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Abstract. An invariant of a group U is called a relative invariant of U ( G

if its stabilizer in G is U . The computation of Galois groups requires the

construction of such invariants for permutation groups. This article reports on
the constructions that are implemented in the Galois group package of magma

2.20.

1. Introduction

The computation of the Galois group of a polynomial is one of the basic questions
of algorithmic algebraic number theory [3, Sec. 6.3]. Old algorithms used tables of
precomputed data. Thus, they had an a priori degree limitation. In [8], such an
algorithm is described for irreducible polynomials up to degree 23. As there are
25000 transitive permutation groups in degree 24, it is clear that any extension that
follows the old path will get huge. Thus, for a degree independent implementation,
one has to compute all required data on the fly. The first implementation of such
an algorithm is described in [7]. It was done as a magma [1] package.

Outline of the Galois group algorithm. The basic idea of the algorithm was
given by Stauduhar [13]. The first observation is that the Galois group of a separable
degree n polynomial f is contained in G1 := Sym(n).

We want to construct a path in the subgroup lattice of Sym(n) that starts at
G1 and ends at the Galois group. For this, we compute the conjugacy classes of
maximal subgroups of G1.

For each maximal subgroup class representative U , we compute a relative invari-
ant polynomial I ∈ Z[X1, . . . , Xn], i.e., a polynomial such that its stabilizer in G1

is U .
We form I(rσ(1), . . . , rσ(n)), for ri the roots of f and σ ∈ G1//U . Here, we denote

by G1//U a system of coset representatives of G/U . Assuming the numerical values
of the invariant to be distinct, one can show that the Galois group is contained in
σUσ−1 if and only if the corresponding value of the invariant is rational.

Using this, one can either prove that the Galois group is equal to G1 or find a
maximal subgroup G2 that contains the Galois group. Now, one iterates this step
starting with G2 instead of G1, until the Galois group is reached.

The bottleneck of the implementation. The main limiting bottleneck of the
implementation described in [7] is the complexity of the invariants. If an evaluation
requires a large number of arithmetic operations, the computation gets slow. In
extreme cases, the construction of the invariant may even run out of memory.
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The aim of this article is to describe the methods to construct relative invariants,
as they are implemented in magma 2.20. These constructions cover all transitive
groups up to degree 32 and many in higher degrees with practical invariants.

As we want to study the improvements of the latest magma implementation, we
first give an overview of what was implemented in earlier versions.

Generic invariants. It is a well known fact [4, Sec. 3.10] that the ring of invariants
of a permutation group is generated by orbit sums of monomials. To turn this into
an algorithm for relative invariants, one has to find a monomial m, such that the
U -orbit and the G-orbit of m are different. A method to construct such a monomial
with minimal degree is described in [7, Sec. 4].

In theory, this approach solves the problem. In practice, for many pairs of groups,
this algorithm results in impractical invariants.

Special invariants. The general idea to overcome the above bottelneck is the use
so called special invariants. This means, we try to find a structural difference be-
tween the two permutation groups that can be used as a starting point to construct
an invariant. Usually, this results in an invariant that is by far simpler than the
result of the orbit sum approach.

For example, in the case that the group G is not contained in the alternating
group Alt(n) and U is the intersection G ∩ Alt(n), a relative invariant for U ⊂ G
is given by∏

1≤i<j≤n

(Xi −Xj) = (−1)n(n−1)/2
∑

σ∈Sym(n)

sgn(σ)Xσ(2)X
2
σ(3) · · ·X

n−1
σ(n)

= (−1)n(n−1)/2

∣∣∣∣∣∣∣
1 X1 · · · Xn−1

1
...

...
. . .

...
1 Xn · · · Xn−1

n

∣∣∣∣∣∣∣ .
This is called the SqrtDisc-construction. Note that the different ways of writing
down the invariant result in evaluation algorithms of different complexity. Here,
the best choice is to work with the product representation.

In magma 2.18 the ProdSum-, SqrtDisc-, and Sm-construction are tried to write
down a special invariant directly. In the case that this does not apply, the E-, F- and
BlockQuotient-constructions are tried to build a relative invariant out of invariants
for groups of smaller degree [7, Sec. 5].

In the case that non of these constructions apply, magma 2.18 used the generic
approach.

Our starting point. We can overcome the bottleneck by adding further construc-
tions of special invariants, which can be tried when the old constructions fail. Thus,
this investigation started with a systematic analysis of those pairs of groups that
had to be treated by the generic approach.

To understand the failure, we first have to describe the old special invariants in
detail. Using the groups in the database of transitive permutation groups [2, 10],
we can study such examples. To describe some examples, we will use the notation
T kn for the k-th transitive group of degree n in the database.

In the example above, U is a maximal subgroup of G. When we give construc-
tions for relative invariants, we always assume that the subgroup is maximal except
when non-maximal subgroups are explicitly included.
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The new overall strategy. Given a permutation group g and a maximal sub-
group u, the Galois group package of magma performs the following steps and uses
the invariant that is found first.

(1) If u has more orbits than g then use the sum of variables on a new orbit as
the invariant.

(2) Try the FactorDelta construction (see 4.6).
(3) In the case that the group is intransitive, find a minimal set of orbits such

that the actions on these differ. If this results in a transitive representation,
apply the overall strategy to it. Otherwise, use the method for subdirect
products (see 9).

(4) Try the NewBlock-constuction (see 2.3).
(5) Try the E- and the F-construction (see 2.3).
(6) Try the BlockQuotient-construction (see 3.2).
(7) Try the transfer-construction with a small index limit for the subgroup

search (see 5.6).
(8) Try to derive a simple invariant from the action on 2-sets (see 7.1).
(9) In the case that G has a a block-system of block size 2 or 3, use the code

based construction given in section 6.
(10) In the case of a primitive group, try the constructions listed in section 8.
(11) Use the generic orbit-sum of monomial approch [7, Sec. 4] to definitively

get a relative invariant.

2. Invariants from block systems and the Reynolds operator

2.1. Block systems. Let G ⊂ Sym(n) be a transitive permutation group. Let
B ⊂ {1, . . . , n} be a non-empty subset. If

∀σ ∈ G : σB = B or σB ∩B = ∅

then we call B a block of G. The G-orbit of B is called a block system.
When B is a singleton or {1, . . . , n}, we get a trivial block system. Otherwise,

we get a non-trivial block system. A permutation group without a non-trivial block
system is called primitive. Otherwise, it is called imprimitive.

We denote a block system {B1, . . . Bk} by B. As G acts on the block system,
this gives us a second permutation representation of G. We denote it by φB.

2.2. Remarks.

(1) The size of a block is a divisor of the degree of the permutation group.
Thus, all groups of prime degree are primitive.

(2) However, most transitive permutation groups have block systems. For ex-
ample, only five out of the 25000 transitive permutation groups in degree
24 are primitive.

