THE DISTRIBUTION OF NUMBER FIELDS WITH WREATH
PRODUCTS AS GALOIS GROUPS

JURGEN KLUNERS

ABSTRACT. Let G be a wreath product of the form C2!H, where CY is the cyclic
group of order 2. Under mild conditions for H we determine the asymptotic
behavior of the counting functions for number fields K/k with Galois group G
and bounded discriminant. Those counting functions grow linearly with the
norm of the discriminant and this result coincides with a conjecture of Malle.
Up to a constant factor these groups have the same asymptotic behavior as
the conjectured one for symmetric groups.

1. INTRODUCTION

Let k be a number field and K = k(«) be a finite extension of degree n with min-
imal polynomial f of a. By abuse of notation we define Gal(K/k) := Gal(f). This
means that we associate a Galois group even to a non-normal extension. Therefore
the Galois group of K/k is a transitive permutation group G < S,,.

Denote by N = N, /g the norm function on ideals of k. Let

Z(k,G;x) := # {K/k : Gal(K/k) = G, N(dg ) <z}

be the number of field extensions of k (inside a fixed algebraic closure Q) of relative
degree n with Galois group permutation isomorphic to G and norm of the discrim-
inant dg/;, bounded above by x. It is well known that the number of extensions of
k with bounded norm of the discriminant is finite, hence Z(k, G;x) is finite for all
G, k and x € R. We are interested in the asymptotic behavior of this function for
x — 0o. Gunter Malle [I5] [I6] has given a precise conjecture how this asymptotics
should look like. Before we can state it we need to introduce some group theoretic
definitions.

Definition 1. Let 1 # G < S,, be a transitive subgroup acting on Q = {1,...,n}.

1 For g € G we define the index ind(g) := n — the number of orbits of g on Q.
2 ind(G) := min{ind(g) : 1 # g € G}.

3 a(Q) :=ind(G)~ L.

4 Let C be a conjugacy class of G and g € C. Then ind(C) := ind(g).

The last definition is independent of the choice of g since all elements in a
conjugacy class have the same cycle shape. The absolute Galois group of k acts
naturally on the Q-characters of G, via their values. The orbits under this action
are called k—conjugacy classes of G. Note that we get the ordinary conjugacy classes
when & contains all N-th roots of unity for N = |G|.
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Definition 2. For a number field k£ and a transitive subgroup 1 # G < S, we
define:

b(k,G) := #{C : C k-conjugacy class of G of minimal index ind(G)}.
Now we can state the conjecture of Malle [I6], where we write f(z) ~ g(z) for

lim £&) — 1,

00 9(®)

Conjecture 1. (Malle) For all number fields k and all transitive permutation
groups 1 # G < S, there exists a constant c(k,G) > 0 such that

Z(k,G;z) ~ c(k, G)z*) log ()1,
where a(G) and b(k,G) are given as above.

We remark that at the time when the conjecture was stated it was known to
hold for all abelian groups and the groups S3 < S3 and Dy < S4. Let us state
some easy properties of the constants a(G) and b(k, G) which are already given in
[15,16]. It is easy to see that a(G) < 1 and equality occurs if and only if G contains
a transposition. It is an easy exercise (see Lemma [5)) that all transpositions are
conjugated in a transitive permutation group. Therefore we obtain b(k,G) = 1,
if a(G) = 1. Since the symmetric group always contains a transposition, Malle’s
conjecture implies that the counting function Z(k, n; x) for degree n extensions with
bounded discriminant as above behaves like ¢(n)z for some ¢(n) > 0. The latter
conjecture is proven for n < 5, see [Bl 2, [3], but nothing is known for n > 6.

One result of this paper is that for every even n there exists a group G such that
Z(k,G;x) ~ c(k,G)x with ¢(k,G) > 0. This group G will be a wreath product of
type Co 0 H, where H < S,, /5, see Corollaries [5] and @ There are mild conditions
for H, but those are fulfilled if H is nilpotent or regular for instance.

The main results will be Theorems[6land[7} Let H be a permutation group which
fulfills the mild conditions of Theorem[6] Then the counting function of G := Col H
behaves like

Z(k,CyV Hyx) ~ c(k, G)x, where c(k,G) > 0.
Furthermore, the corresponding Dirichlet series has a simple pole at 1 and has a
meromorphic continuation to real part larger than 5/6.

