
ON COMPUTING SUBFIELDS {A DETAILED DESCRIPTION OF THE ALGORITHMJ�URGEN KL�UNERSIWR, UNIVERSIT�AT HEIDELBERG, IM NEUENHEIMER FELD 36869 120 HEIDELBERG, GERMANYEMAIL KLUENERS@IWR.UNI-HEIDELBERG.DE1. IntroductionLet E = Q(�) be an algebraic number �eld of degree n, where � is a root of amonic irreducible polynomial f 2 Z[t]. In this article a method is developed fordetermining all sub�elds L = Q(�) of E of �xed degree m over Q. We describeeach sub�eld L by the minimal polynomial g of � and and the embedding of � intoE, which is given by a polynomial h 2 Q[t] with h(�) = �.Lemma 1. 1. Each sub�eld L of E has a representation as a pair (g; h) 2Z[t]�Q[t], such that g � h � 0 mod fZ[t].2. A pair (g; h) 2 Z[t]� Q[t] such that g � h � 0 mod fZ[t] and g irreducibledescribes a sub�eld L of E.Note that the coe�cients of the embedding polynomial h are not necessarily integralbecause the equation order Z[�] is in general not integrally closed. W.l.o.g. weassume that the degree of h is less than n, otherwise we replace h by its remaindermodulo f . The lemma is used to check if a pair (g; h) presents a sub�eld L of E.Such a sub�eld L is represented in the form Q[t]=g(t)Q[t]; hence isomorphic �eldsare not distinguishable by g alone.Example 2. We determine all sub�elds L of E = Q(i 6p108) of degree 3. Thereare three sub�elds with characterizing pairs (t3 � 108;�t2); (t3 � 108; 112t5 + 12 t2)and (t3 � 108;� 112t5 + 12 t2). In all cases the minimal polynomial of � is the same;however, we are able to distinguish the three isomorphic sub�elds by their embeddingpolynomials.There are several other algorithms [1, 3, 8, 9, 12, 14, 15] for calculating sub�elds. Inthis article we improve the methods described in [12]. The generating polynomialsare constructed by factorizations of polynomials over �nite �elds and Hensel liftingover p-adic �elds. We give improved algorithms for the computations in p-adic�elds. In the combinatorial part of the algorithm we can reduce the number ofpossibilities dramatically.Three other methods [9, 14, 15] need factorizations of polynomials over number�elds, respectively factorizations of polynomials over the rational integers of muchhigher degree than the degree of the given �eld. The method presented in [1]needs hard numerical computations and lattice reduction algorithms. Althoughthe algorithm in [3] computes sub�elds it is not guaranteed that all sub�elds willbe found. A comparison of running times is given in section 8.1



2 J�URGEN KL�UNERSThis paper is organized as follows. In the next section we focus on algorithmsfor computations in p-adic �elds. The block systems of a Galois group and theirrelation to sub�elds is presented in section 3. In section 4 and 5 we develop methodsto compute generating polynomials resp. the embedding of a sub�eld via its blocksystem. In the last section we discuss the e�ciency of the algorithm and give someexamples. This paper contains the results concerning the sub�eld computation ofthe dissertation [11] of the author.2. Unramified p-adic extensionsThe sub�eld computation is based on p-adic methods. Therefore we give a detaileddescription of the algorithms we are going to use for computation in the p-adic�elds.2.1. Introduction. In the following we recall some fundamental properties of un-rami�ed p-adic extensions. The proofs can be found e.g. in [2, 17]. In the followinglet F and E be unrami�ed extensions of Qp with maximal orders oF , oE and primeideals p, P, respectively. The corresponding residue class �elds are denoted by �Fand �E.Lemma 3. For every extension Fq= �F there exists an unique unrami�ed extensionE=F such that �E and Fq are isomorphic. The extension E=F is cyclic with Gal(E=F)is isomorphic to Gal( �E= �F).Lemma 4. Let E=F be an unrami�ed p-adic extension of degree s. If �1; : : : ; �sare representatives of a basis of �E= �F, then they are a oF -basis of oE .Using this lemma, it is straightforward to construct a oF -basis of oE . Let �! 2 �F [t]be a monic irreducible polynomial of degree s and ! 2 oF [t] with ! � �! mod p.Then the equation order oF [�] = oF + oF� + � � �+ oF�s�1 = oE , where � 2 oE is azero of !.The following lemma gives a method to reduce elements of oE modulo Pk.Lemma 5. Let E=F be an unrami�ed extension with integral basis 1; �; : : : ; �s�1.Let x =Ps�1i=0 xi�i 2 oE (xi 2 oF ) and k 2 N. Then we have x 2 Pk if and only ifxi 2 pk (1 � i � s).Proof. Since P = poE it follows that Pk = pkoE and the assertion is an easyconsequence.2.2. Arithmetic in unrami�ed p-adic extensions. Using Lemmata 4 and 5 weare able to generate p-adic extensions, such that their equation orders are maximal.Now we explain how to compute the sum and the product of p-adic numbers. Thiswill be done in the same way as the arithmetic in algebraic number �elds. In thefollowing let x =Ps�1i=0 xi�i and y =Ps�1i=0 yi�i be elements of oE (xi; yi 2 oF (0 �i < s)). Then we have: x+ y = s�1Xi=0(xi + yi)�i:(1)The product of x and y can be easily described via polynomial operations. LetPx(t) := Ps�1i=0 xiti 2 oF [t] and Py(t) := Ps�1i=0 yiti 2 oF [t]. It follows that xy =



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 3Px(�)Py(�). We have to solve the problem to �nd a basis representation of xy.We de�ne Pxy := PxPy mod !. Since !(�) = 0 it follows that Pxy(�) = xy anddeg(Pxy) < s. FromPxy(t) = s�1Xi=0 ziti we get xy = s�1Xi=0 zi�i:(2)We note that we need no divisions to reduce the product modulo ! since ! ismonic. We need s2 multiplications and additions in oF to compute PxPy ands(s � 1) multiplications and additions in oF to reduce the result modulo !. Thisleads to the following lemma.Lemma 6. The sum of two numbers x; y 2 oE can be computed using s additionsin oF . The product of two numbers x; y 2 oE can be computed using 2s2 � smultiplications and additions in oF .We remark that it is possible to divide two numbers x; y 2 oE in an analogue wayto the number �eld case.Now we explain how to reduce a p-adic number modulo pk, where p is an odd primeand k 2 N. Let x = 1Xi=0 xipi 2Zp with xi 2 f1� p2 ; : : : ; p� 12 g:Then we de�ne x mod pk as k�1Pi=0 xipi, which can be interpreted as an integer inf1�pk2 ; : : : ; pk�12 g. Since we need frequently to embed small (negative) integersinto the p-adic �eld, we chose the symmetric residue system. In our applicationsthis yields usually smaller representatives. Using Lemma 5 we are able to reducearbitrary p-adic numbers modulo prime ideal powers.2.3. Hensel lifting. Let f 2Z[t] be a monic irreducible polynomial and p - disc(f)be a prime. Let ~f be the image of f under the canonical embedding from Z[t]to Zp[t]. Our aim is to factorize ~f over an unrami�ed extension F=Qp. Sincef mod p has no multiple factors we know that ~f has no multiple factors in F [t].The factorization can be done up to an arbitrary p-adic precision using the followinglemma.Lemma 7. (Hensel lemma)Let R be a commutative ring with 1 and b an ideal of R. Let f; f1;0; and f2;0 bemonic, non-constant polynomials with the following properties:1. f � f1;0f2;0 mod b[t]2. There exist ai;0 2 R[t]; i = 1; 2; a0;0 2 b[t] with a1;0f1;0 + a2;0f2;0 = 1 + a0;0.Then for every k 2 N there exist polynomials f1;k; f2;k; a1;k; a2;k; and a0;k 2 R[t]with fi;k monic and non-constant, and deg(ai;k) < deg(f3�i;k) (i = 1; 2) and a0;k 2b2k [t] such that the following conditions are hold:1. f � f1;kf2;k mod b2k [t]2. fi;k � fi;0 mod b[t]3. a1;kf1;k + a2;kf2;k = 1 + a0;k.



