies into
(C2+1)ug +Crlz + - -+ + (Cok + L)Upk—1 + Cok—1Upk = 0.

Since%y is a vector space of dimensi@nthe set ofc;,co+1,...,Cx_1,Ck+ 1)
satisfying the above equation for evane %4 is a vector subspacg of dimen-
sionk. It is easy to see that this vector space contdgs since for allu and
V € %, we have

Valg + Vil + - - - 4 VorUk—1 + Vok—1Uzk = L(U,V) +-L(v,u) =0,
since?y is good. Hence, we havé& = %. Finally, we check thaty(p) =0. O

We return to the study d&. By Lemma 36, we have

Si= (-1,
%éod SC;ZZ/O
s=1mod 2

by Lemma 25, we have

k
S = S 1=22"1 % 1
o good Scp+%y o good
s=1mod 2

Lemma 26 completes the proof of Lemma 35. a

The second step to pass from Proposition 7 to Theorem 8 is
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Lemma 37 We have

= 3.0 = 2211 (k,2),
4

where the sum is over maximal unlinked subset® af F2¢ such thatly is iden-
ticaltoOon% .

Proof By Lemmata 24, 25 and 36, we now have the equalities

S = (—1)teP)+A(0)

W good Scp+y
s=0 mod2

= 1

o good SCp+%y
s=0 mod2

k
_ 22 -1 1’
% good

and the second part of Lemma 26 completes the proof of Lemma 37. a

Gathering Proposition 7, Lemma 35, Lemma 37 and (16), we finish the proof of
Theorem 8.

8 Positive discriminants divisible by8
We are now concerned with fundamental discrimin@htatisfying

D>0, D=0mod 8 (110)
in other words with the sum

S"(X,k,0,8) = 2krka(Co),

0<D<X
D=0 mod 8

We want to prove

Theorem 9 For every positive integer k and every positsjave have

S"(X,k,0,8) = %(C/V(kJrl,Z)—e/V(k,Z))( Z 1) +Os,k(x(|OgX)’27k+5)7

D=0 mod 8

uniformly for X > 2. The same expansion remains true if we replace the narrow
class groupCp by the ordinary class grou@lp, in the definition of $(X,k,0,8).

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is
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Lemma 38 Let D a fundamental discriminant satisfyif@jL0). Then we have the
equality

2ka(Co) — %#{(a, b) | a,b>1,D = 8ab, —2ais a squaremodb
and b is a squarenoda}
+%#{(a, b) | a,b>1,D = 8ab, —ais a squaremodb

and2b is a squaremoday.

The fact that #4(C0) is the sum of two terms generates extra difficulty. Using
again Jacobi symbols, we have the equality

2'ka(Cp) — 1
2.20(D/8)

" DsDongz%(ss) (5) (62 (50 Bo)l(55) ()] aam

for any D satisfying (110). Let;(u) be the polynomial in two variables ovEp
defined by&1(u) = (up +1)(uz + 1). We write (111) in the following way

orka(Cp) _ Wlm/& ngDoog {|_| ( D% )Mu)} { M (%:>q>1<u,v)}

01D10D11 "uelF3 (uv)ers
—1\ M(u) —1\éu(u)
AN NG w

Raising (112) to thé&-th power, we see that the analogue of Lemma 34 is
Lemma 39 For every positive X we have the equality

1
S+(X,k7078) = ?F g k}SF (113)
Cl,...

with § =

)(I—l szw(Du)) (l:l (DZU)MU)) (E' (Bj.)QF(U)) M (%)%(u,V)?

u uyv

(Du)e@Z(X/S,k
where Q- is a polynomial ovelF%k defined by

Qr(ul,U27,,,7u2k) = /Z

Ugr—1Upp + Z (Uge—1+1)(uz +1)
(el” 1<0<k

w@r

= A(u)+ g (Upg_1+ Ugy) +k—#T".
1¢r
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We follow the same arguments as before to arrive at the formula
22

=" {;S;/(—l)ef<s)}~>§+O(X(Iogx)2k+‘9>, (114)

where the sum is over maximal unlinked subsets, suchAk@t) = O, for all
u € %, and whereer(S) is defined by the formula

er(S) = ZSQF(U) +5 P(u,v),

where the second sum is over unordered pairs'} C S, without any hypothesis
on the parity ofs. This equality is the analogue of the formula (109). Actually,
using the hypothesi(u) = 0 concerningZ , the functioner is simplified to

er(S) = &(S) +s(k—#I') +Vr (o), (115)
wheree(S) is defined in (57) and where

Vr(o) = é;(GZZ—l +0y) = ugs é;(uzg_l + Uyy).