Note that in [I0] we have given a counter example to Conjecture [I} In these
counter examples it might happen that the exponent at the log-factor is bigger than
b(k,G) — 1 when certain subfields of cyclotomic extensions occur as intermediate
fields. Nevertheless, the main philosophy of this conjecture is still expected to be
true.

2. ZETA FUNCTIONS, HECKE L—SERIES, AND RAY CLASS GROUPS

In this section we collect some properties about Hecke L—series. For a number
field k we denote by P(k) the set of prime ideals of the ring of integers Oy, of k. We

denote by
~1
G(s) = ] (1 - N(lp)) , R(s)>1
peP(k)
the Dedekind zeta function of k£ which converges absolutely and locally uniformly
for R(s) > 1. This function has a simple pole at s = 1 and we get the following
estimates.
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Lemma 1. Let k be a number field of degree m with absolute discriminant dj.
Then:

1 1Ck(9)] < Co(R(s))™ for all s with R(s) > 1.

2 Forall0 <e<1:

TeSs:le(S) < 21+m(dkﬂ_—m/2)eel—m < 21+mdz€1—m.

Proof. The first assertion is Corollary 3 in [I8] p. 326]. The second one is Corollary
3 in [I8, p. 332). O

For an ideal ¢ C O we consider a character x of the ray class group Cl,, i.e. a
homomorphism from Cl, to C*. This character is only defined for ideals coprime to
c. Let S:={p € P(k) : p| c} be the exceptional set. For p € S we define x(p) = 0.
Therefore we multiplicatively extend this character to all ideals. Now we are able
to define the Hecke L—series:

DR
Li(x,s) := (1 X > .
pgk) N(p)®

As the Dedekind zeta function this product converges absolutely and locally uni-
formly for R(s) > 1. For further properties we refer the reader to [I8], p. 343].

The Hecke L—series have a meromorphic continuation to the left. In the following
we need upper estimates for Li(x, s) in strips of the form a < R(s) < 1. The
following theorem follows directly from [9, equation 5.20]. The proof is similar to
the proof of Theorem 7.4. in [I8 p. 350], where we need to apply the convexity
principle [14, p. 265].

Theorem 1. Let k be a number field of degree m, § # (0) be an ideal of Ok, x
be a character of the ray class group Cl;, and D = dpN(f). Define 6 := 1 if x
is the trivial character and § := 0 otherwise. Then for all € > 0 and all s with
0 <o :=R(s) <1 we get the following estimate:

(s = 1)°Li(s,X)| < (e, m)(D|1 + s|™)1=0)/2+e,

We can prove the following corollary.

Corollary 1. With the same notations as in Theorem [1 we get for all € > 0:

R
L0520 — 20| < o m) (D1 4 sy,

where R(x) denotes the residue of Li(s,x) at s = 1. We define R(x) = 0, if x is
not the trivial character.

Proof. If x is not trivial this is Theorem [I} For the trivial character x with excep-
tional set S we get:

1
ne) =6 [T (1- 765 )-
i N(p)
Using Lemma [1| we get for our residue:
|R(x)| < é(e, m)dy, for all € > 0.

Using Theorem [1| and by applying the triangular inequality we find a new constant
c(e,m) with

(s = 1)Ly(s,x) — R(x) < (e, m)(D|1 + s|™)1=7)/2+,
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Since L (s,x) — R(x)/(s — 1) is analytic in s = 1, we get the desired estimate for
small |s — 1| using the maximum principle. O

For our main results we need upper bounds for the number of cyclic extensions
of a number field k which are at most ramified in a given finite set S of prime ideals.
We refer the reader to [I4, p.123-126] for properties of ray class groups which we
use in the proof of the next theorem. In the following we denote by rk,(Cly) the
f—rank of the class group of k. We remark that we need the following result only
for £ = 2.

Theorem 2. Let k be an algebraic number field of degree m with r1 real embeddings,
£ be a prime number, S be a finite set of prime ideals of O, and

S1:={peS|l¢p}
Define
_ {rkg(CIk) + 81|+ 2m 0>2
o tke(Clg) + |S1|+2m+r1 £=2 ’
-
/—

Then there exist at most —11 Cy—extensions of k which are at most ramified in S.

