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Abstract

For integer r satisfying 0 ≤ r ≤ p− 2, a sequence family Ωr of polyphase sequences of prime
period p, size (p − 2)pr, and maximum correlation at most 2 + (r + 1)

√
p is presented. The

sequence families are nested, that is, Ωr is contained in Ωr+1, which provides design flexibility
with respect to family size and maximum correlation. The sequences in Ωr are derived from
a combination of multiplicative and additive characters of a prime field. Estimates on hybrid
character sums are then used to bound the maximum correlation. This construction generalizes
Ω0, which was previously proposed by Scholtz and Welch. Sequence family Ω2 is closely related
to a recent design by Wang and Gong, who bounded its maximum correlation using methods
from representation theory and asked for a more direct proof of this bound. Such a proof is
given here and an improvement of the bound is provided.
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1 Introduction

We consider a sequence s of period n to be a mapping s : Z→ C satisfying s(k) = s(n+k) for each
k ∈ Z. We say that a sequence s is a polyphase sequence with alphabet size q if s(k) is a qth root
of unity for each k ∈ Z. The periodic crosscorrelation at displacement u ∈ Z between sequences s
and t of period n is given by

Cs,t(u) :=
n−1∑
k=0

s(k)t(k + u),

and the periodic autocorrelation at displacement u of the sequence s is Cs(u) := Cs,s(u).
Consider a collection of M sequences

F = {si : 1 ≤ i ≤M},
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where each si is a sequence of period n. We say that F is a sequence family of period n. The size
M , the maximum autocorrelation

θA(F) := max
{
|Cs(u)| : s ∈ F , u 6≡ 0 (mod n)

}
,

and the maximum crosscorrelation

θC(F) := max
{
|Cs,t(u)| : s, t ∈ F , s 6= t, u ∈ Z

}
are key parameters of F when F is employed in a code-division multiple access (CDMA) system
(for background see [HK98], for example). Large family size is required to support a large number
of simultaneous users. Small autocorrelation θA(F) is required to ensure message synchronization,
and small crosscorrelation θC(F) is required to minimize interference among different users.

Many authors do not distinguish between autocorrelations and crosscorrelations and define

θ(F) := max{θA(F), θC(F)}

as the maximum correlation of F . A useful benchmark for F is given by the famous Welch
bound [Wel74], which asserts

θ(F) ≥ n
√

M − 1
Mn− 1

, (1)

provided that
∑n−1

k=0 |si(k)|2 = n for each i = 1, 2, . . . ,M (which is satisfied for polyphase sequences).
When M and n both tend to infinity, the bound (1) asserts that θ(F) must grow at least like

√
n.

There exist many designs of sequence families that meet this asymptotic bound with equality; a
good overview is given in [HK98]. It appears however that the size of such sequence families is
limited by approximately the period of the sequence family. This motivates the construction of
sequence families that allow a tradeoff between size and maximum correlation.

A reference design that provides such a tradeoff was proposed by Kumar, Helleseth, and Calder-
bank [KHC95]. Given a prime p and positive integers e and m, [KHC95] constructs a family of
polyphase sequences with alphabet size pe having period pm−1, size at least pm(r+1), and maximum
correlation at most 1 + (r + 1)

√
pm, where r is an integer satisfying 0 ≤ r < pe − 2. When e = 1,

this sequence family was discovered much earlier by Sidelnikov [Sid71, Thm. 3]. The construction
is based on evaluating additive characters of polynomials over a Galois ring (or over a Galois field
if e = 1). A bound on character sums involving polynomial arguments is then used to estimate the
maximum correlation.

The contribution of this paper is a construction of a sequence family Ω∗r of prime period p, size
(p−2)pr, and maximum correlation at most (r+1)

√
p, where r is an integer satisfying 0 ≤ r ≤ p−2.

The sequences in Ω∗r take on values that are p(p − 1)th roots of unity except for one element per
period, which is zero. By changing these zeros to ones, we obtain a new sequence family Ωr,
which now has maximum correlation at most 2 + (r + 1)

√
p and comprises polyphase sequences

whose alphabet size is p− 1 for r = 0 and p(p− 1) for r > 0. The sequences in Ω∗r are derived from
multiplicative and additive characters of polynomials over a prime field. Bounds on the magnitude of
hybrid character sums with polynomial arguments are then used to bound the maximum correlation.