As usuals and o are the cardinality and the sum of elementsSpfespectively.
Using (115), we see that the coefficient of (114) can be written as

;S;/(*l)er(s):;{ S;/ (—1)9(S)+VF(O')+(71)|(—#F Scz/ (71)6(S)+VF((;)}7

s=0mod 2 s=1mod 2
(116)

where the sum is over maximal unlinked subsgt®f F2¥, on which the function
Ak is identically equal to zero. We are in a similar position a§5r6, when we
studied the functiong(% ,0) andy(% ,1). However we have to follow the effect
of the coefficienV-(o) on that study. It is easy to see that#f = c+ %, with
2 not good, then both sums

(_1)9(S)+VF(G)7 (_1)e(S)+Vp(c)
2, 2,

<=0 mod 2 s=1mod 2
are zero (analogue of Lemma 24).
We are reduced to the cases®f= p + %, with %4 good. By Lemma 25 we
havee(S) = (1+5)(L(o,p)+ A(c)) =0 for all SC Z sinceL(c,p) = A(0).
With these remarks we simplify (116) into

_1\er®S = —\Vr(o) 4 (_qyk#T _1\Vr(e) |
R e L T

s=0 mod 2 s=1mod 2

Summing over th& with the sames € %4 (s even) or the same € p + % (S
odd), we also have

— K_k— _ _ — _
;S;/(_l)er(s) 722 k 1%0;0(1{ U;ZO( 1)VF(U>+( 1)k #FU;ZO( 1)Vp(p+u)}

=2k (V@) (117)

o good ue%/o
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sinceVr(p) = k—#I". Assumel” = {1,...,k}. ThenVr = 0 and we get
k
(-1 =274 (k,2),
22,
by the second part of Lemma 26. HOor~ {1,...,k}, (117) leads to
Z %(—1)%@ = 2%#{ U good ;u € U = Vi (u) = 0} = 22 ¥ (k—1,2),
T <

by the third part of Lemma 26. Putting these last two equations in (114) and in
(113), and then summing ovérC {1,...,k} we get the following main term for
St (X,k,0,8):
X
‘g
By (16) and (10), we see that this main term coincides with the main term an-

nounced in Theorem 9. To pass from the functight@ Clp, we use Corollary
1.

14

5 =5 (A (k2 + (-1 (k-1,2))

9 Negative discriminantsD = 4 mod 8

We are now concerned with fundamental discrimin@htatisfying
D<0, D=4mod8 (118)
in other words with the sum
S (X,k,4,8) = Z 2krka(Co)

0<—D<X

D=4 mod 8
We want to prove
Theorem 10 For every positive integer k and every positsjeve have

_ —27kype
S (k48 =H(k2( F 1)+0ek(X(ogx) * ),
D=4 mod 8

uniformly for X > 2.

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is

Lemma 40 Let D a fundamental discriminant satisfyif@jL8). Then we have the
equality

2ka(Co) — %#{(a, b) | a,b>1,—D = 4ab, a is a squaremod b
and b is a squarenoda}
+%#{(a, b) |a,b>1,—D = 4ab, 2a is a squaremodb

and2b is a squaremoda}.
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With this lemma, the analogue of (111) is

et el o) (B (B B+ () ()]

(119)
and, using the polynomigl; + &1)(u) = u; + up + 1, we get

orka(Co) _ 1 > (&)%(“-W}
D/4
2-200-0/ —D=4DgoDo1D10D11 ~ (u,v)€FS Dy

<1+ (Di)(ﬂwl> (U)H. (120)
uck3 u

Raising (120) to thé&-th power, we see that the analogue of Lemma 39 is

Lemma 41 For every positive X we have the equality

S (X,k,4,8) = ik {Z k}T]" (121)
rcf{T.
with
Tr= Z {l:l szw(Du)} {|:| (DZU)VF(UH(k#F)}{D (%)¢k(U7V)}7

(Du)EZT(X/4K)
where \- is the polynomial ove}Fgk defined by

Vr(Ug, Uz, ... Uak) = ) (Uzr—1+ Uar).-
lr5a

By the same transformations as before, we arrive at

2272k

w-Z{y 5 v} ol ). oz

s=0 mod 2

where the sum is over maximal unlinked subsgtssuch thaVr-(u) + (k—#I") =
0, for allu € %, and where the functioe(S) was defined in (57).

