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1. INTRODUCTION

Let E = Q(a) be an algebraic number field of degree n, where « is a root of a
monic irreducible polynomial f € Z[t]. In this article a method is developed for
determining all subfields L = Q(3) of E of fixed degree m over ). We describe
each subfield L by the minimal polynomial g of 2 and and the embedding of 8 into
E, which is given by a polynomial h € Q[t] with h(a) = 3.

Lemma 1. 1. Each subfield L of E has a representation as a pair (g, h) € Z[t] x
Q[t], such that g o h = 0 mod fZ][t].
2. A pair (g,h) € Z[t] x Q[t] such that g o h = 0 mod fZ[t] and ¢ irreducible
describes a subfield L of E.

Note that the coefficients of the embedding polynomial h are not necessarily integral
because the equation order Z[a] is in general not integrally closed. W.l.o.g. we
assume that the degree of h is less than n, otherwise we replace h by its remainder
modulo f. The lemma is used to check if a pair (g, k) presents a subfield L of E.
Such a subfield L is represented in the form Qt]/¢(¢)Q[t]; hence isomorphic fields
are not distinguishable by g alone.

Example 2. We determine all subfields L of E = Q(zm) of degree 3. There
are three subfields with characterizing pairs (13 — 108, —t?), (1> — 108, %t‘r’ + %tz)
and (3 — 108, —%t‘r’ + %tz). In all cases the minimal polynomaal of 3 s the same;
however, we are able to distinguish the three isomorphic subfields by their embedding

polynomials.

There are several other algorithms [1, 3, 8,9, 12, 14, 15] for calculating subfields. In
this article we improve the methods described in [12]. The generating polynomials
are constructed by factorizations of polynomials over finite fields and Hensel lifting
over p-adic fields. We give improved algorithms for the computations in p-adic
fields. In the combinatorial part of the algorithm we can reduce the number of
possibilities dramatically.

Three other methods [9, 14, 15] need factorizations of polynomials over number
fields, respectively factorizations of polynomials over the rational integers of much
higher degree than the degree of the given field. The method presented in [1]
needs hard numerical computations and lattice reduction algorithms. Although
the algorithm in [3] computes subfields it is not guaranteed that all subfields will
be found. A comparison of running times is given in section 8.
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This paper is organized as follows. In the next section we focus on algorithms
for computations in p-adic fields. The block systems of a Galois group and their
relation to subfields is presented in section 3. In section 4 and b we develop methods
to compute generating polynomials resp. the embedding of a subfield via its block
system. In the last section we discuss the efficiency of the algorithm and give some
examples. This paper contains the results concerning the subfield computation of
the dissertation [11] of the author.

2. UNRAMIFIED p-ADIC EXTENSIONS

The subfield computation is based on p-adic methods. Therefore we give a detailed
description of the algorithms we are going to use for computation in the p-adic

fields.

2.1. Introduction. In the following we recall some fundamental properties of un-
ramified p-adic extensions. The proofs can be found e.g. in [2, 17]. In the following
let 7 and & be unramified extensions of (0, with maximal orders or, 0o and prime
ideals p, P, respectively. The corresponding residue class fields are denoted by F
and &.

Lemma 3. For every extension Fq/]:" there exists an unique unramified extension
E/F such that £ and Fy are isomorphic. The extension £ /F is cyclic with Gal(£/F)
is isomorphic to Gal(£/F).

Lemma 4. Let £/F be an unramified p-adic extension of degree s. If p1,..., ps
are representatives of a basis of £/F, then they are a ox-basis of og .

Using this lemma, it is straightforward to construct a oz-basis of 0g. Let w € F[t]
be a monic irreducible polynomial of degree s and w € or[t] with w = @ mod p.
Then the equation order oz[p] = 0F + 0Fp+ - -+ 05p* =t = 0g, where p € 0g is a
zero of w.

The following lemma gives a method to reduce elements of o modulo *.

Lemma 5. Let £/F be an unramified extension with integral basis 1,p,...,p*~L.

Let x = Zf;ol zip' € 0g (x; €or) and k € N. Then we have x € B* if and only if
r, €pF (1<i<s).

Proof. Since P = pog it follows that P* = p¥oe and the assertion is an easy
consequence. O

2.2. Arithmetic in unramified p-adic extensions. Using Lemmata 4 and 5 we
are able to generate p-adic extensions, such that their equation orders are maximal.
Now we explain how to compute the sum and the product of p-adic numbers. This
will be done in the same way as the arithmetic in algebraic number fields. In the
following let = = Zf;ol z;pt and y = Zf;ol yip' be elements of og (z;,y; € or (0 <
i < 8)). Then we have:

s—1
(1) r+y = Z(l‘z’-l-yi)pZ.

=0
The product of z and y can be easily described via polynomial operations. Let

P.(t) == Zf;ol 24" € oF[t] and Py(t) = Zf;ol yit' € ox[t]. It follows that zy =
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Pr(p)Py(p). We have to solve the problem to find a basis representation of zy.
We define Py, := Py Py modw. Since w(p) = 0 it follows that P,y (p) = zy and
deg(Ppy) < s. From

s—1 s—1
(2) Pry(t) = Z ittt we get  xy = Z ziph.
3=0 i=0

We note that we need no divisions to reduce the product modulo w since w is
monic. We need s? multiplications and additions in oz to compute PP, and
s(s — 1) multiplications and additions in o7 to reduce the result modulo w. This
leads to the following lemma.

Lemma 6. The sum of two numbers x,y € og can be computed using s additions
in oF. The product of two numbers x,y € og can be computed using 2s? — s
multiplications and additions in ox.

We remark that it is possible to divide two numbers z,y € 0¢ in an analogue way
to the number field case.

Now we explain how to reduce a p-adic number modulo p*, where p is an odd prime

and k£ € N. Let
= 1 - -1
x:;xiplezpwith xZE{Tp,,pT}

E=1

Then we define  mod p* as > x;p’, which can be interpreted as an integer in
i=0

{#, e ,’%}. Since we need frequently to embed small (negative) integers
into the p-adic field, we chose the symmetric residue system. In our applications
this yields usually smaller representatives. Using Lemma 5 we are able to reduce
arbitrary p-adic numbers modulo prime ideal powers.

2.3. Hensel lifting. Let f € Z[t] be a monic irreducible polynomial and p 1 disc(f)
be a prime. Let f be the image of J under the canonical embedding from Z[t]
to Zp[t]. Our aim is to factorize f over an unramified extension F/(Q,. Since

f mod p has no multiple factors we know that f has no multiple factors in F[t].
The factorization can be done up to an arbitrary p-adic precision using the following
lemma.

Lemma 7. (Hensel lemma)

Let R be a commutative ring with 1 and b an ideal of R. Let f, fi.0, and fao be
monic, non-constant polynomials with the following properties:

1. f = fi0f2,0 mod b[t]
2. There exist a; 0 € R[t], 1=1,2, apo € b[t] with al,Ofl,O + azyofzyo =1+ ap,0-

Then for every k € N there exist polynomials fix, for, a1 5, a2k, and agr € R[t]
with f; x monic and non-constant, and deg(a; ;) < deg(fa—ix) (1 =1,2) and ap €
b2"[t] such that the following conditions are hold:

1. f = fixfor mod 62" [t]
2. fi,k = fi,O mod b[t]
3. arpfir+aspfor =14 aox.
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A proof can be found in e.g. [18]. In our examples the ideal b is always a prime
ideal and R/b a finite field. Therefore we can compute the a; o using the extended
Euclidean algorithm for polynomials over finite fields. An algorithm to compute
the Hensel lifting can be found in [4, 18].