Sequence family Ω∗r generalizes Ω∗0, which was previously proposed by Scholtz and Welch [SW78].
The related sequence family Ω0 was also studied by Kim et al. [KSGC06]. In view of (1), the
maximum correlation of Ω0 and Ω∗0 is asymptotically best possible. Sequence family Ω∗2 was recently
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constructed by Wang and Gong [WG, Construction A] following earlier work by Gurevich, Hadani,
and Sochen [GHS08]. Using methods from representation theory, the authors obtained the bound
θ(Ω∗2) ≤ 4

√
p, and asked for a more direct proof of this fact. Such a proof is provided here along

with the improvement θ(Ω∗2) ≤ 3
√
p. Wang and Gong also proved further properties of Ω∗2, such as

low magnitude of the Fourier transform and bounded ambiguity function of the sequences in Ω∗2.
These properties can also be proved and improved similarly to the proof of the main result of this
paper. Indeed, it is also possible to obtain corresponding bounds for Ω∗r in general.

2 Characters and Character Sums

Given a group G, a character is a group homomorphism from G to the complex numbers. Let p
be a prime, let Fp be the finite field containing p elements, and write F∗p := Fp \ {0}. Whenever
convenient, we treat integers after reduction modulo p as elements in Fp. We are interested in
characters defined on the additive group (Fp,+) and on the multiplicative group (F∗p, · ).

For positive integer n write
en(x) := e

√
−12πx/n.

Given b ∈ Fp, the mapping ψb : Fp → C, defined by

ψb(x) = ep(bx),

is called an additive character of Fp. For b = 0, the character ψb is called trivial, otherwise it is
called nontrivial. It is readily verified that an additive character ψ of Fp is indeed a homomorphism:

ψ(x+ y) = ψ(x)ψ(y) for all x, y ∈ Fp. (2)

Now let g be a generator for the cyclic group (F∗p, · ). Then, for integer a, the mapping χa : F∗p → C,
given by

χa(gi) = ep−1(ai),

is called a multiplicative character of Fp. For a ≡ 0 (mod p− 1), the character χa is called trivial,
otherwise it is called nontrivial. It is convenient to extend a multiplicative character χ to a mapping
acting on Fp by putting χ(0) = 0. This extension preserves the homomorphism property, so that
for each multiplicative character χ of Fp we have

χ(xy) = χ(x)χ(y) for all x, y ∈ Fp. (3)

The order of a multiplicative character χa is defined to be the least positive integer d such that
da ≡ 0 (mod p−1). Equivalently, d = (p−1)/ gcd(a, p−1). Multiplicative characters of Fp having
order p − 1 will be called primitive. We say that a polynomial g(x) ∈ Fp[x] is not a dth power if
g(x) 6= c[f(x)]d for each c ∈ Fp and each f(x) ∈ Fp[x].

The key tools of this paper are the following bounds on sums involving characters with poly-
nomial arguments. These results trace back to Weil, who provided the foundations of their proofs
using deep methods from algebraic geometry. More elementary proofs were later established. Our
first result was proved in [LN97, Thm. 5.38] (see also [Sch76, p. 44, Thm. 2E]).
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Result 1 ([LN97, Thm. 5.38]). Let ψ be a nontrivial additive character of Fp, and let f(x) ∈ Fp[x]
be of degree n ≥ 1 with gcd(n, p) = 1. Then∣∣∣∣∣ ∑

x∈Fp

ψ(f(x))

∣∣∣∣∣ ≤ (n− 1)
√
p.

Our second result was proved in [NW02, Lem. 2.2] by relaxing the conditions of [Sch76, p. 45,
Thm. 2G].

Result 2 ([NW02, Lem. 2.2]). Let χ be a nontrivial multiplicative character of Fp of order d, and
let ψ be a nontrivial additive character of Fp. Suppose that g(x) ∈ Fp[x] has m distinct roots in
its splitting field and that g(x) is not a dth power. Suppose further that f(x) ∈ Fp[x] has degree n.
Then ∣∣∣∣∣ ∑

x∈Fp

χ(g(x))ψ(f(x))

∣∣∣∣∣ ≤ (m+ n− 1)
√
p.

For m = 2 and n = 0, Result 2 can be strengthened as follows (see [LN97, Exercise 5.54], for
example).

Result 3. Let χ be a nontrivial multiplicative character of Fp of order d. Let u and v be distinct
elements of Fp, and let h be an integer satisfying 0 < h < d. Then∑

x∈Fp

χ((x+ v)h(x+ u)d−h) = −1.