As before, we restrict the sum over the = c+ % such that%; is good.
Then Lemma 25 gives for sudcC % with even cardinality, the equalig(S) =
L(o,c)+ A(o). From this, we gather all th8 C % with even cardinality, with
the same value of € 2. We deduce that the coefficient of (122) satisfies the

equality
{; Z e(S)} 92 —k— 1; ; uc+A(u
SC% U ue?

s=0mod 2
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where the sum is over the maximal unlinkétsuch thavr (%) = {k—#I"} and
such that the associatél}) is good. Writingz = ¢+ %, summing over all the
instead of summing over th#’, we get

{; 2 (-9} =y 5 g

C %4 good
s=0 mod 2 09

wherec and%4 also satisfy the conditions

L(u,c)+A(u)=0 Yue %,
Vr(c+u) =k—#I' Yu € %.

These conditions are equivalent to

L(u,c)+A(u) =0Vu € %,
{Vp(u) =0VYu € %, (123)
VF(C) =k—#I".
e WhenI' = {1,...,k}, we haveV = 0 and we separate the cas®j_1 + Cpj +
1=0forall 1< j <k, to find that the number dfic, %) verifying (123) is equal
to
2K N (k,2) 4 (2% - 244 (k—1,2) (124)

by the second and fourth part of Lemma 26.

e WhenI" # {1,...,k} and whency;_1+Cj +1 =0 for all 1 < j <k, then we
haveVr(c) = k—#I', and the corresponding number @f %) verifying (123)
and the just above condition is equal to

X0 (k—1,2). (125)

by the third part of Lemma 26.

o Now supposd™ # {1,...,k} andcyj_1+ Coj + 1 # O for at least one ¥ j <k.

The second condition of (123) gives us by using the proof of the third part of
Lemma 26 that the vector

[;(EZ/Z—l +€x)

belongs to%p, where{ey, ..., ey} is the canonical basis. We need to check, if this
vector satisfies the first equation of (123):

2(02[_14-0254-1) =0« g(ng_l-‘rng) = —(k—#F).
(e lgr

Therefore our vector belongs #, if the last condition of (123) is satisfied. Using

the (proof of the) fourth part of Lemma 26, th, satisfying the first condition

of (123) are parametrized by all vector subspaces of a vector space of dimension
k—1. In order to satisfy the second equation we only need to count those sub-
spaces, which contain the above mentioned vector. Therefore using Lemma 2 we
have./ (k—2,2) possibilities forZg. ForI” # {1,...,k} the last condition is sat-
isfied for 21 choices ofc by choosing the remaining coordinate in a way such
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that the last condition of (123) is satisfied. Since we already consfdefrthose
possibilities in the casE = {1,...,k} we have

(221 2K ¢ (k—2,2) = 2¢(2¢ 1~ 1)/ (k—2,2)
different(c, %) satisfying (123).

Gathering with (125), we see that whéh# {1,...,k}, the total number of
solutions to (123) is equal to

2( AN (k=1,2)+ (21— 1) N (k—2,2)) = 2¢(N (k,2) — A (k—1,2)), (126)
by (10). We now incorporate the values (124) and (126) of the coefficient of the

main term ofTr (see (122)) to see that the main tern8o{ Xk, 4, 8) is, by (121),
after summation ovel, equal to

1 222
S .92 *k*l.2k<</1/(k,2)+ (2X—1).(k—1,2)
(1) (A (K2) — N (k= 1,2))) é
2 X
:?'{/1/<k72)'z.

By (16), we complete the proof of Theorem 10.

