ON A PROBLEM DUE TO LITTLEWOOD CONCERNING POLYNOMIALS WITH UNIMODULAR COEFFICIENTS

KAI-UWE SCHMIDT

Abstract. Littlewood raised the question of how slowly $\left\|f_{n}\right\|_{4}^{4}-\left\|f_{n}\right\|_{2}^{4}$ (where $\|\cdot\|_{r}$ denotes the L^{r} norm on the unit circle) can grow for a sequence of polynomials f_{n} with unimodular coefficients and increasing degree. The results of this paper are the following. For

$$
g_{n}(z)=\sum_{k=0}^{n-1} e^{\pi i k^{2} / n} z^{k}
$$

the limit of $\left(\left\|g_{n}\right\|_{4}^{4}-\left\|g_{n}\right\|_{2}^{4}\right) /\left\|g_{n}\right\|_{2}^{3}$ is $2 / \pi$, which resolves a mystery due to Littlewood. This is however not the best answer to Littlewood's question: for the polynomials

$$
h_{n}(z)=\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} e^{2 \pi i j k / n} z^{n j+k}
$$

the limit of $\left(\left\|h_{n}\right\|_{4}^{4}-\left\|h_{n}\right\|_{2}^{4}\right) /\left\|h_{n}\right\|_{2}^{3}$ is shown to be $4 / \pi^{2}$. No sequence of polynomials with unimodular coefficients is known that gives a better answer to Littlewood's question. It is an open question as to whether such a sequence of polynomials exists.

1. Introduction

For real $r \geq 1$, the L^{r} norm of a polynomial $f \in \mathbb{C}[z]$ on the unit circle is

$$
\|f\|_{r}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{1 / r}
$$

There is sustained interest in the L^{r} norm of polynomials with restricted coefficients (see, for example, Littlewood [14], Borwein [2], and Erdélyi [5] for surveys on selected problems). Littlewood raised the question of how slowly $\left\|f_{n}\right\|_{4}^{4}-\left\|f_{n}\right\|_{2}^{4}$ can grow for a sequence of polynomials f_{n} with restricted coefficients and increasing degree. This problem is also of interest in the theory of communications, because $\|f\|_{4}^{4}$ equals the sum of squares of the aperiodic autocorrelations of the sequence formed from the coefficients of f [2, p. 122]; in this context one considers the merit factor $\|f\|_{2}^{4} /\left(\|f\|_{4}^{4}-\|f\|_{2}^{4}\right)$. Much work on Littlewood's question has been done when the coefficients are -1 or 1 ; see [8] for recent advances. In the situation where the coefficients are

[^0]restricted to have unit magnitude, the polynomials
$$
g_{n}(z)=\sum_{k=0}^{n-1} e^{\pi i k^{2} / n} z^{k} \quad \text { for integral } n \geq 1
$$
are of particular interest [11], [12], [13], [14]. ${ }^{1}$ These polynomials are also the main ingredient in Kahane's celebrated semi-probabilistic construction of ultra-flat polynomials [9], which disproves a conjecture due to Erdős [6]. Write
$$
\alpha_{n}=\frac{\left\|g_{n}\right\|_{4}^{4}-\left\|g_{n}\right\|_{2}^{4}}{\left\|g_{n}\right\|_{2}^{3}}
$$
(note that $\|f\|_{2}=\sqrt{n}$ for every polynomial f of degree $n-1$ with unimodular coefficients). Based on the work in [11] and [12] and calculations carried out by Swinnerton-Dyer, Littlewood concluded in [13] that
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}=\sqrt{2}-\frac{2}{\pi}(\sqrt{2}-1)=1.15051 \ldots \tag{1}
\end{equation*}
$$

\]

but expressed doubt in his own conclusion. He knew that

$$
\begin{equation*}
0.604 \leq \alpha_{n} \leq 0.656 \quad \text { for } 18 \leq n \leq 41 \tag{2}
\end{equation*}
$$

and noted [13, Appendix] "There is a considerable mystery here. I have checked my calculations at least six times, and they have been checked also in great detail by Dr. Flett." Littlewood raised this issue again in his book [14, p. 27] and asked for a resolution of this puzzle.