3 The Construction

Given a prime p > 3 and a nonnegative integer r, let i be an integer satisfying 0 ≤ i < (p − 2)pr.
Then i admits the unique decomposition

i = (a− 1)pr + brp
r−1 + br−1p

r−2 + · · ·+ b1,

where a and bj are integers satisfying 1 ≤ a < p− 1 and 0 ≤ bj < p for j = 1, 2, . . . , r. Let χ be a
primitive multiplicative character of Fp, let ψ be a nontrivial additive character of Fp, and consider
the sequence si given by

si(k) = χ(ka)ψ(brkr + br−1k
r−1 + · · ·+ b1k). (4)

It is immediate that the period of si equals p. For r = 0, 1, . . . , p− 2, we define sequence family Ω∗r
of period p to be the multiset

Ω∗r := {si : 0 ≤ i < (p− 2)pr}.

These sequence families form a nested chain of increasing size:

Ω∗0 ⊂ Ω∗1 ⊂ · · · ⊂ Ω∗p−2.

In order to establish the correlation properties of sequence family Ω∗r , we first prove that, for
0 ≤ i < (p− 2)pr, all sequences si are distinct.
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Lemma 4. Ω∗r contains (p− 2)pr distinct sequences.

Proof. Consider two sequences s, t ∈ Ω∗r . Then there exist integers a, a′ and polynomials b(x), b′(x) ∈
Fp[x] such that

s(k) = χ(ka)ψ(b(k))

t(k) = χ(ka
′
)ψ(b′(k))

for each k ∈ Z. By definition, a, a′ satisfy 1 ≤ a, a′ < p− 1 and b(x), b′(x) have degree strictly less
than p− 1 and satisfy b(0) = b′(0) = 0. We show that s = t forces a = a′ and b(x) = b′(x), which
will prove the lemma.

Consider the product s(k)t(k) and use (2) and (3) to obtain

s(k)t(k) = χ(ka)χ(ka′)ψ(b(k))ψ(b′(k))

= χ(ka−a
′
)ψ(b(k)− b′(k)).

By the definition of characters acting on Fp, there exist integer-valued functions A and B such that
for k 6≡ 0 (mod p)

χ(ka−a
′
) = ep−1(A(k)) (5)

and
ψ(b(k)− b′(k)) = ep(B(k)). (6)

Hence,
s(k)t(k) = e(p−1)p(pA(k) + (p− 1)B(k)) for k 6≡ 0 (mod p).

Now suppose that s = t. Then s(k)t(k) = 1 for each k 6≡ 0 (mod p). Since gcd(p, p − 1) = 1, the
Chinese Remainder Theorem implies for k 6≡ 0 (mod p)

A(k) ≡ 0 (mod p− 1)

and
B(k) ≡ 0 (mod p).

Substitution into (5) and (6) gives for k 6≡ 0 (mod p)

χ(ka−a
′
) = 1 (7)

and
ψ(b(k)− b′(k)) = 1. (8)

Now, since χ is primitive, (7) implies a ≡ a′ (mod p−1), which forces a = a′ since 1 ≤ a, a′ < p−1.
Since b(0) = b′(0), we conclude from (8) that b(x) ≡ b′(x) (mod p). This forces b(x) = b′(x) because
b(x) and b′(x) have degree at most p− 2, and the lemma is proved.

The correlation properties of sequence family Ω∗r are summarized in the following theorem.
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Theorem 5. We have θ(Ω∗r) ≤ (r + 1)
√
p. In particular,

θA(Ω∗r) ≤

{
1 for r ∈ {0, 1}
r
√
p otherwise

(9)

and

θC(Ω∗r) ≤ (r + 1)
√
p. (10)

Proof. Given two sequences s, t ∈ Ω∗r , we can write

s(k) = χ(ka)ψ(b(k))

t(k) = χ(ka
′
)ψ(b′(k))

for each k ∈ Z, where 1 ≤ a, a′ < p − 1 and b(x), b′(x) ∈ Fp[x] have degree at most r and satisfy
b(0) = b′(0) = 0. Using the homomorphism properties (2) and (3) of ψ and χ and Fermat’s little
theorem xp−1 ≡ 1 (mod p) for x 6≡ 0 (mod p), we then find that

Cs,t(u) =
p−1∑
k=0

s(k)t(k + u)

=
p−1∑
k=0

χ(ka)ψ(b(k))χ((k + u)a′)ψ(b′(k + u))

=
∑
x∈Fp

χ(g(x))ψ(f(x)), (11)

where g(x), f(x) ∈ Fp[x] are given by

g(x) = xa(x+ u)p−1−a′

f(x) = b(x)− b′(x+ u).

Suppose first that u 6≡ 0 (mod p) and s = t, so by Lemma 4, a = a′ and b(x) = b′(x). Then
g(x) has precisely two distinct zeros and cannot be a (p − 1)th power. Moreover, for r > 0, f(x)
has degree at most r− 1. Application of Result 2 to (11) then shows that |Cs(u)| ≤ r√p for r > 0.
If r ∈ {0, 1}, then deg f(x) = 0 and ψ(f(x)) ≡ c for some complex c with |c| = 1. In this case we
apply Result 3 with h = a to (11) to show that |Cs(u)| = 1. This proves (9).

