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Abstract. Littlewood raised the question of how slowly ‖fn‖44−‖fn‖42
(where ‖.‖r denotes the Lr norm on the unit circle) can grow for a
sequence of polynomials fn with unimodular coefficients and increasing
degree. The results of this paper are the following. For

gn(z) =

n−1∑
k=0

eπik
2/n zk

the limit of (‖gn‖44 − ‖gn‖42)/‖gn‖32 is 2/π, which resolves a mystery
due to Littlewood. This is however not the best answer to Littlewood’s
question: for the polynomials

hn(z) =

n−1∑
j=0

n−1∑
k=0

e2πijk/n znj+k

the limit of (‖hn‖44−‖hn‖42)/‖hn‖32 is shown to be 4/π2. No sequence of
polynomials with unimodular coefficients is known that gives a better
answer to Littlewood’s question. It is an open question as to whether
such a sequence of polynomials exists.

1. Introduction

For real r ≥ 1, the Lr norm of a polynomial f ∈ C[z] on the unit circle is

‖f‖r =

(
1

2π

∫ 2π

0

∣∣f(eiθ)
∣∣r dθ)1/r

.

There is sustained interest in the Lr norm of polynomials with restricted co-
efficients (see, for example, Littlewood [14], Borwein [2], and Erdélyi [5] for
surveys on selected problems). Littlewood raised the question of how slowly
‖fn‖44−‖fn‖42 can grow for a sequence of polynomials fn with restricted coef-
ficients and increasing degree. This problem is also of interest in the theory
of communications, because ‖f‖44 equals the sum of squares of the aperiodic
autocorrelations of the sequence formed from the coefficients of f [2, p. 122];
in this context one considers the merit factor ‖f‖42/(‖f‖44 − ‖f‖42). Much
work on Littlewood’s question has been done when the coefficients are −1
or 1; see [8] for recent advances. In the situation where the coefficients are
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restricted to have unit magnitude, the polynomials

gn(z) =
n−1∑
k=0

eπik
2/n zk for integral n ≥ 1

are of particular interest [11], [12], [13], [14].1 These polynomials are also
the main ingredient in Kahane’s celebrated semi-probabilistic construction
of ultra-flat polynomials [9], which disproves a conjecture due to Erdős [6].
Write

αn =
‖gn‖44 − ‖gn‖42
‖gn‖32

(note that ‖f‖2 =
√
n for every polynomial f of degree n−1 with unimodular

coefficients). Based on the work in [11] and [12] and calculations carried out
by Swinnerton-Dyer, Littlewood concluded in [13] that

(1) lim
n→∞

αn =
√

2− 2

π
(
√

2− 1) = 1.15051 . . . ,

but expressed doubt in his own conclusion. He knew that

(2) 0.604 ≤ αn ≤ 0.656 for 18 ≤ n ≤ 41

and noted [13, Appendix] “There is a considerable mystery here. I have
checked my calculations at least six times, and they have been checked
also in great detail by Dr. Flett.” Littlewood raised this issue again in his
book [14, p. 27] and asked for a resolution of this puzzle.

Borwein and Choi [3] conjectured

‖gn‖44 = n2 +
2

π
n3/2 + δnn

1/2 +O(n−1/2),

where δn = −2 for n ≡ 0, 1 (mod 4) and δn = 1 for n ≡ 2, 3 (mod 4) (this
was not stated explicitly as a conjecture in [3], but was confirmed by the
authors [4] to be a tentative conclusion based on numerical evidence). This
conjecture implies in particular

(3) lim
n→∞

αn =
2

π
= 0.63661 . . . .

Independently, Antweiler and Bömer [1] made observations similar to (2),
while Stańczak and Boche [17] and Mercer [15] derived bounds for αn. In
particular, Mercer [15] showed that

lim sup
n→∞

αn <
16

3π3/2
= 0.95779 . . . ,

and thereby confirming Littlewood’s suspicion (although Mercer was appar-
ently unaware of Littlewood’s work).

We shall resolve Littlewood’s puzzle by proving that (1) is incorrect and
the conjecture (3) is true.

1Some authors consider gn(e±πi/nz), which however has the same Lr norm as gn(z).
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Theorem 1. We have

lim
n→∞

‖gn‖44 − ‖gn‖42
‖gn‖32

=
2

π
.

