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ABSTRACT. Littlewood raised the question of how slowly || fu||3 — || fnl3
(where ||.||» denotes the L" norm on the unit circle) can grow for a
sequence of polynomials f,, with unimodular coefficients and increasing
degree. The results of this paper are the following. For

n—1

gnlz) =Y ek
k=0
the limit of (||gnlld — llgnll3)/llgnll5 is 2/, which resolves a mystery

due to Littlewood. This is however not the best answer to Littlewood’s
question: for the polynomials

n—1ln-—1

hn(2) = Z Z e2miik/m nith

=0 k=0

the limit of (||hn||5 — |nl|3)/||Rn |3 is shown to be 4/72. No sequence of
polynomials with unimodular coefficients is known that gives a better
answer to Littlewood’s question. It is an open question as to whether
such a sequence of polynomials exists.

1. INTRODUCTION

For real r > 1, the L™ norm of a polynomial f € C[z] on the unit circle is

2 ‘ 1/r
1= (55 [ 1oy as)

There is sustained interest in the L™ norm of polynomials with restricted co-
efficients (see, for example, Littlewood [14], Borwein [2], and Erdélyi [5] for
surveys on selected problems). Littlewood raised the question of how slowly
| 2115 =1 f2]l3 can grow for a sequence of polynomials f,, with restricted coef-
ficients and increasing degree. This problem is also of interest in the theory
of communications, because || f||1 equals the sum of squares of the aperiodic
autocorrelations of the sequence formed from the coefficients of f [2, p. 122];
in this context one considers the merit factor | f||3/(IfIl1 — I fl3)- Much
work on Littlewood’s question has been done when the coefficients are —1
or 1; see [8] for recent advances. In the situation where the coefficients are
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restricted to have unit magnitude, the polynomials

n—1

gn(2) = Z ™R /m E - for integral n > 1
k=

are of particular interest [11], [12], [13], [14].} These polynomials are also
the main ingredient in Kahane’s celebrated semi-probabilistic construction
of ultra-flat polynomials [9], which disproves a conjecture due to Erdds [6].
Write
_ llgnlli = llgnll3

1gnll3
(note that || f||2 = v/n for every polynomial f of degree n—1 with unimodular
coefficients). Based on the work in [11] and [12] and calculations carried out
by Swinnerton-Dyer, Littlewood concluded in [13] that

2

(1) lim a, =v2 - =(vV2—-1) =1.15051.. .,
n—oo v

n

but expressed doubt in his own conclusion. He knew that
(2) 0.604 < o, <0.656 for 18 < n <41

and noted [13, Appendix| “There is a considerable mystery here. I have
checked my calculations at least six times, and they have been checked
also in great detail by Dr. Flett.” Littlewood raised this issue again in his
book [14, p. 27] and asked for a resolution of this puzzle.

Borwein and Choi [3] conjectured

2 _
lgalli = n? + =02 + 8unt/? + O(n~17%),

where 0, = —2 for n = 0,1 (mod 4) and d,, = 1 for n = 2,3 (mod 4) (this
was not stated explicitly as a conjecture in [3], but was confirmed by the
authors [4] to be a tentative conclusion based on numerical evidence). This
conjecture implies in particular

2
(3) lim o =~ = 0.63661....

n—o0

Independently, Antweiler and Bémer [1] made observations similar to (2),
while Staniczak and Boche [17] and Mercer [15] derived bounds for a,,. In
particular, Mercer [15] showed that

= 0.95779...,

limsup oy < —7
n~>oop " 371'3/2
and thereby confirming Littlewood’s suspicion (although Mercer was appar-
ently unaware of Littlewood’s work).
We shall resolve Littlewood’s puzzle by proving that (1) is incorrect and
the conjecture (3) is true.

1Some authors consider g, (e*™/™z), which however has the same L” norm as gn(z).
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Theorem 1. We have
ol = llgalld _ 2

21 .

noelgnll3

We shall also show that this is not the best possible answer to Littlewood’s
question. To do so, we consider the polynomials
n—1n—1
hn(2) = Z Z 2mik/m itk for integral n > 1
j=0 k=0

of degree n? — 1, which have been studied by Turyn [18], among others.

Theorem 2. We have

i Mells = l1Pnll3 _ 4
im = —.
noo A3 m?

This is the best known answer to Littlewood’s question: there is no se-
quence of polynomials f,, with unimodular coefficients for which the limit of
(I £alld = 11 £2113) /11 £ lI3 is known to be less than 4/72. It is an open question
as to whether such a sequence of polynomials exists.

In the radar literature [10, Ch. 6], the sequences formed from the co-
efficients of g, and h,, are called Chu and Frank sequences, respectively.
Our results show that their merit factors grow like (7/2)/n and (7%/4)\/n,
respectively, which explains numerical results reported in [1].

