
Lq NORMS OF FEKETE AND RELATED POLYNOMIALS
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Abstract. A Littlewood polynomial is a polynomial in C[z] having all
of its coefficients in {−1, 1}. There are various old unsolved problems,
mostly due to Littlewood and Erdős, that ask for Littlewood polynomials
that provide a good approximation to a function that is constant on the
complex unit circle, and in particular have small Lq norm on the complex
unit circle. We consider the Fekete polynomials

fp(z) =

p−1∑
j=1

(j |p) zj ,

where p is an odd prime and ( · |p) is the Legendre symbol (so that
z−1fp(z) is a Littlewood polynomial). We give explicit and recursive
formulas for the limit of the ratio of Lq and L2 norm of fp when q is
an even positive integer and p → ∞. To our knowledge, these are the
first results that give these limiting values for specific sequences of non-
trivial Littlewood polynomials and infinitely many q. Similar results are
given for polynomials obtained by cyclically permuting the coefficients
of Fekete polynomials and for Littlewood polynomials whose coefficients
are obtained from additive characters of finite fields. These results vastly
generalise earlier results on the L4 norm of these polynomials.

1. Introduction

For real α ≥ 1, the Lα norm of a polynomial f in C[z] on the complex
unit circle is

‖f‖α =

(
1

2π

∫ 2π

0
|f(eiθ)|α dθ

)1/α

,

and its supremum norm is ‖f‖∞ = maxθ∈[0,2π]|f(eiθ)|. There are various
extremal problems, originally raised by Erdős, Littlewood, and others, con-
cerning the behaviour of such norms for polynomials with all coefficients in
{−1, 1}, which are today called Littlewood polynomials (see Littlewood [29],
Borwein [3], and Erdélyi [12] for surveys on selected problems). Roughly
speaking, such problems ask for Littlewood polynomials f that provide a
good approximation to a function that is constant on the unit circle. Note
that this constant is necessarily ‖f‖2 =

√
1 + deg f .

Several conjectures have been posed that address the question of what is
the best approximation in a certain sense. For example, Golay [17] conjec-
tured that there exists a constant c such that ‖f‖4/‖f‖2 ≥ 1 + c for every
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nonconstant Littlewood polynomial f and Littlewood [28] conjectured that
there is no such constant. Golay’s conjecture implies another famous conjec-
ture due to Erdős [14], [32], which states that there exists a constant c′ such
that ‖f‖∞/‖f‖2 ≥ 1 + c′ for every nonconstant Littlewood polynomial f .
All these conjectures are wide open.

Borwein and Lockhart [6] proved that, if fn is a random polynomial of
degree n− 1, then

lim
n→∞

E

(
‖fn‖α√

n

)α
= Γ(1 + α/2)

and (‖fn‖α/
√
n)α is asymptotically concentrated around its expectation (see

also Choi and Erdélyi [8] for more results on Lα norms of random Littlewood
polynomials). Littlewood [29] (and independently Newman and Byrnes [32]
and Høholdt, Jensen, and Justesen [20]) determined the L4 norm of the
Rudin-Shapiro polynomials [35], [34]. More generally, a conjecture attrib-
uted in [10] to Saffari asserts that, if q is a positive integer and fn is a
Rudin-Shapiro polynomial of degree n− 1, then

lim
n→∞

(
‖fn‖2q√

n

)2q

=
2q

q + 1
.

This conjecture is true for q ≤ 27 by combining results of Doche and
Habsieger [10] and Taghavi and Azadi [37], but the general problem re-
mains open.

In this paper we consider the following families of polynomials. For an
odd prime p, the Fekete polynomial of degree p− 1 is

fp(z) =

p−1∑
j=1

(j |p) zj ,

where ( · |p) is the Legendre symbol. Note that z−1fp(z) is a Littlewood
polynomial, which has the same Lα norm as fp(z). For a Mersenne number

n = 2k−1, a Galois polynomial of degree n−1 is the Littlewood polynomial

gn(z) =
n−1∑
j=0

ψ(θj) zj ,

where θ is a primitive element of F2k and ψ is a nontrivial additive character
of F2k . Fekete polynomials appear frequently in the context of extremal
polynomial problems [30], [19], [23], [9], [5], [4], [22], [21], [24] and have been
studied extensively now for over a century [15].

Erdélyi [13] established the order of growth of the Lα norm of Fekete poly-
nomials. Høholdt and Jensen [19] proved that, for Fekete polynomials fp,

lim
p→∞

(
‖fp‖4√

p

)4

=
5

3
.
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In fact Borwein and Choi [4] established exact expressions for ‖fp‖4 in terms
of the class number of Q(

√
−p). Jensen, Jensen, and Høholdt [23] proved

that, for Galois polynomials gn,

lim
n→∞

(
‖gn‖4√

n

)4

=
4

3
.

These are in fact special cases of our main results (see Theorems 2.1 and 2.3),
which provide corresponding limiting values for the L2q norms of Fekete
and Galois polynomials for all positive integers q. To our knowledge, these
are the first results that give these limiting values for specific sequences of
nontrivial Littlewood polynomials and infinitely many q.

We also consider the shifted Fekete polynomials

f rp (z) =

p−1∑
j=0

(j + r |p) zj ,

where r is an integer, which can depend on p. It is known [19] that, if
r/p→ R as p→∞, then

(1) lim
p→∞

(‖f rp‖4√
p

)4

=
7

6
+

1

2
(4|R| − 1)2 for |R| ≤ 1

2
.