These algorithms are only formulated for two factors. Using induction this can be
extended to more factors. This will be demonstrated by the following example.

Example 8. Let f = fifafs modp. Define fi2 = f1f2 and determine the fol-
lowmg factomzatzon using Hensel’s lemma: [ = f1 2f3 modp Now compute
f1 9 = f1f2 mod p¥. Combining these results we get f = f1f2f3 mod p*.

Now we are able to give a first method to factorize a polynomial f € Z,[t] over an
extension F modulo p*:

L. Factorize f = f1--- f, mod p.
2. Compute f = f; - -- f» mod p* using Hensel lifting.

The disadvantage of this method is that all computations are carried out in F.
Assuming the degree of F/Q, is 10, we need 190 multiplications in Z, to multiply
two elements of 0. We improve this approach by computing some factorizations
over smaller fields. This will be demonstrated in the following procedure:

1. Factorize f = f; --- f; mod p.
2. Compute f = f; - - - f; mod p* using Hensel lifting in Zy[t].
3. Fori=1,... s do:
(a) Factorize fZ fZ . fZ , mod p
(b) Compute fZ fzy . fZ,m mod p* using Hensel lifting in o#[t].
4. Combine the results: f = .fl,l - '.fs,rs mod pk.

We demonstrate this by the following example:

Example 9. Let f(t) = t12 +¢11 — 28410 — 40t° + 18043 + 42617 + 89t — 4441> —
390t* — 713 + 27t2 + 11t + 1. We want to factorize f over an unramified extension
F Qs of degree 3 modulo p?. In a first step we compute the factorization modulo 9
and get:

F=@+2t=2)(F +17 =3t +2) (£ + 47 — 4t — 2)(¢* — 44 + 2t — 1) mod 3°.
In a second step we compute the Hensel lifting of each factor in F[t] modulo p?,

where F is generated by a zero p of v(t) =3 —t + 1. We use the notation [a,b, c]
for a4 bp + cp® and get:

42 —-2= (t+[3,-4,0)(t+[-2,2 3])( [-1,2,-3]) mod p?,
B+ =3t+2= (43, -2, -4+ [3, -1, —4])(t + [4,3,-1]) mod p?,
Bt —4t-2= (t+[2 ,—3,—1])(t—|—[4 1, - ])(t+[—2,2,—4]) mod p?,
P —dt? 42 —-1=  (E+[42,4)0+ -4 1,4)(t+[4,-3,1])  mod p*.

We have factorized a polynomial of degree 12 but we have applied the Hensel lifting
over F only for polynomials of degree 3. An important fact was that it was easily
possible to embed Z, in or. Suppose we have a polynomial of degree 4 over Z,
and we want to factorize it over an unramified extension £ of degree 4. Since the
unique extension & is cyclic over @, f factorizes in four linear factors over £. We
know that £ has a subfield F of degree 2. We know that f splits over oz into
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two quadratic factors. A natural idea is first to factorize f over or and then to
factorize the factors over og. If we want to do this we have to solve the problem in
which way we can embed the elements of o7 in og. It suffices to give an image of
all elements of a basis of og/oz.

Instead of simple p-adic extensions of (Q, we rather consider towers of extensions.
Doing this we can embed trivially the elements of 0 in og.

Definition 10. Letp € P, n =p1---p, withp, EP and pr < pa < ... <p,. We
call an extension F = F, over Q, = Fy successively generated, if F; = Fi_1(m),
where 1; ts a zero of an irreducible and monic polynomial v; € oF,_, [t] of degree p;
(1 <i<r). We denote the prime ideals in oF, with p;.

The following lemma follows immediately.

Lemma 11. Let p € P and F,/Q, be successively generated. Then there is a
canonical embedding from or,_, to or, (1 <i<r).

=1

Now we give the whole algorithm.

Algorithm 12. (Hensel lifting)

Input: peP keN, feZyt], F/Qp successively generated.
Output: Factorization of f in o, [t] modulo p¥.
Step 1: Compute the factorization of f = fo1--- fo,s, mod .
Step 2: Fori=1,...,rdo
1. Compute the factorizations of fi_1; wn oF, mod pP (1 <j<
5i—1)~
2. Combine the results: f= fi1---fis, mod pf.
Step 3: Print the result: f = fr1--- frs, mod Pk,

2.4. The generalized Newton lifting. Let F' be an algebraic number field and
R an order in F'. The special case F = Q@ and R = Z is possible. Let f, g € R[t] be
irreducible polynomials of degree n resp. m. A zero « of f generates the number
field F = F(«). Furthermore we know a modulo p-approximation fy € R of a zero
of g, that means ¢g(5y) = 0 mod pR.

In the following we use the notation mod p* instead of mod p* R. We denote with
0(f) the principal ideal in R generated by disc(f). We choose a prime p such that
ged(pR,0(f)0(9)) = R. Using the extended Euclidean algorithm we can compute
an element wy € op such that wgg’'(By) = 1 mod p holds. In the following we
construct elements Gy, wg with the following properties:

3) Bipi = B mod p*
(4) wip1 = wy modp?
(5) 9(B) = 0modp?
(6) wig'(B) = 1modp”.
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We use the following double iteration:

(7) Berr = B —wrg(B) mod p>
(8) wit1 = wil[2 —wkg (Br+1)] mod 2

The correctness can be easily verified [10]. We remark that it is possible to solve
our problem using the following iteration:

9(Br)
g (Br)

The disadvantage of this approach is that divisions are much more complicated
to compute. If we analyze the double iteration we notice that the evaluations of
9(Bk) and g¢'(B) are the most expensive steps. Using Horner’s scheme we need
(m—1)4 (m —2) = 2m — 3 multiplications of algebraic numbers of degree n where
m = deg(g). We need 2n? — n multiplications in R to multiply two numbers in
E. Therefore we need (2m — 3)(2n? — n) multiplications in R to compute their
evaluations.

gk+1

Brt1 = Bk —

mod p

It is better to first compute 1, 8, ..., 3" which can be done using m — 1 multipli-
cations in F. After this we need m + (m — 1) multiplications of elements of F' with
elements of E to compute the evaluations. Altogether we need (m — 1)(2n% — n) +
n(2m — 1) = (2m — 2)n? + mn multiplications in R. Using this approach we save
about half of the multiplications. We have not looked at the size of the coefficients.
Practical experience shows that the second approach is about 50% faster than the
first one.

Algorithm 13. (Newton lifting)
Input: peP keN, f,g € R[t], fo € F with g(5y) = 0 mod p.

Output: Br € E with ¢(8;) = 0 mod pzk and B, = By mod p.

Step 1: Compute wy € E with wog'(Fo) = 1 mod p.
Step 2: Compute B1 = By — wog(Bo) mod p?.
Step 3: Fori=1,... k-1 do:

1. Compute 1,5;,..., 5" mod p21+1.

2. Compute w; = w;_1[2 —w;—1¢'(5;)] mod p?.
3. Compute fi11 = i — w;g(f;) mod p21+1.

Step 4: Print 8y and terminate.