(3) The maximal permutation group with a block system such that the action
in one block is given by A ⊂ Sym(k) and the action on the block system
is given by B ⊂ Sym(l) is called the wreath product A o B ⊂ Sym(kl). It
is isomorphic to the semi-direct product Al oB. The action of B on Al is
given by permuting the components.
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2.3. Wreath product type constructions . Let U be a maximal and transitive
subgroup of G ⊂ Sym(n). If U is a subgroup of a non-trivial wreath product in
Sym(n) that does not contain G then at least one of the following constructions
results in a relative invariant in K[X1, . . . , Xn] [8, Satz 6.14, Satz 6.16].

NewBlock-construction: If {B1, . . . , Bk} is a block-system for U , but not
for G, then the following are relative invariants

k∑
i=1

(
∑
j∈Bi

Xj)
2, if char(K) 6= 2,

k∑
i=1

(
∑
j∈Bi

Xj)
3, if char(K) 6= 3,

k∑
i=1

(
∏
j∈Bi

Xj),

k∏
i=1

(
∑
j∈Bi

Xj), in general.

Because of the last invariant, this was called the ProdSum-construction.
E-construction: Let B = {B1, . . . , Bk} be a block system of G with φB(U) 6=
φB(G). Then

I(
∑
i∈B1

Xi, . . . ,
∑
i∈Bk

Xi)

is a relative invariant for U ⊂ G. Here, I denotes a relative invariant for
φB(U) ⊂ φB(G).

F-construction: Let B = {B1, . . . , Bk} be a block system of G. Assume
StabU (B1)|B1

6= StabG(B1)|B1
. Then we get the relative invariant∑

s∈U//StabU (B1)

Is .

Here, I denotes a relative invariant for StabU (B1)|B1 ⊂ StabG(B1)|B1 .

2.4. Examples.

(1) Let K4 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ⊂ D8 := 〈(1, 3), (1, 2, 3, 4)〉 be the Klein
four-group as a subgroup of the dihedral group of order 8. D8 has exactly
one system of blocks {{1, 3}, {2, 4}} whereasK4 has the additional blocksys-
tems {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}}. Any of these new blocksystems
can be used to write down a relative invariant. E.g.,

I1 := X1X2 +X3X4 or I2 := (X1 +X4)(X2 +X3) .

Furthermore, K4 is an even permutation group but D8 is not. Thus, the
SqrtDisc-construction would apply as well and result in the invariant

I3 := (X1 −X2)(X1 −X3)(X1 −X4)(X2 −X3)(X2 −X4)(X3 −X4) .

(2) Let G := T 11
6 = 〈(1, 2), (1, 3)(2, 4), (3, 5)(4, 6)〉 = Sym(2) oSym(3) and U :=

T 6
6 = 〈(1, 2), (1, 3, 5)(2, 4, 6)〉 = Sym(2) o Alt(3) ⊂ G be two permutation

groups. They only have the blocksystem B := {{1, 2}, {3, 4}, {5, 6}}. The
structural difference between the two groups is that the action φB on the
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blocksystem results in the full symmetric group for G, but in the alternating
group for U . Thus, the E-construction applies. It results in the invariant

I := ((X1 +X2)− (X3 +X4)) · ((X1 +X2)− (X5 +X6)) ·
((X3 +X4)− (X5 +X6)) ,

when we start with the invariant (Y1 − Y2)(Y1 − Y3)(Y2 − Y3) for the
φB-images Alt(3) ⊂ Sym(3).

(3) Let G := T 9
6 = 〈(1, 2, 3), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)〉 ⊂ Sym(3) o Sym(2)

and U := T 5
6 = 〈(1, 2, 3), (1, 4)(2, 5)(3, 6)〉 = Alt(3) o Sym(2) ⊂ G be two

permutation groups. They only have the block system {{1, 2, 3}, {4, 5, 6}}.
The structural difference between the two permutation groups is that

the stabilizer of one block results in an Sym(3)-action (if we start with G)
and in an Alt(3)-action (if we start with U) on the block stabilized. Thus,
these block-stabilizer groups have the relative invariant

I0 := (X1 −X2)(X1 −X3)(X2 −X3) .

The F-construction lifts this to

I := I0 + (1, 4)(2, 5)(3, 6) · I0
= (X1 −X2)(X1 −X3)(X2 −X3) +

(X4 −X5)(X4 −X6)(X5 −X6) .

2.5. Remark. The F-construction lifts an invariant of a subgroup H to a U -
invariant by forming its orbit sum. This is a general strategy in invariant theory,
usually called the Reynolds operator. It is defined as follows:

Let H ⊂ U be a subgroup of finite index. Then the Reynolds operator maps
H-invariants to U -invariants by

RU/H(f) :=
1

[U : H]

∑
σ∈U//H

σf .

Here, U//H denotes a list of coset representatives of U/H. It may happen that the
result degenerates. For example, if H is an index 2 subgroup of U and U acts on f
by change of sign then we get RU/H(f) = 0. In the situation of the F-construction,
it is obviously impossible that the invariant degenerates to a G-invariant. In later
constructions, we will use the following lemma to exclude degeneration.

2.6. A lemma . Lemma: Let U0, G ⊂ G0 ⊂ Sym(n) be permutation groups.
Define U := U0 ∩G 6= G. We assume [U0 : U ] = [G0 : G] > 1. Further, let f be a
U -invariant that is not G-invariant. If the K-vector space span{σf | σ ∈ U0} is of
dimension [U0 : U ] and span{σf | σ ∈ G} is one dimensional then RU0/U (f) is not
G0-invariant.

Proof: In this situation, U0/U coset representatives are G0/G coset represen-
tatives. Thus, G acts on span{σf | σ ∈ U0}, as well.

Pick an element τ ∈ G with τf 6= f (i.e., f and τf differ by a scalar). τ acts
on the sum

∑
σ∈U0//U

σf by permutation and scaling of the summands. As the

summands are linearly independent, τ will not stabilize the sum as it does not
stabilize f . �
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3. Change of representation and the BlockQuotient-construction

3.1. Change of representation. Let H ⊂ G be a (not necessarily maximal) sub-
group. Then the coset action of G on G/H coincides with the G-action on the
G-orbit of a (H ⊂ G)-relative invariant. We denote the coset action homomor-
phism by φG/H . For a maximal subgroup U ⊂ G with φG/H(U) 6= φG/H(G), we
can use a relative invariant for φG/H(U) ⊂ φG/H(G) and plug the G-orbit of a
(H ⊂ G)-relative invariant into it. This leads to a U -invariant. In the case that the
construction does not degenerate, we get a relative invariant. In case of degenera-
tion, we replace the (H ⊂ G)-relative invariant I by t(I) for a random univariate
polynomial t [8, Bemerkung 6.19].