Again, this is a special case of a more general result (see Theorem 2.5). Note
that a shifted Fekete polynomial is not necessarily a Littlewood polynomial
since one of its first p coefficients is zero. However changing this coefficient
to −1 or 1 does not affect the asymptotic behaviour of the Lα norm.

2. Results

We begin with establishing some notation that is required to state our re-
sults. For a positive integerm, let Πm be the set of partitions of {1, 2, . . . ,m}.
For π ∈ Πm, we refer to the elements of π as blocks and we say that π is
even if each block of π has even cardinality.

For a positive integer n and real x, we define the generalised Eulerian
numbers to be

(2)

〈
n

x

〉
=

bx+1c∑
j=0

(−1)j
(
n+ 1

j

)
(x+ 1− j)n.

Note that
〈
n
x

〉
is nonzero only for x ∈ (−1, n). If x is integral, then

〈
n
x

〉
is an Eulerian number in the usual sense. We refer to the book [33] for
the combinatorial significance of Eulerian numbers and to [39] for a natural
interpretation of generalised Eulerian numbers in terms of splines.

The signed tangent numbers T (k) are defined by the Maclaurin series

(3) log cosh(z) =
∞∑
k=1

T (k)

(2k)!
z2k.
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They are scaled versions of Bernoulli numbers and |T (k)| = (−1)k+1T (k)
are known as the tangent or zag numbers, which appear in [1] as A000182 =
[1, 2, 16, 272, 7936, 353792, . . . ]. The numbers T (k) can be recursively deter-
mined via

T (k) = 1−
k−1∑
j=1

(
2k − 1

2j − 1

)
T (j) for k ≥ 1,

which can be deduced from Lemma 4.3.
For Fekete polynomials we have the following result.

Theorem 2.1. Let q be a positive integer and let fp be the Fekete polynomial
of degree p− 1. Then

lim
p→∞

(
‖fp‖2q√

p

)2q

=
∑
π∈Π2q

π even

∑
a1,...,a`∈Z
a1+···+a`=q

∏̀
i=1

T (Ni)

(2Ni − 1)!

〈
2Ni − 1

ai − 1

〉
,

where π = {B1, . . . , B`} and Ni = |Bi|/2 for all i.

The following corollary provides an efficient way to compute the limiting
values in Theorem 2.1.

Corollary 2.2. Set F (0, 0) = 1 and, for 1 ≤ m ≤ 2k−1, define the numbers
F (k,m) recursively by

F (k,m) =
k∑
j=1

(
2k − 1

2j − 1

)
T (j)

(2j − 1)!

∑
i

〈
2j − 1

i− 1

〉
F (k − j,m− i),

where the inner sum is over all i such that F (k−j,m−i) is defined. Let q be
a positive integer and let fp be the Fekete polynomial of degree p− 1. Then

lim
p→∞

(
‖fp‖2q√

p

)2q

= F (q, q).

For k ≥ 1, the numbers (2k−1)!F (k,m) identified in Corollary 2.2 define
a triangular array of integers, whose first four rows are given by:

1
−2 10 −2

16 −184 456 −184 16
−272 5776 −30736 55504 −30736 5776 −272

The first and last entry in row k equals T (k) and the central entry in row k
divided by (2k−1)! equals the limiting value in Corollary 2.2 for k = q. The
first eight of these limiting values are:

1,
5

3
,

19

5
,

3469

315
,

21565

567
,

7760593

51975
,

12478099

19305
,

643983856759

212837625
.
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We now turn to Galois polynomials. Let J0(z) be the zeroth Bessel func-
tion of the first kind and define the numbers C(k) via the Maclaurin series

(4) log(J0(2
√
z)) =

∞∑
k=1

(−1)k C(k)

(k!)2
zk.

We call these numbers the signed Carlitz numbers. The corresponding un-
signed numbers |C(k)| = (−1)k+1C(k) have been extensively studied by
Carlitz [7] and appear in [1] as A002190 = [0, 1, 1, 4, 33, 456, 9460, . . . ] (which
starts at k = 0 with C(0) = 0). The numbers C(k) can be recursively de-
termined via

C(k) = 1−
k−1∑
j=1

(
k

j

)(
k − 1

j − 1

)
C(j) for k ≥ 1,

which again can be deduced from Lemma 4.3.
For Galois polynomials we have the following result.

Theorem 2.3. Let q be a positive integer and let gn be a Galois polynomial
of degree n− 1. Then

lim
n→∞

(
‖gn‖2q√

n

)2q

=
∑
π∈Πq

(
q

N1, . . . , N`

) ∑
a1,...,a`∈Z
a1+···+a`=q

∏̀
i=1

C(Ni)

(2Ni − 1)!

〈
2Ni − 1

ai − 1

〉
,

where π = {B1, . . . , B`} and Ni = |Bi| for all i.

We have the following counterpart of Corollary 2.2 for Galois polynomials.

Corollary 2.4. Set G(0, 0) = 1 and, for 1 ≤ m ≤ 2k−1, define the numbers
G(k,m) recursively by

G(k,m) =
k∑
j=1

(
k

j

)(
k − 1

j − 1

)
C(j)

(2j − 1)!

