
HIGHLY NONLINEAR FUNCTIONS

KAI-UWE SCHMIDT

Abstract. Let f be a function from Zm
q to Zq. Such a function f is

bent if all values of its Fourier transform have absolute value 1. Bent
functions are known to exist for all pairs (m, q) except when m is odd
and q ≡ 2 (mod 4) and there is overwhelming evidence that no bent
function exists in the latter case. In this paper the following problem
is studied: how closely can the largest absolute value of the Fourier
transform of f approach 1? For q = 2, this problem is equivalent to the
old and difficult open problem of determining the covering radius of the
first order Reed-Muller code. The main result is, loosely speaking, that
the largest absolute value of the Fourier transform of f can be made
arbitrarily close to 1 for q large enough.

1. Introduction and Results

Let f be a function from Zmq to Zq and write ω = e2πi/q. The Fourier (or

Walsh) transform of f is the function f̂ : Zmq → C given by

f̂(λ) =
1

qm/2

∑
x∈Zm

q

ωf(x)−λx
T
.

Kumar, Scholtz, and Welch [9] defined f to be bent if∣∣f̂(λ)
∣∣ = 1 for all λ ∈ Zmq .

This generalises the classical definition of bent functions (arising for q = 2)
by Rothaus [14]. The value

(1) max
λ∈Zm

q

∣∣f̂(λ)
∣∣

equals the largest magnitude of an Hermitian inner product of ωf with ω`,
where ` is a linear function from Zmq to Zq. Hence (1) is a measure of
nonlinearity of f . Notice that (1) is at least 1 by Parseval’s identity and
thus bent functions have largest possible nonlinearity in this context.
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sitätsplatz 2, 39106 Magdeburg, Germany. Email: kaiuwe.schmidt@ovgu.de.

1



2 KAI-UWE SCHMIDT

Constructions of bent functions are known [9] for all pairs (m, q) except

when m is odd and q ≡ 2 (mod 4). For q = 2, the values of qm/2f̂(λ) must
be real and integral and hence bent functions cannot exist for q = 2 and
odd m. Several authors have established the nonexistence of bent functions
for odd m and infinitely many values of q [9], [13], [1], [7], [5] [10], providing
overwhelming evidence that no bent function exists when m is odd and q ≡ 2
(mod 4).

For integers q ≥ 2 and m ≥ 1, define

µ(q,m) = min
f

max
λ∈Zm

q

∣∣f̂(λ)
∣∣,

where the minimum is over all functions f from Zmq to Zq. Then

(2) 1 ≤ µ(q,m) ≤ √q.
Due to the existence of bent functions, the lower bound is an equality except
possibly when m is odd and q ≡ 2 (mod 4). The upper bound in (2) is trivial
for m = 1 and, for odd m ≥ 3, arises by “lifting” a bent function on Zm−1q

to a function on Zmq .
The determination of µ(2,m) is equivalent to the difficult open problem

of finding the covering radius of the first order Reed-Muller code [17]. It is
known [3], [11], [6] that equality holds in the upper bound of (2) for q = 2
and m ∈ {3, 5, 7}. It is also known that

µ(2,m) ≤

{√
49/32 for m ≥ 9 (see [8])√
729/512 for m ≥ 15 (see [12]).

Patterson and Wiedemann [12] conjectured that

(3) lim
m→∞

µ(2,m) = 1.

An appropriate generalisation of the conjecture (3) is

lim
m→∞

µ(q,m) = 1

for each q ≥ 2. For fixed q > 2 satisfying q ≡ 2 (mod 4), this conjecture
however does not seem to be easier to resolve than the original conjecture (3).

In this paper we prove that

lim
q→∞

µ(q,m) = 1.

for each m ≥ 1, which is implied by the following more precise result.

Theorem 1. For all sufficiently large qm, we have

µ(q,m) < cos
π

q
+ 15 sin

π

q
.

Notice that, for all q ≥ 16, the bound of Theorem 1 is strictly better than
the upper bound in (2).