Proof. The idea of the proof is to choose a module m in such a way that all Cy—
extensions are subfields of the ray class field of m. The infinite places are only
important when ¢ = 2. Each real infinite place may increase the 2-rank by at most
1. In case £ = 2 we insert all real infinite places in my, and define

my = H pep7

pesS

where e, =1 for p € S;. For p € S\ S; we have wild ramification and the following
estimates are valid for arbitrary e, > 1. In the following we compute upper bounds
for the ¢-rank of (Of/mg)*. Using the chinese remainder theorem we get:

(Or/mo)* = [[(Ok/p®)* for mg = ] p°.

peS peS

In case e, = 1 we get that (O /p)* is the multiplicative group of a finite field which
is therefore cyclic. This explains the |Sq|-part in our formula. In case e, > 1 we
get (Or/pe)* = (Or/p)* x (1 +p)/(1 4+ p°). This case can only occur when p is
wildly ramified and therefore lies over £. In this case the order of the multiplicative
group of the residue field is coprime to £. The second factor is an f—group which
can be generated by at most [k, : Q] + 1 elements (see e.g. [§]). Since

> Tk : Q] =m

Leyp

we get the worst case when all prime ideals above ¢ are contained in S and all
corresponding completions have degree 1. In that case we can estimate the contri-
bution to the rank of those prime ideals by 2m. The contribution of the unramified
extensions to the f-rank is estimated by the /-rank of the class group. O

Unfortunately we do not know good estimates for the ¢—rank of the class group.
The best thing we can do in general is to bound ¢*¢(Clx) < |Cl;|. The latter
expression can be bounded by the following (see [I8, p. 153]).
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Theorem 3. For all € > 0 and all m € N there exist constants c(m) and c¢(m, €)
such that for all number fields k/Q of degree m we have:

el <c(m og(dg)™ " an
| Cl | < c(m)dy/* log(dy)™ " and
|Cly | < c(m,e)dy/* .

In Section we need the following estimate for an ideal a C 0. Denote by w(a)
the number of different prime ideal factors and by ¢(a) the number of different
ideal factors of a.

Lemma 2. Letb € N. Then for all e > 0 there exist constants c(e,m) and c(e, m,b)
such that for all number fields k of degree m the following estimates hold:

1 tr(a) < c(e,;m)N(a)°,

2 v < ¢(e,m, b)N (a)°.

Proof. The first part is Lemma 2.2 in [I1]. Let a = [], p® be the factorization of
a. Then:

ti(a) = [ J(ep + 1) and 6 = Hb
p
Therefore we have b*(®) < t4(a®~1) < ¢; (e, m)N (a)~ 1)6 using the first part of our
lemma. Now our assertion follows easily. U

Later on we need some estimates about squarefull numbers. A positive integer
N is called squarefull, if p | N implies p? | N. Note that a squarefull integer can
be uniquely written as N = NNZ, where N; is squarefree. Therefore we get the
generating Dirichlet series:

= ay _ ((25)¢(35)
Ne T ((6s)

N=1
where ((s) is the Riemann (-function and ay = 1 if and only if N is squarefull and
an = 0 otherwise. Denote by S(x) the number of squarefull numbers below z. As
a consequence of a Theorem of Erdés and Szekeres (e.g. also see [I, Theorem 1],
[19, exercise 10, p.54]) we know that there exists a constant A such that
(1) S(z) < Az? for z > 1.