∑
i

〈
2j − 1

i− 1

〉
G(k − j,m− i),

where the inner sum is over all i such that G(k−j,m−i) is defined. Let q be
a positive integer and let gn be a Galois polynomial of degree n− 1. Then

lim
n→∞

(
‖gn‖2q√

n

)2q

= G(q, q).

For k ≥ 1, the numbers (2k − 1)!G(k,m) identified in Corollary 2.4 also
define a triangular array of integers, whose first four rows are given by:

1
−1 8 −1

4 −76 264 −76 4
−33 1248 −9735 22080 −9735 1248 −33
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The first and last entry in row k equals C(k) and the central entry in row k
divided by (2k−1)! equals the limiting value in Corollary 2.4 for k = q. The
first eight of these limiting values are:

1,
4

3
,

11

5
,

92

21
,

15481

1512
,

411913

15120
,

2482927

30888
,

4181926481

16216200
.

In what follows we consider the shifted Fekete polynomials.

Theorem 2.5. Let q be a positive integer and let f rp be a shifted Fekete
polynomial corresponding to the Fekete polynomial of degree p− 1. If r/p→
R as p→∞, then

lim
p→∞

(‖f rp‖2q√
p

)2q

=
∑
π∈Π2q

π even

∑
a1,...,a`∈Z
a1+···+a`=q

∏̀
i=1

T (Ni)

(2Ni − 1)!

〈
2Ni − 1

2R(Ni − Pi) + ai − 1

〉
,

where π = {B1, . . . , B`}, Ni = |Bi|/2, and Pi = |{x ∈ Bi : x > q}| for all i.

Note that, for R = 0, Theorem 2.5 reduces to Theorem 2.1. We are not
aware of a computationally efficient version of Theorem 2.5 in a spirit similar
to Corollaries 2.2 and 2.4.

It follows from Theorem 2.5 that, for each positive integer q, there exists
a function ϕq : R→ R such that, if r/p→ R, then

lim
p→∞

(‖f rp‖2q√
p

)2q

= ϕq(R).

Since the generalised Eulerian numbers
〈
n
x

〉
are continuous piecewise poly-

nomial functions of x, the functions ϕq are also continuous piecewise poly-
nomial functions. It follows from Theorem 2.5 that ϕq(x+ 1/2) = ϕq(x) for
all x ∈ R. It can also be shown that ϕq(−x) = ϕq(x) for all x ∈ R, so that
it is sufficient to know ϕq(x) for x ∈ [0, 1/2). We have for example

ϕ2(x) =
7

6
+

1

2
(4x− 1)2 for 0 ≤ x ≤ 1

2
,

in accordance with (1),

ϕ3(x) =
31

20
+

3

4
(4x− 1)2(16x2 − 8x+ 3) for 0 ≤ x ≤ 1

2
,

and

ϕ4(x) =

{
φ(x) for 0 ≤ x ≤ 1/4

φ(1/2− x) for 1/4 ≤ x ≤ 1/2,

where

φ(x) =
653

280
+

1

72
(4x− 1)2(60416x4 − 52736x3 + 20208x2 − 4216x+ 625

)
.
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For q ∈ {2, 3, 4}, it is readily verified that the function ϕq attains its global
minimum at a unique point in [0, 1/2), namely at 1/4. We could not prove
that this is true for all q > 1, but conjecture that this is the case. For
convenience, we provide the first eight values of ϕq(1/4) (starting with q =
1):

1,
7

6
,

31

20
,

653

280
,

71735

18144
,

24880549

3326400
,

72207143

4633200
,

960901090937

27243216000
.

We shall prove our results for Fekete and Galois polynomials in Sections 4
and 5, respectively.

We note that it is also possible to define shifted Galois polynomials by
cyclically permuting the coefficients of a Galois polynomial. However ev-
ery such polynomial is again a Galois polynomial. It should also be noted
that our methods can be used to establish similar results for polynomials
obtained by periodically appending or truncating monomials in Fekete or
Galois polynomials, as considered in [22] and [21].

3. Calculation of L2q norms

We begin with establishing some notation that will be used throughout
this paper. For a positive integer n, we write en(x) = exp(2πix/n). Let

f(z) =
∑n−1

j=0 ajz
j be a polynomial of degree n − 1 in C[z] and let r be an

integer. Define the shifted polynomial

f r(z) =
n−1∑
j=0

aj+rz
j ,

where we extend the definition of aj so that aj+n = aj for all j ∈ Z. We shall
express the L2q norm of this polynomial in a form that will be convenient
for us later.

To do so, we associate with f the function Lf : (Z/nZ)2q → C given by

Lf (t1, . . . , t2q) =
1

nq+1

∑
m∈Z/nZ

q∏
k=1

f(en(m+ tk))f(en(m+ tq+k))

and define another function hn,r : (Z/nZ)2q → C by

hn,r(t1, . . . , t2q) =
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

q∏
k=1

en(tk(jk + r))en(tq+k(jq+k + r)).

The following proposition will be the starting point to prove our main results.

