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The purpose of this article is to determine all subfields Q(3) of fixed degree of a given
algebraic number field (). It is convenient to describe each subfield by a pair (k, g) of
polynomials in Q[¢] resp. Z[¢] such that g is the minimal polynomial of 3 = k(o). The
computations are done in unramified p-adic extensions and use information concerning
subgroups of the Galois group of the normal closure of Q(«) obtained from the van der
Waerden criterion.

1. Introduction

Let K = Q(«) be an algebraic number field of degree n which is given by a zero « of
the corresponding minimal polynomial f € Z[t]. In this article a method for determining
all subfields L = Q(f) of K of fixed degree m over @ is developed. We describe each
subfield L by the minimal polynomial g of 8 and and the embedding of 5 into K, which
is given by a polynomial A € Q[t] with h(a) = 5.

LEmMMA 1.1. 1 Each subfield L of K has a representation by a pair (h, g) with g(h) =
0 mod f7Z[t].
2 A pair (h,g) with g(h) = 0 mod fZ[t] describes a subfield L of K.

Note that the coefficients of the embedding polynomial h are not necessarily integral
because the equation order Z[a] is in general not a maximal order. W.l.o.g. we assume
that the degree of h is smaller than n, because i can be replaced by its remainder modulo
f. The lemma is used to check if a pair (h, g) presents a subfield L of K. Such a subfield L
is represented in the form Q[¢]/g(¢)Q[t]; hence isomorphic fields are not distinguishable.

EXAMPLE 1.2. We determine all subfields L of K = Q(iv/108) of degree 3. There are
three subfields with characterizing pairs (—t* 13 —108), (11—2155—1— %tz, 13 —108) and (—%t‘r’—l—
%tz,t?’— 108). In all cases the minimal polynomial of 3 is the same; however, we are able
to distinguish the generated subfields by their embedding polynomuals.

There are at least six other algorithms [Casperson, Ford, McKay (1995), Cohen, Diaz
y Diaz (1991), Dixon (1990), Hulpke (1995), Landau, Miller (1985), Lazard, Valibouze
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(1993)] for calculating subfields. In this article we generalize and improve the methods of
Dixon (1990). The generating polynomials are constructed by factorizations over finite
fields and Hensel lifting over p-adic fields. Three other methods [Hulpke (1995), Landau,
Miller (1985), Lazard, Valibouze (1993)] need factorizations of polynomials over number
fields, respectively factorizations of polynomials over the rational integers of much higher
degree than the degree of the given field. These factorizations are very expensive. The
method presented in Casperson, Ford, McKay (1995) needs hard numerical computations
and lattice reduction algorithms. Finally, the algorithm in Cohen, Diaz y Diaz (1991)
computes subfields, too. But it is not guaranteed that all subfields will be found. A
comparison of running times is given in section 6.

2. Blocks of Imprimitivity and the Relation to Subfields
Let G = Gal(f) be the Galois group of a splitting field N of f and Q@ = {a =

ai,...,a,} be the set of zeros of fin N. Considered as a permutation group of the set
of roots, GG operates transitively on € because f is irreducible.

DEFINITION 2.1. 1 0 #ACKQ is called a block of imprimitivity (block), if A™ N
Ae{l,A} forallT € G.
2A={a;} (1 <i<n)and A=K are called trivial blocks. G is called imprimi-
tive if there exists a non-trivial block. Otherwise G is called primitive.

3 Blocks Aq, ... Ap with A; # A; (1 < i< j < m) are called a (complete) block

system, if the set {Ay,... A} remains invariant under G.

If A is a block, it is easy to see that A7 (7 € () is also a block. Note that each block lies
in exactly one complete block system Aq,..., A, with A; = A7 for a suitable element
€ G.

The connection between blocks and subfields is based on the following two theorems.

THEOREM 2.2. (Fundamental Theorem of Galois Theory)
Let M = Q(oy, ..., an) be the splitting field of f and G = Gal(M/Q).

1 Bvery intermediate field Q C L = Q(B) C M corresponds to a subgroup H of G
and vice versa.

2 L is a Galois extension if and only if H 1s a normal subgroup of G.

3 The subfields L of K correspond to the groups H C G containing G, the fix group
of .

THEOREM 2.3. The lattice of groups between G, and G is isomorphic to the lattice of
blocks of G which contain «.