To prove Theorem 1, we generalise the notion of bent functions to func-
tions from Zmq to Z2q (these generalise at the same time the bent functions
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from Zmq to Zq, as defined by Kumar, Scholtz, and Welch [9], and the bent
functions from Zm2 to Z4, as defined by the author [15]). We give a construc-
tion of such generalised bent functions for all m and all even q. To establish
Theorem 1, we apply a random modification to this construction, using a
method of Beck [2].

2. A generalised bent function

Let ζ = eπi/q be a primitive (2q)-th root of unity and write ω = ζ2. We
say that a function f : Zmq → Z2q is bent if

1

qm/2

∣∣∣∣∣ ∑
x∈Zm

q

ζf(x) ω−λx
T

∣∣∣∣∣ = 1 for all λ ∈ Zmq .

We provide a construction of such bent functions for all even q, generalis-
ing [15, Construction 5.7].

Proposition 2. Let q be an even positive integer. The function g : Zm → Z,
given by

g(x1, . . . , xm) = x21 + · · ·+ x2m,

induces a function f from Zmq to Z2q that is bent.

Proof. The function g induces a function from Zmq to Z2q because q is even,
and thus

(4) (x+ q)2 ≡ x2 (mod 2q) for all x ∈ Z.

To verify the bent property of f , let λ = (λ1, . . . , λm) be an element of Zm.
Then ∑

x∈Zm
q

ζf(x)ω−λx
T

=

q−1∑
x1,...,xm=0

ζx
2
1+···+x2m−2λ1x1−···−2λmxm

=
m∏
k=1

q−1∑
xk=0

ζx
2
k−2λkxk

=

m∏
k=1

q−1∑
yk=0

ζy
2
k−λ

2
k

by setting xk = yk + λk and using (4). Therefore,∑
x∈Zm

q

ζf(x)ω−λx
T

=

( m∏
k=1

e−πiλ
2
k/q

)( q−1∑
y=0

eπiy
2/q

)m
and the proposition is proved by showing that∣∣∣∣∣

q−1∑
y=0

eπiy
2/q

∣∣∣∣∣ =
√
q.
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We have ∣∣∣∣∣
q−1∑
y=0

eπiy
2/q

∣∣∣∣∣
2

=

q−1∑
y,z=0

eπiy
2/q e−πiz

2/q

=

q−1∑
y,w=0

eπiy
2/q e−πi(y+w)

2/q,

using (4) again. Therefore∣∣∣∣∣
q−1∑
y=0

eπiy
2/q

∣∣∣∣∣
2

=

q−1∑
w=0

e−πiw
2/q

q−1∑
y=0

e−2πiyw/q.

The inner sum is zero, unless w ≡ 0 (mod q), in which case the inner sum,
and hence the total sum, equals q, as required. �

3. Bounding linear transformations

In this section we elaborate on a result due to Spencer [18] and a refine-
ment due to Sharif and Hassibi [16].

We define a norm on Cn by

‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}.

Lemma 3 ([18, Theorem 7], [16, Lemma 3]). Let A be a matrix of size `×m
satisfying ` ≤ m with real-valued entries of absolute value at most 1. Then
there exists a nondecreasing function K : (0, 1]→ R satisfying

(i) K(α) ≤ 11
√
α log(2/α), and

(ii) K(α) ≤ t
√
α + K

(√
−3.05αQ(t) log2(0.39Q(t))

)
for all real t > 3,

where

Q(t) =
1√
2π

∫ ∞
t

e−x
2/2 dx,

such that the following holds. For all sufficiently large `, there exists u ∈
{−1, 1}` such that

‖uA‖ ≤ K(`/m)
√
m.

We use Lemma 3 to deduce the following lemma.

Lemma 4. Let K be as in Lemma 3 and let h ≥ 2 be an integer. Let B be a
matrix of size `×n satisfying ` ≤ hn with complex-valued entries of absolute
value at most 1. Then, for all sufficiently large `, there exists u ∈ {−1, 1}`
such that

‖uB‖ ≤ sec
( π

2h

)
K
( `

hn

)√
hn.
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Proof. For complex z, we have the elementary geometric inequality

(5) |z| ≤ sec
( π

2h

)
max

j∈{0,...,h−1}

∣∣Re(zeπij/h)
∣∣.