We denote by w(N) the number of different prime factors of an integer N. Then
we use (see [19, Section 5.3, page 83]):

(2) w(N) < (1+40(1))log N/loglog N(N — o).
This certainly implies that

log N
loglog(N + 2)

for any NV > 1 for some constant B. Now we are able to prove:

3) w(N)<B

Lemma 3. Let d > 1 be a real number and denote by T(x) the set of squarefull
numbers below x. Then there exists for all € > 0 a constant c(d, €) such that

S < e for ey
NeT(x)
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Proof. We have the inequalities
Z dw(N) < S )maxdw(N) < Ax1/2dBlogx/log,log(x+2)
NeT(x)

using equations and @ Now we have

Blogw Blog(d)
dloglog(r+2) — gloglog(@t+2) — Od 6( E)

for all € > 0. Putting this together we get the wanted estimate. O

3. QUADRATIC EXTENSIONS

The asymptotics of quadratic extensions of a number field & is well studied and
known. Let us define the following Dirichlet series corresponding to Z(k,Ca; x):

D0, (s) ZN

(K

It is known that this Dirichlet series converges for $(s) > 1. Here ay is the number
of quadratic extensions K/k such that N'(dg/;) = N. This means that ay > 0 for
all N € N. The following theorem is proved in [4]:

Theorem 4 (Cohen, Diaz y Diaz, Olivier). Let k be a number field with i(k)
complex embeddings. Then we get for R(s) >

2 ZN2Ok/c1 QSZLksX

T G2s) ok

where x runs over the quadratic characters of the ray class group Clez and Li/(s, x)
is the Hecke L—series of k corresponding to x.

(dr/k)® N1

¢k702 (S) =

Using a Tauberian theorem (see e.g. [I7, p. 121]) the following corollary is
proved in [4].

Corollary 2 (Cohen, Diaz y Diaz, Olivier).

Z(k, i) v 270 IIHE)
(k, C; @) Ck(2)
i(k) ress=1Ck(s)

where 27 —ao) equals the residue in s =1 of Oy c,.

Our Dirichlet series has a simple pole at s = 1 and has a meromorphic contin-
uation to the left. The proof of the following theorem comes from the properties
of Hecke L—series. The number of characters, i.e. the number of summands can be
bounded by the size of the ray class group which can be bounded up to a constant
term depending on [K : k| by the size of the class group of k. The latter one we

bound by Oe7m(d,1€/2+€), where m = [k : Q]. Altogether we get:

Theorem 5. @y ¢, (s) has a meromorphic continuation for R(s) > 1/2. In this
area it has only one pole at s = 1 with residue R(k) = %&?W Furthermore,
the function gi(s) == @, c,(5) — % is analytic for R(s) > 1/2 and we get for all
€ >0 and R(s) > 1/2:

|9k (5)] < (e, m)(dy|1 + ™)1~/ 2Heq)/2,
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4. WREATH PRODUCTS

Let H; < S, and Hy < S; be two transitive groups and assume n = ed. Then
the wreath product H; ! Hy = Hfl x Hy < S, is a semidirect product, where
Hy < S, permutes the d copies of Hy. For a formal definition we refer the reader
to [0, p. 46]. The wreath product has a nice field theoretic interpretation in Galois
theory. Assume that we have a field tower L/K/k such that Gal(L/K) = H; and
Gal(K/k) = Hy. Then we get that Gal(L/k) < Hy ! Ha, see [13].

We want to study the asymptotic behavior of our counting function Z(k,G;x)
for wreath products G = H;1H, when we assume that we have some information for
the corresponding counting functions for H; and Hs. First results in this direction
already appear in [I5]. The a(G)-part of the following lemma is [I5, Lemma 5.1].

Lemma 4. Let k be a number field and Hy < Se, Hy < Sy be transitive groups.
Let G := Hi ! Hy. Then

a(G) = a(Hy) and b(k,G) = b(k, Hy).

Proof. Let g = (h1,he) € Hy 0 Hy where hqy = (h11,...,h14) € H¢{ and hy is the
image of g under the projection to the complement Hs. If ho # 1 then g interchanges
at least two blocks. Therefore the number of orbits is at most (d—2)e+e = (d—1)e.
On the other hand, if hg =1,h1 2 =---=hy 4 =1 then g has at least (d —1)e+1
orbits. Thus we may assume that ho = 1 and elements with minimal index have
the property that d — 1 of the hy; equal 1. By conjugating with a suitable element
of type (1, i~12) € G we can assume that hy o = --- = h1 4 = 1. Now let h € H; be an
element of minimal index e—¢. Then ind(((h,1,...,1),1)) =n—(d—1)e—L =e—L.
This shows a(H;) = a(G). It is clear that h and h € H; are conjugated in H; if
and only if ((h,1,...,1),1) and ((h,1,...,1),1) are conjugated in G = Hy ! Hy. h
and h are in the same k—conjugacy class if a suitable power h® is conjugated to h.
This statement remains true in the wreath product representation. Therefore we
get the second statement. O

5. WREATH PRODUCTS OF THE FORM Cy ! H

In this section we prove Conjecture [I] for groups G = C5 ! H, where we need
to assume weak properties of the asymptotic function for H < S;. The proofs
are inspired by the methods described in [4], where the corresponding results were
shown for G = Dy =2 0y Cs.