2. PROOF OF THEOREM 1

We begin with summarising known results (see [13, p. 371], for example).
For a polynomial f € Clz] with f(z) = Zi;é apz®, we readily verify that

d—1
fRfEH = ) cuz
u=—(d—1)
where
(4) Cy = Z A5Q54q-
0<g,j+u<d

The numbers ¢, satisfy ¢, = ¢—,. Hence

1 2m o\ 2 d—1
5) 1 =52 [ (HEFE) do = G+ 23 el
u=1

Lemma 3. For each n > 1, we have

sin(mu?/n 2
(6) lonld=n?— e td 3 ((”)

I<imn/2 sin(mu/n)

where €, =2 for n =2 (mod 4) and €, = 0 otherwise.
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Proof. For f = g, elementary manipulations reveal that the numbers ¢,
in (4) satisfy
sin(mu?/n)

leul = sin(mu/n)

for 1 <u <mn—1. The desired result then follows from (5) after noting that
co =mn and [cy| = [cp—y| for 1 <u <n —1 and 2|e, 9| = €, for even n. [

We now prove Theorem 1 by finding an asymptotic evaluation of the sum
on the right hand side of (6).

Let = be a real number satisfying 0 < = < 7/2. From the inequality
r —23/6 <sinz < x we see that

1 1
0<—5—-——=5<1
(sinx)? 22 ’

and therefore

O e

1<u<n/2 1<u<n/2

<7’L
5"

Thus, defining the function r : R — R by
r(z) = <sin(7rx2 /n)>27
Tx/n
the theorem is proved by showing that
. 1 1
™) B am 2 =g
1<u<n/2

It is consequence of the Euler-Maclaurin formula [16, Theorem B.5] that,
for real numbers a and b with a < b, the expression

> r(u) - /abr(x) dz

a<u<b

is at most

;<|r(a)| + |r(b)|> + 112(|T'(a)| + [ (b)] + /: | ()| dz)-

We take b =n/2 and let a tend to zero. Elementary calculus shows that

8 16

Ir(n/2)] < %, 7' (n/2)] < - + lim r(a) = lim '(a) = 0,

nw2’ a0 a—0

and |r”(x)| < 34 for all real z. Therefore

n/2
Z r(u)—/o r(x)dx

1<u<n/2

<2+2+ 4 +17TL
~— 72 37 3nn? 12
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and so

1 1 n/2
lim Z r(u) = lim / r(z)dz,
0

n—00 n3/2
1<u<n/2

provided that both limits exist. Substituting y = 7z?/n, we see that this
last expression equals

™/4 (o 2 00 (o 2
lim 1 / (siny) dy = 1 / (siny) dy.
0

n—soo 7r3/2 y3/2 973/2 y3/2

This establishes (7), and so completes the proof, since
* (siny)?

(8) |y = vm
0 Y

(see Gradshteyn and Ryzhik [7, 3.823]).
For completeness, we sketch a proof of the identity (8). To do so, we

readily verify that

'(3/2 o0

(3/2) = e Y'/tdt fory >0,
y3/2 0

which together with I'(3/2) = /7/2 yields

> (siny)? 2 /OO/OO N Y
dy = — e Y/t (siny)? dt dy.
/o y3/2 Y v Jo Jo (eing) Y

Since the integrand on the right hand side is nonnegative, we can interchange
the order of integration by Tonelli’s theorem. The integral therefore equals

f/ \f/ e Y (siny)? dy dt = f/oo ;{M = /.

The inner integral on the left hand side is just the Laplace transform of
(siny)?, while the integral on the right hand side can be evaluated by first
substituting ¢ = 2? (which makes the integrand rational) and then using
standard techniques.

3. PROOF OF THEOREM 2
We begin with proving a counterpart of Lemma 3 for the polynomials h,,.
Lemma 4. For each n > 1, we have
2
sin(mk/n)
hnlls =n" — 8
A I YD S e
1<v<n/2 1<k<v

where

B 3n? for even n
T = 2n? — 2n for odd n.