Proposition 3.1. Let q be a positive integer, let f be a polynomial in C[z]
of degree n− 1, and let r be an integer. Then

‖f r‖2q2q =
1

nq

∑
t∈(Z/nZ)2q

Lf (t)hn,r(t).
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Proof. Write f(z) =
∑n−1

j=0 ajz
j . From

‖f r‖2q2q =
1

2π

∫ 2π

0

[
f r(eiθ)f r(eiθ)

]q
dθ

we obtain

‖f r‖2q2q =
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

q∏
k=1

ajk+r ajq+k+r.

Now it is readily verified that

aj =
1

n

∑
s∈Z/nZ

f(en(s)) en(−sj),

giving

‖f r‖2q2q =
1

n2q

∑
s1,...,s2q∈Z/nZ

hn,r(s1, . . . , s2q)

q∏
k=1

f(en(sk)) f(en(sq+k)).

Re-index the summation with si = m + ti for all i and then sum over
m ∈ Z/nZ to obtain the statement in the proposition. �

We also need the following estimate.

Lemma 3.2. There exists a constant Cq, depending only on q, such that∑
t∈(Z/nZ)2q

|hn,r(t)| ≤ Cq n2q(log n)2q−1

for all r.

Proof. After re-indexing the summation in the definition of hn,r(t), the state-
ment of the lemma is equivalent to

(5)
∑

t1,...,t2q∈Z/nZ

∣∣∣∣∣ ∑
0≤j1,...,j2q<n

j1+···+j2q=q(n−1)

en(t1j1+· · ·+t2qj2q)

∣∣∣∣∣ ≤ Cq n2q(log n)2q−1.

For a positive integer d let P ⊆ [0, 1]d be a polyhedron and let

Fn(z1, . . . , zd) =
∑

(j1,...,jd)∈Zd∩(n−1)P

zj11 · · · z
jd
d

be a polynomial in C[z1, . . . , zd]. Write

Sn =
∑

s1,...,sd∈Z/nZ

∣∣Fn(e2πis1/n, . . . , e2πisd/n)
∣∣.

We shall see at the end of the proof that the left hand side of (5) equals nSn
for a particular choice of the polyhedron P .

The L1 norm of Fn is defined to be

‖Fn‖1 =
1

(2π)d

∫ 2π

0
· · ·
∫ 2π

0

∣∣Fn(eiθ1 , . . . , eiθd)
∣∣ dθ1 · · · dθd.
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It is known (see [38, 9.2.1], for example) that

(6) ‖Fn‖1 ≤ γ(P )(log n)d,

where γ(P ) depends only on the polyhedron P . We shall find an upper
bound for Sn in terms of ‖Fn‖1.

Let f be a polynomial in C[z]. By the mean value theorem there exist
real numbers θ0, . . . , θn−1 with θs ∈ [2πs/n, 2π(s+ 1)/n] for all s such that

(7) ‖f‖1 =
1

2π

n−1∑
s=0

∫ 2π(s+1)/n

2πs/n

∣∣f(eiθ)
∣∣ dθ =

1

n

n−1∑
s=0

∣∣f(eiθs)
∣∣.

By the triangle inequality we have∣∣∣∣∣
n−1∑
s=0

∣∣f(eiθs)
∣∣− n−1∑

s=0

∣∣f(e2πis/n)
∣∣∣∣∣∣∣ ≤

n−1∑
s=0

∣∣f(eiθs)− f(e2πis/n)
∣∣

=

n−1∑
s=0

∣∣∣∣∣
∫ θs

2πs/n
f ′(eiθ) dθ

∣∣∣∣∣
≤
∫ 2π

0

∣∣f ′(eiθ)∣∣ dθ
= 2π‖f ′‖1.(8)

Now suppose that f has degree at most n − 1. Then ‖f ′‖1 ≤ (n − 1) ‖f‖1
by a Bernstein-type inequality (see [3, p. 143] or [40, p. 11], for example).
Combination of (7) and (8) then gives

n−1∑
s=0

∣∣f(e2πis/n)
∣∣ ≤ (1 + 2π)n ‖f‖1.

Since Fn(z1, . . . , zd) has degree at most n− 1 in each indeterminate, we find
by a straightforward induction that

Sn ≤ (1 + 2π)dnd ‖Fn‖1,

and then with (6),

(9) Sn ≤ (1 + 2π)dγ(P )(n log n)d.

Now we take d = 2q − 1 and

P =

{
(x1, . . . , x2q−1) ∈ R2q−1 :

0 ≤ x1, . . . , x2q−1 ≤ 1,

q − 1 ≤ x1 + · · ·+ x2q−1 ≤ q

}
.

Set j2q = q(n−1)−j1−· · ·−j2q−1 and si = ti−t2q for all i ∈ {1, 2, . . . , 2q−1}
in (5) to see that the left hand side of (5) equals∑

t2q∈Z/nZ

Sn = nSn,

so that the desired inequality (5) follows from (9). �
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4. Fekete polynomials

In this section we prove Theorem 2.5 (and therefore also Theorem 2.1)
and Corollary 2.2.

We say that a tuple (t1, t2, . . . , t2q) is even if there exists a permutation σ
of {1, 2, . . . , 2q} such that tσ(2k−1) = tσ(2k) for all k ∈ {1, 2, . . . , q}. For
example, (2, 1, 1, 3, 2, 3) is even, whereas (2, 1, 1, 3, 1, 3) is not even. Let
Eq(n) be the set of even tuples in (Z/nZ)2q.

We begin with the following lemma.