We shall also show that this is not the best possible answer to Littlewood’s
question. To do so, we consider the polynomials

hn(z) =

n−1∑
j=0

n−1∑
k=0

e2πijk/n znj+k for integral n ≥ 1

of degree n2 − 1, which have been studied by Turyn [18], among others.

Theorem 2. We have

lim
n→∞

‖hn‖44 − ‖hn‖42
‖hn‖32

=
4

π2
.

This is the best known answer to Littlewood’s question: there is no se-
quence of polynomials fn with unimodular coefficients for which the limit of
(‖fn‖44−‖fn‖42)/‖fn‖32 is known to be less than 4/π2. It is an open question
as to whether such a sequence of polynomials exists.

In the radar literature [10, Ch. 6], the sequences formed from the co-
efficients of gn and hn are called Chu and Frank sequences, respectively.
Our results show that their merit factors grow like (π/2)

√
n and (π2/4)

√
n,

respectively, which explains numerical results reported in [1].

2. Proof of Theorem 1

We begin with summarising known results (see [13, p. 371], for example).

For a polynomial f ∈ C[z] with f(z) =
∑d−1

k=0 akz
k, we readily verify that

f(z)f(z−1) =

d−1∑
u=−(d−1)

cuz
u,

where

(4) cu =
∑

0≤j,j+u<d
ajaj+u.

The numbers cu satisfy cu = c−u. Hence

(5) ‖f‖44 =
1

2π

∫ 2π

0

(
f(eiθ)f(eiθ)

)2
dθ = c20 + 2

d−1∑
u=1

|cu|2.

Lemma 3. For each n ≥ 1, we have

(6) ‖gn‖44 = n2 − εn + 4
∑

1≤u≤n/2

(
sin(πu2/n)

sin(πu/n)

)2

,

where εn = 2 for n ≡ 2 (mod 4) and εn = 0 otherwise.
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Proof. For f = gn, elementary manipulations reveal that the numbers cu
in (4) satisfy

|cu| =
∣∣∣∣sin(πu2/n)

sin(πu/n)

∣∣∣∣
for 1 ≤ u ≤ n−1. The desired result then follows from (5) after noting that
c0 = n and |cu| = |cn−u| for 1 ≤ u ≤ n− 1 and 2|cn/2| = εn for even n. �

We now prove Theorem 1 by finding an asymptotic evaluation of the sum
on the right hand side of (6).

Let x be a real number satisfying 0 < x ≤ π/2. From the inequality
x− x3/6 ≤ sinx ≤ x we see that

0 <
1

(sinx)2
− 1

x2
< 1,

and therefore∣∣∣∣∣ ∑
1≤u≤n/2

(
sin(πu2/n)

sin(πu/n)

)2

−
∑

1≤u≤n/2

(
sin(πu2/n)

πu/n

)2
∣∣∣∣∣ < n

2
.

Thus, defining the function r : R→ R by

r(x) =

(
sin(πx2/n)

πx/n

)2

,

the theorem is proved by showing that

(7) lim
n→∞

1

n3/2

∑
1≤u≤n/2

r(u) =
1

2π
.

It is consequence of the Euler-Maclaurin formula [16, Theorem B.5] that,
for real numbers a and b with a < b, the expression∣∣∣∣∣ ∑

a<u≤b
r(u)−

∫ b

a
r(x) dx

∣∣∣∣∣
is at most

1

2

(
|r(a)|+ |r(b)|

)
+

1

12

(
|r′(a)|+ |r′(b)|+

∫ b

a

∣∣r′′(x)
∣∣ dx).

We take b = n/2 and let a tend to zero. Elementary calculus shows that

|r(n/2)| ≤ 4

π2
, |r′(n/2)| ≤ 8

π
+

16

nπ2
, lim

a→0
r(a) = lim

a→0
r′(a) = 0,

and |r′′(x)| ≤ 34 for all real x. Therefore∣∣∣∣∣ ∑
1≤u≤n/2

r(u)−
∫ n/2

0
r(x) dx

∣∣∣∣∣ ≤ 2

π2
+

2

3π
+

4

3nπ2
+

17n

12
,
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and so

lim
n→∞

1

n3/2

∑
1≤u≤n/2

r(u) = lim
n→∞

1

n3/2

∫ n/2

0
r(x) dx,

provided that both limits exist. Substituting y = πx2/n, we see that this
last expression equals

lim
n→∞

1

2π3/2

∫ πn/4

0

(sin y)2

y3/2
dy =

1

2π3/2

∫ ∞
0

(sin y)2

y3/2
dy.