The proof of theorem 2.3 can be found in Wielandt (1964).
REMARK 2.4. Let Ly and Ly be two subfields of K with corresponding blocks B1 and Bs

containing a. Then B = By N By s a block which contains « as well. It corresponds to
a subfield I = L1 La of K. Furthermore L1 is a subfield of Ly if and only if B1 D Bs.



On Computing Subfields 3

As each block is part of a complete block system, by the preceding theorems there is a
connection between complete block systems and subfields. Let Ay, ..., A, be a complete
block system, H = Ga, and L be the subfield fixed by H. Define

0; = H y (i=1,...,m).

YEA;
It is easy to see that d; € L and d; ({ = 2, ..., m) are conjugates of §;. The polynomial
g(t) =T[(t-&)
i=1

is the characteristic polynomial of §; in L and is of the form: g(t) = §(t)/ (j € N, § € Z[t]
monic and irreducible). Now there are two possibilities. In the first case the polynomial
g is irreducible, hence generates the subfield L. In the other case the §; are not pairwise
distinct, requiring that we search for another generating polynomial of K such that the
d; become distinct. To do this, f(t) is replaced by f(t — k) (k € Z). In Dixon (1990) it is
proved that at most %mn substitutions of this type do not yield irreducible polynomials.

The problem of calculating a generating polynomial of the subfield L is reduced to the
determination of the corresponding block system Aq, ... A,,. Of course, this reduction
is purely theoretical so far, since neither the Galois group G nor its operation on A are
known.

For practical applications Dixon (1990) suggested to make use of van der Waerden’s
criterion (1971).

THEOREM 2.5. (van der Waerden’s Criterion)

Let R be a UFD, p a prime ideal in R, R := R/y its residue class ring, f € R[t] and
f € R[t] with f = f mod p. If f is square—free, it follows that G = Gal(f) is isomorphic
to a subgroup of G' = Gal(f).

The van der Waerden criterion allows us to determine cyclic subgroups of G which
are generated by a permutation 7 € (. Let # = 71 ---m, be the decomposition of =
into disjoint cycles and n; = |m;| the number of zeros permuted by m; (1 < i < u). We
say that 7 is of cycle type [ni,...,n,] and w.l.o.g. we can assume n; < ... < ny.
In our situation we choose a prime p { disc(f) to obtain a congruence factorization
f=Ff ... fumodpZlt]. Tt follows that n; (i = 1,...,u) coincides with the degree of
the polynomial f;. The cycles m; permute the roots of f;.

EXAMPLE 2.6. Let f(t) = t* + 2 be a generating polynomial of K and G = Gal(f).

4 mod 2.

t4+2)(t+1)(¢* 4+ 1) mod 3.

* 4+ 2mod 5.

2+ 6t +4)(t? +t+4) mod 7.
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Let p denote the modulus. In the first case p divides the discriminant and the van der
Waerden criterion is of no use. In the other cases we gel cycles of cycle type [1,1,2],
[4] and [2,2]. In all of these cases the roots can only be identified modulo p in a suitable
finite field.
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DEFINITION 2.7. Let m € G be as above with |m;| = n; (1 < i < u) and H = {n). A subset
A of Q consisting of d elements is called a potential block of size d, if A™ NA € 10, A}
for 1 <j <|H|. A system Ay,..., An of polential blocks of size d is called a potential
block system if the union of that system is Q, any two distinct elements of that system
are disjoint, and AT (1 < j < |H|,1<i< m) also belongs to that system.

REMARK 2.8. The definitions potential block and potential block system depend on H.
It is easy to see that all blocks are also potential blocks and all block systems are also
potential block systems.

THEOREM 2.9. Let H = (m) be a subgroup of G, A be a potential block and k be the

smallest positive integer with A™ = A, If a cycle m; of length n; contains an element of

A, then k divides ny and m contains eractly G- elements of A.

PrOOF. Since A is a potential block there is some positive integer k& for which
A" NA=0for1<j<Fkand A™ = A.