3.2. The BlockQuotient-Construction. In this generality, it is not clear which
choice of the auxiliary group H results in a simplification of the problem. Placing
the block systems in the center of our focus, one could try to simplify the action of a
block stabilizer on the block stabilized. This results in the so called BlockQuotient-
construction. The formal description is as follows:

(1) For each block system B = {B1, . . . , Bk} of G of block size at least 3,
compute the stabilizer S := StabG(B1). Denote by π the action of S on B1.

(2) Compute the subgroups of π(S) of index 2, . . . ,#B1 − 1.
(3) For each subgroup T ⊂ π(S) found, take its preimage H := π−1(T ).
(4) If φG/H(U) 6= φG/H(G) then return (B1, π,H, S) as the initial data for the

construction.

In the case that an initial block B1 and a subgroup H are found, one continues as
follows:

(1) Compute a relative invariant I0 for π(H) ⊂ π(S). This is automatically a
relative invariant for H ⊂ G.

(2) Compute a relative invariant I1 for φG/H(U) ⊂ φG/H(G).
(3) To piece these two invariants together, we have to find at random a uni-

variate polynomial t such that

I := I1(t(σ1I0), t(σ2I0), . . . , t(σkI0))

is a relative invariant for U ⊂ G. Here, σ1, . . . , σk denote coset representa-
tives of H ⊂ G.

3.3. Remarks.

(1) The index limit #B1 − 1 for the subgroup search is somewhat random. It
means that the new permutation representation φG/H(G) has a smaller de-
gree than G. This ensures that the algorithm does not run into an infinite
recursion when searching for a relative invariant for φG/H(U) ⊂ φG/H(G).
Any other subgroup selection strategy that does not result in infinite re-
cursions could be used as well.

(2) We exclude block systems of block size 2 from the inspection, because the
block-action would result in π(S) = Sym(2). Choosing T = {id} would
result in φG/H = idG. Choosing T = Sym(2) would result in φG/H = φB.
Thus, either this does not lead to a simplification or we get back to the
E-construction.

(3) The proof that I is not a G-invariant can be done by evaluation. This
means that, for some random numbers r1, . . . , rn and all the generators σ
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of G, we test whether

I(r1, . . . , rn) = I(rσ(1), . . . , rσ(n)) .

If this equality fails at least once then we have confirmed that I is not
G-invariant.

3.4. Interpretation.

(1) One can interpret the Block-Quotient construction as follows. Let a tower
of fields Q ⊂ K ⊂ L be given. The field L is the stem field Q[x]/(f), for f
the polynomial we are treating. The field K corresponds to the stabilizer
of one block of a block system of the Galois group.

The BlockQuotient-construction passes to a tower Q ⊂ K ⊂ L1. Here,
the field L1 is chosen as a subfield of the Galois hull of L/K with the
degree limit [L1 : K] < [L : K]. The Galois group of the Galois hull of
L1/Q is a quotient of the Galois group of the Galois hull of L/Q. The new
representation used by the BlockQuotient-construction is the projection.

Typical examples for this are Q ⊂ K := Q[a] ⊂ L := Q[ n
√
a], for L1 :=

K[ζn] and Q ⊂ K := Q[a] ⊂ L := Q[ 16
√
a] for L1 := Q[

√
a] or L1 :=

Q[ 4
√
a,
√
−1].

(2) In the category of permutation groups, the BlockQuotient-construction can
be described as follows: Given transitive subgroups G1 ⊂ Sym(n1), G2 ⊂
Sym(n2), and a surjective homomorphism φ : G1 → G2. Then φ induces a
homomorphism of wreath products

Φ: Gn1 o Sym(n) → Gn2 o Sym(n),

((σ1, . . . , σn), τ) 7→ ((φ(σ1), . . . , φ(σn)), τ) .

In the notation used in 3.2, we have G1 = π(S) and φ is the action on
π(S)/T . Further, Φ|G is φG/H .

3.5. Example. LetG := T 45
8 = 〈(1, 4)(5, 8), (1, 5, 2, 6, 3, 7)(4, 8)〉 = Sym(4)oSym(2)∩

Alt(8) be a permutation group and U := T 41
8 = 〈(1, 4)(5, 8), (1, 8, 3, 7, 2, 5)(4, 6)〉 be

an index 3 subgroup. The SqrtDisc-, NewBlock-, E-, and F-constructions do not
apply to this pair of groups.

The BlockQuotient-construction starts with the homomorphism φ : Sym(4) →
Sym(3) that is given by the coset action on a 2-Sylow subgroup. This induces a
homomorphism Φ: G→ Sym(3) o Sym(2). The image Φ(G) is the transitive group
T 9
6 and Φ(U) = T 3

6 .
Now, we need relative invariants for the 2-Sylow subgroup of Sym(4) as a sub-

group of Sym(4) and another one for T 3
6 ⊂ T 9

6 . In both cases, the smaller group has
more block systems than the bigger one. Thus, the NewBlock-construction applies.
This gives us the invariants

I0 := X1X2 +X3X4 and I1 := Y1Y2 + Y3Y4 + Y5Y6 .

The BlockQuotient-construction composes them to the relative invariant

I := (X1X2 +X3X4)(X5X6 +X7X8) +

(X1X3 +X2X4)(X5X7 +X6X8) +

(X1X4 +X2X3)(X5X8 +X6X7)

for U ⊂ G. Thus, in this case we can choose t(X) := X.
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3.6. Statistics. We used the database of transitive groups up to degree 32 to test
the constructions above. This led to the statistics in Table 1.

n # pairs # NewBlock/E/F # Block-Quot # Remaining
4 5 3 0 2
6 30 21 2 7
8 141 100 16 25
9 78 40 8 30

10 100 66 12 22
12 1083 795 191 97
14 149 97 18 34
15 264 171 55 38
16 12533 9613 2327 593
18 4189 3217 866 106
20 4856 3448 984 424
21 500 301 149 50
22 134 97 18 19
24 178753 135464 41087 2202
25 660 379 112 169
26 261 170 64 27
27 12964 8558 2469 1937
28 8293 5775 1555 963
30 28012 20505 7004 503
32 53804069 46347960 7443119 12990

Table 1 – Number of pairs of groups U ⊂ G ⊂ Sym(n) covered,
prime degrees omitted

4. Constructions for index 2 subgroups

4.1. Example. Let Alt(n) ⊂ Sym(n) be the alternating group inside the symmet-
ric group of degree n. An element of Sym(n) is contained in Alt(n) if and only if it
is in the kernel of the sign homomorphism. We denote by ∆ the polynomial∏

1≤i<j≤n

(Xj −Xi) .

Then Sym(n) operates on ∆ via the sign homomorphism. Thus, ∆ is a relative
invariant for Alt(n) ⊂ Sym(n).