Lemma 4.1. Let q be a positive integer and let f rp be a shifted Fekete poly-
nomial corresponding to the Fekete polynomial of degree p− 1. Then

lim
p→∞

(‖f rp‖2q√
p

)2q

= lim
p→∞

1

p2q

∑
t∈Eq(p)

hp,r(t),

provided that one of the limits exists.

Proof. Let fp be the Fekete polynomial of degree p − 1. For t ∈ (Z/pZ)2q,
let Jp(t) be the indicator function that equals one if t is even and is zero
otherwise. From Proposition 3.1 we find that(‖f rp‖2q√

p

)2q

=
1

p2q

∑
t∈(Z/pZ)2q

Jp(t)hp,r(t)+
1

p2q

∑
t∈(Z/pZ)2q

(
Lfp(t)− Jp(t)

)
hp,r(t).

We show that the second sum on the right hand side tends to zero. This
will prove the lemma since∑

t∈(Z/pZ)2q

Jp(t)hp,r(t) =
∑

t∈Eq(p)

hp,r(t).

Notice that fp(ep(k)) is a quadratic Gauss sum, whose explicit evaluation
is [2]

fp(ep(k)) = i(p−1)2/4p1/2 (k |p).
Therefore

Lfp(t1, . . . , t2q) =
1

p

p−1∑
m=0

(m+ t1 |p) · · · (m+ t2q |p).

If (t1, . . . , t2q) is even, then it is readily verified that

1− q/p ≤ Lfp(t1, . . . , t2q) ≤ 1− 1/p.

On the other hand, if (t1, . . . , t2q) is not even, then the Weil bound for sums
over multiplicative characters [31, Lemma 9.25], [27, Theorem 5.41] gives

|Lfp(t1, . . . , t2q)| ≤ (2q − 1)p−1/2.

Therefore ∣∣Lfp(t)− Jp(t)∣∣ ≤ (2q − 1)p−1/2 for all t ∈ (Z/pZ)2q.
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By the triangle inequality we then find that

1

p2q

∣∣∣∣∣ ∑
t∈(Z/pZ)2q

(
Lfp(t)− Jp(t)

)
hp,r(t)

∣∣∣∣∣ ≤ 2q − 1

p2q+1/2

∑
t∈(Z/pZ)2q

|hp,r(t)|,

which tends to zero as p→∞ by Lemma 3.2, as required. �

In what follows, we shall evaluate the right hand side of the expression in
Lemma 4.1.

Let t = (t1, t2, . . . , tm) be a tuple in (Z/nZ)m and let π ∈ Πm. We define
t ≺ π to be true if and only if tj = tk whenever j and k belong to the same
block of π. For example, if t = (1, 2, 1) and π = {{1, 3}, {2}}, then t ≺ π
holds.

Lemma 4.2. Let h : Eq(n) → C be an arbitrary function and let T (k) be
the k-th signed tangent number. Then

(10)
∑

t∈Eq(n)

h(t) =
∑
π∈Π2q

π even

∑
t∈Eq(n)
t≺π

h(t)
∏
B∈π

T (1
2 |B|).

To prove the lemma, we shall need the following combinatorial principle
(see [36, p. 5], for example), in which N = {1, 2, 3, . . . }.

Lemma 4.3. Let K be a field of characteristic 0, let f : N→ K be arbitrary,
and define a new function g : N ∪ {0} → K by g(0) = 1 and

g(k) =
∑
π∈Πk

∏
B∈π

f(|B|) for k ≥ 1.

Let G(z) =
∑

k≥0 g(k)zk/k! and F (z) =
∑

k≥1 f(k)zk/k! be the correspond-

ing exponential generating functions. Then G(z) = exp(F (z)). Moreover,

g(k) =
k∑
j=1

(
k − 1

j − 1

)
f(j)g(k − j) for k ≥ 1.

Proof. The first part of the lemma is a consequence of Faá di Bruno’s gen-
eralisation of the chain rule (see [26, Theorem 1.3.2], for example), which
states that, for a formal power series E(z) and k ≥ 1, we have

(E ◦ F )(k)(z) =
∑
π∈Πk

(E(|π|) ◦ F )(z)
∏
B∈π

F (|B|)(z).

Take E(z) = exp(z) and set z = 0 to see that the right hand side equals g(k),
which proves the first part. The second part follows from G′(z) = G(z)F ′(z)
by equating coefficients. �

For a tuple t ∈ (Z/nZ)m, let π ∈ Πm be the coarsest partition of
{1, 2, . . . ,m} with the property t ≺ π and define mk(t) to be the num-
ber of blocks B in π such that |B| = k. For example, if t = (1, 3, 2, 1, 2),
then the coarsest partition π with t ≺ π is {{1, 4}, {3, 5}, {2}} and we have
m1(t) = 1, m2(t) = 2, and mk(t) = 0 for k > 2.



12 CHRISTIAN GÜNTHER AND KAI-UWE SCHMIDT

We now give a proof of Lemma 4.2.

Proof of Lemma 4.2. Taking F (z) = log cosh(z) in Lemma 4.3 (so that
G(z) = cosh(z)), we find with (3) and cosh(z) =

∑
k≥0 z

2k/(2k)! that

(11)
∑
π∈Π2k

π even

∏
B∈π

T (1
2 |B|) = 1 for each k ≥ 1.