Let o be an element which is contained in m; and in A. It follows that all elements of the
form o™ (¢ € N) are contained in A, but all elements of the form o™t (ceN,1<j<
k) are not contained in A. Because A a, 1t follows that & divides n; and m; contains
exactly 5t elements of A. []

We call the integer % in the theorem above the exponent of the potential block A.

THEOREM 2.10. Let H = {(r) be a subgroup of G and A1, ..., Apn be a potential block
system with exponents ki,... ky. If A; and A; contain elements of the same cycle, it
follows that k; = k;. In this case A; contains an element of the cycle m, (1 < p < u) if
and only if A; contains an element of 7.

ProoF. By assumption there exists a smallest positive integer ¢ with AZ»TC NA; # 0.
Since AZ»TC is a potential block which belongs to the potential block system A;,..., A,
it follows that AT = A;. O

The last two theorems are important for calculating potential block systems. We con-
struct systems of subsets Aq,..., A, of Q and integers kq,...,k, with the following
properties:

1 |Ail=deNforl <i<m.
2 If A; contains an element of a cycle 7, then A; contains exactly Z—i elements of ;.
3 U A=
1<i<m
4 AiﬂAj:Q)fOI'i;ﬁj.
5 If A; and A; contain elements of the same cycle, it follows that k; = k; and A; = A}T”
for a suitable 1 < p < k.

We note that a system of subsets Ay, ..., A, of Q with the above properties is a potential
block system.
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ALGoRITHM 2.11. (Computation of potential block systems)

Input:
Output:
Step 1:
Step 2:

Step 3:
Step 4:

A generating polynomial f of K, a size d and a prime p { disc(f).
A list of all potential block systems of blocks of size d.

Compute the congruence factorization f(t) = f1-...- f» mod pZ[t].
Set n; = deg(fi) and compute a root oy of fi in a suitable extension of
F,(1<i<r).

-1

Set the cycle m; = (oy o/»’...ozfnl Y1 <i<r).

K3

Set Z ={m,...,m} and call CalcBlock(Z,d,{).

SUBALGORITHM 2.12. (CalcBlock)

Input:
Output:

Step 1:

Step 2:

Step 3:

A set Z consisting of cycles, a size d and a set'Y .

A list of potential block systems of size d.

Set k =1,r=|Z| and let ny, ... ,n, be the lengths of the cycles contained
mn .

Determine all subsets B of {2,...,r} satisfying dk —ny = 3, pny and
k| ng for all b € B. For each such subset B do:

(i) Set Z' ={m} and add the cycles belonging to B to 7'.
(i) AddZ' toY.
(iii) If Z = 7' call PrintBlockSystem(Y"',d)
else call CaleBlock(Z\ Z',d,Y)
(iv) Remove Z' fromY .

For k = ny terminate. Else increase k to the smallest divisor of ny bigger
than k and go to Step 2.

SUBALGORITHM 2.13. (PrintBlockSystem)

Input:
Output:

Step 1:
Step 2:

Step 3:
Step 4:
Step b:

A set'Y consisting of sets of cycles and a block size d.

A list of potential block systems of size d belonging to Y.

Set A=, r=|Y]| and let Y1,...,Y, be the elements of Y.

Fori=1,...,r do

(i) Sets; = |Yi| and let 71, ... 7, be the elements of ;.

(ii) Setn; =|m;| (1 <j<s) and k; = %Ej’zl n; € N.
(iii) Let o be a fived element of the cycle m; (1 < j < 's;).
(iv) Set Ay, ... Ay, =0.

1

(v) Add o}’ to Apmoar, (1<j <7 1<1<n;, lmodk € {l,... k}).
(vi) Add Ay, ..., Ag, to A.

Let m;q,...,mi s, be the elements of Yy, (1 <1< 7).

Set M ={[T;=, IT;L, i 11<i<r,2<j<s;, 0<e;;<hki}.

For each 7 € M print the potential block system TA.
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EXAMPLE 2.14. Let m € G be of cycle decomposition m = mns = (ayas)(asay) of
lengths ny = 2 (i = 1,2). For k = 1 the algorithm produces the potential block system
{oq, s}, {as, as}, and for k = 2 it produces two more potential block systems, namely
{aq, as}, {as, aa} and {ay, aa}, {as, as}.