4 J�URGEN KL�UNERSA proof can be found in e.g. [18]. In our examples the ideal b is always a primeideal and R=b a �nite �eld. Therefore we can compute the ai;0 using the extendedEuclidean algorithm for polynomials over �nite �elds. An algorithm to computethe Hensel lifting can be found in [4, 18].These algorithms are only formulated for two factors. Using induction this can beextended to more factors. This will be demonstrated by the following example.Example 8. Let f � f1f2f3 mod p. De�ne f1;2 := f1f2 and determine the fol-lowing factorization using Hensel's lemma: f � ~f1;2 ~f3 mod pk. Now compute~f1;2 � ~f1 ~f2 mod pk. Combining these results we get f � ~f1 ~f2 ~f3 mod pk.Now we are able to give a �rst method to factorize a polynomial f 2Zp[t] over anextension F modulo pk:1. Factorize f � f1 � � �fr mod p.2. Compute f � ~f1 � � � ~fr mod pk using Hensel lifting.The disadvantage of this method is that all computations are carried out in F .Assuming the degree of F=Qp is 10, we need 190 multiplications inZp to multiplytwo elements of oF . We improve this approach by computing some factorizationsover smaller �elds. This will be demonstrated in the following procedure:1. Factorize f � f1 � � �fs mod p.2. Compute f � ~f1 � � � ~fs mod pk using Hensel lifting in Zp[t].3. For i = 1; : : : ; s do:(a) Factorize ~fi � fi;1 � � �fi;ri mod p.(b) Compute ~fi � ~fi;1 � � � ~fi;ri mod pk using Hensel lifting in oF [t].4. Combine the results: f � ~f1;1 � � � ~fs;rs mod pk.We demonstrate this by the following example:Example 9. Let f(t) = t12 + t11 � 28t10 � 40t9 + 180t8 + 426t7 + 89t6 � 444t5 �390t4� 75t3+27t2+11t+1. We want to factorize f over an unrami�ed extensionF=Q3 of degree 3 modulo p2. In a �rst step we compute the factorization modulo 9and get:f � (t3 + 2t� 2)(t3 + t2 � 3t+ 2)(t3 + 4t2 � 4t� 2)(t3 � 4t2 + 2t� 1) mod 32:In a second step we compute the Hensel lifting of each factor in F [t] modulo p2,where F is generated by a zero � of v(t) = t3 � t+ 1. We use the notation [a; b; c]for a+ b�+ c�2 and get:t3 + 2t� 2 � (t+ [3;�4; 0])(t+ [�2; 2; 3])(t+ [�1; 2;�3]) mod p2;t3 + t2 � 3t+ 2 � (t+ [3;�2;�4])(t+ [3;�1;�4])(t+ [4; 3;�1]) mod p2;t3 + 4t2 � 4t� 2 � (t+ [2;�3;�1])(t+ [4; 1;�4])(t+ [�2; 2;�4]) mod p2;t3 � 4t2 + 2t� 1 � (t+ [�4; 2; 4])(t+ [�4; 1; 4])(t+ [4;�3; 1]) mod p2:We have factorized a polynomial of degree 12 but we have applied the Hensel liftingover F only for polynomials of degree 3. An important fact was that it was easilypossible to embed Zp in oF . Suppose we have a polynomial of degree 4 over Zpand we want to factorize it over an unrami�ed extension E of degree 4. Since theunique extension E is cyclic over Qp, f factorizes in four linear factors over E . Weknow that E has a sub�eld F of degree 2. We know that f splits over oF into



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 5two quadratic factors. A natural idea is �rst to factorize f over oF and then tofactorize the factors over oE . If we want to do this we have to solve the problem inwhich way we can embed the elements of oF in oE . It su�ces to give an image ofall elements of a basis of oE=oF .Instead of simple p-adic extensions of Qp we rather consider towers of extensions.Doing this we can embed trivially the elements of oF in oE .De�nition 10. Let p 2 P, n = p1 � � �pr with pi 2 P and p1 � p2 � : : : � pr . Wecall an extension F = Fr over Qp = F0 successively generated, if Fi = Fi�1(�i),where �i is a zero of an irreducible and monic polynomial vi 2 oFi�1 [t] of degree pi(1 � i � r). We denote the prime ideals in oFi with pi.The following lemma follows immediately.Lemma 11. Let p 2 P and Fr=Qp be successively generated. Then there is acanonical embedding from oFi�1 to oFi (1 � i � r).Now we give the whole algorithm.Algorithm 12. (Hensel lifting)Input: p 2 P; k 2 N; f 2Zp[t]; Fr=Qp successively generated.Output: Factorization of f in oFr [t] modulo pkr .Step 1: Compute the factorization of f � f0;1 � � �f0;s0 mod pk.Step 2: For i = 1; : : : ; r do1. Compute the factorizations of fi�1;j in oFi mod pki (1 � j �si�1).2. Combine the results: f � fi;1 � � �fi;si mod pki .Step 3: Print the result: f � fr;1 � � �fr;sr mod pkr .2.4. The generalized Newton lifting. Let F be an algebraic number �eld andR an order in F . The special case F = Q and R =Zis possible. Let f; g 2 R[t] beirreducible polynomials of degree n resp. m. A zero � of f generates the number�eld E = F (�). Furthermore we know a modulo p-approximation �0 2 R of a zeroof g, that means g(�0) � 0 mod pR:In the following we use the notation mod pk instead of mod pkR. We denote withd(f) the principal ideal in R generated by disc(f). We choose a prime p such thatgcd(pR; d(f)d(g)) = R. Using the extended Euclidean algorithm we can computean element !0 2 oE such that !0g0(�0) � 1 mod p holds. In the following weconstruct elements �k; !k with the following properties:�k+1 � �k mod p2k(3) !k+1 � !k mod p2k(4) g(�k) � 0 mod p2k(5) !kg0(�k) � 1 mod p2k:(6)



6 J�URGEN KL�UNERSWe use the following double iteration:�k+1 � �k � !kg(�k) mod p2k+1(7) !k+1 � !k[2� !kg0(�k+1)] mod p2k+1 :(8)The correctness can be easily veri�ed [10]. We remark that it is possible to solveour problem using the following iteration:�k+1 � �k � g(�k)g0(�k) mod p2k+1 :The disadvantage of this approach is that divisions are much more complicatedto compute. If we analyze the double iteration we notice that the evaluations ofg(�k) and g0(�k) are the most expensive steps. Using Horner's scheme we need(m� 1)+ (m� 2) = 2m� 3 multiplications of algebraic numbers of degree n wherem = deg(g). We need 2n2 � n multiplications in R to multiply two numbers inE. Therefore we need (2m � 3)(2n2 � n) multiplications in R to compute theirevaluations.It is better to �rst compute 1; �k; : : : ; �mk which can be done using m� 1 multipli-cations in E. After this we need m+(m� 1) multiplications of elements of F withelements of E to compute the evaluations. Altogether we need (m� 1)(2n2� n) +n(2m � 1) = (2m � 2)n2 + mn multiplications in R. Using this approach we saveabout half of the multiplications. We have not looked at the size of the coe�cients.Practical experience shows that the second approach is about 50% faster than the�rst one.Algorithm 13. (Newton lifting)Input: p 2 P; k 2 N; f; g 2 R[t]; �0 2 E with g(�0) � 0 mod p.Output: �k 2 E with g(�k) � 0 mod p2k and �k � �0 mod p.Step 1: Compute !0 2 E with !0g0(�0) � 1 mod p.Step 2: Compute �1 � �0 � !0g(�0) mod p2:Step 3: For i = 1; : : : ; k� 1 do:1. Compute 1; �i; : : : ; �mi mod p2i+1 .2. Compute !i � !i�1[2� !i�1g0(�i)] mod p2i .3. Compute �i+1 � �i � !ig(�i) mod p2i+1 .Step 4: Print �k and terminate.In the followingwe give a variant of this algorithm. In our application of the Newtonlifting we want to �nd an element � 2 E with g(�) = 0. We know estimates forthe numerators and denominators of the coe�cients of �. In this case the followinglemma is very useful.Lemma 14. Let U;M 2 N such that (U;M ) = 1 and suppose that there existsa pair of integers (C;D) such that C � DU (mod M ) with D > 0 and jCj; D <pM=2. Then the pair is uniquely determined and there exists an e�cient algorithmto compute it.The proof and the algorithm can be found in [5]. We remark that algebraic numbersare reconstructed by applying the lemma to all coe�cients.