Let s ∈ Eq(n) be an even tuple. By linearity, it suffices to prove the lemma
for the case that h(x) = 1 for x = s and h(x) = 0 otherwise. Clearly, the
left hand side of (10) equals 1. On the other hand, the sum∑

t∈Eq(n)
t≺π

h(t)

is just the indicator function of the event s ≺ π, so we can restrict the
outer summation on the right hand side of (10) to the even partitions that
are refinements of the coarsest partition π ∈ Π2q with the property s ≺ π.
Therefore the right hand side of (10) equals

q∏
k=1

 ∑
π∈Π2k

π even

∏
B∈π

T (1
2 |B|)


mk(s)

,

which again equals 1 by (11). �

Next we evaluate the inner sums in the right hand side of (10) for h = hn,r.

Lemma 4.4. Let π = {B1, . . . , B`} ∈ Π2q be an even partition with ` blocks.
Write Ni = |Bi|/2 and Pi = |{x ∈ Bi : x > q}|. If r/n→ R as n→∞, then

lim
n→∞

1

n2q

∑
t∈Eq(n)
t≺π

hn,r(t) =
∑

a1,...,a`∈Z
a1+···+a`=q

∏̀
i=1

1

(2Ni − 1)!

〈
2Ni − 1

2R(Ni − Pi) + ai − 1

〉
.

To prove the lemma, we use the following asymptotic counting result,
which follows from known results on the number of restricted integer compo-
sitions [16], [11] or, alternatively, from integration results over a simplex [18].
By I[E] we denote the indicator function of an event E.

Lemma 4.5. Let N be a positive integer and let M be real. Let (mn) be a
sequence of integers such that mn/n→M as n→∞. Then

lim
n→∞

1

nN−1

∑
0≤j1,...,jN<n

I
[
j1 + · · ·+ jN = mn

]
=

1

(N − 1)!

〈
N − 1

M − 1

〉
.

Proof. It is well known (see [16, (11)] or [11, Example 33], for example) that∑
0≤j1,...,jN<n

I
[
j1 + · · ·+ jN = mn

]
=

N∑
j=0

(−1)j
(
N

j

)(
N +mn − nj − 1

N − 1

)
.
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Since

lim
n→∞

1

nN−1

(
N +mn − nj − 1

N − 1

)
=

1

(N − 1)!
(max(0,M − j))N−1,

the lemma follows from the definition (2) of the generalised Eulerian num-
bers. �

We now prove Lemma 4.4.

Proof of Lemma 4.4. Put

Hn =
∑

t∈Eq(n)
t≺π

hn,r(t).

Let εk = −1 for k ≤ q and εk = 1 for k > q. Since

hn,r(t1, . . . , t2q) =
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

∏̀
i=1

∏
k∈Bi

en(εktk(jk + r)),

we can rewrite Hn as

Hn =
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

∏̀
i=1

∑
t∈Z/nZ

en

(
t
∑
k∈Bi

εk(jk + r)

)
.

The product is either zero or equals n` and is nonzero exactly when there
exist a1, . . . , a` ∈ Z such that

(12)
∑
k∈Bi

εk(jk + r) = ain

for all i ∈ {1, . . . , `}. Hence

Hn = n`
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

∑
a1,...,a`∈Z

∏̀
i=1

I

[ ∑
k∈Bi

εk(jk + r) = ain

]
.

Summing both sides of (12) over i ∈ {1, . . . , `} gives

q∑
k=1

(jq+k − jk) = n
∑̀
i=1

ai,

so that

Hn = n`
∑

a1,...,a`∈Z
a1+···+a`=0

∑
0≤j1,...,j2q<n

∏̀
i=1

I

[ ∑
k∈Bi

εk(jk + r) = ain

]
.
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The i-th factor within the inner sum depends only on |Bi| = 2Ni of the
summation variables in the inner sum, so that we can factor the inner sum
as follows∏̀

i=1

∑
0≤j1,...,j2Ni<n

I

[
Pi∑
k=1

(jk + r)−
2Ni∑

k=Pi+1

(jk + r) = ain

]
.

Replace jk by n−1− jk for k ∈ {Pi+ 1, . . . , 2Ni} to see that this expression
equals

∏̀
i=1

∑
0≤j1,...,j2Ni<n

I

[
2Ni∑
k=1

jk = (2Ni − Pi)(n− 1) + 2r(Ni − Pi) + ain

]
.

Since
∑`

i=1(2Ni − 1) = 2q − `, we find from Lemma 4.5 that

lim
n→∞

Hn

n2q
=

∑
a1,...,a`∈Z
a1+···+a`=0

∏̀
i=1

1

(2Ni − 1)!

〈
2Ni − 1

2Ni − Pi + 2R(Ni − Pi) + ai − 1

〉
,

since the outer sum is locally finite. The lemma follows after re-indexing

and using
∑`

i=1(2Ni − Pi) = q. �

Theorem 2.5 and therefore Theorem 2.1 now follows from Lemmas 4.1, 4.2,
and 4.4. It remains to show how to deduce Corollary 2.2 from Theorem 2.1.
To do so, write

(13) AN (x) =
2N−1∑
a=1

〈
2N − 1

a− 1

〉
xa,

which is known (after dividing by x) as an Eulerian polynomial. Letting
N1, . . . , N` be positive integers such that N1 + · · ·+N` = k, we have∏̀

i=1

ANi(x) =
2k−`∑
m=`

xm
∑

a1,...,a`∈Z
a1+···+a`=m

∏̀
i=1

〈
2Ni − 1

ai − 1

〉
.