4.2. Generalization. The product formula above for the invariant ∆ can be inter-
preted as follows: The Sym(n)-orbit of (X1−X2) is {±(Xi−Xj) | 1 ≤ i < j ≤ n}.
Thus, the action of Sym(n) on the set above can be viewed as signed permutations
or as a

(
n
2

)
-dimensional monomial representation of Sym(n).

From this, we derive that the action on∏
1≤i<j≤n

(Xi −Xj)

results in a one-dimensional representation.
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In the case that G ⊂ Sym(n) is a subgroup that is not transitive on 2-sets, the
representation by signed permutations above decomposes into subrepresentations.
We get one component for each orbit of G on 2-sets. Denote by O2 a G-orbit on
2-sets. This orbit leads to a 1-dimensional representation, given by the action on∏

{i,j}∈O2

(Xmin{i,j} −Xmax{i,j}) .

If this representation is not trivial then its kernel is an index two subgroup of G,
for which we have an invariant.

4.3. Remark. The Sm-construction listed in the introduction is a special case of
this. It corresponds to the orbit of {1, 2} by Sym(k) o Sym(m).

4.4. Remarks.

(1) The construction above can easily be combined with the idea of the E-
construction. This means, we take the action of G on a system of blocks
B = {B1, . . . , Bk} and decompose the 2-sets of blocks

{{Bi, Bj}|1 ≤ i < j ≤ k}
into G-orbits. Now an orbit on 2-sets of blocks results in the 1-dimensional
representation, given by the action on

I :=
∏

(i,j)∈J

∑
k∈Bi

Xk −
∑
k∈Bj

Xk

 .

Here, J is an index set encoding the orbit {{Bi, Bj} : (i, j) ∈ J} on 2-sets
of blocks. This representation is either trivial or its kernel is an index 2
subgroup with relative invariant I.

(2) It may happen that several representations have the same kernel. This can
be explained by the following fact:

Let Bj := {(j−1)k+ 1, . . . , jk} and {B1, . . . , Bm} be a system of blocks
for the permutation group G. Further, we denote by

π : {1, . . . , km} → {1, . . . ,m}
the projection that maps each element to the number of the block it is
contained in. I.e., i ∈ Bπ(i) for all i = 1, . . . , km.

Denote by J1 an index set of the G-orbit of {1, k+1} and by J2 an index
set of the G-orbit of {B1, B2}. Then the representations given by

I1 :=
∏

(i,j)∈J1

(Xi −Xj) and I2 :=
∏

(i,j)∈J2

∑
∈Bi

Xl −
∑
l∈Bj

Xl


are either equal to each other or I1 corresponds to the trivial representation.

Proof: We have the subgroups

U1 := Stab({1, k + 1}) ⊂ U2 := Stab({1, . . . , 2k}) ⊂ G .
We can identify J1 with a transversal of G/U1 and J2 with a transversal
of G/U2. Thus, the pairs {i, j} ((i, j) ∈ J1) hit each pair of blocks in
{{Bi, Bj} : (i, j) ∈ J2} equally often.

We have to count how many factors of the products are mapped to
factors with the sign opposite to that occurring. An element σ ∈ G maps
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the factor Xi−Xj ((i, j) ∈ J1) to one of the sign opposite to that occurring
if and only if the blocks Bπ(i), Bπ(j) are not in order. I.e., if π(i)−π(j) and
π(σ(i))− π(σ(j)) differ in sign.

The latter sign changes are the changes in sign that describe the action
of σ on I2. Thus, the number of sign changes in the product representation
of I1 is the [U2 : U1]-multiple of the one in I2. If this multiplicity is odd,
then the representations are equal. If the multiplicity is even, then I1 is
the trivial representation. �

(3) The statement proved can be used to speed up the construction of invari-
ants, as we can skip the treatment of I1. It will be either trivial or I2 will
result in the same representation. Indeed, the degree of I2 will be at most
equal to the degree of I1.

4.5. Combining invariants . Given two index 2 subgroups U1, U2 ⊂ G, there is
a third index 2 subgroup

U3 := (U1 ∩ U2) ∪ (G \ (U1 ∪ U2)) .

Let I1, I2 be relative invariants for U1, U2 ⊂ G. We assume that the action of G
on these invariants is by change of sign. If this is not the case then we replace the
invariants by Ij − σIj , for a σ ∈ G \ Uj . Then I3 := I1I2 is a relative invariant
for U3. [8, Satz 6.21]

More generally, given two 1-dimensional representations of G by action on poly-
nomials, we get the tensor product of these representations as the product of the
polynomials. This will be a relative invariant for the kernel of the product repre-
sentation.

4.6. The FactorDelta-construction . Combining the constructions listed above,
we get the FactorDelta-construction, which works as follows.

Let a subgroup G ⊂ Sym(n) be given. Then we perform the following steps to
find invariants for index 2 subgroups of G:

(1) Compute all orbits of G and all block systems of each orbit.
(2) List transitive representations of G by taking the actions on orbits and on

block systems.
(3) For each transitive representation found, compute the orbits of the action

on 2-sets.
(4) For each orbit on 2-sets found, compute the 1-dimensional representation

of G, as described above.
(5) Compute the kernel of each representation.
(6) Delete all the trivial representations found.
(7) In the case that two representations have the same kernel, pick the simpler

one.
(8) For each pair of representations found, apply construction 4.5 to get a third

representation having another index 2 subgroup as its kernel.
(9) In the case that a representation with this kernel is already known, pick

the one with the simpler polynomial.
(10) Iterate construction 4.5 until no further representations are found.
(11) Return the list of 1-dimensional representations found together with the

list of the kernels.
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4.7. Example. Let D8 = T 3
4 = 〈(1, 2), (1, 3, 2, 4)〉 be the dihedral group of order

8. It has the Klein four-group K4 and the cyclic group C4 as maximal transitive
subgroups. The above constructions give us two 1-dimensional representations by
the action on

I1 := (X1 +X2)− (X3 +X4) and I2 := (X1 −X2)(X3 −X4) .

The Klein four-group is the kernel of I2 and C4 is the kernel of I1I2.

5. Using monomial representations and transfer

5.1. Recall .

(1) A matrix is called monomial if each row and each column have exactly one
non-zero entry.

(2) A matrix group is called monomial if all elements are monomial matrices.
(3) A representation is called monomial if its image is a monomial group.
(4) For a field K, the group of n× n monomial matrices Nn(K) is isomorphic

to (K∗)n o Sym(n).
(5) The monomial group has a 1-dimensional representation given by the deter-

minant and a second one given by the sign of the permutation in Sym(n).
(6) The tensor product of these two 1-dimensional representations is a third

1-dimensional representation. It is the product of all the non-zero entries
of the matrix.

(7) More generally, each group with a monomial representation has these three
1-dimensional representations associated to the monomial representation.