In the following we give a variant of this algorithm. In our application of the Newton
lifting we want to find an element 8 € E with ¢(8) = 0. We know estimates for
the numerators and denominators of the coefficients of 3. In this case the following
lemma is very useful.

Lemma 14. Let U M € N such that (U, M) = 1 and suppose that there exists
a pair of integers (C, D) such that C' = DU (mod M) with D > 0 and |C|, D <
\/M/2. Then the pair is uniquely determined and there exists an efficient algorithm
to compute it.

The proof and the algorithm can be found in [5]. We remark that algebraic numbers
are reconstructed by applying the lemma to all coefficients.
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If we know estimations for the numerators and denominators we are able to compute
g from F. Since the a priori estimates we use are usually not sharp, we want
to use a smaller & in the Newton lifting process to compute 5. One idea is to
compute an element 5 from By using Lemma 14. Now it can be checked ifg(é) =0.
Unfortunately it turns out that an evaluation with a ”wrong” 3 is very expensive.
Therefore we need a good test which is likely to detect 5 = [ at an early stage.
This is used in the following algorithm.

Algorithm 15. (Newton lifting)
Input: peP keN, f,g € R[t], fo € F with g(5y) = 0 mod p.
Output: B € E with g(f) =0 or "false”.

Step 1: Compute wy € E with wog'(Fo) = 1 mod p.
Step 2: p1 = o — wog(fo) mod p?.

Step 3: Set Borg := 0.

Step 4: Fori=1,... k-1 do:

1. Compute 1,5;,..., 3 mod p21+1.

2. wi = w12 —wi—1¢'(5;)] mod p?.

3. Biy1 = B — wig(8;) mod p21+1

4. Define Bpew to the result of the reconstruction of Biy1 and p21+1
using Lemma 14.

5. If Botd = Brew, then compute g(Bnew). If this evaluation equals 0,
terminate and return Bheqw -

6. Set 6old = ﬁneur

Step b: Compute g(Bnew). If the result equals 0, then return fpey and termi-
nate.
Step 6: Terminate with the message "false”.

3. BLOCKS OF IMPRIMITIVITY

In this section we develop some properties about blocks of imprimitivity. We recall
a correspondence between blocks and subfields, which is very useful for the compu-
tation. In the following let f € Z[t] be an irreducible monic polynomial with roots
{a = ay,...,a,} in a suitable extension. The Galois group G = Gal(f) operates
transitively on € := {ay,...,an}.

3.1. Introduction.

Definition 16. (Blocks of imprimitivity)

1. § # A C 2 is called block (of imprimitivity), if ATNA € {B, A} fordllT € G.

2.A ={o} (1 < i< n)and A = Q are called trivial blocks. G is called
imprimative if there exists a non-trivial block. Otherwise G s called primitive.

3. Blocks Aq, ..., Ay with A; £ A; (1 < i< j < m) are called a (complete)
block system, if the set {Ay,... Ay} remains invariant under G.

If A is a block it is easy to see that A” 1s a block, too. It follows that each block is
contained in exactly one block system. The number of elements in a block or the
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number of elements of a block of a block system is called the size of a block or a
block system.

The proof of the following theorem can be found in [20, Theorem 2.3]. Combined
with the main theorem of Galois theory we get a correspondence between block
systems and subfields.

Theorem 17. The correspondence A — Ga := {7 € G| AT = A} is a bijection
between the set of blocks which contain « and the set of subgroups of G containing
the wsotropy subgroup G, of .

The following diagram illustrates our situation:

Qlay, ... ;o) {id}
Q(a1) Gay {a1}
d
Q) H Hay = {ai,... a0} =10
m=3g
Q G {ar, ... an}

We have a bijection between subfields L of F and blocks A which contain «. In
this case we say that L corresponds to A. The proof of the following lemma can

be found in [20].

Lemma 18. Let By and By two blocks which contain o with corresponding subfields
L1 and Ly of E. Then B := B1 N By is a block which contains a. It corresponds
to a subfield L = L1Ls of E. Furthermore Ly is a subfield of Lo if and only if
By C B;.

This lemmais very useful if some subfields are already known. This will be discussed
later.

Suppose that we know a complete block system Ay, ... A, which corresponds to
a subfield L. From H := Ga, we get L = Fix(H). Define

(9) (52'::H'y(1§i§m).
TEA,
Therefore we get 61 € Fix(H) = L. Furthermore the § (1 < ¢ < m) are all

conjugates of §;. This means that

m

(10) gy =TJ(t-d) ezl

i=1
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is the characteristic polynomial of §; € L over Q. This polynomial is of the form
g(t) = §° with j € N and g irreducible. In the case that g is irreducible we
have found a primitive element of L. Otherwise the polynomial ¢ has multiple
roots which can be easily checked. In this case we make a linear transformation
f(t) « f(t—a) with a € Z and compute a new g. Later we will prove that at most
n substitutions leads to multiple roots for g.

3.2. The Dedekind criterion. We have reduced the problem of computing sub-
fields to the problem of computing block systems of the Galois group of G. This
reduction is only theoretical since the Galois group computation i1s a very difficult
problem for higher degrees. We want to use the knowledge of cyclic subgroups of
the Galois group which we get from the following theorem.

Theorem 19. (Dedekind Criterion)

Let R be a UFD, p a prime ideal in R, R := R/p ils residue class ring, f € R[t]
and f € R[t] with f = f mod p. If f is square—free, it follows that G = Gal(f) is
isomorphic to a subgroup of G = Gal(f).

The Dedekind criterion allows us to determine cyclic subgroups of G which are
generated by a permutation 7 € G. Let # = 71 ---m, be the decomposition of 7
into disjoint cycles and n; = |m;| the number of zeros permuted by m; (1 < ¢ < u).
We say that «is of cycle type [n1, ... ,n,] and w.l.o.g. we can assume ny < ... < ny.
In our situation we choose a prime p{ disc(f) to obtain a congruence factorization
f=fi-...- fu mod pZ[t]. Tt follows that n; (¢ = 1,.. ., u) coincides with the degree
of the polynomial f;. The cycles m; permute the roots of f;.

Example 20. Let f(t) =t*+ 2 be a generating polynomial of K and G = Gal(f).

L. f(t) = t* mod 2.

2. f) =@ +2)(¢+1)(E*+1) mod 3.
3. f(y =4 —|—2mod5.

4. f@) = +6t+4)(E*+t+4) mod 7.

Let p denote the modulus. In the first case p divides the discriminant and the
Dedekind criterion is of no use. In the other cases we get cycles of cycle type
[1,1,2], [4] and [2,2]. In all of these cases the roots can only be identified modulo p
mn a suttable finite field.

3.3. Potential block systems. In the algorithm we are trying to enumerate all
block systems without knowing the Galois group G. So we enumerate a larger set of
potential block systems that can be defined with the knowledge of a cyclic subgroup
of G'. This subgroup can be obtained with theorem 19.

Fix an arbitrary 7 € . Let @ = 71 - - - m, be the decomposition of 7 into disjoint
cycles of length |m| = n; (1 <7< w).