Let L/k be an extension with Galois group G = Co ! H. Then there exists
a subfield K < L such that Gal(L/K) = Cy and Gal(K/k) = H. In a first
step of our proof we will count all "field towers” of this type, i.e. we count all
extensions L/k such that there exists an intermediate field K with Gal(L/K) = Cs
and Gal(K/k) = H. We remark that Gal(L/k) < Co!H using a theorem of Krasner
and Kaloujnine [I3]. In a second step of the proof we show that the asymptotics of
proper subgroups which occur in such field towers is strictly less.

In [11 Proposition 8.3] we already proved the following upper bound for wreath
products of this type. This proof is based on Proposition 5.2. and Corollary 5.3.
in [I5] with 9 = 1/2 coming from Theorem [3] We remark that we weakened the
assumption by replacing the exponent a(H )+ by 14 . The same proof gives the
new result.
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Proposition 1. Let k be a number field, H < Sy be a transitive permutation group
such that Z(k, H;x) < c(k, H,8) 2'*° for all 6 > 0. Then for any e > 0 there exists
a constant c(k,CyV H,€) such that

Z(k,CoV Hy ) < ¢k, Co 2 H, €) (2t Fe

We remark that a(Ceo? H) = a(C3) = 1 by Lemma |4l Furthermore we remark
that the proof counts all fields towers L/K/k as above. Therefore the same upper
bound applies.

In the following let us assume that for all € > 0 we have

Z(k,H;x) < c(k, H,e)x' .

We remark that using the results in [I1] this assumption is true for all p-groups.
Using results proved in [7] this assumption is also true for all regular H, i.e. when
K/k is normal. For the first step we define the corresponding counting function

Z(k,CoVH;z) := #{L/k | 3K : Gal(L/K) = Co, Gal(K/k) = H N (dp i) < x}.
Using our assumption on H and Proposition [I] we get for all € > 0 that
Z(k,Cot H;z) < c(k, H,e)z'te.

Let us associate the corresponding Dirichlet series ®(s) to Z(k,Cy ! H;z) which
is absolutely convergent for $(s) > 1. Define

Ky = {K/k | Gal(K/k) = H}.

Using the equality N'(dp, i) = N (dg/,)?N(dr, k) and that @ is absolutely conver-
gent for N(s) > 1 we get in that area:

Qr (s
<4) Z N dK/k 29

where ®x ¢, (s) is the Dirichlet series associated to Z (K, Ca; ).

Theorem 6. Assume that there exists at least one extension of k with Galois group
H and that the following estimate holds for all € > 0:

Z(k, H; CL’) = Ok7H7€(.’£1+E).

Then the function ®(s) defined in equation has a meromorphic continuation to
R(s) > 5/6. In this area it has exactly one pole at s = 1.

Proof. Using Theorem[f]the result is trivial if there are only finitely many extensions
of k with Galois group H. We remark that dx and N (dg/;,) only differ by a constant
depending on k and H since dx = dLK:k

that the Dirichlet series

(5) > N dm

Keku

}N(dK/k). Using our assumption we get

converges absolutely and locally uniformly for $(s) > 1. We consider the function

Orco,(s) —R(K)/(s—1
g(s) =Y —C (/\)/(dK/(k)Q)S/( )>
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where R(K) is the residue of ® ¢, at s = 1. Using Theorem [p|we get that gx (s) :=
Pk o,(s) — R(K)/(s —1) is an analytic function for R(s) > 1/2. Furthermore we
get by Theorem [5| for all € > 0 and R(s) > 1/2 the following estimate:

192(5)] = O oy (ldsc (5 + DD =220,
where o = R(s). The function

ZNK/k

Kekpy
converges absolutely and locally uniformly using , if o = R(s) satisfies the in-
equality
20— (1/24+(1—0)/24¢€) >1<5/20 >24+ e 0 >4/5+2/5¢
Therefore g(s) is an analytic function for R(s) > 5/6.
Using Lemma [I| we have R(K) = O .q(d%) for all € > 0. Since dx =
dggK:k]./\/'(dK/k) we get that

converges absolutely and locally umformly for all regions which are contained in
{s € C| R(s) >5/6 and s # 1}. The absolute convergence of all considered series
gives the wished result for

571)
B(s Z NdK .