EXAMPLE 2.15. Let K = Q(iv/108) and f(t) = ¢° + 108. The polynomial f(t) has the

following congruence factorizations:
ft) = (E+2)*+t+2)(t* +4t+2) mod 5
@ (> +2)(t +5) mod 7
f@) t+3)E+13)(t+15)(¢t+ 16)(t + 18)(t + 28) mod 31.

From this information, we know that G contains elements of cycle types [2,2,2],[3, 3], and
[1,1,1,1,1,1]. Choosing p = 7 and m = (a1, o2, az) (e, as, as), we search for potential
blocks of size 2. For k = 1 there is no subset B satisfying the condition in Step 3 of the
algorithm, so k 1s set to 3. Combining one zero of m with one zero of ma, we get the con-
Jugated potential blocks by the condition Aj41 = Af (i = 1,2). The algorithm prints the
Jollowing potential block systems: {{cay, aa}{as, ast{as, ast} {{a1, as}{as, as}{as, aa}}

Ha, ast{as, ast{as, a5t}

3. Computation of generating polynomials

In this section we construct a generating polynomial of the subfield L using the in-
formation we get from a potential block system. First we must determine whether the
potential block system is a block system. In order to accomplish this, it becomes nec-
essary to work in a suitable finite field IF;, in which the zeros of f modulo p can be
identified. It is known that exactly one unramified extension F of the p-adic field Q,
with residue class field IF, exists. In such a p-adic field we are able to identify the zeros
of f.

Let Ay,..., A, be a block system of G and §; := HaeA, a € N. The problem is to
determine the polynomial

gy =TI -8 ezl
i=1
Now let f be the canonical embedding of f in Z, and oy, ..., a), be the zeros of f n a

suitable extension & of (@p,. Set ﬁNZ = HdeA, a € & and calculate the polynomial
a0y =[] - &) e €.
i=1

THEOREM 3.1. Let Aq,..., A, be a complete block system and g and g be as above.
Then § € Z,[t] and if g is embedded into Z,[t] in a canonical way, it follows that g = §.

PrOOF. Let N = Q(ay, ..., ap) be the splitting field of f and p be a prime ideal lying
over p. Define ¢ : N — N, to be the canonical embedding. From this it is clear that
¢(g) = §. Since Z C Zy and & C N,, the theorem is proved. []

If we only assume that Aq,..., A, is a potential block system it can be proved that
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G € Z,[t]. In practice we are able to do arithmetic in p-adic fields only modulo p* (k € IV)
up to some exponent, where p is the prime ideal of the given p-adic field.

THEOREM 3.2. Let g,ﬁ,@ (1 <i<m), & be defined as above, k € NN and p the prime
ideal of €. Assume B; = fB; mod p* (1 < i < m) and define §(t) = [[1=,(t — Bi). Then it
follows that § = § mod p*, hence § = g mod p*.

PrOOF. Because of the definition of §, we have § = § mod p*. W.l.o.g. we can choose
g € Z[t] and obtain § = § mod p*. I

The next algorithm requires a bound M for the coefficients of the generating polyno-
mial ¢, which is provided by the following lemma.

LEMMA 3.3. Let f,g be as above and assume that g generates a subfield L of K. If
g(t) =370 bt" and B = [[;_, max(1, |o;|), then the following inequality holds:

-1 -1
|bz’|<<n.l )B—I-(m. )
—\t—1 7
ProoF. This is an immediate consequence of lemma 3.5.2 in Cohen (1993). [

ALGORITHM 3.4. (Computation of candidates for subfields)

Input: A generating polynomial f € Z[t] for K of degree n and a prime number p
with a potential block system Aq,..., Ap. A bound M for the coefficients of
the generating polynomial g of the potential subfield L.

Output: A generating polynomial g for a potential subfield L of degree m.

Step 1: Determane the exponents k; of A; for 1 <@ <m from the congruence factor-
ization of f modulo pZ[t].

Step 2: For 1 < ¢ < m calculate the cycles and corresponding polynomials which
contain elements in A;, factorize these polynomials in an extension of degree
k; of IF, and determine the zeros belonging to A;.

Step 3: Factorize f in an extension of degree k = lem(k1, ..., ky) of Fp.
Step 4: Lift those factors to a sufficient precision (> 2M) by Hensel’s method.