This establishes (7), and so completes the proof, since

(8)

∫ ∞
0

(sin y)2

y3/2
dy =

√
π

(see Gradshteyn and Ryzhik [7, 3.823]).
For completeness, we sketch a proof of the identity (8). To do so, we

readily verify that

Γ(3/2)

y3/2
=

∫ ∞
0

e−yt
√
t dt for y > 0,

which together with Γ(3/2) =
√
π/2 yields∫ ∞

0

(sin y)2

y3/2
dy =

2√
π

∫ ∞
0

∫ ∞
0

e−yt
√
t (sin y)2 dt dy.

Since the integrand on the right hand side is nonnegative, we can interchange
the order of integration by Tonelli’s theorem. The integral therefore equals

2√
π

∫ ∞
0

√
t

∫ ∞
0

e−yt (sin y)2 dy dt =
2√
π

∫ ∞
0

2
√
t

t3 + 4t
dt =

√
π.

The inner integral on the left hand side is just the Laplace transform of
(sin y)2, while the integral on the right hand side can be evaluated by first
substituting t = x2 (which makes the integrand rational) and then using
standard techniques.

3. Proof of Theorem 2

We begin with proving a counterpart of Lemma 3 for the polynomials hn.

Lemma 4. For each n ≥ 1, we have

‖hn‖44 = n4 − γn + 8n
∑

1≤v≤n/2

∑
1≤k≤v

(
sin(πk/n)

sin(πv/n)

)2

,

where

γn =

{
3n2 for even n

2n2 − 2n for odd n.
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Proof. Write ζ = e2πi/n. Then, for f = hn, the numbers cu in (4) are given
by (see also Turyn [18])

cnu+v =

n−u−1∑
j=0

n−v−1∑
k=0

ζjk−(j+u)(k+v) +

n−u−2∑
j=0

n−1∑
k=n−v

ζjk−(j+u+1)(k+v)

for 0 ≤ u, v < n. Rearrange and use
∑n−1

k=0 ζ
k(u+1) = 0 for n - u + 1 (note

that the second term is zero for u+ 1 = n) to see that

(9) cnu+v = ζuv
n−v−1∑
k=0

ζku
n−u−1∑
j=0

ζjv − ζ(u+1)v
n−v−1∑
k=0

ζk(u+1)
n−u−2∑
j=0

ζjv

for 0 ≤ u, v < n. Evaluation of the sums over j gives, for 0 ≤ u < n and
0 < v < n,

cnu+v =
1

ζv − 1

n−v−1∑
k=0

(
ζku(1− ζuv)− ζk(u+1)(1− ζ(u+1)v)

)
=

1

ζv − 1

n−v−1∑
k=0

[
ζ(k+v)u(ζk+v − 1)− ζku(ζk − 1)

]
.

We can write this as ( n−1∑
k=v

−
n−v−1∑
k=0

)
ζku

ζk − 1

ζv − 1
,

from which we see that

(10)
n−1∑
u=0

|cnu+v|2 = n

( n−1∑
k=v

+
n−v−1∑
k=0

−
n−v−1∑
k=v

−
n−v−1∑
k=v

)∣∣∣∣ζk − 1

ζv − 1

∣∣∣∣2
for 0 < v < n. For 0 < v < n/2 all of these sums are nonempty, so that
after grouping them together we have, for 0 < v < n/2,

n−1∑
u=0

|cnu+v|2 = n

( n−1∑
k=n−v

+
v−1∑
k=0

)∣∣∣∣ζk − 1

ζv − 1

∣∣∣∣2
= 2n

v∑
k=0

∣∣∣∣ζk − 1

ζv − 1

∣∣∣∣2 − n
= 2n

v∑
k=1

(
sin(πk/n)

sin(πv/n)

)2

− n.(11)

Using (9) we readily verify that cnu = 0 for u 6= 0. Therefore, since
c0 = n2 trivially, we have from (5)

(12) ‖hn‖44 = n4 + 2

n−1∑
v=1

n−1∑
u=0

|cnu+v|2.