(8) The induced representation IndGU (φ) of a 1-dimension representation φ of
a subgroup U of finite index in G is a monomial representation of G. All
monomial representations are direct sums of such representations.

5.2. Notation. In the case that the monomial representation is given as IndGU (φ)
for a 1-dimensional representation φ, we call the tensor product in 5.1.6. the φ-
transfer of G. For a general introduction to the transfer, we refer to [11, Kap. IV]
and in particular to [11, IV, Hilfssatz 1.2].

5.3. Monomial representations from block systems. Given the wreath prod-
uct G := Ck o Sym(n) ⊂ Sym(kn) of the cyclic group of order k and the symmetric
group of degree n, we get a monomial representation by mapping Ck to the group
of k-th roots of unity 〈ζk〉. I.e., we use the isomorphism of the wreath product to
〈ζk〉n o Sym(n).

We get the required 1-dimensional representation φ of Ck ⊂ Sym(k) as the action

on X1 + ζkX2 + · · · + ζk−1k Xk. The φ-transfer representation of G is given by the
action on the product

(X1 + ζkX2 + · · ·+ ζk−1k Xk) · . . . · (X(k−1)n+1 + ζkX(k−1)n+2 + · · ·+ ζk−1k Xnk) .

5.4. Remarks.

(1) Consider the wreath product G = G1 o G2. In the case that G1 is not
cyclic, one would like to start with a more interesting 1-dimensional repre-
sentation φ (i.e., a quotient) of G1. However, this is implicitly done by the
BlockQuotient-construction described above, as the projection G1 o G2 →
φ(G1) oG2 is a possible block quotient.
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(2) In practice, we are interested in invariants with rational coefficients instead
of roots of unity. As shown in [6, Sec. 4], this problem can be solved by
splitting the invariants into components.

5.5. Generalization. In some cases, we have to combine the transfer construction
with the Reynolds operator. Thus, we start with U0 ⊂ G0. Then we pick an
auxiliary group G and put U := G ∩ U0. In the lucky case that the transfer
construction gives a relative invariant for U ⊂ G, we can lift that with the Reynolds
operator to a relative invariant for U0 ⊂ G0.

5.6. Algorithm . The considerations above result in the following construction
for a relative invariant of U0 ⊂ G0.

(1) Let G run through all transitive subgroups of small index of G0. Start with
G0 itself as an index 1 subgroup.

(2) Compute a representing block for each block system of G.
(3) For each representing block B, compute the block stabilizer StabB(G).
(4) Test whether the action φ : StabB(G)→ Sym(B) has cyclic image.
(5) If the image is cyclic, then compute the kernel U of the φ-transfer.
(6) If U = U0∩G then construct a relative invariant I of U ⊂ G as the product

above.
(7) Apply the Reynolds operator the convert I into a U0-invariant I0.
(8) If I0 is not a G0-invariant then return I0.

5.7. Remarks.

(1) In this generality, it is not clear which strategy to pick low index subgroups
is optimal. Further, the restriction to transitive groups is somehow arti-
ficial. In the next section, we will give another algorithm that computes
G directly. In contrast to the above approach, it can result in intransitive
groups but it works only for block size 2 or 3.

(2) In the case that the subgroups G or U0 ∩ G that are inspected in the
algorithm above have even more blocksystems than G, one might try the
other block system based constructions (e.g. E- or the F-constriction) on
these block systems to get an invariant for U ⊂ G, in addition to the
transfer approach.

5.8. Examples.

(1) We denote by K the group

{(σ1, . . . , σ10) ∈ Alt(3)10 | σ1 · · ·σ10 = id} ⊂ Alt(3)10 .

Using this notation, we inspect the groups U0 := T 5396
30 , G0 := T 5421

30 ,

T 5396
30 = (K o Sym(10)) o Z/2Z

⊂ T 5421
30 = (Alt(3) o Sym(10)) o Z/2Z .

Here, we first have to remove the extension by Z/2Z. Then we get an
invariant for U := T 5368

30 ⊂ G := T 5405
30 by the transfer construction. It is

given by

I := (X1 + ζ3X2 + ζ23X3) · · · (X28 + ζ3X29 + ζ23X30) .

Finally, the Reynolds operator lifts this to the relative invariant

I0 := I + σI (σ = (1, 2)(4, 5) · · · (28, 29))
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for the initial groups. The decomposition of the invariant into components
leads to an invariant with an evaluation algorithm that involves 103 multi-
plications over the base field.

(2) The dihedral group D4 can be constructed as the semi-direct product
Z/4Z o Z/2Z. Using this, we can construct (Z/4Z)7 o Z/2Z by acting
on each factor in the same way. In this case, we have the subgroups

U2 := {(x1, . . . , x7) ∈ (Z/4Z)7 |
∑

xi = 0 mod 2}o Z/2Z,

and

U4 := {(x1, . . . , x7) ∈ (Z/4Z)7 |
∑

xi = 0 mod 4}o Z/2Z .

As U2 and U4 are Sym(7) invariant, we get the extensions

U0 := T 1610
28 = U4 o Sym(7) ⊂ G0 := T 1651

28 = U2 o Sym(7) .

To construct an invariant, we have to remove the Z/2Z in U2 and U4. After
that, we can use the transfer to construct the invariant

(X1 + ζ4X2 −X3 − ζ4X4) · · · (X25 + ζ4X26 −X27 − ζ4X28)

for T 1541
28 ⊂ T 1601

28 , which can be evaluated by 42 multiplications. The
Reynolds operator lifts this to an invariant for U0 ⊂ G0. This doubles the
number of multiplications.

6. Invariants in case of a block system of block size 2 or 3

6.1. Setup. Let U ⊂ G be a maximal subgroup of a transitive permutation group
of degree n = 2k with the block system B = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.
Further, we assume that the E-construction does not work, i.e., φB(U) = φB(G).
As

StabG(B1)|B1
= StabU (B1)|B1

∼= Sym(2) ,

the F-construction and the BlockQuotient construction will not apply to this block-
system. Table 2 gives an overview of the number of transitive groups having such
a block system.

Now, we describe the construction of the relative invariant as a 3-step process.

6.2. Step 1: Invariants for the kernel of the block action. Let U ⊂ G and
the block system B be given as in 6.1. Then the difference of U and G is hidden in
the kernel of φB. Let us inspect this kernel a bit closer:

U0 := U ∩ ker(φB) ( G0 := ker(φB) ⊂ Sym(2)k ∼= (Z/2Z)k ∼= {±1}k .
The last isomorphism is given by the action on the polynomials

X1 −X2, X3 −X4, . . . , X2k−1 −X2k .