Construct a matrix of size `× hn with real-valued entries by

A =
[
Re(B) Re(Beπi/h) Re(Beπi2/h) . . . Re(Beπi(h−1)/h)

]
.

By Lemma 3 applied with m = hn, we see that there exists u ∈ {−1, 1}`
such that

‖uA‖ ≤ K
( `

hn

)√
hn

and the lemma follows from (5). �

We shall apply Lemma 4 in the following equivalent form.

Lemma 5. Let K be as in Lemma 3 and let h ≥ 2 be an integer. Let B
be a matrix of size ` × n satisfying ` ≤ hn with complex-valued entries of
absolute value at most 1. Let ε1, . . . , ε` be complex numbers of absolute value
at most r. Then, for all sufficiently large `, there exists vk ∈ {−εk, εk} for
all k ∈ {1, . . . , `} such that v = (v1, . . . , v`) satisfies

‖vB‖ ≤ r sec
( π

2h

)
K
( `

hn

)√
hn.

We shall apply Lemma 5 with h = 8 and ` equal to either n or n/2, so
that we require upper bounds for K(1/8) and K(1/16).

With Q(t) defined as in Lemma 3, we have

Q(t) ≤ 1√
2π t

e−t
2/2

(see [4, Theorem 1.2.3], for example). Applying the implicit bound (ii) for
K in Lemma 3, first with t = 5 and then with t = 7, we find that

K(1/8) ≤ 5
√

1/8 +K(1.617× 10−3)

≤ 5
√

1/8 + 7
√

1.617× 10−3 +K(5.127× 10−7).

Then, using the explicit bound (i) for K in Lemma 3, we conclude that
K(1/8) < 2.08 and therefore,

(6) sec(π/16)K(1/8)
√

8 < 6.

Likewise (by taking the same parameters), we have K(1/16) < 1.52 and

(7) sec(π/16)K(1/16)
√

8 < 4.4.
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4. Proof of Theorem 1

Write ω = e2πi/q and let B = (bkj) be the qm×qm matrix whose elements
are given by

bkj = ω−(j1k1+···+jmkm),

where

j = 1 + j1 + j2q + · · ·+ jmq
m−1

k = 1 + k1 + k2q + · · ·+ kmq
m−1

and j`, k` ∈ {0, . . . , q− 1} for all ` ∈ {1, . . . ,m}. Given a function f : Zmq →
Zq, there exists a uniquely determined vector z = (z1, . . . , zqm) such that

ωf(k1,...,km) = z1+k1+k2q+···+kmqm−1 for each (k1, . . . , km) ∈ Zmq ,

where the index is computed in Z. Thus the theorem is proved by showing
the existence of a vector z ∈ Cqm whose entries are q-th roots of unity such
that

(8) ‖zB‖ <
(

cos
π

q
+ 15 sin

π

q

)
qm/2

for all sufficiently large qm.
Since bent functions from Zmq to Zq always exist when q is odd and the

expression in the bracket of (8) is strictly greater than 1 for all q ≥ 2, we may
assume that q is even. Then, by the above discussion and by Proposition 2,
there exists a vector x ∈ Cqm (induced by the bent function in Proposition 2)
whose entries are (2q)-th roots of unity such that

(9) ‖xB‖ = qm/2.

By multiplying x with eπi/q if necessary, we may also assume that

(10) at least half of the entries of x are not q-th roots of unity.

We obtain a vector z satisfying (8) by rounding the entries of x to q-th roots
of unity, using a refined version of a method due to Beck [2].

Write ρ = cos(π/q), so that ρ is the radius of the inscribed circle of the
regular q-sided polygon whose vertices are the q-th roots of unity. Write
x = (x1, . . . , xqm) and let k ∈ {1, . . . , qm}. Then xk = eπi(2j)/q or xk =

eπi(2j+1)/q for some j satisfying 0 ≤ j < q. In either case, ρxk lies within
the triangle ∆k with vertices

(11) (e2πi(j−1)/q + e2πij/q)/2, e2πij/q, (e2πi(j+1)/q + e2πij/q)/2.