As an application of a suitable Tauberian theorem (see e.g. [I7, p. 121]) we
immediately get:

Corollary 3. Using the same assumptions as in Theorem [§ we get:
Z(k,Col H; ) ~ resy—y (®(s)).
In the following we would like to show that
Z(k,Cot H;2) ~ Z(k,Co  H; 2)
holds, i.e. extensions which do not have the wreath product as Galois group do not

contribute to the main term. We need some group theory.

Definition 3. Let G < S, be a transitive group operating on Q = {1,...,n}.
Then A C Q is called a block of G, if AYN A € {A,0} for all g € G. If G has only
blocks of size 1 or n we call G primitive. Otherwise G is called imprimitive.

We remark that a field extension L/k contains non-trivial subfields if and only
if Gal(L/k) is imprimitive. The blocks containing 1 are in 1-1 correspondence to
the subfields of L/k.

Lemma 5. Let G < S, be a transitive group containing a transposition. Then:

1 All transpositions are conjugated in G, i.e. b(k,G) = 1.
2 G=S8.1H for somel#e, e|n and H <S8, transitive.
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Proof. The first part is [16, Lemma 2.2]. If G is primitive the second statement with
e =1and H = G is [6, Theorem 3.3A]. Assume that 7 = (i, j) is a transposition of G
and B is a minimal block of size larger than 1 containing ¢. Then 7(i) = j € B since
all the other elements in B are fixed by 7. Therefore G|p contains a transposition
and operates primitively on B (B is a minimal block). Therefore the operation of
G|p on B is isomorphic to S)p|. Let B be a conjugated block of B. By conjugating
7 we can find a transposition in B. Therefore we find n/|B| different copies of
S|p|- Therefore G = S|t H, where H is the image of the natural homomorphism
¢ : G — S, B which permutes the conjugated blocks. O

Now we apply this lemma to our situation of field towers. Having a subfield K
with L/K of degree e = 2 means that Gal(L/k) contains a block system of blocks
of size 2.

Lemma 6. Let L/K/k be extensions of number fields with Gal(K/k) = H and
[L: K] =2. Letp be a prime which is unramified in K/k and assume p||N (dpk)-
Then Gal(L/k) = Co L H.

Note that p unramified in K/k and p||N (dr, k) is equivalent to p||N (dp k).

Proof. Let p be a prime ideal of Oy which is ramified in L. Consider the prime
ideal factorization pOyr, = P5* - - - P& . Then Dedekind’s discriminant theorem (see
e.g. [12] Satz 3.12.11]) implies that v,(Dy /i) > (e1 —1)f1 +--- (er — 1) frr, where f;
denotes the inertia degree of 9B;/p and v, is the exponential valuation. Furthermore
we get equality when there is no wild ramification, i.e. p{e; for all 4. Since p is
unramified in K/k and p||N(dr k) there is at most one prime ideal p in Oy such
that >_,(e; — 1)f; = 1. This implies that exactly one e; = 2 and all the other
e; = 1. Taking the corresponding inertia group generator, this elements acts as a
transposition in Gal(L/k). Let 7 = (i, j) be such a transposition and B a minimal
block of Gal(L/k) corresponding to K which contains . When we apply the proof
of Lemma [5| to this situation we get the wanted result. ([l

We remark that we can replace the prime p in the above lemma by any unramified
prime ideal p C Oy. This does not improve the following estimates.