Step b: Compute p—adic approrximations §; of the product of the zeros belonging to
block A;.

Step 6: Compute g(t) =[], (t — &;).

If the coefficients of g are bigger than the bound M, it was previously shown that
Aq,..., A 18 a potential but not a complete block system. If the polynomial ¢ has
multiple roots, a suitable Tschirnhausen transformation must be applied to f and the
algorithm (with new bound M) is repeated.

We remark that Step 4 is not done for each potential block system. We can store the
Hensel lifting and use it again for further potential block systems.
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EXAMPLE 3.5. Let K = Q(iv/108), f(t) = t° + 108 and p = 7. In example 2.15 three
potential block systems were computed. The exponents of all blocks are 3. We generate
a p-adic field £/Q7 by a zero v of the polynomial w(t) = t3 + 6t> + 4. Let p be the
prime ideal in £. We get the following congruence factorization (with [a, b, c] representing
a+by+cy? € ZLp+ Zpy + Zpy? = o0g):
ft) = (t—[204,408,51])(t — [—101,—202,575])(t — [-103, —206, —626])
(t —[101,202, =575])(t — [103, 206, 626])(t — [~204, —408, —51]) mod p*.

The factors are sorted according to the Frobenius automorphism. In the notation of ex-
ample 2.15 we obtain:

a1 = [204,408,51], as = [~101, —202, 575], az = [—103, —206, —626],
aq = [101,202, —575], a5 = [103, 206, 626], ag = [—204, —408, —51].

It is now possible to compute §1,0d2,95 and the polynomial g(t) = H?:1(t — &;) for each
potential block system. In all cases we get g(t) = 1> — 108 mod p*. Then embeddings need
to be computed in order to determine whether these polynomials generate subfields of K.

4. Embedding of Subfields

The embedding of the computed potential subfields is a modification of Dixon’s al-
gorithm (1990). The advantage of our method is that we do not have to try several
partitions of roots because we work with a potential block system.

ALGORITHM 4.1. (Embedding of potential subfields)

Input: A generating polynomial f € Z[t] for K of degree n, and a polynomial g
generated by Algorithm 3.4 with corresponding prime number p and potential
block system Ay, ..., Apn.

Output: A polynomial h € Q[t] satisfying g(h) = 0 mod fZI[t] if g is a generating
polynomial of a subfield of K, or the result that Ay, ..., A, is not a block
system.

Step 1: Caleulate hy € Z[t] satisfying ho(e;) = Bimod p forall a; € 4; (1 <i<
Step 2: Lift hg to a sufficient precision hy modulo pzk by Newton’s method.
Step 3: Retrieve from hy a polynomial h € Q(t). If f divides g(h) print h, else print

i

“g does not generate a subfield of K.

A bound for Step 2 can be found in Dixon (1990). It seems that these bounds usually
grossly overestimate the size of the numerators and denominators of the coefficients
of h. One possibility is to check if the condition g(h) = 0 mod fZ[t] is fulfilled after
each iteration of the Newton lifting, but the calculation of g(h) is expensive. Another
possibility is to calculate only h € Q[t] after each iteration and compare this with the h
calculated one iteration before. We only check g(h) = 0 mod fZ[t] if h remains invariant.

EXAMPLE 4.2. We conclude examples 2.15,3.5 using the methods described in Dizon
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(1990) to compute h mod p. In the first case we get h(t) = 4t> + 41 mod 7 and by the

Newton lifting method,

h(t) = 1012392034723593925779857601 - t°
+ 552213837121960323152649601 - t2 mod 732.

Retrieving the coefficients in ), we get h(t) = —11—2155 + %tz. In the two other cases:

h(t) = 1012392034723593925779857601 - t°
+ 552213837121960323152649601 - t2 mod 732,

whence h(t) = % A5 4 % -2, furthermore,
h(t) = 1104427674243920646305299200 - t* mod 732,

from which h(t) = —t* follows.
The condition f | g(h) is fulfilled in all cases.

5. The Algorithm

ALGORITHM 5.1. (Calculation of subfields)

Input: A generating polynomial f € Z[t] for K of degree n.
Output: A list of characterizing pairs (h,g) of all non-trivial subfields L of K. For all
dn(d#1,d#n) do

Step 1: Choose several primes p 1 disc(f) and use algorithm 2.11 to compute a list of
potential block systems.