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 7If we know estimations for the numerators and denominators we are able to compute� from �k. Since the a priori estimates we use are usually not sharp, we wantto use a smaller k in the Newton lifting process to compute �. One idea is tocompute an element ~� from �k using Lemma 14. Now it can be checked if g( ~�) = 0.Unfortunately it turns out that an evaluation with a "wrong" � is very expensive.Therefore we need a good test which is likely to detect ~� = � at an early stage.This is used in the following algorithm.Algorithm 15. (Newton lifting)Input: p 2 P; k 2 N; f; g 2 R[t]; �0 2 E with g(�0) � 0 mod p.Output: � 2 E with g(�) = 0 or "false".Step 1: Compute !0 2 E with !0g0(�0) � 1 mod p.Step 2: �1 � �0 � !0g(�0) mod p2:Step 3: Set �old := 0.Step 4: For i = 1; : : : ; k� 1 do:1. Compute 1; �i; : : : ; �mi mod p2i+1 .2. !i � !i�1[2� !i�1g0(�i)] mod p2i .3. �i+1 � �i � !ig(�i) mod p2i+1 .4. De�ne �new to the result of the reconstruction of �i+1 and p2i+1using Lemma 14.5. If �old = �new, then compute g(�new). If this evaluation equals 0,terminate and return �new .6. Set �old := �new.Step 5: Compute g(�new). If the result equals 0, then return �new and termi-nate.Step 6: Terminate with the message "false".3. Blocks of imprimitivityIn this section we develop some properties about blocks of imprimitivity. We recalla correspondence between blocks and sub�elds, which is very useful for the compu-tation. In the following let f 2Z[t] be an irreducible monic polynomial with rootsf� = �1; : : : ; �ng in a suitable extension. The Galois group G = Gal(f) operatestransitively on 
 := f�1; : : : ; �ng.3.1. Introduction.De�nition 16. (Blocks of imprimitivity)1. ; 6= � � 
 is called block (of imprimitivity), if �� \� 2 f;;�g for all � 2 G.2. � = f�ig (1 � i � n) and � = 
 are called trivial blocks. G is calledimprimitive if there exists a non-trivial block. Otherwise G is called primitive.3. Blocks �1; : : : ;�m with �i 6= �j (1 � i < j � m) are called a (complete)block system, if the set f�1; : : : ;�mg remains invariant under G.If � is a block it is easy to see that �� is a block, too. It follows that each block iscontained in exactly one block system. The number of elements in a block or the



8 J�URGEN KL�UNERSnumber of elements of a block of a block system is called the size of a block or ablock system.The proof of the following theorem can be found in [20, Theorem 2.3]. Combinedwith the main theorem of Galois theory we get a correspondence between blocksystems and sub�elds.Theorem 17. The correspondence � 7! G� := f� 2 G j �� = �g is a bijectionbetween the set of blocks which contain � and the set of subgroups of G containingthe isotropy subgroup G� of �.The following diagram illustrates our situation:Q(�1; : : : ; �n)Q(�1) G�1fidg f�1gdQ(�) H H�1 = f�i1 ; : : : ; �idg = �1m = ndQ G f�1; : : : ; �ngWe have a bijection between sub�elds L of E and blocks � which contain �. Inthis case we say that L corresponds to �. The proof of the following lemma canbe found in [20].Lemma 18. Let B1 and B2 two blocks which contain � with corresponding sub�eldsL1 and L2 of E. Then B := B1 \ B2 is a block which contains �. It correspondsto a sub�eld L = L1L2 of E. Furthermore L1 is a sub�eld of L2 if and only ifB2 � B1.This lemma is very useful if some sub�elds are already known. This will be discussedlater.Suppose that we know a complete block system �1; : : : ;�m which corresponds toa sub�eld L. From H := G�1 we get L = Fix(H). De�ne�i := Y
2�i 
 (1 � i � m):(9)Therefore we get �1 2 Fix(H) = L. Furthermore the �i (1 � i � m) are allconjugates of �1. This means thatg(t) = mYi=1(t� �i) 2Z[t](10)



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 9is the characteristic polynomial of �1 2 L over Q. This polynomial is of the formg(t) = ĝj with j 2 N and ĝ irreducible. In the case that g is irreducible wehave found a primitive element of L. Otherwise the polynomial g has multipleroots which can be easily checked. In this case we make a linear transformationf(t)  f(t� a) with a 2Zand compute a new g. Later we will prove that at mostn substitutions leads to multiple roots for g.3.2. The Dedekind criterion. We have reduced the problem of computing sub-�elds to the problem of computing block systems of the Galois group of G. Thisreduction is only theoretical since the Galois group computation is a very di�cultproblem for higher degrees. We want to use the knowledge of cyclic subgroups ofthe Galois group which we get from the following theorem.Theorem 19. (Dedekind Criterion)Let R be a UFD, p a prime ideal in R, �R := R=p its residue class ring, f 2 R[t]and �f 2 �R[t] with f � �f mod p. If �f is square{free, it follows that �G = Gal( �f) isisomorphic to a subgroup of G = Gal(f):The Dedekind criterion allows us to determine cyclic subgroups of G which aregenerated by a permutation � 2 G. Let � = �1 � � ��u be the decomposition of �into disjoint cycles and ni = j�ij the number of zeros permuted by �i (1 � i � u).We say that � is of cycle type [n1; : : : ; nu] and w.l.o.g. we can assume n1 � : : : � nu.In our situation we choose a prime p - disc(f) to obtain a congruence factorizationf � f1 � : : :�fu mod pZ[t]. It follows that ni (i = 1; : : : ; u) coincides with the degreeof the polynomial fi. The cycles �i permute the roots of fi.Example 20. Let f(t) = t4 + 2 be a generating polynomial of K and G = Gal(f).1. f(t) � t4 mod 2.2. f(t) � (t + 2)(t+ 1)(t2 + 1) mod 3.3. f(t) � t4 + 2 mod 5.4. f(t) � (t2 + 6t+ 4)(t2 + t+ 4) mod 7.Let p denote the modulus. In the �rst case p divides the discriminant and theDedekind criterion is of no use. In the other cases we get cycles of cycle type[1; 1; 2], [4] and [2; 2]. In all of these cases the roots can only be identi�ed modulo pin a suitable �nite �eld.3.3. Potential block systems. In the algorithm we are trying to enumerate allblock systems without knowing the Galois group G. So we enumerate a larger set ofpotential block systems that can be de�ned with the knowledge of a cyclic subgroupof G. This subgroup can be obtained with theorem 19.Fix an arbitrary � 2 G. Let � = �1 � � ��u be the decomposition of � into disjointcycles of length j�ij = ni (1 � i � u).De�nition 21. A subset A � 
 with d elements is called potential block of size d,if A�j \ A 2 f;; Ag for 1 � j � jh�ij. A system A1; : : : ; Am of potential blocks ofsize d is called potential block system of size d, if1. 
 = S1�i�mAi,2. Ai \Aj = ; (i 6= j),