Define polynomials Fk(x) by Fk(x) = 0 for odd k, F0(x) = 1, and

(14) F2k(x) =
∑
π∈Π2k

π even

∏̀
i=1

T (Ni)ANi(x)

(2Ni − 1)!
for k ≥ 1,

where π = {B1, . . . , B`} and Ni = |Bi|/2. Then F2k(x) is a polynomial of
degree 2k − 1 with F2k(0) = 0 for k ≥ 1, so we can write

F2k(x) =

2k−1∑
m=1

F (k,m)xm for k ≥ 1.
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It is readily verified that Theorem 2.1 is equivalent to

lim
p→∞

(
‖fp‖2q√

p

)2q

= F (q, q).

It remains to show that the numbers F (k,m) are the same as those given
in Corollary 2.2. Use F0(x) = 1 and apply Lemma 4.3 to (14) to find that

F2k(x) =

k∑
j=1

(
2k − 1

2j − 1

)
T (j)Aj(x)

(2j − 1)!
F2k−2j(x) for k ≥ 1.

With F (0, 0) = 1 (which equals F0(x)), this is equivalent to the recursive
definition of the numbers F (k,m) given in Corollary 2.2.

5. Galois polynomials

In this section we prove Theorem 2.3 and Corollary 2.4. We use the fol-
lowing notation throughout this section. A tuple (t1, t2, . . . , t2q) is an abelian
square if there exists a permutation σ of {1, 2, . . . , q} such that tσ(k) = tq+k
for all k ∈ {1, 2, . . . , q}, so that the second half of the tuple is a permutation
of the first half. Let Aq(n) be the set of abelian squares in (Z/nZ)2q.

Lemma 5.1. Let q be a positive integer and let gn be a Galois polynomial
of degree n− 1. Then

lim
n→∞

(
‖gn‖2q√

n

)2q

= lim
n→∞

1

n2q

∑
t∈Aq(n)

hn,0(t),

provided that one of the limits exists.

Proof. For t ∈ (Z/nZ)2q, let Jn(t) be the indicator function that equals one
if t is an abelian square and is zero otherwise. From Proposition 3.1 we find
that(
‖gn‖2q√

n

)2q

=
1

n2q

∑
t∈(Z/nZ)2q

Jn(t)hn,0(t)+
1

n2q

∑
t∈(Z/nZ)2q

(Lgn(t)− Jn(t))hn,0(t).

We show that the second expression on the right hand side tends to zero,
which will prove the lemma. Write s = n + 1, so that s is a power of two.
By definition, a Galois polynomial of degree n− 1 can be written as

gn(z) =

n−1∑
j=0

ψ(θj)zj ,

where ψ is an additive character of Fs and θ is a primitive element of Fs.
For a multiplicative character ξ of Fs, we define the Gauss sum

G(ξ) =
∑
x∈F∗

s

ψ(x)ξ(x).
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Letting χ be the multiplicative character of Fs given by χ(θ) = en(1), we
see that gn(en(k)) = G(χk) for all k ∈ Z/nZ. Therefore

Lgn(t1, . . . , t2q) =
1

nq+1

∑
m∈Z/nZ

q∏
k=1

G(χm+tk)G(χm+tq+k).

Since |G(ξ)|2 equals 1 if ξ is trivial and equals n+ 1 otherwise, we find that
|Lgn(t1, . . . , t2q) − 1| = O(n−1) if (t1, . . . , t2q) is an abelian square. On the
other hand, if (t1, . . . , t2q) is not an abelian square, then a result due to
Katz [25, pp. 161–162] shows that

|Lgn(t1, . . . , t2q)| ≤
q

nq+1
(n+ 1)q+1/2.

Therefore, by the triangle inequality,

1

n2q

∣∣∣∣∣ ∑
t∈(Z/nZ)2q

(Lgn(t)− Jn(t))hn,0(t)

∣∣∣∣∣ = O(n−2q−1/2)
∑

t∈(Z/nZ)2q

|hn,0(t)|,

which tends to zero as n→∞ by Lemma 3.2, as required. �

We proceed similarly as for Fekete polynomials and seek an asymptotic
evaluation of the right hand side of the expression in Lemma 5.1.

The following lemma is an analogue of Lemma 4.2.

Lemma 5.2. Let h : Aq(n) → C be a function that depends only on the
first q entries of its input and let C(k) be the k-th signed Carlitz number.
Then

(15)
∑

t∈Aq(n)

h(t) = q!
∑
π∈Πq

∑
u∈(Z/nZ)q

u≺π

h(u|u)
∏
B∈π

C(|B|)
|B|!

,

where u|u is the (2q)-tuple with the first and the second half equal to u.

Proof. Take F (z) = log J0(2
√
z) in Lemma 4.3, so that G(z) equals

J0(2
√
z) =

∞∑
k=0

(−1)k

(k!)2
zk.

Use (4) to find from Lemma 4.3 that∑
π∈Πk

∏
B∈π

(−1)|B|C(|B|)
|B|!