Definition 21. A subset A C Q with d elements is called potential block of size d,

ifA”j NAe{l A} for 1 <j < |{m)|. A system Ay,..., Ay, of potential blocks of
size d is called potential block system of size d, if

1. Q= U A,
1<i<m
2. AiﬂAj:Q)(i;ﬁj),
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8. A7 €{An . An} (1< i<m 1< j < [(m)).

Remark 22. The definitions potential block and potential block system depend on
. A block is always a potential block and a block system s always a potential block
system.

Our goal is to determine all potential block systems (for one 7). In the following
we give some useful properties of potential block systems. We say that a cycle m;
contains an element « if this element is not fixed under this cycle or m; = («).

Theorem 23. Let A be a potential block corresponding to m and k be the smallest
positive integer such that A™ = A, If a cycle m; of length n; contains an element

of A, then k divides ny and m; contains evactly 7t elements of A.

Proof. Since A 1s a potential block it follows that there exists a k& with
A" NA=0for 1 <j<kand A™ = A.

Suppose that « is contained in A and m;. It follows that all elements of the form

ﬂ_ck

o (¢ € N) are contained in A and m;. From a™ = a we see that k divides n;.

Furthermore m; contains exactly %t elements of A. O

Definition 24. The number k from theorem 23 is called inertia degree of the po-
tential block.

Theorem 25. Let Ay, ..., A, be a potential block system corresponding to m of
inertia degrees ki, ... kn. If A; and A; contain an element of the same cycle, it
follows that k; = k;. In this case A; contains an element of the cycle m; of and only
if A; contains an element of the same cycle.

Proof. There exists a minimal number ¢ € N such that AT" N A; # 0. From the
definition of a potential block system it follows that AZ»TC = A; The assertion follows
immediately. O

Definition 26. Let Ay,..., An be a (potential) block system of inertia degrees
ki,... km. We call A;, AT, ... ,A;Tk’_l a (potential) block cluster (1 <i < m).

From theorem 25 we get that all blocks of a (potential) block cluster have the same
inertia degree.

The preceding two theorems are very important for the construction of potential
block systems. We will construct systems of subsets A1,..., Apn C Q of size d and
corresponding inertia degrees k1, ..., k, with the following properties:

1. J4;|=dfor 1 <i<m.

2. If A; contains elements of a cycle 7, then A; contains exactly Z—i elements of
this cycle.

3. U A=
1<i<m

4. A; NA; :@(Z;ﬁj)

5. All potential blocks of a potential block cluster are contained in Ay,..., Apy,
that means AT € {A;,... , An} (0<j<k).
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A system of subsets Aq,..., A, 18 a potential block system if and only if it has the
above properties. These properties are sufficient to give an efficient algorithm to
compute all potential block systems and therefore all block systems.

To compute the minimal polynomial ¢ of a primitive element of a subfield L we
need a method to compute the zeros which are contained in a potential block.
Let p € P with p { disc(f) and f € F,[t] be the image of f under the canonical
mapping from Z to IF,. We denote the zeros of f in a suitable extension [F, of [F,
with @1, ..., a,. Furthermore let f = f1---f, € F, [t] be a complete factorization.
Suppose that @ = 71 - - -m, 18 computed using Dedekind’s criterion 19. We know
that 7; permutes the zeros of f;.

Let Ay, ..., Ag be a potential block cluster of inertia degree k. W.l.0.g. we assume
that it contains the zeros of my,...,m, that means the potential blocks contain the
zeros of fi,..., f,. Let

fi :ﬁ71~~~ﬁ'7k in IF,« [t] and ﬂf =ma-mie (1<i<w).

Then 7; ; permutes the zeros of f; ; (1 < j < k, 1 < i < v). Therefore all these
zeros are contained in one potential block. We want to compute equation (9).
Therefore we are only interested in the product of the zeros of f; ; which is equal

to (—1)deg(f”j)ﬁ'7j(0). That means that there is no reason to factor f over a larger
finite field.

Definition 27. (Polynomial representation of potential blocks and block systems)

Let A be a set of polynomials. We say that A is a potential block in polynomial
representation if the set of zeros of the polynomials in A is a potential block. We say
that a potential block system s given in polynomial representation if all potential
blocks are given in polynomial representation. A potential block cluster is given n
polynomial representation if all its blocks are given in polynomial representation.

The polynomials of a polynomial representation are not necessarily linear. Now we
can formulate our algorithm to compute potential block systems.

Algorithm 28. (ComputePotential BlockSystems)

Input: Generating polynomial f of E, the block size d and a prime p t disc(f).

Output: A list of all potential block systems of size d in polynomial representa-
tion.

Step 1: Compute f(t) = fi(t) - - - fu(t) mod pZ[t].

Step 2: Set Z :={f1,..., fu} and call ComputeBlockCluster(Z,d, ).

Algorithm 29. (ComputeBlockCluster)

Input: A set Z consisting of r irreducible polynomials f; in F,[t], a block size
d € N and a set Y consisting of already computed block clusters in
polynomial representation.

Output: A list of potential block systems of size d wn polynomaal representation.
Step 1: Set k=1 and n; :=deg(f;) (1 <i<r).
Step 2: Determine all B C{2,...,7} (including 0) with dk —ny = ", .5 mp

and k| ny for allb € B.
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Step 3: For all computed B do:
1. Set 7' :={fy | b€ BU{1}}.
2. SetY =Y U{Z'}.
3. If Z =27', call PrintBlockSystem(Y' d);
otherwise call ComputeBlockCluster(Z\ Z',d,Y ).
4. SetY =Y \{7'}.

Step 4: Terminate, if k = ny. Otherwise setk .= min{l eN |l >k and | | n1}
and go to Step 2.

Algorithm 30. (PrintBlockSystem)

Input: A set'Y consisting of v sets Y; of block clusters in polynomaal repre-
sentation and a block size d.

Output: A list of all potential block systems wn polynomial representation cor-
responding to Y.

Step 1: Set A :=1{).

Step 2: Fori=1,...,rdo
1. Set s; :=|Y;|. Denote the elements of Y; with fi1,..., fis,.
2. Set k; : %Zjlﬂ deg(fi ;) € N.
3. Fuactorize fi,j = fz’,j,l o 'fi,j,k, mn Fpk, [t] (1 S _] S 5i)~
4. Let o be the Frobenius automorphism of Fpk,/}Fp. Sort the f; 1,
such that fi,j,l = U'(fi,j,l—l) (1 S _] S SZ',Q S { S k’l)

5. Set Al = {fi,l,l, e ,fi,s,,l} (1 S l S k’l)
6. Add Ay, ... Ag, to A.
Step 3: Set mi j(fij1) = fijurr (figrirr = fij1) and m j(fir ji1) = fur jog
for (1) £ (1,7 (1<i<nl<j<sni<li<h)
Step 4: Set M :=A{[Ti_, Hjlzz 71';}?]' [1<i<r2<j<s;,0<e; <k}
Step 5: For all T € M print the potential block system AT := {AT, ... AL }.
The above algorithm computes all potential block systems A;,..., A,,. Each A;

contains irreducible polynomials f; ;; which are given over an extension of If,. The
block consists exactly of the zeros of these polynomials. We have remarked that
we are only interested in the product of the zeros. It is possible that polynomials
in different blocks are given over different extension fields, but in a block cluster
all polynomials are given over the same extension field. Let Ay, ..., Ax be a block
cluster. Then we have (compare (10)):

k

[[t—6) eF [t withd; = J] v (1 <i<k).

i=1 YEA;

3.4. The intersection of block systems. For the computation of potential block
systems we have used the knowledge of a 7 € G. If we do not find a "good” 7, we
have to consider a lot of potential block systems which are not block systems.