In the following we would like to count all field towers L/K /k counted by Z(k, Ca
H; z) such that Gal(L/k) is a proper subgroup of Cy ! H. Therefore we define

Y(k,CoVH;x) :=
#{L/K/k | Gal(L/k) # C2  H,Gal(K/k) = H,[L : K| =2,N(dp ;) < x}.
We find upper bounds for this function when we count all field towers L/ K /k which

do not satisfy the assumptions of Lemma [6] Before we examine those field towers
we need a definition.

Definition 4. Let a € N be a positive integer and S C P be a set of primes. Then
a® is defined to be the largest divisor of a coprime to S.

For a field tower k C K C L we get:
N(dpw) = N(d5 ) )N (i) = N(di )N (dp )%,
where Sk := {p € P | plN (d/i)}. We define
7255 (K, Co;x) := #{L/K | Gal(L/K) = Co,N(dp, k)% < x,
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p| (N(dpk) = p* | (N(dpx))*<Vp € P}

and get

Y(k,CortHiz) < Y Z9(K,Cyx/N(dk ),

Kekp(x1/2)

where Ky (z) := {K € Kg | N(dk,r) < x}. We need an estimate for 7% (K, Cy; ).
For fixed K we denote by ay the number of fields L of degree 2 over K such that
N(dg, / x)°K = N. Since we ignore all primes in Sk and all other prime divisors
occur with multiplicity at least 2, we get that ay = 0 if N is not squarefull. We
choose S C P(K) as the set containing all prime ideals which lie over a prime in
Sk or over a prime dividing N. We are interested in the number of quadratic
extensions of K which are at most ramified in prime ideals contained in S. We
get |S] < (w(N) + |Sk|)t, where w(N) is the number of different prime factors and
t:= [K : Q]. Note that [Sk| < w(dg/,) and N(dk,) < dix. Therefore using
Lemma [2| we derive the upper bound 2t5x! < c(e,t,2)d5, where the constant is
not depending on K. Combining this with Theorems 2] and [3] we get with a new
constant:

ay < 2rk2(ClK)2t(w(N)+|SK\)231? < C(t,G)d}{/2+€2tw(N).

Note that ay = 0 if N is not squarefull. Therefore we get:
Z an < C(t,e)d}(/2+e Z otw(N)
NET(z) NEeT(x)

Using Lemma we can bound the latter sum by O(z!/21¢€) for all € > 0 and we get
with a new constant c(t, €):

79K (K, Cy; z) < c(t, e)d}(/ﬂexl/%‘.

Inserting this in the above estimate for Y (k, Xp1H; ') we get using dx = diN (dg /i)

1/2+e
€ T
Y(k,CortHiz) < Y clt, e)(diN(dk))/*T (J\/(d2)>
KeKy(z1/2) K/k
N(dgyp)'/?te

1+2¢_.1/2+€
c(t,e)d, = x Z N{dg n) 77

KeKpg(z1/2)
Using N (dg 1) < z/? we get:

1
Y (k,Col Hyx) < c(t, e)dy PPealPregt/ire N~ N(d )72
KeK(zl/2) K/k

The last sum converges under the assumption for H of Theorem [6} This proves for
all € > 0 the following estimate:
Y(k,CoVH;x) < e(k, H,t, e)x3/4+2€.

Using the identity Z(k,Cot H;z) + Y (k,Cy H;2) = Z(k,Cy 0 H; z) and Theorem
[6] we proved the following:

Theorem 7. Assume the same as in Theorem[6. Then the Dirichlet series corre-
sponding to Z(k,Co H;x) has a meromorphic continuation to R(s) > 5/6, where
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s = 1 is the only pole in that region. The residue r of that simple pole coincides
with the one of the function ®(s). We get:

Z(k,CoVH;xz) ~ress—1(D(s))x.
We are able to give an expression for this residue as a convergent sum.

Corollary 4.

ress—1(P(s)) = Z res;—1(rk ()

#.
KeKg QZ(K)dKCK (2)
These results support our main conjecture.

Corollary 5. Conjecture|l| is true for all Co! H and all number fields k such that
H fulfills the assumptions of Theorem [0

We have already remarked that this assumption is true for all p—groups and all
regular permutation groups. Therefore we get the following corollary.

Corollary 6. For even n there exists a group G < S, with a(G) =1 and
Z(k,G; z) ~ c(k, Gz = c(k, G)z™S).
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