10 J�URGEN KL�UNERS3. A�ji 2 fA1; : : : ; Amg (1 � i � m; 1 � j � jh�ij).Remark 22. The de�nitions potential block and potential block system depend on�. A block is always a potential block and a block system is always a potential blocksystem.Our goal is to determine all potential block systems (for one �). In the followingwe give some useful properties of potential block systems. We say that a cycle �icontains an element � if this element is not �xed under this cycle or �i = (�).Theorem 23. Let A be a potential block corresponding to � and k be the smallestpositive integer such that A�k = A. If a cycle �l of length nl contains an elementof A, then k divides nl and �l contains exactly nlk elements of A.Proof. Since A is a potential block it follows that there exists a k withA�j \A = ; for 1 � j < k and A�k = A:Suppose that � is contained in A and �l. It follows that all elements of the form��ck (c 2 N) are contained in A and �l. From ��nl = � we see that k divides nl.Furthermore �l contains exactly nlk elements of A.De�nition 24. The number k from theorem 23 is called inertia degree of the po-tential block.Theorem 25. Let A1; : : : ; Am be a potential block system corresponding to � ofinertia degrees k1; : : : ; km. If Ai and Aj contain an element of the same cycle, itfollows that ki = kj. In this case Ai contains an element of the cycle �l if and onlyif Aj contains an element of the same cycle.Proof. There exists a minimal number c 2 N such that A�ci \ Aj 6= ;. From thede�nition of a potential block system it follows that A�ci = Aj .The assertion followsimmediately.De�nition 26. Let A1; : : : ; Am be a (potential) block system of inertia degreesk1; : : : ; km. We call Ai; A�i ; : : : ; A�ki�1i a (potential) block cluster (1 � i � m).From theorem 25 we get that all blocks of a (potential) block cluster have the sameinertia degree.The preceding two theorems are very important for the construction of potentialblock systems. We will construct systems of subsets A1; : : : ; Am � 
 of size d andcorresponding inertia degrees k1; : : : ; km with the following properties:1. jAij = d for 1 � i � m.2. If Ai contains elements of a cycle �l, then Ai contains exactly nlki elements ofthis cycle.3. S1�i�mAi = 
.4. Ai \Aj = ; (i 6= j).5. All potential blocks of a potential block cluster are contained in A1; : : : ; Am,that means A�ji 2 fA1; : : : ; Amg (0 � j < ki).



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 11A system of subsets A1; : : : ; Am is a potential block system if and only if it has theabove properties. These properties are su�cient to give an e�cient algorithm tocompute all potential block systems and therefore all block systems.To compute the minimal polynomial g of a primitive element of a sub�eld L weneed a method to compute the zeros which are contained in a potential block.Let p 2 Pwith p - disc(f) and �f 2 Fp[t] be the image of f under the canonicalmapping fromZto Fp . We denote the zeros of f in a suitable extension Fq of Fpwith ��1; : : : ; ��n. Furthermore let �f = �f1 � � � �fu 2 Fp[t] be a complete factorization.Suppose that � = �1 � � ��u is computed using Dedekind's criterion 19. We knowthat �i permutes the zeros of �fi.Let A1; : : : ; Ak be a potential block cluster of inertia degree k. W.l.o.g. we assumethat it contains the zeros of �1; : : : ; �v that means the potential blocks contain thezeros of �f1; : : : ; �fv. Let�fi = �fi;1 � � � �fi;k in Fpk [t] and �ki = �i;1 � � ��i;k (1 � i � v):Then �i;j permutes the zeros of �fi;j (1 � j � k; 1 � i � v). Therefore all thesezeros are contained in one potential block. We want to compute equation (9).Therefore we are only interested in the product of the zeros of �fi;j which is equalto (�1)deg( �fi;j) �fi;j(0). That means that there is no reason to factor �f over a larger�nite �eld.De�nition 27. (Polynomial representation of potential blocks and block systems)Let A be a set of polynomials. We say that A is a potential block in polynomialrepresentation if the set of zeros of the polynomials in A is a potential block. We saythat a potential block system is given in polynomial representation if all potentialblocks are given in polynomial representation. A potential block cluster is given inpolynomial representation if all its blocks are given in polynomial representation.The polynomials of a polynomial representation are not necessarily linear. Now wecan formulate our algorithm to compute potential block systems.Algorithm 28. (ComputePotentialBlockSystems)Input: Generating polynomial f of E, the block size d and a prime p - disc(f).Output: A list of all potential block systems of size d in polynomial representa-tion.Step 1: Compute f(t) � �f1(t) � � � �fu(t) mod pZ[t].Step 2: Set Z := f �f1; : : : ; �fug and call ComputeBlockCluster(Z; d; ;).Algorithm 29. (ComputeBlockCluster)Input: A set Z consisting of r irreducible polynomials �fi in Fp[t], a block sized 2 N and a set Y consisting of already computed block clusters inpolynomial representation.Output: A list of potential block systems of size d in polynomial representation.Step 1: Set k := 1 and ni := deg( �fi) (1 � i � r).Step 2: Determine all B � f2; : : : ; rg (including ;) with dk � n1 = Pb2B nband k j nb for all b 2 B.



12 J�URGEN KL�UNERSStep 3: For all computed B do:1. Set Z 0 := f �fb j b 2 B [ f1gg.2. Set Y := Y [ fZ 0g.3. If Z = Z 0, call PrintBlockSystem(Y 0; d);otherwise call ComputeBlockCluster(Z n Z0; d; Y ).4. Set Y := Y n fZ 0g.Step 4: Terminate, if k = n1. Otherwise set k := minfl 2 N j l > k and l j n1gand go to Step 2.Algorithm 30. (PrintBlockSystem)Input: A set Y consisting of r sets Yi of block clusters in polynomial repre-sentation and a block size d.Output: A list of all potential block systems in polynomial representation cor-responding to Y .Step 1: Set A := ;.Step 2: For i = 1; : : : ; r do1. Set si := jYij. Denote the elements of Yi with fi;1; : : : ; fi;si.2. Set ki := 1dPsij=1 deg(fi;j) 2 N.3. Factorize fi;j = fi;j;1 � � �fi;j;ki in Fpki [t] (1 � j � si).4. Let � be the Frobenius automorphism of Fpki =Fp . Sort the fi;j;l,such that fi;j;l = �(fi;j;l�1) (1 � j � si; 2 � l � ki).5. Set Al := ffi;1;l; : : : ; fi;si;lg (1 � l � ki).6. Add A1; : : : ; Aki to A.Step 3: Set �i;j(fi;j;l) := fi;j;l+1 (fi;j;ki+1 := fi;j;1) and �i;j(fi0;j0;l) := fi0;j0;lfor (i; j) 6= (i0; j0) (1 � i � r; 1 � j � si; 1 � l � ki).Step 4: Set M := fQri=1Qsij=2 �ei;ji;j j 1 � i � r; 2 � j � si; 0 � ei;j < kig.Step 5: For all � 2M print the potential block system A� := fA�1; : : : ; A�mg.The above algorithm computes all potential block systems A1; : : : ; Am. Each Aicontains irreducible polynomials fi;j;l which are given over an extension of Fp. Theblock consists exactly of the zeros of these polynomials. We have remarked thatwe are only interested in the product of the zeros. It is possible that polynomialsin di�erent blocks are given over di�erent extension �elds, but in a block clusterall polynomials are given over the same extension �eld. Let A1; : : : ; Ak be a blockcluster. Then we have (compare (10)):kYi=1(t� �i) 2 Fp [t] with �i = Y
2Ai 
 (1 � i � k):3.4. The intersection of block systems. For the computation of potential blocksystems we have used the knowledge of a � 2 G. If we do not �nd a "good" �, wehave to consider a lot of potential block systems which are not block systems.We have seen in Lemma 18 that the intersection of two blocks is a block. We wantto use this in two ways. Firstly we are able to compute new block systems fromexisting ones. Secondly we want to reduce the number of potential block systemsto consider. That means, we need one (or more) criteria to distinguish "wrong"potential block systems from block systems.