We have seen in Lemma 18 that the intersection of two blocks is a block. We want
to use this in two ways. Firstly we are able to compute new block systems from
existing ones. Secondly we want to reduce the number of potential block systems
to consider. That means, we need one (or more) criteria to distinguish ”wrong”
potential block systems from block systems.
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Definition 31. The intersection of two (potential) block systems Ay, ..., Ay and
Ay, ..., Ay are the (potential) blocks which are contained in the set {A;NA; |1 <
i< m 1< <)\ {0},

Lemma 32. The intersection of two block systems Aq,... A, and Al, . ,Am
15 a block system of size ¢ € N. The intersection of two blocks A; and A; is the
empty set or contains ¢ elements (1 <i<m,1 <j<m).

Proof. The assertion follows from the fact that a block is contained in exactly one
block system. O

In the following let Ay, ..., A,, be a block system and Ay, ..., A, a potential block
system. W.l.o.g. we assume that « € Ay N A and ¢ = |[A; N Aq|. In the sequel we
will give some more necessary conditions for potential block systems to be block
systems. We will use this to reduce the number of wrongly computed generating
polynomials and embeddings. The following lemma is an immediate consequence
of the last lemma.

Lemma 33. Let M = {A;NA; |1 <i<m1<j<r}\{0}. If M contains an
element of size not equal ¢, it follows that Ay, ..., A, is not a block system.

Definition 34. The number ¢ of the last lemma is called intersection number. If
there 1s an element of size not equal to ¢ in M, the intersection number is defined to
be 0. The intersection number of a potential block cluster is defined in an analogue
way.

Let us consider the intersection Aq, ..., Ay of two block systems Ay, ..., A, and
Al, e ,Am. We know that the intersection is a block system, too. Let Ay, ... A,
be a potential block system. We want to test if A;,..., A, can be a block system.
A natural question to ask if 1t 1s necessary to intersect Aq,..., A, with all known
block systems to get maximal information.

Example 35. To simplify we consider only the indices of the zeros. Let Q =

{1,...,12}. Suppose we know two block systems {1,2,7,8},{3,4,9,10},{5,6,11,12}
and {1,2,3,4,5,6}, {7,8,9,10,11,12}. The intersection of these block systems is

{1,2,},{3,4},15,6},{7,8},{9,10}, {11,12}. We consider the potential block sys-

tem {1,2,3,10,11,12},{4,5,6,7,8,9}. Looking at the intersection with the first two

block systems we get no contradiction. Bul we have {1,2,3,10,11,12} N {1,2} =

{1,2} and {1,2,3,10,11,12} N {3,4} = {3}. This proves that Ay,..., A, is not a

potential block system.

This example shows that it is useful to consider all known block systems. With
this method we can decide for most potential block systems that they are not block
systems. We summarize what we have done up to now. Let Ly,..., Ly be the
known subfields and B be a set of potential block systems.

1. Compute the set S containing the block systems corresponding to L1, ..., Ly.
2. Compute the intersection of all block systems in S and add the non-trivial
ones to S.
3. Set T := () and for all potential block systems Ay, ..., A,, contained in B do:
(a) Intersect Aj,..., A, with each block system from S and apply Lemma
33.
(b) If Ay, ..., Ay passes all tests, then add it to T
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4. Print 7.

The block systems which are computed in steps 1 and 2 are known in most cases.
Now we give a method how to compute a block system if we know a subfield and
the zeros of f in some representation. This algorithm is useful if some subfields
are known or if we want to change the prime p. The following lemma can be easily
proved.

Lemma 36. Let ay,...,a, be the zeros of f and 31, ..., By be the zeros of g given
i the same completion. If the B; are pairwise distinct, then Ay, ..., A, with

Ai={aj | h(a;) =5, 1 <j<n} (1<i<m)

1s the corresponding block system.

The intersection method allows us easily to detect many potential block systems
which are not block systems. In the following we give conditions to exclude a lot of
block systems with one intersection. If we look at algorithm 30 we see that potential
block systems consist of r potential block clusters. We want to give conditions that
a potential block cluster cannot be a part of a block system. We denote the inertia
degrees of the block clusters with kq, ... k.. If we analyze algorithm 30 we see that
each block cluster consists of s; modulo p factors of f. Suppose that V; (1 < i <r)is
a set of all constructed block clusters. In the last step of the algorithm all potential
block systems are constructed in the following way:

{vla"'avT|viE‘/ia 1§Z§7°}

We have used the notation v; for A;1,..., Ak (1 < i < 7). The number of
elements of V; only depend on k; and s;. We get:
Vil = k.

The algorithm generates |Vi|---|V;| potential block systems. Suppose we are able
to show that a potential block cluster v; € V; cannot be part of a block system. In
this case we have decreased the number of possibilities by |V3]| - - -|V;.|. Furthermore
we only combine block clusters with the same intersection number (Definition 34).
We want to use all known block systems to get maximal information. We denote
with (c1,...,cg)" the intersection numbers of a potential block cluster with w block
systems, where ¢; is the intersection number with the ¢th block system.

Algorithm 37. (Intersection algorithm)
Input: Vi=A{vit,. vyt (01 <i<r), ki,...  ky, s1,..., 8 as defined in
the above text. w known block systems.

Output: Set of potential block systems, such that there 1s no contradiction with
the known block systems.

Step 1: Fori=1,...,r do:
1. Forj=1,...,|Vi| do:
(a) Set W, ; to the intersection number of v; ; with the known
block systems.

(b) If one of the components of W; ; equals 0, set Vi .= V;\{v; ;}.

Step 2: Compute all potential block systems vy j,,... v with Wy ;, = - =
W, . and v; 5, € Vi (1 <i<r) and print the computed ones.

Step 3: Terminate the algorithm.
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4. THE COMPUTATION OF GENERATING POLYNOMIALS

We call a minimal polynomial of a primitive element of an extension a generating
polynomial. As in the last sections let £ = Q(«), f be the minimal polynomial of «,
and {& = a1, ..., a,} be the roots of f. The Galois group G operates transitively
on the roots of f. In the last section we have seen how to compute potential block
systems corresponding to a permutation 7. In this section we will explain how to
get generating polynomials from a block system. As a byproduct, we get more
necessary conditions for potential block systems to be block systems. Nevertheless,
we will not get sufficient conditions. Wrong systems remaining after this step will
finally be removed in the concluding step, the computation of the embedding.

Let Aq,..., A, be a block system consisting of zeros of f, where the zeros of A;
are in the splitting field N of E. Furthermore let B be an arbitrary prime ideal
of oy lying over p. We denote with & = Ng the p-adic completion. Let ® be the
canonical embedding from N to £.