From this, we can easily write down a U ∩ ker(φB)-invariant that is not a ker(φB)-
invariant. Even better, we can construct one of minimal degree as follows:

(1) Write U ∩ ker(φB) and ker(φB) as subgroups of (Z/2Z)k.
(2) View these groups as F2-codes CU ( CG ⊂ Fk2 .
(3) Compute the dual codes C⊥G ( C⊥U .
(4) Find a word w of minimal weight in C⊥U \ C⊥G .
(5) Return Iw :=

∏
i,wi=1(X2i−1 − X2i) as an invariant of U0 that is not G0

invariant.
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Degree # groups #2, #3, # 2 or 3
4 5 3, –, 3
6 16 8, 7, 12
8 50 36, –, 36
9 34 –, 23, 23
10 45 21, –, 21
12 301 182, 106, 255
14 63 37, –, 37
16 1954 1754, –, 1754
18 983 387, 624, 867
20 1117 621, –, 621
21 164 –, 83, 83
22 59 32, –, 32
24 25000 20733, 4847, 23955
26 96 39, –, 39
27 2392 –, 2079, 2079
28 1854 1238, –, 1238
30 5712 1955, 1881, 3452
32 2801324 2793029, –, 2793029

Table 2 – Number of transitive groups with blocks of size 2 or 3

6.3. Remark. In the case that one is not interested in an invariant of minimal
degree, one can choose w as the first element of an LLL-basis of C⊥U that is not in
C⊥G .

6.4. Step 2: Lifting to the word stabilizer. Naively, one would try to lift the
invariant Iw to a (U ⊂ G)-invariant by applying the Reynolds operator. This would
lead to a U -invariant consisting of #φB(G) summands. Further, it could degenerate
to a G-invariant. We do the lifting in two steps to reduce the number of summands
and to deal with the degeneration.

We compute G1 := φ−1B StabφB(G)(w). This is the largest subgroup of G that
acts on Iw by change of sign. In general, U1 := G1 ∩U will act on Iw by change of
sign, as well.

We compute the kernel of the U1-action on Iw as the index 2 subgroup U1,w.
Note that ker(φB) ∩ U1 ⊂ U1,w. Thus, we can use the E-construction applied to
the block system B to find a second relative invariant Ic for U1,w ⊂ U1. As G1 acts
on Ic in the same way as U1, the combination of invariants (see 4.5) applied to Iw
and Ic will lead to a U1-invariant that is not G1-invariant. Summarizing, Ip := Iw
or the product Ip := IwIc is a (U1 ⊂ G1)-invariant.

6.5. Step 3: Final lifting. Again, one would try to lift Ip to a (U ⊂ G)-invariant
by using the Reynolds operator. This would lead to an invariant with [G : G1]
summands. We can take that if it does not degenerate to a G-invariant.

Next, we have to treat the possibility of a degeneration. The group G1 is the
stabilizer of the sum over the variables I1 :=

∑
i,wi=1Xi in G. We can replace Ip

by IpI
e
1 , for any positive integer e. We claim that there is an

e ≤ e0 := #{i | wi = 1}(deg(Ip) + 1)
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that solves the degeneration problem. Using 2.6, this can be proved by showing
that the polynomials (IpI

e
1)σ, σ ∈ U//U1, are linearly independent.

Recall that monomials are linearly independent. Thus, it suffices to show that
(IpI

e0
1 ) has at least one monomial that is not contained in any other summand.

When we multiply out Ie01 , we find the summand P :=
∏
i,wi=1X

deg(Ip)+1
i . When

we look at σI1 for σ ∈ G \ G1, we replace at least one variable in I1. Thus, a
monomial in σIpI

e0
1 will contain the factor P only if σ ∈ G1. �

6.6. Remarks.

(1) The main advantage of the coding theoretic approach is that we can com-
pute the auxiliary group G1 as the stabilizer of a code word, which is far
more efficient than an enumeration of all low index subgroups.

(2) In the case of finite characteristics, the expression Ie1 may not contain the
monomial that we used in the proof. One way to solve this problem is to
replace I1 by

∏
i,wi=1Xi.

(3) The case of a block-system of block size 3 can be treated in a similar
way. When we assume that the E-construction and the BlockQuotient-
construction fail, the index of the subgroup must be a power of 3. Thus, we
can work with the 3-Sylow-subgroup of the kernel of φB. This group will
be isomorphic to (Z/3Z)k and we deal with F3-codes instead of F2-codes.
All the other steps of the construction carry over to this situation as well.

This leads to the following question: Can more general codes be used for
the construction of invariants in the case of block sizes larger than 3?

6.7. Example. Let us inspect the groups

G = T 4831
30 = (Z/2Z)15 o Gl(4,F2) = Sym(2) oGl(4,F2) ⊂ Sym(2) oAlt(15)

and

H = T 3819
30 = N o Gl(4,F2) ⊂ G .

Here, N is the Hamming code in F15
2 . We get #G = 660602880 and [G : H] = 16.

Recall the following description of the Hamming code.

(1) P3(F2) has 15 planes and 15 points.
(2) Each plane has 7 points and its complement has 8 points.
(3) We use the points of P3(F2) as an index set. I.e., we fix a bijection

ι : P3(F2)→ {1, . . . , 15}.
(4) For each plane E ⊂ P3(F2), we get the linear form lE :=

∑
P∈P3(F2)\E Xι(P ).

(5) N is the intersection of the kernels of the 15 linear forms lE .
(6) The linear forms lE are the non-zero words in the dual code of the Hamming

code.

As the code analysis is done on the dual codes, it will inspect the trivial code as
a subcode of the dual of the Hamming code. It will find one of the linear forms lE
of weight 8 as w. As there are 15 planes in P3(F2), the stabilizer of lE (resp. w)
in Gl(4,F2) is of index 15. Thus, we end up with an invariant of degree 8 and 15
summands. It involves 105 multiplications.

6.8. Complexity. The complexity of the invariant constructed will depend on the
complexity of the invariant Ic and the number of summands generated in the second
lifting step. The latter question is a coding theoretic problem.
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To get an impression of what happens here, we enumerate all codes over F2 up
to length 23 with a transitive automorphism group. This covers all the cases that
may appear for polynomials up to degree 46. We end up with the following extreme
examples.

(1) The sum zero subspace of Fn2 is generated by the Sn orbit of (1, 1, 0, . . . , 0).
It is of length

(
n
2

)
. In the case that n is even, shorter orbits can not generate

this subspace.
(2) Let G := Sym(2) o Sym(n) with block system

{{1, 2}, . . . , {2n− 1, 2n}} .
The orbit O of (1, 0, 1, 0, . . . , 0, 1, 0) is of length 2n. It generates an (n+ 1)-
dimensional subspace U . The complement of O in U is a n-dimensional
subspace.