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 13De�nition 31. The intersection of two (potential) block systems �1; : : : ;�m and�̂1; : : : ; �̂m̂ are the (potential) blocks which are contained in the set f�i\ �̂j j 1 �i � m; 1 � j � m̂g n f;g.Lemma 32. The intersection of two block systems �1; : : : ;�m and �̂1; : : : ; �̂m̂is a block system of size c 2 N. The intersection of two blocks �i and �̂j is theempty set or contains c elements (1 � i � m; 1 � j � m̂).Proof. The assertion follows from the fact that a block is contained in exactly oneblock system.In the following let �1; : : : ;�m be a block system and A1; : : : ; Ar a potential blocksystem. W.l.o.g. we assume that � 2 �1 \A1 and c = j�1 \A1j. In the sequel wewill give some more necessary conditions for potential block systems to be blocksystems. We will use this to reduce the number of wrongly computed generatingpolynomials and embeddings. The following lemma is an immediate consequenceof the last lemma.Lemma 33. Let M = f�i \ Aj j 1 � i � m; 1 � j � rg n f;g. If M contains anelement of size not equal c, it follows that A1; : : : ; Ar is not a block system.De�nition 34. The number c of the last lemma is called intersection number. Ifthere is an element of size not equal to c in M , the intersection number is de�ned tobe 0. The intersection number of a potential block cluster is de�ned in an analogueway.Let us consider the intersection ��1; : : : ; �� �m of two block systems �1; : : : ;�m and�̂1; : : : ; �̂m̂. We know that the intersection is a block system, too. Let A1; : : : ; Arbe a potential block system. We want to test if A1; : : : ; Am can be a block system.A natural question to ask if it is necessary to intersect A1; : : : ; Am with all knownblock systems to get maximal information.Example 35. To simplify we consider only the indices of the zeros. Let 
 =f1; : : : ; 12g. Suppose we know two block systems f1; 2; 7; 8g; f3; 4; 9; 10g; f5; 6; 11; 12gand f1; 2; 3; 4; 5; 6g; f7; 8; 9; 10; 11; 12g. The intersection of these block systems isf1; 2; g; f3;4g;f5;6g;f7;8g;f9;10g; f11;12g. We consider the potential block sys-tem f1; 2; 3; 10;11;12g;f4;5;6;7; 8; 9g. Looking at the intersection with the �rst twoblock systems we get no contradiction. But we have f1; 2; 3; 10; 11; 12g \ f1; 2g =f1; 2g and f1; 2; 3; 10; 11; 12g\ f3; 4g = f3g. This proves that A1; : : : ; Ar is not apotential block system.This example shows that it is useful to consider all known block systems. Withthis method we can decide for most potential block systems that they are not blocksystems. We summarize what we have done up to now. Let L1; : : : ; Lw be theknown sub�elds and B be a set of potential block systems.1. Compute the set S containing the block systems corresponding to L1; : : : ; Lw.2. Compute the intersection of all block systems in S and add the non-trivialones to S.3. Set T := ; and for all potential block systems A1; : : : ; Am contained in B do:(a) Intersect A1; : : : ; Am with each block system from S and apply Lemma33.(b) If A1; : : : ; Am passes all tests, then add it to T .



14 J�URGEN KL�UNERS4. Print T .The block systems which are computed in steps 1 and 2 are known in most cases.Now we give a method how to compute a block system if we know a sub�eld andthe zeros of f in some representation. This algorithm is useful if some sub�eldsare known or if we want to change the prime p. The following lemma can be easilyproved.Lemma 36. Let �1; : : : ; �n be the zeros of f and �1; : : : ; �m be the zeros of g givenin the same completion. If the �i are pairwise distinct, then �1; : : : ;�m with�i := f�j j h(�j) = �i; 1 � j � ng (1 � i � m)is the corresponding block system.The intersection method allows us easily to detect many potential block systemswhich are not block systems. In the following we give conditions to exclude a lot ofblock systems with one intersection. If we look at algorithm30 we see that potentialblock systems consist of r potential block clusters. We want to give conditions thata potential block cluster cannot be a part of a block system. We denote the inertiadegrees of the block clusters with k1; : : : ; kr. If we analyze algorithm 30 we see thateach block cluster consists of si modulo p factors of f . Suppose that Vi (1 � i � r) isa set of all constructed block clusters. In the last step of the algorithm all potentialblock systems are constructed in the following way:fv1; : : : ; vr j vi 2 Vi; 1 � i � rg:We have used the notation vi for Ai;1; : : : ; Ai;ki (1 � i � r). The number ofelements of Vi only depend on ki and si. We get:jVij = ksi�1i :The algorithm generates jV1j � � � jVrj potential block systems. Suppose we are ableto show that a potential block cluster v1 2 V1 cannot be part of a block system. Inthis case we have decreased the number of possibilities by jV2j � � � jVr j. Furthermorewe only combine block clusters with the same intersection number (De�nition 34).We want to use all known block systems to get maximal information. We denotewith (c1; : : : ; cŵ)t the intersection numbers of a potential block cluster with ŵ blocksystems, where ci is the intersection number with the ith block system.Algorithm 37. (Intersection algorithm)Input: Vi = fvi;1; : : : ; vi;jVijg (1 � i � r), k1; : : : ; kr, s1; : : : ; sr as de�ned inthe above text. ŵ known block systems.Output: Set of potential block systems, such that there is no contradiction withthe known block systems.Step 1: For i = 1; : : : ; r do:1. For j = 1; : : : ; jVij do:(a) Set Wi;j to the intersection number of vi;j with the knownblock systems.(b) If one of the components of Wi;j equals 0, set Vi := Vinfvi;jg.Step 2: Compute all potential block systems v1;j1 ; : : : ; vr;jr with W1;j1 = � � � =Wr;jr and vi;ji 2 Vi (1 � i � r) and print the computed ones.Step 3: Terminate the algorithm.



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 154. The computation of generating polynomialsWe call a minimal polynomial of a primitive element of an extension a generatingpolynomial. As in the last sections let E = Q(�), f be the minimal polynomial of �,and f� = �1; : : : ; �ng be the roots of f . The Galois group G operates transitivelyon the roots of f . In the last section we have seen how to compute potential blocksystems corresponding to a permutation �. In this section we will explain how toget generating polynomials from a block system. As a byproduct, we get morenecessary conditions for potential block systems to be block systems. Nevertheless,we will not get su�cient conditions. Wrong systems remaining after this step will�nally be removed in the concluding step, the computation of the embedding.Let �1; : : : ;�m be a block system consisting of zeros of f , where the zeros of �iare in the splitting �eld N of E. Furthermore let P be an arbitrary prime idealof oN lying over p. We denote with E = NP the p-adic completion. Let � be thecanonical embedding from N to E .Now let ~f = �(f) and f~�1; : : : ; ~�ng be the zeros of ~f in E , where �(�i) = ~�i.Letting ~�i = �(�i) (1 � i � m) we de�ne:~g(t) := mYi=1(t � ~�i) 2Zp[t] with ~�i := Y~
2 ~�i ~
 (1 � i � m):(11) g(t) := mYi=1(t� �i) 2Z[t] with �i := Y
2�i 
 (1 � i � m):(12)This we get:Theorem 38. Let �1; : : : ;�m be a block system and g and ~g as de�ned in (11)and (12), then �(g) = ~g.Supposing that �1; : : : ;�m is only a potential block system corresponding to � westill get ~g 2Zp[t], where p corresponds to �. We remark that we have no methodto compute � explicitly. We know that for each extension Fq=Fp there exists aunique unrami�ed p-adic extension E=Qp such that the residue class �eld equalsFq . In the last section we have developed an algorithm to compute potential blocksystems A1; : : : ; Am. We have identi�ed the zeros resp. the �i in a suitable �nite�eld. Using the p-adic methods presented in section 2 it is possible to computethese values modulo pk. The following lemma is an immediate consequence.Lemma 39. Let g; ~g and ~�i 2 E (1 � i � m) be as de�ned in (11) and (12).Furthermore let k 2 N and p be the maximal ideal of oE . Supposing �̂i � ~� modpk (1 � i � m) and ĝ(t) = Qmi=1(t � �̂i) we get ĝ � ~g mod pk. Thus we haveĝ � g mod pk.LetM be a bound for the size of the coe�cients of g and suppose pk > 2M . Then itfollows that ĝ = g if we choose the symmetrical residue system f�(pk�1)2 ; : : : ; pk�12 gfor the coe�cients of ĝ. The following lemma gives us an estimation for M . It isan immediate consequence of [4, Lemma 3.5.2].Lemma 40. Let g(t) =Pmi=0 biti be de�ned as in (12). We get:jbij � �m � 1i� 1 �B +�m� 1i � (1 � i < m) with B = nYj=1max(1; j�jj):