Let d be the diameter of the triangles ∆k, so that

(12) d = 2 cos(π/q) sin(π/q).

For a real number λ and a triangle ∆, let λ∆ be the triangle obtained
by a uniform scaling of ∆ with scaling factor λ. Using the barycentric
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decomposition of a triangle, we have the chain of partitions

∆k =
4⋃
s=1

∆k(1, s) =
42⋃
s=1

∆k(2, s) = · · · =
4`⋃
s=1

∆k(`, s) = · · · ,

where, for each s ∈ {1, . . . , 4`}, the triangle ∆k(`, s) is congruent to 2−`∆k.
Notice that the diameter of the triangles ∆k(`, s) equals 2−`d.

Let t > 1 be an integer to be determined later. Then there exist integers
s1, . . . , st satisfying s` ∈ {1, . . . , 4`} for all ` ∈ {1, . . . , t} such that

ρxk ∈ ∆k(t, st) ⊂ ∆k(t− 1, st−1) ⊂ · · · ⊂ ∆k(1, s1) ⊂ ∆k.

Let y(t) be a vector in Cqm whose k-th entry is obtained by rounding ρxk
to a nearest vertex of the small triangle ∆k(t, st). Then

‖ρx− y(t)‖ ≤ 2−td/2

and so

(13) ‖ρxB − y(t)B‖ ≤ qm2−td/2.

In the next step, we round the k-th entry of y(t) to a vertex of the big
triangle ∆k. By virtue of the definition of ∆k, we see from (10) that at least

qm/2 entries of y(t) are already vertices of the corresponding big triangle.
Now, each vertex of ∆k(t, st) is either a vertex of ∆k(t − 1, st−1) or lies
exactly in the centre between two vertices of ∆k(t − 1, st−1). We apply

Lemma 5 with r = 2−(t−1)d/2, ` = qm/2, n = qm, and h = 8 and use (7)

to conclude that there exists a vector y(t−1) whose entries are vertices of
∆k(t− 1, st−1) such that

‖y(t)B − y(t−1)B‖ < 4.4 · 2−td qm/2

for all sufficiently large qm. Continuing this process, there exist vectors
y(t−2), . . . , y(1), y(0) whose entries are vertices of ∆k(t−2, st−2), . . . ,∆k(1, s1),
∆k, respectively, such that

‖y(`)B − y(`−1)B‖ < 4.4 · 2−`d qm/2 for each ` ∈ {1, . . . , t}

and all sufficiently large qm. Hence, by the triangle inequality,

‖y(t)B − y(0)B‖ ≤
t∑

`=1

‖y(`)B − y(`−1)B‖

<

t∑
`=1

4.4 · 2−`d qm/2

< 4.4 d qm/2.(14)

The k-th entry in y(0) is a vertex of ∆k, so equals one of the points in (11).
Notice that the length of the two equal sides of the triangle ∆k equals
sin(π/q). We apply Lemma 5 once more with r = sin(π/q), ` = n = qm,
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and h = 8 and use (6) to conclude that there exists a vector z ∈ Cqm whose
entries are q-th roots of unity such that

(15) ‖zB − y(0)B‖ < 6 sin(π/q) qm/2

for all sufficiently large qm.
Now from (13), (14), and (15), for all sufficiently large qm, we have by

the triangle inequality

‖zB − ρxB‖ < 6 sin(π/q)qm/2 + 4.4 d qm/2 + qm 2−td/2

= sin(π/q)qm/2
(
6 + 8.8 cos(π/q) + qm/2 2−t cos(π/q)

)
using (12). Hence, by choosing t large enough, we have

‖zB − ρxB‖ < 15 sin(π/q) qm/2.

From (9) we have ‖ρxB‖ = cos(π/q) qm/2, which shows that z satisfies (8),
as required. �
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