POLYNOMIALS WITH UNIMODULAR COEFFICIENTS 7

We also have

(13) cnu+v = −ζv cnu+n−v for (u, v) 6= (0, 0),

which also follows from (9) using the identities

v−1∑
k=0

ζkw = −ζwv
n−v−1∑
k=0

ζkw

for integers w and v satisfying n - w and 0 ≤ v < n and

n−w−1∑
j=0

ζ−jv = ζ(w+1)v
n−w−1∑
j=0

ζjv

for integers w and v.
Now, for odd n, we have from (12) and (13)

‖hn‖44 = n4 + 4

(n−1)/2∑
v=1

n−1∑
u=0

|cnu+v|2

and the desired result follows from (11). Similarly, for even n, we have

‖hn‖44 = n4 + 4

n/2−1∑
v=1

n−1∑
u=0

|cnu+v|2 + 2
n−1∑
u=0

|cnu+n/2|2.

Using (10), we find that

2
n−1∑
u=0

|cnu+n/2|2 =
n

2

n−1∑
k=0

|ζk − 1|2 = n2,

and therefore, by (11),

‖hn‖44 = n4 − n2 + 4n+ 8n

n/2−1∑
v=1

v∑
k=1

(
sin(πk/n)

sin(πv/n)

)2

.

To obtain the desired expression in the lemma for even n, we extend the
summation over v to n/2 and subtract the correction term

8n

n/2∑
k=1

(
sin(πk/n)

)2
= n

n−1∑
k=0

|ζk − 1|2 + 4n = 2n2 + 4n. �

In order to prove Theorem 2, we invoke Lemma 4 and show that

(14) 8n
∑

1≤v≤n/2

∑
1≤k≤v

(
sin(πk/n)

sin(πv/n)

)2

=
4

π2
n3 +O(n2).

To do so, we make repeated use of the following elementary bound, which is
also a simple consequence of the Euler-Maclaurin formula [16, Theorem B.5].
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Let r : R → R be a differentiable function and let a and b be real numbers
with a < b. Then

(15)

∣∣∣∣∣ ∑
a<k≤b

r(k)−
∫ b

a
r(x) dx

∣∣∣∣∣ ≤ 1

2

(
|r(a)|+ |r(b)|+

∫ b

a

∣∣r′(x)
∣∣ dx).

We first take r(x) = (sin(πx/n))2 and (a, b) = (0, v), so that for 1 ≤ v ≤ n/2,
we have

v∑
k=1

(sin(πk/n))2 =

∫ v

0
(sin(πx/n))2dx+O(1)

=
n

π

∫ πv/n

0
(sin y)2 dy +O(1)

=
n

2π

(
πv/n− sin(πv/n) cos(πv/n)

)
+O(1).

Letting

p(y) =
y − sin y cos y

(sin y)2
,

we then have

(16)
∑

1≤v≤n/2

∑
1≤k≤v

(
sin(πk/n)

sin(πv/n)

)2

=
n

2π

∑
1≤v≤n/2

p(πv/n) +O(n).

We now apply (15) with r(x) = p(πx/n) and b = n/2 and let a tend to zero.
We have

p′(y) = 2− 2(y − sin y cos y) cos y

(sin y)3

from which, using x − x3/6 ≤ sinx ≤ x and 1 − x2/2 ≤ cosx ≤ 1 together
with elementary calculus, we find that

−3 < p′(y) ≤ 2 for 0 < y ≤ π/2.
Hence |r′(x)| < 3π/n for 0 < x ≤ n/2. Since we also have r(n/2) = π/2 and
lima→0 r(a) = 0, we find from (15) that (16) equals

n

2π

∫ n/2

0
p(πx/n)dx+O(n) =

n2

2π2

∫ π/2

0
p(y)dy +O(n).

The desired result (14) is then established by showing that

(17)

∫ π/2

0
p(y)dy = 1.

By differentiation we readily verify that∫
y − sin y cos y

(sin y)2
dy = − y

tan y
+ C

for some arbitrary constant C and (17) follows by application of l’Hôpital’s
rule.



POLYNOMIALS WITH UNIMODULAR COEFFICIENTS 9

References
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