Now let f = ®(f) and {&1,...,d,} be the zeros of f in &, where P(a;) = a;.
Letting A; = ®(4;) (1 < i < m) we define:

(11) gt) == ﬁ(t —0;) € Zy[t) with &; == J] 7 (1 <i<m).
=1 FeA,

(12) g(t) == ﬁ(t—éi) € Z[)with & == J[ 7 (1 <i<m).
i=1 YEA;

This we get:

Theorem 38. Let Ay, ..., A, be a block system and g and § as defined in (11)
and (12), then ®(g) =g.

Supposing that Ay, ..., A, 1s only a potential block system corresponding to 7 we
still get § € Zp[t], where p corresponds to 7. We remark that we have no method
to compute ® explicitly. We know that for each extension F,/F, there exists a
unique unramified p-adic extension &£/Q, such that the residue class field equals
IFy. In the last section we have developed an algorithm to compute potential block
systems Ay, ..., A,. We have identified the zeros resp. the d; in a suitable finite
field. Using the p-adic methods presented in section 2 it is possible to compute
these values modulo p¥. The following lemma is an immediate consequence.

Lemma 39. Let g,§ and 6; € &€ (1 < i < m) be as defined in (11) and (12).
Furthermore let k € N and p be the ma%‘imal ideal of og. Supposing §; = § mod
pP (1 < i < m) and g(t) = [/, (t — &) we get § = §gmod p*. Thus we have

4 = g mod p~.

Let M be a bound for the size of the coefficients of ¢ and suppose p* > 2M . Then it
k

follows that ¢ = ¢ if we choose the symmetrical residue system {_(pz_l) e pk2—1}

for the coefficients of g. The following lemma gives us an estimation for M. It is

an immediate consequence of [4, Lemma 3.5.2].

Lemma 40. Let g(t) = > v, b;it" be defined as in (12). We get:

-1 -1 =
|bi|§<n,l 1)B—|—<m, )(1§i<m) with B = [ ] max (1, ).
1 — 1

j=1
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From the construction of ¢ we know that b, = 1 and by = +f(0). Supposing the
knowledge of an upper bound for B it is easy to compute an upper bound for the
absolute size of the coefficients of g. One way is to compute approximations of the
roots of f in C to derive a bound B. If we do not want to compute the zeros of f
in C we can use an estimation of Mignotte [16, Theorem 1].

Lemma 41. Let f(t) = S, a;t' € C[t] with zeros aq,...,a, € C. Then we
have:

Hmax(l, levi]) <
i=1

It remains to discuss the case when ¢ 1s not irreducible, i.e. ¢ has multiple roots.
As remarked above, we use linear transforms on f: f(t) « f(t + ). The next
lemma shows that this procedure will yield irreducible polynomials g.

Lemma 42. There are at most n linear substitutions to f such that the constructed
polynomial g (12) has multiple roots.

Proof. For 1 <1< m we define:

D, (x) = H (x4 7).
YEA;
These polynomials are pairwise distinct since they have different zeros. All polyno-
mials have degree d. This means that at most d evaluations of two polynomials can
coincide. If the §; in (12) are not pairwise distinct, then each §; is a multiple root
since g is a characteristic polynomial. Therefore there are at most d(m—1) = n—d
evaluations values a € Z such that ®;(a) = ®;(a) for 2 < i < m. If we choose
another a € 7Z for the transformation we get that all §; are pairwise distinct. O

This lemma remains valid if the ground field is a finite field. We need the additional
assumption that the finite field contains enough elements. The following lemma is
an immediate consequence.

Lemma 43. Let p > n and suppose that p 1 disc(f). Then there are at most n
linear substitutions for f such that p | disc(yg).

For our embedding algorithm it is important to have p 1 disc(g). Therefore we
choose primes p > n in our algorithm.

Now we give an algorithm to compute generating polynomials for the subfields
corresponding to a block system.

Algorithm 44. (ComputeGeneratingPolynomial)

Input: A generating polynomial f of a number field E. A prime p > n and a
potential block system Ay, ..., Ay tn polynomial representation.

Output: A generating polynomial g of a potential subfield L, or the message,
that Aq, ..., Ay 1s not a block system.

Step 1: Compute the inertia degrees k; (1 < i < m) of the blocks Ay, ... Ap.

Step 2: Set | :=lem(ky, ... km).

Step 3: Compute with Lemma 40 a bound M for the absolute size of the coef-

ficients of g.



ON COMPUTING SUBFIELDS - A DETAILED DESCRIPTION OF THE ALGORITHM 17

Step 4: Factorize f = f1 --- f» mod p* over an unramified p-adic extension of
degree | of Q,, where pF > 2M.

Step 5: Set Aj = {fi | 1 <i<wr, iteristsa f e A; with (fi modyp) | f}
(1<j<m).

Step 6: For i = 1,...,m compute the product é; of the zeros, which are con-

tained in A;.

Step 7: Compute > iv  §; (modulo p*). If the absolute value of this sum is
larger than M, go to step 12.

Step 8: Compute g(t) :=[]i~,(t — &;) (modulo p*).

Step 9: If the absolute value of one of the coefficients of g is larger than M,

go to step 12.

Step 10: If g modulo p has multiple factors, set f(t) := f(t+ 1) and go to step
3.

Step 11: Compute f(t) == f(t+ 1), & := H%Al('y —1), g(t) = TIL, (¢t — &)
and a bound M for the coefficients of g. Test, if the absolute size
of coefficients of ¢ are smaller than M. In this case print potential
generating polynomial ¢ and terminate.

Step 12: Print, that Ay, ..., A, is not a block system and terminate.

The correctness of the algorithm follows from the above considerations. We remark
that it is advisable to store a lot of values. The inertia degrees of the potential
block systems are already known. The bound M in step 3 only depends on f and
the degree of the subfield.

The most critical part of the algorithm is the factorization of f over an unramified
p-adic extension of degree [. It is important to compute this factorization only
once and store the result for further use. An other question is how to choose k in
step 4. Since we use quadratic lifting it is useful to choose k of the form 2F. It
1s necessary to choose k in a way that pzk > 2M. But practical experience shows
that it is better to choose k such that p* ~ M* holds. The reason is that we have
a better chance to detect in step 7 or 9 that Ay,... A, is not a block system.
We already remarked that it is possible to detect a “wrong” block system during
the embedding algorithm, but it turns out that this is very expensive. To avoid
this we have inserted step 11 in the algorithm. This is another necessary condition
which must hold if Aq,... A, is a block system. We know no example that passes
all these tests but it is not a block system. We use these tests only to get better
running times. The results will be proved if we compute the embedding.

5. COMPUTATION OF THE EMBEDDING OF THE SUBFIELDS

In this section we give an algorithm to compute an embedding of the computed
potential subfields L in the given field £. As in the preceding sections let £ =
Q(a), f be the minimal polynomial of a, and {& = a1, ..., an} be the roots of f.
Furthermore let L = Q(F) and g be the minimal polynomial of 5. This is not a
general algorithm to test if a number field L is contained in a number field E. We
use the known potential block system Agj,..., A, to compute the embedding. If
we are able to compute an embedding we have a proof that L is indeed a subfield
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of E. Otherwise we get a proof that the potential subfield L is no subfield. We
want to compute a polynomial h € Q[t] such that h(a) = 3. The coefficients of h
are not necessarily in Z since in general a equation order is not integrally closed.