Borwein and Choi [3] conjectured

$$
\left\|g_{n}\right\|_{4}^{4}=n^{2}+\frac{2}{\pi} n^{3 / 2}+\delta_{n} n^{1 / 2}+O\left(n^{-1 / 2}\right)
$$

where $\delta_{n}=-2$ for $n \equiv 0,1(\bmod 4)$ and $\delta_{n}=1$ for $n \equiv 2,3(\bmod 4)($ this was not stated explicitly as a conjecture in [3], but was confirmed by the authors [4] to be a tentative conclusion based on numerical evidence). This conjecture implies in particular

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}=\frac{2}{\pi}=0.63661 \ldots \tag{3}
\end{equation*}
$$

Independently, Antweiler and Bömer [1] made observations similar to (2), while Stańczak and Boche [17] and Mercer [15] derived bounds for α_{n}. In particular, Mercer [15] showed that

$$
\limsup _{n \rightarrow \infty} \alpha_{n}<\frac{16}{3 \pi^{3 / 2}}=0.95779 \ldots
$$

and thereby confirming Littlewood's suspicion (although Mercer was apparently unaware of Littlewood's work).

We shall resolve Littlewood's puzzle by proving that (1) is incorrect and the conjecture (3) is true.

[^1]Theorem 1. We have

$$
\lim _{n \rightarrow \infty} \frac{\left\|g_{n}\right\|_{4}^{4}-\left\|g_{n}\right\|_{2}^{4}}{\left\|g_{n}\right\|_{2}^{3}}=\frac{2}{\pi}
$$

We shall also show that this is not the best possible answer to Littlewood's question. To do so, we consider the polynomials

$$
h_{n}(z)=\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} e^{2 \pi i j k / n} z^{n j+k} \quad \text { for integral } n \geq 1
$$

of degree $n^{2}-1$, which have been studied by Turyn [18], among others.
Theorem 2. We have

$$
\lim _{n \rightarrow \infty} \frac{\left\|h_{n}\right\|_{4}^{4}-\left\|h_{n}\right\|_{2}^{4}}{\left\|h_{n}\right\|_{2}^{3}}=\frac{4}{\pi^{2}}
$$

This is the best known answer to Littlewood's question: there is no sequence of polynomials f_{n} with unimodular coefficients for which the limit of $\left(\left\|f_{n}\right\|_{4}^{4}-\left\|f_{n}\right\|_{2}^{4}\right) /\left\|f_{n}\right\|_{2}^{3}$ is known to be less than $4 / \pi^{2}$. It is an open question as to whether such a sequence of polynomials exists.

In the radar literature $[10, \mathrm{Ch} .6]$, the sequences formed from the coefficients of g_{n} and h_{n} are called $C h u$ and Frank sequences, respectively. Our results show that their merit factors grow like $(\pi / 2) \sqrt{n}$ and $\left(\pi^{2} / 4\right) \sqrt{n}$, respectively, which explains numerical results reported in [1].

2. Proof of Theorem 1

We begin with summarising known results (see [13, p. 371], for example). For a polynomial $f \in \mathbb{C}[z]$ with $f(z)=\sum_{k=0}^{d-1} a_{k} z^{k}$, we readily verify that

$$
f(z) \overline{f\left(z^{-1}\right)}=\sum_{u=-(d-1)}^{d-1} c_{u} z^{u}
$$

where

$$
\begin{equation*}
c_{u}=\sum_{0 \leq j, j+u<d} a_{j} \overline{a_{j+u}} . \tag{4}
\end{equation*}
$$

The numbers c_{u} satisfy $c_{u}=\overline{c_{-u}}$. Hence

$$
\begin{equation*}
\|f\|_{4}^{4}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(f\left(e^{i \theta}\right) \overline{f\left(e^{i \theta}\right)}\right)^{2} d \theta=c_{0}^{2}+2 \sum_{u=1}^{d-1}\left|c_{u}\right|^{2} \tag{5}
\end{equation*}
$$

Lemma 3. For each $n \geq 1$, we have

$$
\begin{equation*}
\left\|g_{n}\right\|_{4}^{4}=n^{2}-\epsilon_{n}+4 \sum_{1 \leq u \leq n / 2}\left(\frac{\sin \left(\pi u^{2} / n\right)}{\sin (\pi u / n)}\right)^{2} \tag{6}
\end{equation*}
$$

where $\epsilon_{n}=2$ for $n \equiv 2(\bmod 4)$ and $\epsilon_{n}=0$ otherwise.

Proof. For $f=g_{n}$, elementary manipulations reveal that the numbers c_{u} in (4) satisfy

$$
\left|c_{u}\right|=\left|\frac{\sin \left(\pi u^{2} / n\right)}{\sin (\pi u / n)}\right|
$$

for $1 \leq u \leq n-1$. The desired result then follows from (5) after noting that $c_{0}=n$ and $\left|c_{u}\right|=\left|c_{n-u}\right|$ for $1 \leq u \leq n-1$ and $2\left|c_{n / 2}\right|=\epsilon_{n}$ for even n.