=
(−1)k

k!
for each k ≥ 1,

or equivalently

(16)
∑
π∈Πk

∏
B∈π

C(|B|)
|B|!

=
1

k!
for each k ≥ 1.

Now let v ∈ (Z/nZ)q and let V be the set of abelian squares in (Z/nZ)2q

whose first q entries equal those of v. By linearity, it suffices to prove the
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lemma for the case that h(x) = 1 for x ∈ V and h(x) = 0 otherwise. Then
the left hand side of (15) equals

(17) |V | = q!∏q
k=1(k!)mk(v)

(where mk(v) was defined before the proof of Lemma 4.2). On the other
hand, the right hand side of (15) equals

q!

q∏
k=1

∑
π∈Πk

∏
B∈π

C(|B|)
|B|!

mk(v)

,

which by (16) equals (17) again. �

Next we evaluate the inner sums in the right hand side of (15) for h = hn,0.

Lemma 5.3. Let π = {B1, . . . , B`} ∈ Πq be a partition with ` blocks and
write Ni = |Bi|. Then

lim
n→∞

1

n2q

∑
u∈(Z/nZ)q

u≺π

hn,0(u|u) =
∑

a1,...,a`∈Z
a1+···+a`=q

∏̀
i=1

1

(2Ni − 1)!

〈
2Ni − 1

ai − 1

〉
,

where u|u is the (2q)-tuple with the first and the second half equal to u.

Proof. The proof is similar to that of Lemma 4.4, and so is presented in
slightly less detail. Put

Hn =
∑

u∈(Z/nZ)q

u≺π

hn,0(u|u),

which we can rewrite as

Hn =
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

∏̀
i=1

∑
u∈Z/nZ

en

u∑
k∈Bi

(jq+k − jk)

 .

The product is either zero or equals n` and is nonzero exactly when there
exist a1, . . . , a` ∈ Z such that

(18)
∑
k∈Bi

(jq+k − jk) = ain

for all i ∈ {1, . . . , `}. Hence

Hn = n`
∑

0≤j1,...,j2q<n
j1+···+jq=jq+1+···+j2q

∑
a1,...,a`∈Z

∏̀
i=1

I

[ ∑
k∈Bi

(jq+k − jk) = ain

]
.
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Summing both sides of (18) over i ∈ {1, . . . , `} gives

q∑
k=1

(jq+k − jk) = n
∑̀
i=1

ai,

so that

Hn = n`
∑

a1,...,a`∈Z
a1+···+a`=0

∑
0≤j1,...,j2q<n

∏̀
i=1

I

[ ∑
k∈Bi

(jq+k − jk) = ain

]

or equivalently

Hn = n`
∑

a1,...,a`∈Z
a1+···+a`=0

∑
0≤j1,...,j2q<n

∏̀
i=1

I

[ ∑
k∈Bi

(jq+k + jk) = ain+Ni(n− 1)

]
.

We can factor the inner sum as follows∏̀
i=1

∑
0≤j1,...,j2Ni<n

I

[
2Ni∑
k=1

jk = ain+Ni(n− 1)

]
.

Since
∑`

i=1(2Ni − 1) = 2q − `, we find from Lemma 4.5 that

lim
n→∞

Hn

n2q
=

∑
a1,...,a`∈Z
a1+···+a`=0

∏̀
i=1

1

(2Ni − 1)!

〈
2Ni − 1

Ni + ai − 1

〉
,

since the outer sum is locally finite. The lemma follows after re-indexing
the summation. �

Theorem 2.3 now follows from Lemmas 5.1, 5.2, and 5.3, upon noting that
hn,0 has the required property in Lemma 5.2.

Next we deduce Corollary 2.4 from Theorem 2.3. This is again broadly
similar to the proof of Corollary 2.2. Recall the definition of the Eulerian
polynomials AN (x) from (13) and define polynomials Gk(x) by G0(x) = 1,
and

(19)
Gk(x)

k!
=
∑
π∈Πk

∏̀
i=1

C(Ni)ANi(x)

(2Ni − 1)!Ni!
for k ≥ 1,

where π = {B1, . . . , B`} and Ni = |Bi|. Then Gk(x) is a polynomial of
degree 2k − 1 with Gk(0) = 0 for k ≥ 1, so we can write

Gk(x) =

2k−1∑
m=1

G(k,m)xm for k ≥ 1.

It is readily verified that Theorem 2.3 is equivalent to

lim
n→∞

(
‖gn‖2q√

n

)2q

= G(q, q).
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It remains to show that the numbers G(k,m) are the same as those given
in Corollary 2.4. Use G0(x) = 1 and apply Lemma 4.3 to (19) to find that

Gk(x)

k!
=

k∑
j=1

(
k − 1

j − 1

)
C(j)Aj(x)

(2j − 1)! j!

Gk−j(x)

(k − j)!
for k ≥ 1,

or equivalently

Gk(x) =

k∑
j=1

(
k

j

)(
k − 1

j − 1

)
C(j)Aj(x)

(2j − 1)!
Gk−j(x) for k ≥ 1.

With G(0, 0) = 1 (which equals G0(x)), this is equivalent to the recursive
definition of the numbers G(k,m) given in Corollary 2.4.
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[13] T. Erdélyi. Upper bounds for the Lq norm of Fekete polynomials on subarcs. Acta
Arith., 153(1):81–91, 2012.
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