Step 2: Choose a prime p and the corresponding list of potential block systems which
appear to be most suitable.

Step 3: For all potential block systems of that list use algorithm 3.4 to compute po-
tential generating polynomuals.

Step 4: For all those potential generating polynomials use algorithm 4.1 to compute
an embedding or decide that the potential block system was not a complete
block system.

It 1s difficult to say which prime is the best one in Step 2. On the one hand we want
to choose a prime for which the number of potential block systems is small, on the other
hand it is faster to do arithmetic in p-adic fields of small degree. There are two ways of
detecting potential block systems which are not complete block systems. The first one is
that the coefficients of g are bigger than the bound M. The other one is very expensive
because we try in Step 4 to compute an embedding which does not exist. In most cases
it is better to choose a larger bound (for example M? or M%) in Step 4 of Algorithm 3.4
because there is a better chance of finding that the coefficients of g are too big.

The algorithm to compute generating polynomials of subfields 1s a generalization of
the method presented in Dixon (1990). Dixons algorithm can only work with potential
blocks of exponent 1. To compute all subfields of given degree m the algorithm has to
find a prime p such that all potential blocks which contain a have exponent 1. In all
algebraic number fields there exist primes which correspond to permutations of cycle
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Table 1. Examples

No  Polynomial Time
1 % +108 1.1 sec
2 ¥ 129 4 23¢% — 122 41 4.0 sec
3 10t 41 1.5 sec
4 B4 10t 120247 1.8 sec
5 12 — 1865 + 117¢7 — 348¢° 4 39615 4 288t 4 3012¢% + 576t> + 576t — 512 3.3 sec

6 t104+38¢% —99¢8 4 13347 — 427216 4 9244¢% — 82974 +1222¢° +1023t2 =74t +1 3.4 sec

7 10 — 20t% 4+ 80¢® + 200¢7 — 3770t6 4+ 872t% 4 29080t% + 362803 — 456615t + 3.9 sec
541260t — 517448

8  ¢10 — 108 + 20¢7 + 235t% 4 606t5 + 800t + 600¢% + 270¢2 + 70t + 16 3.2 sec

9 t'12466% 4+ 4t® 4+ 8% — 44> — 12¢* + 8> -8t + 8 7.4 sec

10 t1249¢11 43410 73¢9 — 17748 —267¢7 —315¢% —267¢° — 1774 — 733 + 312 49t + 1 14 sec

11 12— 3a734¢11 4+ 4s01000259t10 _—  1456627492885¢t9 —  2537142937228035t8 4 98 sec
18762072755679375516t7 — 812368636358864062944t% — 70132863620758257512231931t5 4
258344725148931023328210620851% + 766232806103524502472479395847451°
45080885015422662132515763499758450t2  —  2070499552240812214288316981071818900t  —

550505759097778545485364826246753544

12 15 4 20812 + 125¢11 4 50310 + 1650¢° + 3430t% 4 4690t7 4 4335¢¢ + 29045 + 10 sec
1400t* 4+ 485¢3 + 1002 + 15t + 1

type [1,...,1], but in this case the number of potential blocks of size d which contain «
1s equal to (Z) Another problem of Dixons algorithm is to check that a potential block
is not a block. In this case Hensel lifting is used up to a bound which is much bigger
than the m — th power of the bound used in our algorithm. An important fact is that
we lift the factors using Hensel lifting only once and save the congruence factorization.
So for each block there are only a few multiplications in the p-adic field £ neccessary to
get the potential generating polynomial in comparison to Dixons method which reduces
a lattice of degree m by the LLL-method presented in Lenstra, Lenstra, Lovasz (1982).

6. Examples

Table 1 lists 12 examples of test polynomials and the computation times needed by our
algorithm. A. Hulpke (1995) uses these examples to compare the algorithms presented in
[Casperson, Ford, McKay (1995), Lazard, Valibouze (1993), Cohen, Diaz y Diaz (1991),
Hulpke (1995)]. We remark that the algorithm presented in Cohen, Diaz y Diaz (1991)
does in general not compute all subfields. Nevertheless in the more complicated exam-
ples our algorithm runs faster. In comparison with the other methods our algorithm runs
always faster. The differences in compuations times become more significant if the ex-
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amples become more complex. In the last two examples our algorithm is 173 resp. 1013
times faster than the best of the other ones.