16 J�URGEN KL�UNERSFrom the construction of g we know that bm = 1 and b0 = �f(0). Supposing theknowledge of an upper bound for B it is easy to compute an upper bound for theabsolute size of the coe�cients of g. One way is to compute approximations of theroots of f in C to derive a bound B. If we do not want to compute the zeros of fin C we can use an estimation of Mignotte [16, Theorem 1].Lemma 41. Let f(t) = Pni=0 aiti 2 C [t] with zeros �1; : : : ; �n 2 C . Then wehave: nYi=1max(1; j�ij) �vuut nXi=0 jaij2:It remains to discuss the case when g is not irreducible, i.e. g has multiple roots.As remarked above, we use linear transforms on f : f(t)  f(t + a). The nextlemma shows that this procedure will yield irreducible polynomials g.Lemma 42. There are at most n linear substitutions to f such that the constructedpolynomial g (12) has multiple roots.Proof. For 1 � i � m we de�ne:�i(x) := Y
2�i(x + 
):These polynomials are pairwise distinct since they have di�erent zeros. All polyno-mials have degree d. This means that at most d evaluations of two polynomials cancoincide. If the �i in (12) are not pairwise distinct, then each �i is a multiple rootsince g is a characteristic polynomial. Therefore there are at most d(m�1) = n�devaluations values a 2 Zsuch that �1(a) = �i(a) for 2 � i � m. If we chooseanother a 2Zfor the transformation we get that all �i are pairwise distinct.This lemma remains valid if the ground �eld is a �nite �eld. We need the additionalassumption that the �nite �eld contains enough elements. The following lemma isan immediate consequence.Lemma 43. Let p > n and suppose that p - disc(f). Then there are at most nlinear substitutions for f such that p j disc(g).For our embedding algorithm it is important to have p - disc(g). Therefore wechoose primes p > n in our algorithm.Now we give an algorithm to compute generating polynomials for the sub�eldscorresponding to a block system.Algorithm 44. (ComputeGeneratingPolynomial)Input: A generating polynomial f of a number �eld E. A prime p > n and apotential block system �1; : : : ;�m in polynomial representation.Output: A generating polynomial g of a potential sub�eld L, or the message,that �1; : : : ;�m is not a block system.Step 1: Compute the inertia degrees ki (1 � i � m) of the blocks �1; : : : ;�m.Step 2: Set l := lcm(k1; : : : ; km).Step 3: Compute with Lemma 40 a bound M for the absolute size of the coef-�cients of g.



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 17Step 4: Factorize f � f1 � � �fr mod pk over an unrami�ed p-adic extension ofdegree l of Qp, where pk > 2M .Step 5: Set ~�j := ffi j 1 � i � r, it exists a �f 2 �j with (fi mod p) j �fg(1 � j � m).Step 6: For i = 1; : : : ;m compute the product �i of the zeros, which are con-tained in �i.Step 7: Compute Pmi=1 �i (modulo pk). If the absolute value of this sum islarger than M , go to step 12.Step 8: Compute g(t) := Qmi=1(t� �i) (modulo pk).Step 9: If the absolute value of one of the coe�cients of g is larger than M ,go to step 12.Step 10: If g modulo p has multiple factors, set f(t) := f(t+ 1) and go to step3.Step 11: Compute f̂ (t) := f(t + 1), �̂i := Q
2�i (
 � 1), ĝ(t) := Qmi=1(t � �̂i)and a bound M̂ for the coe�cients of ĝ. Test, if the absolute sizeof coe�cients of ĝ are smaller than M̂ . In this case print potentialgenerating polynomial g and terminate.Step 12: Print, that �1; : : : ;�m is not a block system and terminate.The correctness of the algorithm follows from the above considerations. We remarkthat it is advisable to store a lot of values. The inertia degrees of the potentialblock systems are already known. The bound M in step 3 only depends on f andthe degree of the sub�eld.The most critical part of the algorithm is the factorization of f over an unrami�edp-adic extension of degree l. It is important to compute this factorization onlyonce and store the result for further use. An other question is how to choose k instep 4. Since we use quadratic lifting it is useful to choose k of the form 2~k. Itis necessary to choose k in a way that p2k > 2M . But practical experience showsthat it is better to choose k such that pk � M4 holds. The reason is that we havea better chance to detect in step 7 or 9 that �1; : : : ;�m is not a block system.We already remarked that it is possible to detect a \wrong" block system duringthe embedding algorithm, but it turns out that this is very expensive. To avoidthis we have inserted step 11 in the algorithm. This is another necessary conditionwhich must hold if �1; : : : ;�m is a block system. We know no example that passesall these tests but it is not a block system. We use these tests only to get betterrunning times. The results will be proved if we compute the embedding.5. Computation of the embedding of the subfieldsIn this section we give an algorithm to compute an embedding of the computedpotential sub�elds L in the given �eld E. As in the preceding sections let E =Q(�), f be the minimal polynomial of �, and f� = �1; : : : ; �ng be the roots of f .Furthermore let L = Q(�) and g be the minimal polynomial of �. This is not ageneral algorithm to test if a number �eld L is contained in a number �eld E. Weuse the known potential block system �1; : : : ;�m to compute the embedding. Ifwe are able to compute an embedding we have a proof that L is indeed a sub�eld



18 J�URGEN KL�UNERSof E. Otherwise we get a proof that the potential sub�eld L is no sub�eld. Wewant to compute a polynomial h 2 Q[t] such that h(�) = �. The coe�cients of hare not necessarily inZsince in general a equation order is not integrally closed.To simplify the notation we suppose that g has been computed without substitutionof f . Then we know the following equations for the zeros �1; : : : ; �m of g:�j = Y
2�j 
 (1 � j � m):Therefore the polynomial h has the following property:h(�i) = �j for �i 2 �j:We know the value of h at n distinct points. Since h is of degree at most n � 1,it is uniquely de�ned this way. We have computed the zeros of the blocks inan unrami�ed p-adic extension. In a �rst step we want to compute a modulop approximation which can be done in the residue class �eld. Let f��1; : : : ; ��ngbe the zeros of �f in a suitable �nite �eld ~F~q . Now we can compute a modulo papproximation of h by solving a linear system of equations or by using the formulaof Lagrange. Both methods have the disadvantage that it is necessary to computeall roots of �f in ~F~q . In the above algorithms we have worked in extensions Fq=Fpof degree l = lcm(ki) which is in general less than the degree of ~F~q=Fp . Nowwe give a method to compute a modulo p approximation for h which only needsa factorization of �f in Fq [t]. Let �1; : : : ;�m be the potential block system inpolynomial representation. That means that all zeros of one polynomial in �i liein the same block. Thus we are able to compute the following block polynomials:aj(t) := Y��2�j(t� ��) 2 Fq [t] and bj(t) := Y1�i�m;i6=j ai(t) 2 Fq [t] (1 � j � m):We denote with ��j the zeros of �g � g mod p. Now we compute with the extendedEuclidean algorithm for polynomials over �nite �elds polynomials cj ; dj 2 Fq [t]with ajcj + bjdj = 1 (1 � j � m):Now we de�ne: h0(t) := mXj=1 bj(t)dj(t) ��j :(13)For ��i 2 �j and each ~j 6= j we have: b~j(��i)d~j(��i) ��j = 0. Thus we get: h0(��i) =bj(��i)dj(��i) ��j = (1� aj(��i)cj(��i)) ��j = ��j , since aj(��i) = 0.The last thing to do is to give a bound for the coe�cients of h. Since the coe�cientsare in Qwe need a bound for the absolute values of the denominator and numeratorof the coe�cients. A proof of the following lemma can be found in [8, 13, 19].Lemma 45. The absolute values of the numerators of h are less than M withM := j�j1n(n� 1)(n�1)=2j�jn(n�1)=21 ;where j�j1 and j�j1 denote the biggest absolute value of a zero of g resp. f . Theabsolute value of the denominators of h is bounded by pj disc(f)j.Now we are able to give the algorithm.