To simplify the notation we suppose that ¢ has been computed without substitution

of f. Then we know the following equations for the zeros 31, ..., Bm of g:
gi= Il va<i<m).
YEA;

Therefore the polynomial & has the following property:
h(az) = ﬁj for o; € Aj.

We know the value of h at n distinct points. Since h is of degree at most n — 1,
it 1s uniquely defined this way. We have computed the zeros of the blocks in
an unramified p-adic extension. In a first step we want to compute a modulo
p approximation which can be done in the residue class field. Let {aq,...,a,}
be the zeros of f in a suitable finite field E':q. Now we can compute a modulo p
approximation of h by solving a linear system of equations or by using the formula
of Lagrange. Both methods have the disadvantage that it is necessary to compute
all roots of f in qu. In the above algorithms we have worked in extensions F, /F,
of degree | = lem(k;) which is in general less than the degree of E:q/Fp. Now
we give a method to compute a modulo p approximation for A which only needs
a factorization of f in F,[t]. Let Aq,... A, be the potential block system in
polynomial representation. That means that all zeros of one polynomial in A; lie
in the same block. Thus we are able to compute the following block polynomials:

a;(t) = [ t—a)eF[]and b;(t) .= [ ai(t) €F[t] (1 <j<m).
GEA; 1<i<m, i#j

We denote with Bj the zeros of § = g mod p. Now we compute with the extended
Euclidean algorithm for polynomials over finite fields polynomials ¢;, d; € Fg[t]
with

ajcj +bjdy=1(1<j<m).
Now we define:
(13) ho(t) =Y b;(1)d; ()5

j=1

For a; € A; 7and each 3 + j we havie: b}ﬂdi)c?j(di)ﬁj = 0. Thus we get: hg(ay) =
biai)dj(ai)B; = (1 — aj(ai)ej(@i)) B = B, since a;(ai) = 0.
The last thing to do is to give a bound for the coefficients of k. Since the coefficients

are in @ we need a bound for the absolute values of the denominator and numerator
of the coefficients. A proof of the following lemma can be found in [8, 13, 19].

Lemma 45. The absolute values of the numerators of h are less than M with
M = |6|oon(n _ 1)(”—1)/2|a|20(n—1)/2

bl

where |Bloo and |a|oo denote the biggest absolute value of a zero of g resp. f. The
absolute value of the denominators of h is bounded by /| disc(f)]|.

Now we are able to give the algorithm.
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Algorithm 46. (ComputeEmbedding)

Input:

Output:

Step 1:
Step 2:

Step 3:
Step 4:

Step b:

Generating polynomial f of a field E. Polynomial g of a potential
subfield L computed with algorithm 44. Corresponding potential block

system Ay, ..., Ay in polynomial representation and p € P with p 4
disc(f) disc(g).

Embedding polynomial h € Q[t], if L is a subfield of F, otherwise the
message that Ay, ..., Ay ts not a block system.

Compute hg with formula (13).
Set By = ho(a) mod p.
Compute M with Lemma 45 and a k € N, such that pzk > 2M.

Compute using Newton lifting 15 an element 5 with g(5) = 0. If 3 is
not computable, return that Ay, ..., A, 1s not a block system.

Compute h € Q[t] with h(a) = 5 and print h.

6. THE WHOLE ALGORITHM

Now we are able to give the whole algorithm to compute subfields of degree m.

Algorithm 47. (Computation of subfields of degree m.)

Input:
Output:

Step 1:

Step 2:
Step 3:

Step 4:
Step b:

Step 6:

A generating polynomial f of a number field F and a degree m.
The list of all subfields L of E of degree m given by (g, h)

Set n := deg(f) and choose a prime p > n not dividing the discrimi-
nant of f.

Set L :=ComputePotential BlockSystems(f, 2=, p).

If some block systems are known, call the Intersection algorithm 37 to
reduce L.

Set result:= 0.

For each B in L do
1. Set g :=ComputeGeneratingPolynomial(f,p, B).
2. If g is a (potential) generating polynomial then
set h :=ComputeEmbedding(f, g, B, p).
3. If (g,h) defines a subfield, add it to result.
4. Call the Intersection algorithm to reduce L.

Print result.

In general the above algorithm works for every prime p > n not dividing the dis-
criminant. The running time of the algorithm depends strongly on the choice of
the prime. When choosing the prime we have to consider two points, the number of
potential block systems and the degree of the p-adic fields. Unfortunately the num-
ber of potential block systems decreases if the degree of the p-adic fields increases.
In our implementation we choose the prime p in a such way that the number of
potential block systems 1s minimal. In most cases this seems to be the best choice.
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To generate all potential block systems in Step 2 it is not a good idea. In order to
avold memory problems it is better to divide the computation of potential block
systems in packages. First we apply Steps 3-b to the potential block systems of
the first package, then to the second package and so on. In our implementation
we use the output of Algorithm 29 as a package. This has the advantage that the
intersection algorithm can easily be applied to such a package.

7. CONNECTIONS BETWEEN BLOCK SYSTEMS AND PRIME IDEAL DECOMPOSITION

In this section we give a connection between the prime ideal decomposition of
a prime ideal in o7 and the corresponding block system. This is not used in the
presented subfield algorithm. It gives a deeper insight in the properties of subfields.
Furthermore it explains the name inertia degree for the &; corresponding to a block.
The following connection is very useful if we want to compute special subfields. For
instance if we only want to compute normal subfields the following shows that all
inertia degrees of a block system must be the same.

Let Ay, ..., Ay be a block system of G = Gal(f) and p a prime with p { disc(f).
Let m = my -+ my be the corresponding permutation (Gal(f) = (m)). The block
system does not depend on m, but the block clusters do. We proved that all blocks

in a block cluster have the same inertia degree.

Theorem 48. With the above notations it follows that poy = p1---p,, where v is
the number of block clusters corresponding to w. The inertia degrees of the block
clusters coincide with the inertia degrees of the prime ideals p; (1 <i<r).

Proof. Let g = [] (t—gl)) with &; = [T ~ as defined in (11). The number and the
i=1 ’YEAz
degree of the factors of § € Zp[t] coincide with the number and the inertia degrees

of the prime ideals of o over p. Let Aj,..., A be an arbitrary block cluster of
the block system of inertia degree k. We must show that §; = [] (t — &) € Z,[t]

i=1

is irreducible. From the supposition we know that the 5; are pairwise distinct. Let
o be the Frobenius automorphism of an unramified extension of degree k over Q.
Then we get (if we sort the roots), that & = ¢?~1(d;) for 1 < i < s holds. This
proves that §i € Zp[t] is irreducible and the corresponding prime ideal has inertia

degree k. O

8. EXAMPLES

In this section we give several examples demonstrating the efficiency of our algo-
rithm. These algorithms were implemented in the computer algebra system KASH

[6]. All computations were done on HP 9000/735 under HP-UX 9.05.

First we compare the running times with the algorithms presented in [10, 12]. This
demonstrates the development of the subfield algorithm. Other methods [9, 1, 15]
were compared in [12] resp. [9]. Tt turned out that the methods in [12] are much
more efficient than the other ones.

First we compare this algorithm with the algorithm developed by the author in his
master thesis [10]. We have computed the subfields of 1112 imprimitive fields of
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degree 9. These fields have been taken from a table of [7]. Explicit examples are
given in [10]. We only give the running times. We denote with 7y the number of
real zeros.