Consider the algebraic number field K (Example 10) which is generated by the poly-
nomial

FO) =240t 43410 — 737 — 177% — 2677 — 315¢° — 267¢° — 177t — 733+ 32 49t 4 1.

This example is taken from Lazard, Valibouze (1993). The authors use the fact that the
polynomial f is reciprocal to find a subfield of degree 6. Then they only compute subfields
of that subfield.

We note that all computed generating polynomials for subfields have the form (¢ —1)™.
Substituting ¢t = ¢+ 1 in f we obtain the following generating polynomials:

(1) 15 — 2145 4+ 147¢* — 3783+ 1323t — 1323 with zero 114 2a —73a? — 17703 — 267a* —

315a° — 267a% — 177" — 730® + 3a° + 920 + ',

(i) t*—63t?—1323 with zero %(9954—23720[— 1087302 —32232a3—500580* —63357a° —
558818 — 3844507 — 1825508 + 16a° 4 2188a1Y + 253all).

(iii) 3 — 21¢% + 1323 with zero (282 — 556a — 201202 — 2562a° — 3405a* — 2772a° —
1743a% — 84907 + 23408 + 171a° — 141 — 4a11).

(iv) t* + 63t — 1323 with zero £(—222 4 130a — 115a° — 1062a® — 15660 — 2667a° —
2583a° — 198307 — 1341a® — 102a° 4 152a1° + 19a ™).

Finally we present two more examples. Consider the algebraic number field K gener-
ated by the polynomial

Ft) =t 241 — 28110 — 4017 + 180t + 42617 + 89¢° — 4441 — 390¢* — T5¢° 4+ 27¢% + 11t + 1.

K is a Galois extension of Q with Galois group 2U,. We know that K has three subfields
of degree 6, four of degree 4, and one of degree 3.
The following subfields are calculated:

(i) t° — 6t° — 2t* + 483 — 45¢% — 22t + 1 with zero

5:(1970 !t + 215010 — 56640 — 82550°+ 392600 " +85688a° — 4800a® — 1022790 —
52471a® + 364602 4+ 4797 + 558).

(i) % — 3t° — 11¢* + 27¢3 — 3¢? — 11t + 1 with zero
5= (—433a’ — 44301 4 122000° + 17603a® — 79964a” — 187354a° — 25898a° +
2117130 + 1588450 + 9988a — 16091a — 2620).

(iii) % — 2445 + 211¢* — 816¢3 + 12822 — 528t — 241 with zero
5= (34730 +4054601°+1168290° — 30738305 — 22962100 —32953680°+10194228
o” + 219486430 + 27601378a° + 144319170’ + 1621177 — 658412).

(iv) ¢* — 2443 + 38¢? + 16t + 1 with zero
L (=83t 4+ 29010 + 22870 + 2290® — 153040 — 145990° 4 12655a° + 193960* +
555003 — 888a? — 658 — 14).

(v) t* — 73 + 5¢% 4+ 6t + 1 with zero
—+=(—953a!t — 1258a!% 4+ 270840° + 46419a® — 178833a" — 46288305 — 830430° +
519472a* + 389689a° + 2374507 — 38628a — 6326).

(vi) t* — 283 — 15¢2 4+ 3t + 1 with zero
5 (2560114244010 —72070” 990605 +473360" +10722305+120410° - 120443a* —
88903a® — 6678 4+ 8709cr + 1525).
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(vii) t* —10t3 — 32t 4 410t — 241 with zero
40 4+ 46010 + 1284 — 36208 — 2560a7 — 3524a° + 5848a° 4+ 24142a* + 30082a° +
157500 + 1804a — 723.

(viii) €3 + 14¢2 4+ 11t — 1 with zero
196(6700z11 + 165010 — 188840 — 12568a® + 130059a7 + 187423a° — 81449a° —
236127a — 8429603 + 11769a? + 8375a + 886).

We remark that K is the Hilbert class field of all subfields except the ones of degree
4. The computations are done in 11 seconds.