We now prove Theorem 1 by finding an asymptotic evaluation of the sum on the right hand side of (6).

Let x be a real number satisfying $0<x \leq \pi / 2$. From the inequality $x-x^{3} / 6 \leq \sin x \leq x$ we see that

$$
0<\frac{1}{(\sin x)^{2}}-\frac{1}{x^{2}}<1
$$

and therefore

$$
\left|\sum_{1 \leq u \leq n / 2}\left(\frac{\sin \left(\pi u^{2} / n\right)}{\sin (\pi u / n)}\right)^{2}-\sum_{1 \leq u \leq n / 2}\left(\frac{\sin \left(\pi u^{2} / n\right)}{\pi u / n}\right)^{2}\right|<\frac{n}{2} .
$$

Thus, defining the function $r: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
r(x)=\left(\frac{\sin \left(\pi x^{2} / n\right)}{\pi x / n}\right)^{2}
$$

the theorem is proved by showing that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}} \sum_{1 \leq u \leq n / 2} r(u)=\frac{1}{2 \pi} . \tag{7}
\end{equation*}
$$

It is consequence of the Euler-Maclaurin formula [16, Theorem B.5] that, for real numbers a and b with $a<b$, the expression

$$
\left|\sum_{a<u \leq b} r(u)-\int_{a}^{b} r(x) d x\right|
$$

is at most

$$
\frac{1}{2}(|r(a)|+|r(b)|)+\frac{1}{12}\left(\left|r^{\prime}(a)\right|+\left|r^{\prime}(b)\right|+\int_{a}^{b}\left|r^{\prime \prime}(x)\right| d x\right) .
$$

We take $b=n / 2$ and let a tend to zero. Elementary calculus shows that

$$
|r(n / 2)| \leq \frac{4}{\pi^{2}}, \quad\left|r^{\prime}(n / 2)\right| \leq \frac{8}{\pi}+\frac{16}{n \pi^{2}}, \quad \lim _{a \rightarrow 0} r(a)=\lim _{a \rightarrow 0} r^{\prime}(a)=0,
$$

and $\left|r^{\prime \prime}(x)\right| \leq 34$ for all real x. Therefore

$$
\left|\sum_{1 \leq u \leq n / 2} r(u)-\int_{0}^{n / 2} r(x) d x\right| \leq \frac{2}{\pi^{2}}+\frac{2}{3 \pi}+\frac{4}{3 n \pi^{2}}+\frac{17 n}{12},
$$

and so

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}} \sum_{1 \leq u \leq n / 2} r(u)=\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}} \int_{0}^{n / 2} r(x) d x
$$

provided that both limits exist. Substituting $y=\pi x^{2} / n$, we see that this last expression equals

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi^{3 / 2}} \int_{0}^{\pi n / 4} \frac{(\sin y)^{2}}{y^{3 / 2}} d y=\frac{1}{2 \pi^{3 / 2}} \int_{0}^{\infty} \frac{(\sin y)^{2}}{y^{3 / 2}} d y
$$

This establishes (7), and so completes the proof, since

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(\sin y)^{2}}{y^{3 / 2}} d y=\sqrt{\pi} \tag{8}
\end{equation*}
$$

(see Gradshteyn and Ryzhik [7, 3.823]).
For completeness, we sketch a proof of the identity (8). To do so, we readily verify that

$$
\frac{\Gamma(3 / 2)}{y^{3 / 2}}=\int_{0}^{\infty} e^{-y t} \sqrt{t} d t \quad \text { for } y>0
$$

which together with $\Gamma(3 / 2)=\sqrt{\pi} / 2$ yields

$$
\int_{0}^{\infty} \frac{(\sin y)^{2}}{y^{3 / 2}} d y=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \int_{0}^{\infty} e^{-y t} \sqrt{t}(\sin y)^{2} d t d y
$$

Since the integrand on the right hand side is nonnegative, we can interchange the order of integration by Tonelli's theorem. The integral therefore equals

$$
\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \sqrt{t} \int_{0}^{\infty} e^{-y t}(\sin y)^{2} d y d t=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{2 \sqrt{t}}{t^{3}+4 t} d t=\sqrt{\pi}
$$

The inner integral on the left hand side is just the Laplace transform of $(\sin y)^{2}$, while the integral on the right hand side can be evaluated by first substituting $t=x^{2}$ (which makes the integrand rational) and then using standard techniques.