Now suppose that s 6= t. We distinguish the following two cases.

• Case 1: g(x) is a (p− 1)th power. Here, we have χ(g(x)) = 0 for x = 0 and χ(g(x)) = c for
some complex c with |c| = 1 otherwise. Therefore, from (11),

|Cs,t(u)| =
∣∣∣ ∑
x∈F∗p

ψ(f(x))
∣∣∣

=
∣∣∣− ψ(f(0)) +

∑
x∈Fp

ψ(f(x))
∣∣∣

≤ 1 +
∣∣∣ ∑
x∈Fp

ψ(f(x))
∣∣∣. (12)

6



Since g(x) is a (p− 1)th power, we must have a = a′ and u ≡ 0 (mod p). Then s 6= t forces
b(x) 6= b′(x). By assumption, b(0) = b′(0) = 0, hence f(x) has degree at least 1. But f(x)
can have degree at most r, which is less than p, so that gcd(deg f(x), p) = 1. Application of
Result 1 to (12) therefore gives

|Cs,t(u)| ≤ 1 + (r − 1)
√
p.

• Case 2: g(x) is not a (p− 1)th power. Here, g(x) has at most two distinct zeros and f(x) has
degree at most r. Application of Result 2 to (11) then gives

|Cs,t(u)| ≤ (r + 1)
√
p.

This proves (10).

Note that si, as defined in (4), satisfies |si(k)| = 1 for k 6≡ 0 (mod p) and si(k) = 0 for k ≡ 0
(mod p). In practise however it is desirable to use polyphase sequences. We therefore modify si
and define the sequence s′i by

s′i(k) =

{
1 for k ≡ 0 (mod p)
si(k) otherwise

for 0 ≤ i < (p− 2)pr. The corresponding sequence family is defined to be

Ωr := {s′i : 0 ≤ i < (p− 2)pr}

for r = 0, 1, . . . , p− 2. By Lemma 4, Ωr contains again (p− 2)pr distinct sequences. But now the
sequences in Ωr are polyphase sequences whose alphabet size is p − 1 for r = 0 and p(p − 1) for
r > 0. Observe that for all s, t ∈ Ω∗r ,

Cs′,t′(u) = Cs,t(u) + t′(u) + s′(−u).

We therefore have |Cs′,t′(u)| ≤ 2 + |Cs,t(u)| and obtain the following corollary.

Corollary 6. We have θ(Ωr) ≤ 2 + (r + 1)
√
p. In particular,

θA(Ωr) ≤

{
3 for r ∈ {0, 1}
2 + r

√
p otherwise

and

θC(Ωr) ≤ 2 + (r + 1)
√
p.

Notice that Corollary 6 gives a nontrivial bound for θ(Ωr) only if r is less than (p− 2)/
√
p− 1.

We close this section with an example. Take p = 5, and write ω :=
√
−1 and ζ := e

√
−12π/5.

Let ψ be the additive character of F5 given by ψ(k) = ζk, and let χ be the primitive multiplicative
character of F5 given by χ(2j) = ωj . Then the sequences in Ω∗1 have period 5 and are of the form

s5(a−1)+b(k) = χ(ka)ψ(bk) for a ∈ {1, 2, 3} and b ∈ {0, 1, 2, 3, 4},
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where

(χ(ka) : 0 ≤ k < 5) =


(0, 1, ω,−ω,−1) for a = 1
(0, 1,−1,−1, 1) for a = 2
(0, 1,−ω, ω,−1) for a = 3

and

(ψ(bk) : 0 ≤ k < 5) =



(1, 1, 1, 1, 1) for b = 0
(1, ζ, ζ2, ζ3, ζ4) for b = 1
(1, ζ2, ζ4, ζ, ζ3) for b = 2
(1, ζ3, ζ, ζ4, ζ2) for b = 3
(1, ζ4, ζ3, ζ2, ζ) for b = 4.

Direct inspection gives θA(Ω∗1) = 1 and θC(Ω∗1) ' 2.90, which should be compared with the bounds
θA(Ω∗1) ≤ 1 and θC(Ω∗1) ≤ 2

√
5 in Theorem 5. We also have θA(Ω1) = 3 and θC(Ω1) ' 4.52, which

should be compared with the bounds θA(Ω1) ≤ 3 and θC(Ω1) ≤ 2(1 +
√

5) in Corollary 6.
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