(3) Let G := Sym(4) o Sym(n) with block system

{{1, 2, 3, 4}, . . . , {4n− 3, 4n− 2, 4n− 1, 4n}} .
The G-orbit of (0, 0, 0, 1, 0, 0, 0, 1, . . . , 0, 0, 0, 1} is of length 22n. It spans a
(3n+ 1)-dimensional subspace U . All elements of U with shorter orbits are
contained in a 3n-dimensional subspace.

To summarize, for permutation groups up to degree 46 with a block of size 2,
we have an algorithm to generate invariants with at most 2048 summands. The
extreme examples are related to permutation groups with a second block system of
block size 4 or 8.

7. Inspecting other representations

As explained above, the BlockQuotient construction leads to a simplification, as
it maps to groups of smaller degree. In some cases, even an injective map may be
helpful.

7.1. The action on 2-sets . The simplest change of the permutation representa-
tion is probably given by the action on 2-sets. This action is the same as the action
on

M2 := {XiXj : i, j = 1, . . . , n | i < j} .
In the case that U and G decompose M2 in different ways into orbits, we can use
the orbit sum as a relative invariant. More precisely, let m := XiXj be a monomial
with Um ( Gm. Then ∑

σ∈U//StabU ({i,j})

σ(XiXj)

is a relative invariant for U ⊂ G.

In the case that the above construction does not apply, we can try the following
variant: Let U ⊂ G be given such that theG-orbit and the U -orbit ofXiXj coincide,
but the U -action results in more block systems.

Denote by B1, . . . , Bk ⊂ {{l,m} : l,m = 1, . . . , n | l 6= m} a block system of the
U -action that is not a block-system of the G action. Then we can use

k∑
j=1

(
∑

{l,m}∈Bj

XlXm)e ,

for a sufficiently large exponent e, as a relative invariant for U ⊂ G.
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7.2. Example. Let the groups U := T 14
6 ⊂ G = Sym(6) be given. U is the

transitive representation of Sym(5) ∼= PGL2(F5) on six points.
Both groups act transitively on 2-sets. However, StabG({1, 2}) ⊂ G is a maximal

subgroup, but StabU ({1, 2}) ⊂ U is not. Thus, the resulting degree 15 representa-
tion of U is not primitive. It has exactly one block system

{{1, 2}, {3, 4}, {5, 6}}, {{1, 3}, {2, 6}, {4, 5}}, {{1, 4}, {2, 5}, {3, 6}},
{{1, 5}, {2, 3}, {4, 6}}, {{1, 6}, {2, 4}, {3, 5}} .

We can use this to write down the relative invariant

(X1X2 +X3X4 +X5X6)3 + (X1X3 +X2X6 +X4X5)3 +

(X1X4 +X2X5 +X3X6)3 + (X1X5 +X2X3 +X4X6)3 +

(X1X6 +X2X4 +X3X5)3 .

The Molien series [4, Sec. 3.2.1] of G and U with R = C[X1, . . . , X6] are

H(RG, t) = 1 + t+ 2t2 + 3t3 + 5t4 + 7t5 + 11t6 + 14t7 + 20t8 + · · ·
H(RU , t) = 1 + t+ 2t2 + 3t3 + 5t4 + 7t5 + 12t6 + 15t7 + 23t8 + · · · .

Thus, there is no relative invariant of degree smaller than 6.

7.3. Remark. One could try to continue the analysis of the new representation by
applying the E- or the BlockQuotient-construction. However, a direct implemen-
tation of this may run into an infinite recursion as the action on 2-sets increases
the degree of the permutation representation. Whereas all the earlier recursions
reduced the degree.

8. Proper primitive groups

A primitive group that does not contain the alternating group is called proper.
Let U ⊂ G ⊂ Sym(n) be given. In case U and G are both proper primitive groups
there may be a more standard permutation representation of G that makes the the
structure of U ⊂ G more visible.

Further, we have a special approach to handle proper primitive subgroups of
Sym(n) and Alt(n) that multiply transitive group.

8.1. Primitive representations of Sym(n). The symmetric group Sym(n) has
primitive permutation representations of degree

(
n
k

)
(k < n

2 ) by the action on sets
of size k. To map this action back to an action on n points, we compute all index
n subgroups of G ⊂ Sym(

(
n
k

)
). We expect to find exactly one H ⊂ G with an orbit

O of length
(
n−1
k−1
)
. The action of G on the G-orbit of O will be the presentation we

are looking for.
The relative invariant for H ⊂ G used for the construction of the map is given

by
∑
i∈OXi.

8.2. The primitive wreath product. The primitive wreath product [5, Sec. 2.7]
is a permutation representation of Sym(n) o Sym(m) of degree nm. This primitive
representation can be described as follows. Starting with M := {1, . . . , n}, we get
an action of Sym(n) on M and an action of Sym(n)m on Mm by treating each
component individually. The action of Sym(m) on Mn is simply the permutation
of coordinates.
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We can recover the standard presentation from this by computing all the sub-
groups of index mn of G ⊂ Sym(nm). In the case that a subgroup H with an orbit
O of length nm−1 is found, we compute the action of G on the G-orbit of O. If
this results in a faithful permutation representation (of degree mn) of G, we can
take

∑
i∈OXi as an H ⊂ G relative invariant and continue as in the BlockQuotient

construction.
Aside from the degree reduction, the main advantage is that this map makes the

group structure more visible.

8.3. Multiply transitive subgroups. Let Alt(n) 6= U ⊂ G = Sym(n) or (or
U ⊂ G = Alt(n)) be a maximal and primitive subgroup. Then U is known to be at
most 5-transitive. Thus, we have a chance to find a combinatorial difference in the
action on small sets. For this, we compute intransitive subgroups of small index in
U until we find a subgroup U0 ⊂ U with an orbit O ( {1, . . . , n} that is shorter
than

(
n

#O

)
. Then there will be an exponent k such that

∑
σ∈U//U0

(
∑
i∈O σXi)

e is

a U ⊂ G relative invariant.
Examples for this are the Mathieu group M24 ⊂ Alt(24) and its intransitive

subgroup of index 759 that stabilizes a set of size 8. Another example is PSp(6, 2) ⊂
Alt(28). It has an intransitive subgroup of index 63 with an orbit of length 12.

9. Invariants for intransitive groups

9.1. Remark. At a first glance, invariants for intransitive groups seem to be nec-
essary only when one wants to compute Galois groups of reducible polynomials.
However, several of the recursive constructions above can use intransitive subgroups
and ask for relative invariants to handle them.

9.2. Subdirect products. Let G ⊂ G1 ×G2 ⊂ Sym(n)× Sym(m) be intransitive
groups. We denote the projections of G to G1 and G2 by π1 and π2. If one of the
projections is not surjective then one can use this projection to get a G-invariant
that is not G1 ×G2 invariant.

The interesting case is that both projections are surjective. Then G is called a
subdirect product of G1 and G2.