3. Proof of Theorem 2

We begin with proving a counterpart of Lemma 3 for the polynomials h_{n}.
Lemma 4. For each $n \geq 1$, we have

$$
\left\|h_{n}\right\|_{4}^{4}=n^{4}-\gamma_{n}+8 n \sum_{1 \leq v \leq n / 2} \sum_{1 \leq k \leq v}\left(\frac{\sin (\pi k / n)}{\sin (\pi v / n)}\right)^{2},
$$

where

$$
\gamma_{n}= \begin{cases}3 n^{2} & \text { for even } n \\ 2 n^{2}-2 n & \text { for odd } n\end{cases}
$$

Proof. Write $\zeta=e^{2 \pi i / n}$. Then, for $f=h_{n}$, the numbers c_{u} in (4) are given by (see also Turyn [18])

$$
c_{n u+v}=\sum_{j=0}^{n-u-1} \sum_{k=0}^{n-v-1} \zeta^{j k-(j+u)(k+v)}+\sum_{j=0}^{n-u-2} \sum_{k=n-v}^{n-1} \zeta^{j k-(j+u+1)(k+v)}
$$

for $0 \leq u, v<n$. Rearrange and use $\sum_{k=0}^{n-1} \zeta^{k(u+1)}=0$ for $n \nmid u+1$ (note that the second term is zero for $u+1=n$) to see that

$$
\begin{equation*}
\overline{c_{n u+v}}=\zeta^{u v} \sum_{k=0}^{n-v-1} \zeta^{k u} \sum_{j=0}^{n-u-1} \zeta^{j v}-\zeta^{(u+1) v} \sum_{k=0}^{n-v-1} \zeta^{k(u+1)} \sum_{j=0}^{n-u-2} \zeta^{j v} \tag{9}
\end{equation*}
$$

for $0 \leq u, v<n$. Evaluation of the sums over j gives, for $0 \leq u<n$ and $0<v<n$,

$$
\begin{aligned}
\overline{c_{n u+v}} & =\frac{1}{\zeta^{v}-1} \sum_{k=0}^{n-v-1}\left(\zeta^{k u}\left(1-\zeta^{u v}\right)-\zeta^{k(u+1)}\left(1-\zeta^{(u+1) v}\right)\right) \\
& =\frac{1}{\zeta^{v}-1} \sum_{k=0}^{n-v-1}\left[\zeta^{(k+v) u}\left(\zeta^{k+v}-1\right)-\zeta^{k u}\left(\zeta^{k}-1\right)\right]
\end{aligned}
$$

We can write this as

$$
\left(\sum_{k=v}^{n-1}-\sum_{k=0}^{n-v-1}\right) \zeta^{k u} \frac{\zeta^{k}-1}{\zeta^{v}-1}
$$

from which we see that

$$
\begin{equation*}
\sum_{u=0}^{n-1}\left|c_{n u+v}\right|^{2}=n\left(\sum_{k=v}^{n-1}+\sum_{k=0}^{n-v-1}-\sum_{k=v}^{n-v-1}-\sum_{k=v}^{n-v-1}\right)\left|\frac{\zeta^{k}-1}{\zeta^{v}-1}\right|^{2} \tag{10}
\end{equation*}
$$

for $0<v<n$. For $0<v<n / 2$ all of these sums are nonempty, so that after grouping them together we have, for $0<v<n / 2$,

$$
\begin{align*}
\sum_{u=0}^{n-1}\left|c_{n u+v}\right|^{2} & =n\left(\sum_{k=n-v}^{n-1}+\sum_{k=0}^{v-1}\right)\left|\frac{\zeta^{k}-1}{\zeta^{v}-1}\right|^{2} \\
& =2 n \sum_{k=0}^{v}\left|\frac{\zeta^{k}-1}{\zeta^{v}-1}\right|^{2}-n \\
& =2 n \sum_{k=1}^{v}\left(\frac{\sin (\pi k / n)}{\sin (\pi v / n)}\right)^{2}-n . \tag{11}
\end{align*}
$$

Using (9) we readily verify that $c_{n u}=0$ for $u \neq 0$. Therefore, since $c_{0}=n^{2}$ trivially, we have from (5)

$$
\begin{equation*}
\left\|h_{n}\right\|_{4}^{4}=n^{4}+2 \sum_{v=1}^{n-1} \sum_{u=0}^{n-1}\left|c_{n u+v}\right|^{2} \tag{12}
\end{equation*}
$$