As a last example consider the algebraic number field K generated by a root of f(¢) =
124+ 873 — 32¢22 — 298171 + 6241%° + 4592¢1° — 8845118 — 31488¢17 + 76813116 4 65924¢1° —
265616t114-48348¢134-385639t12 — 39498411 — 2094610 +369102t° — 3628775+ 18339617 +
434501¢° — 1944185 + 450637¢* 4 125800¢% — 16401¢? — 45880t + 115151.

This field is normal and has Galois group &,. All subfields are computed in 3641
seconds. In the following we give only the generating polynomials for the subfields. We
remark that the embeddings are calculated, too.

(i) 12 —64t11 4152810 —16044t°+ 748715 — 161098t +167141t°—165210t°+297029¢* —
3371743 4+ 250670t% — 232280t + 115151
(i) 12— 16t 410810 — 4977 +1272¢8 +696¢7 — 6462¢5 + 11299¢° +40150¢* — 915163 +
117738t% + 60955¢ + 115151
(iii) #12—16¢11 49610360t +1611¢%—586¢7 +14297¢5+61286t°+ 171105t 439102613+
566042t2 + 406920t 4+ 115151
(iv) t12 4+ 1261 466110 + 12617 — 197¢5 4 448t7 4+ 13451¢° + 453685 4-40519¢* + 58994¢3 +
345440t + 289742t 4+ 115151
(v) t124 12t 466119423567 +990t5 43810t +13828¢° +51693t5 4154690t %+ 3258061+
4465987 + 343639t + 115151
(vi) 1264211 +1502¢10 —16240t° +90981¢% —256278¢7 + 307603t —454361° —422451¢* +
596072t3 — 38966t% — 330506t + 115151
(vii) #12 — 16¢10 — 80t° + 375t 4 468617 + 21445t 4 79986¢° + 221445t* + 5345701 +
960134t2 + 596720t 4+ 115151
(viil) 12+ 16210 — 79" + 3895 + 1480t +5387¢° 4+ 18142t° + 62659t* — 3430143 + 8181¢% —
167175t + 115151
(ix) t12—64t11 41386110 —12910t°+58159t% —149404¢74+321179¢° —533388¢° 4699503t * —
782862t + 588268t% — 407282t + 115151
x) 1% 4 6617 4+ 1665¢° + 15423¢° + 82484¢* + 180311¢3 + 256795t + 230941¢ + 115151
(xi) % 4 6617 + 1603t° + 17522t° + 87416t* 4 178964t + 218318t% 4 184564¢ + 115151
(xii) 5 + 8417 4 20435 + 7800t 4 4523t* — 76082¢> + 250207 4+ 121808t + 115151
(xiii) tS + 36¢7 + 7995 + 8903t° 4 67422t* + 1567573 + 182615¢2 + 32205¢ + 115151
(xiv) 5 — 12¢° 4 117t — 2329613 4 834832 — 68948t 4 115151
(xv) 5 4 28t° — 45¢* — 103613 + 636452 + 49178 + 115151
(xvi)
(xvii)
(xviii)
(xix)
(xx)

[
16 — 3145 4+ 1054¢* + 548243 — 3987612 — 257589t + 115151
16 — 1145 4+ 1135¢* + 542063 — 14079¢% — 182673t + 115151
1% — 5745 4 210¢* — 1896¢3 4+ 13010¢% + 89517t + 115151

1% — 49¢° + 697¢* — 5202t + 3895147 — 104893t + 115151

16 — 2260¢° + 258433t* — 875955243 + 89549811¢% — 190825164t + 77649707
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1?2 — 45252t + 115151

(xxi) ¢* + 173 4+ 595t% + 15905¢ 4+ 115151
(xxii) 1 — 31¢3 + 1004t — 14302t + 115151
(xxiii) ¢* — 853 + 2392t — 24634t + 115151
(xxiv) t* — 553 4 21582 — 26278t + 115151
(xxv) 3 — 853t% 4 74371t — 115151
(xxvi) 3 — 1253t% 4 44579t — 115151

(xxvii) 3 — 2525¢2 + 112131¢ — 918751
)

(xxviii

All computations were done on a HP 9000/735 in KASH [Daberkow, Fieker, Kliiners,
Pohst, Roegner, Schornig, Wildanger (1995)], the shell of KANT V4.
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