The main theorem on subdirect products gives us two surjective homomorphisms
φi : Gi → H such that

G = {(g1, g2) ∈ G1 ×G2 | φ1(g1) = φ2(g2)} .

In [6, Sec. 3], we used this to construct relative invariants using linear representa-
tions.

Here, we will explain how to do this using permutation representations.

9.3. Construction. Let a subdirect product G ⊂ G1 ×G2 be given.

(1) Compute the kernel of φ1 as K1 := π1(G ∩ (G1 × {idG2
})).

(2) Find a subgroup U1 ⊂ G1 of minimal index such that the kernel of the
coset action coincides with K1.

(3) Put U2 := π2(G ∩ (U1 ×G2)).
(4) Choose φi as the coset action on Ui.
(5) Construct relative invariants Ii for Ui ⊂ Gi.
(6) Chose univariate polynomials T1, T2 randomly.
(7) Compute the G-invariant I :=

∑
σ∈G//G∩(U1×G2)

T1(I1)σT2(I2)σ.
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(8) If I is a relative invariant then return I. Otherwise, try with other trans-
formations T1, T2.

9.4. Remarks.

(1) The complexity of the invariant depends on the index [G1 : U1]. It would be
very helpful to have an algorithm available that yields a fast construction of
a subgroup U1 of minimal index. For transitive groups of moderate degree,
a naive scan of the subgroup lattice works. Table 3 gives an overview of the
minimal degrees of transitive permutation representations of all non-trivial
quotients of transitive groups in degree n.

n Degree of quotient n Degree of quotient
3 2 4 4
5 4 6 6
7 6 8 16
9 9 10 10
11 10 12 30
13 12 14 14
15 15 16 128
17 16 18 32
19 18 20 128
21 21 22 22
23 22

Table 3 – Degrees occuring for representations of subquotients of
Sym(n)

If we are interested in intransitive permutation representations of the
quotients, we have to deal with orbits up to length 90. The extreme exam-
ples are given by the quotients G/Z(G) for G := Sym(2) o Sym(2k).

(2) The effect of the transformation polynomials Ti can be explained by in-
specting the linear representation of the groups Gi on span{Iσi | σ ∈ Gi}.
If both representations are of dimension [G1 : U1] then we are exactly in
the situation of [6, 3.3, 3.4]. If this representation is of smaller dimension
than expected then we only get quotients of the expected linear represen-
tations. However, there are always transformations T1, T2 that result in
linear representations of the expected dimensions.

10. Relative invariants for non-maximal subgroups

The constructions above focus on the case of maximal subgroups. However, the
recursion may require relative invariants for non-maximal subgroups U ⊂ G of
small index. A solution for this is as follows.

First, we compute all the minimal over-groups Zi of U in G. Then we compute
relative invariants Ii for U ⊂ Zi. In the case that the base ring has infinitely many
elements, there is a linear combination of the Ii that is a relative invariant for
U ⊂ G. To construct it, one can form random linear combinations of the Ii and
check by evaluation that each Zi has an element that does not stabilize it.
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11. Timings, tests, and examples

All tests are done on one core of an Intel i7-3770 CPU with 3.4GHz running
magma 2.20.

11.1. Test on irreducible polynomials. For each transitive permutation group
in degree 16, 18, 20, and 21, we picked one irreducible polynomial out of the data-
base [12]. These are 1954, 983, 1117, resp. 164 test cases. We can compute all
these Galois groups in 1359, 444, 1227, resp. 227 seconds.

The example x20 − 308x16 + 33396x12 − 1554608x8 + 28579232x4 − 113379904,
cf. [7, Sec. 8], can be done in 0.85 seconds. Using magma 2.18 on the same machine,
it takes 47 seconds.

In higher degrees, we can not do a systematic test with polynomials, as there is
no complete database available for polynomials of degree ≥ 24. Table 4 lists a few
examples.

polynomial magma 2.18 magma 2.20 group
x21 + x3 + 8 ∈ Q[x] 1.1 sec 0.7 sec T 138

21

x24 + x3 + 8 ∈ Q[x] 1.5 sec 1.2 sec T 24648
24

x24 + x4 + 16 ∈ Q[x] 54 sec 2.0 sec T 21844
24

x27 + x3 + 8 ∈ Q[x] impossible 2.4 sec T 2357
27

x28 + x4 − 16 ∈ Q[x] impossible 3.2 sec T 1610
28

x30 + x3 + 8 ∈ Q[x] impossible 3.8 sec T 5396
30

x24 + x+ t ∈ F2(t)[x] impossible 12.5 sec M24

Table 4 – Test polynomials and computation time

Impossible means that magma reaches the memory limit of 10GB.

11.2. Testing with the group database. The database [2, 10] of transitive per-
mutation groups is available up to degree 32. For all groups up to degree 30 in the
database, we computed its maximal subgroups and searched for relative invariants.
This enumeration took 2.5 hours. Most of the time was spent to treat the 25000
transitive groups in degree 24. All the other cases were done within 21 minutes.

For the Galois group computation, the number of multiplications for an eval-
uation and the polynomial degree of the invariant determine the costs. The ∆-
invariant of degree

(
n
2

)
for Alt(n) ⊂ Sym(n) is of minimal degree. Thus, in degree

30 we have to handle invariants of degree 435. In theory, a larger degree is never
necessary but the BlockQuotient-construction may result in invariants of larger
degree.

Table 5 shows the maximal number of multiplications used and the largest
polynomial degree of the invariants found for the transitive subgroups in degrees
n = 3, . . . , 30.

The hardest case in degree 26 is an index 2 subgroup of PΓl2(F25) ⊂ Sym(26).
Here, none of the new constructions applies. Thus, the generic invariant algo-
rithm [7, Sec. 4] has to be used. It results in a degree 4 invariant that involves
14735 multiplications.

In degree 32, we have 2801324 transitive groups in the database. The NewBlock-,
E-, F-, and BlockQuotient-constructions fail only for subgroups of 2154 groups.
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n multiplications deg(invariant) n multiplications deg(invariant)
3 2 3 4 5 6
5 15 10 6 35 15
7 20 21 8 159 28
9 542 36 10 760 45
11 264 55 12 660 66
13 77 78 14 364 91
15 436 105 16 2653 120
17 4040 136 18 2900 216
19 170 171 20 2906 190
21 310 210 22 1578 231
23 1012 253 24 3036 276
25 5952 300 26 14735 325
27 4733 351 28 7390 378
29 405 406 30 5213 435

Table 5 – Largest number of multiplications and degrees

This results in 12990 pairs U ⊂ G. For 4074 of them, the action on pairs results
in an invariant as a new orbit or a new block system comes up. In 8639 cases, we
have a minimal block system of size 2. Thus, the coding theoretic approach works.
Finally, a generic invariant has to be used only for 4 pairs of groups. None of the
generic invariants has more than 5000 multiplications.
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