We also have

$$
\begin{equation*}
c_{n u+v}=-\zeta^{v} c_{n u+n-v} \quad \text { for }(u, v) \neq(0,0) \tag{13}
\end{equation*}
$$

which also follows from (9) using the identities

$$
\sum_{k=0}^{v-1} \zeta^{k w}=-\zeta^{w v} \sum_{k=0}^{n-v-1} \zeta^{k w}
$$

for integers w and v satisfying $n \nmid w$ and $0 \leq v<n$ and

$$
\sum_{j=0}^{n-w-1} \zeta^{-j v}=\zeta^{(w+1) v} \sum_{j=0}^{n-w-1} \zeta^{j v}
$$

for integers w and v.
Now, for odd n, we have from (12) and (13)

$$
\left\|h_{n}\right\|_{4}^{4}=n^{4}+4 \sum_{v=1}^{(n-1) / 2} \sum_{u=0}^{n-1}\left|c_{n u+v}\right|^{2}
$$

and the desired result follows from (11). Similarly, for even n, we have

$$
\left\|h_{n}\right\|_{4}^{4}=n^{4}+4 \sum_{v=1}^{n / 2-1} \sum_{u=0}^{n-1}\left|c_{n u+v}\right|^{2}+2 \sum_{u=0}^{n-1}\left|c_{n u+n / 2}\right|^{2} .
$$

Using (10), we find that

$$
2 \sum_{u=0}^{n-1}\left|c_{n u+n / 2}\right|^{2}=\frac{n}{2} \sum_{k=0}^{n-1}\left|\zeta^{k}-1\right|^{2}=n^{2}
$$

and therefore, by (11),

$$
\left\|h_{n}\right\|_{4}^{4}=n^{4}-n^{2}+4 n+8 n \sum_{v=1}^{n / 2-1} \sum_{k=1}^{v}\left(\frac{\sin (\pi k / n)}{\sin (\pi v / n)}\right)^{2} .
$$

To obtain the desired expression in the lemma for even n, we extend the summation over v to $n / 2$ and subtract the correction term

$$
8 n \sum_{k=1}^{n / 2}(\sin (\pi k / n))^{2}=n \sum_{k=0}^{n-1}\left|\zeta^{k}-1\right|^{2}+4 n=2 n^{2}+4 n
$$

In order to prove Theorem 2, we invoke Lemma 4 and show that

$$
\begin{equation*}
8 n \sum_{1 \leq v \leq n / 2} \sum_{1 \leq k \leq v}\left(\frac{\sin (\pi k / n)}{\sin (\pi v / n)}\right)^{2}=\frac{4}{\pi^{2}} n^{3}+O\left(n^{2}\right) \tag{14}
\end{equation*}
$$

To do so, we make repeated use of the following elementary bound, which is also a simple consequence of the Euler-Maclaurin formula [16, Theorem B.5].

Let $r: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and let a and b be real numbers with $a<b$. Then

$$
\begin{equation*}
\left|\sum_{a<k \leq b} r(k)-\int_{a}^{b} r(x) d x\right| \leq \frac{1}{2}\left(|r(a)|+|r(b)|+\int_{a}^{b}\left|r^{\prime}(x)\right| d x\right) \tag{15}
\end{equation*}
$$

We first take $r(x)=(\sin (\pi x / n))^{2}$ and $(a, b)=(0, v)$, so that for $1 \leq v \leq n / 2$, we have

$$
\begin{aligned}
\sum_{k=1}^{v}(\sin (\pi k / n))^{2} & =\int_{0}^{v}(\sin (\pi x / n))^{2} d x+O(1) \\
& =\frac{n}{\pi} \int_{0}^{\pi v / n}(\sin y)^{2} d y+O(1) \\
& =\frac{n}{2 \pi}(\pi v / n-\sin (\pi v / n) \cos (\pi v / n))+O(1)
\end{aligned}
$$

Letting

$$
p(y)=\frac{y-\sin y \cos y}{(\sin y)^{2}}
$$

we then have

$$
\begin{equation*}
\sum_{1 \leq v \leq n / 2} \sum_{1 \leq k \leq v}\left(\frac{\sin (\pi k / n)}{\sin (\pi v / n)}\right)^{2}=\frac{n}{2 \pi} \sum_{1 \leq v \leq n / 2} p(\pi v / n)+O(n) \tag{16}
\end{equation*}
$$