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 19Algorithm 46. (ComputeEmbedding)Input: Generating polynomial f of a �eld E. Polynomial g of a potentialsub�eld L computed with algorithm 44. Corresponding potential blocksystem �1; : : : ;�m in polynomial representation and p 2 P with p -disc(f) disc(g).Output: Embedding polynomial h 2 Q[t], if L is a sub�eld of E, otherwise themessage that �1; : : : ;�m is not a block system.Step 1: Compute h0 with formula (13).Step 2: Set �0 � h0(�) mod p.Step 3: Compute M with Lemma 45 and a k 2 N, such that p2k > 2M .Step 4: Compute using Newton lifting 15 an element � with g(�) = 0. If � isnot computable, return that �1; : : : ;�m is not a block system.Step 5: Compute h 2 Q[t] with h(�) = � and print h.6. The whole algorithmNow we are able to give the whole algorithm to compute sub�elds of degree m.Algorithm 47. (Computation of sub�elds of degree m.)Input: A generating polynomial f of a number �eld E and a degree m.Output: The list of all sub�elds L of E of degree m given by (g; h)Step 1: Set n := deg(f) and choose a prime p > n not dividing the discrimi-nant of f .Step 2: Set L :=ComputePotentialBlockSystems(f; nm ; p).Step 3: If some block systems are known, call the Intersection algorithm 37 toreduce L.Step 4: Set result:= ;.Step 5: For each B in L do1. Set g :=ComputeGeneratingPolynomial(f; p; B).2. If g is a (potential) generating polynomial thenset h :=ComputeEmbedding(f; g; B; p).3. If (g; h) de�nes a sub�eld, add it to result.4. Call the Intersection algorithm to reduce L.Step 6: Print result.In general the above algorithm works for every prime p > n not dividing the dis-criminant. The running time of the algorithm depends strongly on the choice ofthe prime. When choosing the prime we have to consider two points, the number ofpotential block systems and the degree of the p-adic �elds. Unfortunately the num-ber of potential block systems decreases if the degree of the p-adic �elds increases.In our implementation we choose the prime p in a such way that the number ofpotential block systems is minimal. In most cases this seems to be the best choice.



20 J�URGEN KL�UNERSTo generate all potential block systems in Step 2 it is not a good idea. In order toavoid memory problems it is better to divide the computation of potential blocksystems in packages. First we apply Steps 3-5 to the potential block systems ofthe �rst package, then to the second package and so on. In our implementationwe use the output of Algorithm 29 as a package. This has the advantage that theintersection algorithm can easily be applied to such a package.7. Connections between block systems and prime ideal decompositionIn this section we give a connection between the prime ideal decomposition ofa prime ideal in oL and the corresponding block system. This is not used in thepresented sub�eld algorithm. It gives a deeper insight in the properties of sub�elds.Furthermore it explains the name inertia degree for the ki corresponding to a block.The following connection is very useful if we want to compute special sub�elds. Forinstance if we only want to compute normal sub�elds the following shows that allinertia degrees of a block system must be the same.Let �1; : : : ;�m be a block system of G = Gal(f) and p a prime with p - disc(f).Let � = �1 � � ��u be the corresponding permutation (Gal( �f ) = h�i). The blocksystem does not depend on �, but the block clusters do. We proved that all blocksin a block cluster have the same inertia degree.Theorem 48. With the above notations it follows that poL = p1 � � �pr , where r isthe number of block clusters corresponding to �. The inertia degrees of the blockclusters coincide with the inertia degrees of the prime ideals pi (1 � i � r).Proof. Let ~g = mQi=1(t� ~�i)) with ~�i = Q
2 ~�i 
 as de�ned in (11). The number and thedegree of the factors of ~g 2Zp[t] coincide with the number and the inertia degreesof the prime ideals of oL over p. Let ~�1; : : : ; ~�s be an arbitrary block cluster ofthe block system of inertia degree k. We must show that ~g1 = sQi=1(t � ~�i) 2Zp[t]is irreducible. From the supposition we know that the ~�i are pairwise distinct. Let� be the Frobenius automorphism of an unrami�ed extension of degree k over Qp.Then we get (if we sort the roots), that ~�i = �i�1(~�1) for 1 � i � s holds. Thisproves that ~g1 2Zp[t] is irreducible and the corresponding prime ideal has inertiadegree k. 8. ExamplesIn this section we give several examples demonstrating the e�ciency of our algo-rithm. These algorithms were implemented in the computer algebra system KASH[6]. All computations were done on HP 9000/735 under HP-UX 9.05.First we compare the running times with the algorithms presented in [10, 12]. Thisdemonstrates the development of the sub�eld algorithm. Other methods [9, 1, 15]were compared in [12] resp. [9]. It turned out that the methods in [12] are muchmore e�cient than the other ones.First we compare this algorithm with the algorithm developed by the author in hismaster thesis [10]. We have computed the sub�elds of 1112 imprimitive �elds of



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 21degree 9. These �elds have been taken from a table of [7]. Explicit examples aregiven in [10]. We only give the running times. We denote with r1 the number ofreal zeros.r1 Number Number Running time Average running time�elds sub�elds old new old new1 485 486 36:43 min 120 sec 4,5 sec 0,25 sec3 423 446 31:25 min 88 sec 4,5 sec 0,21 sec5 154 154 9:38 min 31 sec 3,8 sec 0,20 sec7 23 23 1:30 min 5,7 sec 3,9 sec 0,25 sec9 27 31 1:39 min 7,2 sec 3,7 sec 0,27 secThe following table can be found in [9]. In this article a lot of sub�eld algorithmswere compared. In [12] it has been shown that the other methods are limited tosmall examples. We only compare our algorithm (new) with the one presented in[12] (old).No Polynomial old new1 t6 + 108 1,1 sec 0,2 sec2 t8 � 12t6 + 23t4 � 12t2 + 1 4,0 sec 0,6 sec3 t8 � 10t4 + 1 1,5 sec 0,4 sec4 t8 + 4t6 + 10t4 + 12t2 + 7 1,8 sec 0,4 sec5 t9 � 18t8 + 117t7 � 348t6 + 396t5 + 288t4 + 3012t3 +576t2 + 576t� 512 3,3 sec 0,7 sec6 t10+ 38t9 � 99t8+ 1334t7� 4272t6+ 9244t5� 8297t4+1222t3 + 1023t2 � 74t+ 1 3,4 sec 3,5 sec7 t10 � 20t9 + 80t8 + 200t7 � 3770t6 + 872t5 + 29080t4 +36280t3 � 456615t2 + 541260t� 517448 3,9 sec 1,9 sec8 t10�10t8+20t7+235t6+606t5+800t4+600t3+270t2+70t+ 16 3,2 sec 0,7 sec9 t12 + 6t9 + 4t8 + 8t6 � 4t5 � 12t4 + 8t3 � 8t+ 8 7,4 sec 0,8 sec10 t12+9t11+3t10�73t9�177t8�267t7�315t6�267t5�177t4 � 73t3 + 3t2 + 9t+ 1 14 sec 9,7 sec11 see below 98 sec 15 sec12 t15+20t12+125t11+503t10+1650t9+3430t8+4690t7+4335t6 + 2904t5 + 1400t4 + 485t3 + 100t2 + 15t+ 1 10 sec 8,6 secThe eleventh polynomial in the table has the following form:t12 � 34734t11 + 401000259t10 � 1456627492885t9 � 2537142937228035t8 + 18762072755679375516t7 � 812368636358864062944t6 � 70132863629758257512231931t5 +25834472514893102332821062085t4 +76623280610352450247247939584745t3 � 45080885015422662132515763499758450t2 � 2070499552240812214288316981071818900t� 550505759097778545485364826246753544An other example which was computed in [12] is a �eld E=Q of degree 24 withGalois group S4. The �eld is generated by a root off(t) = t24+8t23�32t22�298t21+624t20+4592t19�8845t18�31488t17+76813t16+65924t15� 265616t14 + 48348t13 + 385639t12� 394984t11� 20946t10 + 369102t9 �362877t8+183396t7+434501t6�194418t5+450637t4+125800t3�16401t2�45880t+115151.