6 KAI-UWE SCHMIDT

Proof. Write ¢ = e?™/". Then, for f = h,,, the numbers ¢, in (4) are given
by (see also Turyn [18])

n—u—1ln—v—1 n—u—2 n—1

Cruto = Z Z k=G (to) 2 Z (k= Gtut 1) (k)
7=0 k=0

7=0 k=n—wv
for 0 < u,v < n. Rearrange and use ZZ;OC kutl) = 0 for n tu + 1 (note
that the second term is zero for u + 1 = n) to see that

n—v—1 n—u—1 n—v—1 n—u—2

(9) Cruto = Cuv Z Cku Z C]v_ (u+1)v Z Ck(u—f—l Z ij

for 0 < u,v < n. Evaluation of the sums over j gives, for 0 < v < n and
0 <v<n,

n—v—1

Chut+v = Cvl—l Z (C’W(l _ Cuv) . Ck(u+1)(1 _ C(u+1)v))

1 n—ov—1

_ 71 Z [C(k-l-v)u(clﬁ—v _ 1) _ Cku(ck N 1)]

We can write this as

b
Il
o

n—1 n—v—1 k
kuC —1
( > )C SR

from which we see that
n—uv—1 n—wv—1 n

(10) %Cnu+v’2:n<§+ Z_ Z Z_ >
"0 k=0 —v

k=v =

12

(-1

for 0 < v < m. For 0 < v < n/2 all of these sums are nonempty, so that
after grouping them together we have, for 0 < v < n/2,

n—1 ) gk—lz
uE%‘cnu—i-v‘ :n<k§n:v+z> Cv—l
¢k -1
:an Cv_l o

(11) _ o Z sin 7Tl<:/n 2—n
B sin(mv/n) '
Using (9) we readily verify that ¢,, = 0 for u # 0. Therefore, since

co = n? trivially, we have from (5)

n—1 n—1

(12) Ihalld =t 25" S el

v=1 u=0
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We also have

(13) Cnutv = —C' Cputn—v for (u,v) # (0,0),
which also follows from (9) using the identities

n—v—1

v—1
Z Ckw — _ng Z é‘kw
k=0 k=0

for integers w and v satisfying n{ w and 0 < v < n and

n—w—1 n—w—1

zw: ijv:C(erl)v Z ij

j=0 7=0

for integers w and v.
Now, for odd n, we have from (12) and (13)

(n=1)/2 n—1

thHi = TL4 +4 Z Z‘Cnu—I—UP
v=1 u=0

and the desired result follows from (11). Similarly, for even n, we have

n/2 1 n—1

17 ||4—n +4 Z Z|Cnu+v| +2Z‘Cnu+n/2|

v=1 u=0
Using (10), we find that

n—1 n n—1
2Z‘cnu+n/2’2 = 5 ZKk - 1‘2 = nza
u=0 k=0

and therefore, by (11),

n/2—1 o

sin(mk/n
nlld =n* = n® +4n+8n > Z (Sm m/n) .

v=1 k=

To obtain the desired expression in the lemma for even n, we extend the
summation over v to n/2 and subtract the correction term

n/2
SnZ sin(wk/n)) —nZKk 112 + 4n = 2n? + 4n. O

In order to prove Theorem 2, we invoke Lemma 4 and show that
sin(mk/n) 4 4 9
(DI S Dl iy B !
I<ozn/? 15k sin(mv/n) T

To do so, we make repeated use of the following elementary bound, which is
also a simple consequence of the Euler-Maclaurin formula [16, Theorem B.5].
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Let 7 : R — R be a differentiable function and let @ and b be real numbers

with a < b. Then
1 b
< 3 (]r(a)] + |r(b)] +/ ‘r’(x)‘ dx).

b
Z r(k) — / r(z)dz
We first take r(z) = (sin(7z/n))? and (a,b) = (0,v), so that for 1 < v < n/2,

a<k<b
we have

(15)

(%

Z:(sin(wk/n))2 = /OU(SiI’l(ﬂ'.’IT/n))2d{L’ +0(1)

k=1

n mv/n

=2 [T Gy + o)

™ Jo

n .

=5 (wv/n — sin(7v/n) cos(wv/n)) +O(1).
Letting

1y — siny cosy

py) ="

(siny)?
we then have

2
(16) > % <Z$ :’Z;Z) :% 3" pro/n) +O(n).

1<v<n/2 1<k<v 1<v<n/2

We now apply (15) with r(z) = p(rz/n) and b = n/2 and let a tend to zero.
We have ( )

2(y — siny cosy) cosy

/

—9_

from which, using x — 23/6 < sinz < x and 1 — 22/2 < cosz < 1 together
with elementary calculus, we find that

-3<p(y) <2 for0<y<7/2.

Hence |r/(x)]| < 3w/n for 0 < x < n/2. Since we also have r(n/2) = 7/2 and
lim,_07(a) = 0, we find from (15) that (16) equals

n n/2 n2

w/2
7 p(rz/n)dz + O(n) = 5— /0 p(y)dy + O(n).

The desired result (14) is then established by showing that

w/2
(17) / p(y)dy = 1.
0
By differentiation we readily verify that
Yy — siny cosy Y
I IR Y g C
/ (siny)? Y tany +

for some arbitrary constant C' and (17) follows by application of ’'Hopital’s
rule.
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