10 Positive discriminantsD = 4 mod 8

Finally, we are now concerned with fundamental discrimindngatisfying
D>0,D=4mod8§ (127)

in other words with the sum

S"(X.k,4,8) = Z 2krka(Co),

0<D<X
D=4 mod 8

We want to prove

Theorem 11 For every positive integer k and every positsjeve have

S+(X,k,4, 8) = %(«/V(k—k 1,2)— A (k, 2))( Z 1) +Oe,k(X(|ogX)‘2_k+S),

D=4 mod 8

uniformly for X > 2. The same expansion remains true if we replace the narrow
class groupCp by the ordinary class grou@lp, in the definition of $(X,k,4,8).

The strategy is as above. Using Theorem 5 and Lemma 7 again, we see that
the analogue of Lemma 16 now is
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Lemma 42 Let D a fundamental discriminant satisfyii@27). Then we have the
equality
1 .
2ka(Co) — 5#{(a, b) | a,b>1,D = 4ab, —a is a squaremodb
and b is a squarenoda}
1 .
+§#{(a, b) |a,b>1,D =4ab, —2ais a squaremodb

and2b is a squaremodaj.

With this lemma, we obtain an analogue of (119) as

2ka(Cp) _ 1
2.20(D/4)

ot ) (0 () (5 (B [+ (5,) (5,))- 29

and, using the polynomials; and&; we get the equality

1 D, \ P1(u,v) =1\ Ma(u)
() = MMD4DOOEMD10D11{(U7\|’)—£F3(D3> | }{UDF%(DU> | }

2 \ (A1+8&)(u)
X [1+{ HZ(D—U) H (129)
uelFs
Raising (129) to thé&-th power, we see that the analogue of Lemma 41 is
Lemma 43 For every positive X we have the equality
1
S"(Xk.4,8) = ; Rr (130)
rc{l,..k}
with

Rr = )3 {l—lz—kw(Du)} { M (571 lk(u>}

(Du)eZ—(X/4k) ~u uek3

x{|:| (DZU)VF(U)Jr(k#F)} |_| <%>¢k(u,v)}7

where V- is defined in Lemma 41.
By the same transformations as before, we arrive at

v-Tr {3 5 v} olxono ), as

"~ s=1mod2
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where the sum is over maximal unlinked subsets, suchAhat) + (k—#I") = 0,
for all u € %, and wheree™ (S) is defined in (86). As before, by Lemma 31, we
restrict the sum over the+ % such thatZ; is good. Sincesis odd, Lemma 32
gives the equalitg™ (S) = k(o).

As usual we gather all th® C % with an odd cardinality with the same value
of o € ¢+ % to write that the coefficient of (131) satisfies the equality

{; 2 (-1 O} = F

s=1 mod 2

Z (_l)lk(U)a
o good ue%

where the sum is over all th#& cosets 0f%4 such thav/-(u) = k—#I" on% . We
now sum over all the such thatZ = c+ %, to write the equality

{; Z (_1)e+(3)} _ 9221

s=1mod 2

Z (_1))L|<(C+U)’
% good C ue?p

where the sum is over theand %4 such thavr-(c) = k—#I" andVr(u) =0 on
. Since?y is good, we use the equality

A(c+ U) =(C2+ 1)u1 +cCrUp+ -+ (Cok + 1)Upk_1 + Cox_1Upk + Ak(C).
Hence the associated SU, (—1)*(*% is non zero if and only if we have

(C2+1)ug +Crlz+ -+ (Cok + L)Upk—1 + Cok—1Ux =0

on %, which is equivalent t@ € p + % (see the proof of Lemma 36). Noticing
also thatix(p) =Vr(p) — (k—#I") = 0, we finally get the equality

{ ; Z (—1)e*<5>} — 2“4 { 9 good Vi =0on%). (132)
W scw

s=1 mod 2

e WhenI" = {1,...,k}, the cardinality of such is .4 (k,2) sinceVr = 0.
e WhenI' # {1,...,k}, the cardinality of such is .4 (k— 1,2) by the third part
of Lemma 26.

We insert these values in (132) and in (131). Then we sum ovelr all
{1,...,k} in (130) in order to obtain the equality

1 2 X —k

S"(X,k4,8) = 5 =5 (A (k2) + (2~ 1.4 (k 2)) 5 +O(X(logx) 2 ),
which gives Theorem 11 by appealing to formulas (16) and (10). In this case the
4—ranks of the ordinary class group and the narrow class group always coincide
since there is at least one prime divisordfvhich is congruent to 3 mod 4 (see
Lemma 10).
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