22 J�URGEN KL�UNERSA list of generating polynomials can be found in [12]. The running time there was3641 sec. Now we are able to compute all sub�elds within 105 sec.Now we look at an example with a huge number of potential block systems. Thefollowing �eld E of degree 60 was computed as splitting �eld of a �eld of degree 5with Galois group A5. The main problem is neither the degree nor the size of thecoe�cients. There are only cycle decompositions with small cycles. We have thefollowing factorization shapes:1. 60 factors of degree 1,2. 30 factors of degree 2,3. 20 factors of degree 3,4. 12 factors of degree 5.There are no sub�elds of degree 2,3, and 4, which can be �gured out easily. If wechoose a prime corresponding to 12 factors of degree 5, we have to consider 511potential block systems to compute sub�elds of degree 5. Without any additionalinformation this would take about half a year computing time. We are able tocomplete this example if we know some sub�elds. With this information we cancompute block systems and use the intersection algorithm 37.To compute the splitting �eld of degree 60 we started with a �eld of degree 5generated by a zero of t5+ t4�2t3+ t2+ t+1. If we factor this polynomial over thenumber �eld generated by a root of it, we get a degree 4 factor. Now we computeda primitive element for the degree 20 extension. After this we used the OrderShortfunction of KASH [6] to compute a shorter representation. This function works ina similar way to the function polred in PARI. We have the following polynomial:t20+8t19+13t18�47t17�136t16�23t15+451t14+761t13+640t12�9t11�390t10�648t9 � 396t8 � 684t7 + 36t6 + 162t5 + 270t4 � 243t3 + 405t2 � 81t+ 81.As a last step we computed the degree 60 polynomial. An important fact is thatwe are able to compute the embeddings of the degree 5 and 20 �elds into E. The�eld E is generated by a zero oft60+36t59+579t58+5379t57+30720t56+100695t55+98167t54�611235t53�2499942t52�1083381t51 + 15524106t50 + 36302361t49 � 22772747t48 � 205016994t47 � 194408478t46 +417482280t45 + 954044226t44 + 281620485t43 � 366211766t42 � 1033459767t41 �8746987110t40 � 15534020046t39 +23906439759t38 +104232578583t37 +31342660390t36 �364771340802t35 � 547716092637t34 + 583582152900t33 + 2306558029146t32 +998482693677t31 � 3932078004617t30 �5195646620046t29 + 2421428069304t28 + 10559164336236t27 + 3475972372302t26 �22874708335419t25 � 33428241525914t24 + 21431451023271t23 + 90595197659892t22 +50882107959528t21 � 67090205528313t20 � 117796269461541t19 � 74369954660792t18 +25377774560496t17 + 126851217660123t16 + 104232393296166t15 � 29072256729168t14 �83163550972215t13 � 24296640395870t12 + 14633584964262t11 + 8865283658688t10 +5364852154893t9 � 1565702171883t8 � 7601782249737t7 � 2106132289551t6 +3369356619543t5+3717661159674t4+1754791133184t3+573470363592t2+74954438640t+3285118944To save space we do not give the sub�elds here. In the following table we give astatistic about the number of sub�elds and the running times.The running time for the sub�elds increases if the degree of the sub�elds becomeslarger. The reason is that the embedding algorithm becomes more expensive. The



ON COMPUTING SUBFIELDS { A DETAILED DESCRIPTION OF THE ALGORITHM 23exception is the degree 5 case. At this point only two sub�elds are known whichmeans that many potential block systems must be tested. The computation of the�eld E including the embeddings of the two known sub�elds took about one hour.degree Number time timesub�elds whole embedding2 0 21 sec3 0 61 sec4 0 142 sec5 5 2339 sec 610 sec6 6 1415 sec 859 sec10 10 2476 sec 2383 sec12 6 4211 sec 1696 sec15 5 2459 sec 1790 sec20 10 6831 sec 4743 sec30 15 12516 sec 10827 secAll 57 � 9 h � 6 h 22 minReferences[1] D. Casperson, D. Ford, and J. McKay. Ideal decompositions and sub�elds. J. Symb. Comput.,21:133{137, 1996.[2] J.W.S. Cassels. Local Fields. Cambridge University Press, 1986.[3] H. Cohen and F. Diaz y Diaz. A polynomial reduction algorithm. Seminaire de Theorie desNombres de Bordeaux (Serie 2), 3:351{360, 1991.[4] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.[5] G.E. Collins and M.E. Encarnaci�on. E�cient rational number reconstruction. J.Symb.-Comput, 20:287{297, 1995.[6] Mario Daberkow, Claus Fieker, J�urgen Kl�uners, Michael Pohst, Katherine Roegner, andKlaus Wildanger. KANT V4. J. Symb. Comput., 24(3):267{283, 1997.[7] F. Diaz y Diaz and M. Olivier. Imprimitive ninth-degree number �elds with small discrimi-nants. Math. Comput., 64(209):305{321, 1995.[8] J. Dixon. Computing sub�elds in algebraic number �elds. J. Austral. Math. Soc. (Series A),49:434{448, 1990.[9] A. Hulpke. Block systems of a Galois group. Exp. Math., 4(1):1{9, 1995.[10] J. Kl�uners. �Uber die Berechnung von Teilk�orpern algebraischer Zahlk�orper. Diplomarbeit,Technische Universit�at Berlin, 1995.[11] J. Kl�uners. �Uber die Berechnung von Automorphismen und Teilk�orpern algebraischerZahlk�orper. Dissertation, Technische Universit�at Berlin, 1997.[12] J. Kl�uners and M. Pohst. On computing sub�elds. J. Symb. Comput., 24(3):385{397, 1997.[13] S. Landau. Factoring polynomials over algebraic number �elds. SIAM J.Comput., 14:184{195,1985.[14] S. Landau and G.L. Miller. Solvability by radicals is in polynomial time. J. of Computer andSystem Sciences, 30:179{208, 1985.[15] D. Lazard and A. Valibouze. Computing sub�elds: Reverse of the primitive element problem.In A. Galligo F. Eyssete, editor, MEGA-92, Computational algebraic geometry, volume 109,pages 163{176. Birkh�auser, Boston, 1993.[16] M. Mignotte. An inequality about factors of polynomials.Math. Comput., 28(128):1153{1157,1974.[17] W ladis law Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers. Springer,1989.[18] Michael E. Pohst and Hans Zassenhaus.Algorithmic Algebraic Number Theory. Encyclopae-dia of mathematics and its applications. Cambridge University Press, 1989.[19] P.J. Weinberger and L. Rothschild. Factoring polynomials over algebraic number �elds. J.Assoc. Comput. Mach, 2:335{350, 1976.[20] H. Wielandt. Finite Permutation Groups. Academic Press, New York and London, 1964.