We now apply (15) with $r(x)=p(\pi x / n)$ and $b=n / 2$ and let a tend to zero. We have

$$
p^{\prime}(y)=2-\frac{2(y-\sin y \cos y) \cos y}{(\sin y)^{3}}
$$

from which, using $x-x^{3} / 6 \leq \sin x \leq x$ and $1-x^{2} / 2 \leq \cos x \leq 1$ together with elementary calculus, we find that

$$
-3<p^{\prime}(y) \leq 2 \quad \text { for } 0<y \leq \pi / 2
$$

Hence $\left|r^{\prime}(x)\right|<3 \pi / n$ for $0<x \leq n / 2$. Since we also have $r(n / 2)=\pi / 2$ and $\lim _{a \rightarrow 0} r(a)=0$, we find from (15) that (16) equals

$$
\frac{n}{2 \pi} \int_{0}^{n / 2} p(\pi x / n) d x+O(n)=\frac{n^{2}}{2 \pi^{2}} \int_{0}^{\pi / 2} p(y) d y+O(n)
$$

The desired result (14) is then established by showing that

$$
\begin{equation*}
\int_{0}^{\pi / 2} p(y) d y=1 \tag{17}
\end{equation*}
$$

By differentiation we readily verify that

$$
\int \frac{y-\sin y \cos y}{(\sin y)^{2}} d y=-\frac{y}{\tan y}+C
$$

for some arbitrary constant C and (17) follows by application of l'Hôpital's rule.

References

[1] M. Antweiler and L. Bömer. Merit factor of Chu and Frank sequences. IEE Electron. Lett., 46(25):2068-2070, 1990.
[2] P. Borwein. Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer-Verlag, New York, NY, 2002.
[3] P. Borwein and K.-K. S. Choi. Merit factors of character polynomials. J. London Math. Soc., 61:706-720, 2000.
[4] P. Borwein and K.-K. S. Choi. Personal communication, 2012.
[5] T. Erdélyi. Polynomials with Littlewood-type coefficient constraints. In Approximation theory, X (St. Louis, MO, 2001), Innov. Appl. Math., pages 153-196. Vanderbilt Univ. Press, Nashville, TN, 2002.
[6] P. Erdős. An inequality for the maximum of trigonometric polynomials. Ann. Polon. Math., 12:151-154, 1962.
[7] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, 7th edition, 2007.
[8] J. Jedwab, D. J. Katz, and K.-U. Schmidt. Littlewood polynomials with small L^{4} norm, 2012. arXiv:1205.0260v1 [math.NT].
[9] J. P. Kahane. Sur les polynômes à coefficients unimodulaires. Bull. London Math. Soc., 12:321-342, 1980.
[10] N. Levanon and E. Mozeson. Radar signals. Wiley-Interscience, 1st edition, 2004.
[11] J. E. Littlewood. On the mean values of certain trigonometric polynomials. J. London Math. Soc., 36:307-334, 1961.
[12] J. E. Littlewood. On the mean values of certain trigonometric polynomials II. Illinois J. Math., 6:1-39, 1962.
[13] J. E. Littlewood. On polynomials $\sum^{n} \pm z^{m}, \sum^{n} e^{\alpha_{m} i} z^{m}, z=e^{\theta i}$. J. London Math. Soc., 41:367-376, 1966.
[14] J. E. Littlewood. Some Problems in Real and Complex Analysis. Heath Mathematical Monographs. D. C. Heath and Company, Lexington, MA, 1968.
[15] I. D. Mercer. Bounds on asymptotic merit factor of Chu sequences, 2012. http://www.math.udel.edu/~idmercer/publications.html.
[16] H. L. Montgomery and R. C. Vaughan. Multiplicative number theory. I. Classical theory, volume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.
[17] S. Stańczak and H. Boche. Aperiodic properties of generalized binary Rudin-Shapiro sequences and some recent results on sequences with a quadratic phase function. In Proc. of International Zurich Seminar on Broadband Communications, pages 279286. IEEE, 2000.
[18] R. Turyn. The correlation function of a sequences of roots of 1. IEEE Trans. Inf. Theory, 13(3):524-525, 1967.

Faculty of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.

E-mail address: kaiuwe.schmidt@ovgu.de

[^0]: Date: 13 September 2012 (revised 12 February 2013).
 2010 Mathematics Subject Classification. Primary: 42A05, 11B83; Secondary: 94A55.

[^1]: ${ }^{1}$ Some authors consider $g_{n}\left(e^{ \pm \pi i / n} z\right)$, which however has the same L^{r} norm as $g_{n}(z)$.