71 | Number | Number Running time Average running time
fields | subfields old | new old | new

1 485 486 | 36:43 min 120 sec 4,5 sec 0,25 sec

3 423 446 | 31:25 min 88 sec 4,5 sec 0,21 sec

5 154 154 | 9:38 min 31 sec 3,8 sec 0,20 sec

7 23 23 | 1:30 min 5,7 sec 3,9 sec 0,25 sec

9 27 31| 1:39 min 7,2 sec 3,7 sec 0,27 sec

The following table can be found in [9]. In this article a lot of subfield algorithms
were compared. In [12] it has been shown that the other methods are limited to
small examples. We only compare our algorithm (new) with the one presented in

[12] (old).

No | Polynomial old new
1]%+108 1,1 sec | 0,2 sec
2 [ % —12¢5 423t —12t7 + 1 4,0 sec | 0,6 sec
38 —10t* +1 1,5 sec | 0,4 sec
418+ 45+ 10t 122+ 7 1,8 sec | 0,4 sec
5 t° — 185 + 117t7 — 3481° + 396t° + 288t% 4 3012¢3 + | 3,3 sec | 0,7 sec

576t% + 576t — 512
6 | 10 + 38¢t° — 99¢% + 13347 — 4272¢5 + 9244¢> — 8297t  + | 3,4 sec | 3,5 sec
1222¢3 +1023t% — 74t + 1
7 119 —20¢° 4 80¢% + 200¢7 — 3770t° 4 872¢° + 29080t + | 3,9 sec | 1,9 sec
3628012 — 456615t% + 541260t — 517448
8 [ 19— 1054 20t" 42355 4+ 606t° 4800t * 4 600t> 4270t + | 3,2 sec | 0,7 sec
70t + 16
9 [ t12 4617 + 443 + 85 — 4> — 12¢% + 83 — 8¢ + 8 7,4 sec | 0,8 sec
10 | ¢+ 91T +3¢10 —73¢° — 17765 — 267¢" — 315t° —267t° — | 14 sec | 9,7 sec
17T = 733 + 342 + 9t + 1
11 | see below 98 sec | 15 sec
12 | ¢ 420612 + 125¢ 1T+ 503¢ 10+ 1650¢° + 34303+ 4690t + | 10 sec | 8,6 sec
433515 4+ 2904t° + 1400t* + 4853 + 100¢% + 15¢ + 1

The eleventh polynomial in the table has the following form:

12 — 34734t + 401000259¢1° — 1456627492885t° — 2537142937228035t% + 187620727556
79375516¢" — 812368636353864062944t° — 701328636297582575122319314° 4 25834472514
893102332821062085¢! + 76623280610352450247247939584745¢% — 45080885015422662132
515763499758450¢% — 2070499552240812214288316931071818900¢ — 5505057590977785454
85364826246753544

An other example which was computed in [12] is a field E/Q of degree 24 with
Galois group &,4. The field is generated by a root of

() =244 823 — 32422 29821 4 62420 4 4592¢19 — 884518 — 3148817+ 7681316+
6592415 — 26561641 + 4834813 4 385639¢12 — 394984¢1 — 20946410 + 369102¢° —
362877t%+183396¢"+434501¢°—194418¢°+450637¢*+ 125800t — 16401¢? —45880¢ +
115151.
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A list of generating polynomials can be found in [12]. The running time there was
3641 sec. Now we are able to compute all subfields within 105 sec.

Now we look at an example with a huge number of potential block systems. The
following field E of degree 60 was computed as splitting field of a field of degree b
with Galois group 2s. The main problem is neither the degree nor the size of the
coefficients. There are only cycle decompositions with small cycles. We have the
following factorization shapes:

60 factors of degree 1,
30 factors of degree 2,
20 factors of degree 3,
12 factors of degree 5.

N N

There are no subfields of degree 2,3, and 4, which can be figured out easily. If we
choose a prime corresponding to 12 factors of degree 5, we have to consider 5!
potential block systems to compute subfields of degree 5. Without any additional
information this would take about half a year computing time. We are able to
complete this example if we know some subfields. With this information we can
compute block systems and use the intersection algorithm 37.

To compute the splitting field of degree 60 we started with a field of degree 5
generated by a zero of 5 +t* —2t3 42 ¢4+ 1. If we factor this polynomial over the
number field generated by a root of it, we get a degree 4 factor. Now we computed
a primitive element for the degree 20 extension. After this we used the OrderShort
function of KASH [6] to compute a shorter representation. This function works in
a similar way to the function polred in PARI. We have the following polynomial:

120 4 8119 13418 — 4717 — 136115 — 23¢15 4 45141 + 761¢13 + 640812 — 9¢11 — 390¢10 —
648t% — 39615 — 6847 + 36t° + 16245 + 270t* — 243¢3 4+ 405¢2 — 81t + 81.

As a last step we computed the degree 60 polynomial. An important fact 1s that
we are able to compute the embeddings of the degree 5 and 20 fields into E. The
field E is generated by a zero of

%0 4 36t°° + 57958 4+ 5379¢%7 4 3072067 + 100695°° + 98167¢°4 — 611235¢%° — 2499942452 —
10833815 + 15524106¢°° + 36302361¢%° — 22772747¢*% — 205016994¢%7 — 194408478t +
417482280¢%° 4+ 954044226t* 4+ 281620485t%° — 366211766t*2 — 1033459767t —
8746987110¢*° — 155340200464%° + 23906439759¢%8 + 1042325785837 + 31342660390t%¢ —
364771340802¢%° — 547716092637t%* 4+ 583582152900t%° + 23065580291464%% +
9984826936771 - 3932078004617¢° -
5195646620046t%° + 2421428069304t%% 4+ 10559164336236¢%7 + 3475972372302¢%° —
22874708335419t%° — 33428241525914¢%* + 21431451023271t%° + 90595197659892¢%% +
50882107959528t%1 — 67090205528313t%° — 117796269461541¢1° — 74369954660792¢1% +
25377774560496t"7 + 126851217660123¢1° + 1042323932961664'° — 29072256729168t* —
83163550972215¢1° — 24296640395870t12 + 14633584964262t11 + 8865283658688t10 +
5364852154893t — 1565702171883t% — 7601782249737t — 2106132289551:° +
3369356619543t° +3717661159674¢% +1754791133184¢° + 5734703635924 + 749544386404+
3285118944

To save space we do not give the subfields here. In the following table we give a
statistic about the number of subfields and the running times.

The running time for the subfields increases if the degree of the subfields becomes
larger. The reason is that the embedding algorithm becomes more expensive. The
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exception is the degree 5 case. At this point only two subfields are known which
means that many potential block systems must be tested. The computation of the
field E including the embeddings of the two known subfields took about one hour.

degree | Number time time
subfields whole embedding
2 0 21 sec
3 0 61 sec
4 0 142 sec
5 51 2339 sec 610 sec
6 6 | 1415 sec 859 sec
10 10 | 2476 sec 2383 sec
12 6| 4211 sec 1696 sec
15 5 2459 sec 1790 sec
20 10 | 6831 sec 4743 sec
30 15 | 12516 sec 10827 sec
All 57 ~9h |~ 6h22min
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