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Abstract

The use of error-correcting codes for tight control of the peak-to-mean envelope power ratio
(PMEPR) in orthogonal frequency-division multiplexing (OFDM) transmission is considered. A
well-known approach for the construction of such codes is to take a code that is good in the clas-
sical coding-theoretic sense and to choose a translate of this code that minimizes the PMEPR.
A fundamental problem is to determine the minimum PMEPR over all translates of a given
code. Motivated by a recent lower bound for this minimum, an existence result is presented
here. Roughly speaking, given a code C of sufficiently large length n, there exists a translate
of C with PMEPR at most k log(|C|n1+ε) for all ε > 0 and for some k independent of n. This
result is then used to show that for n ≥ 32 there is a translate of the lengthened dual of a binary
primitive t-error-correcting BCH code with PMEPR at most 8(t+ 2) log n.
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1 Introduction

Orthogonal frequency-division multiplexing (OFDM) is a key concept in the development of wired
and wireless communications systems in the past decade. It provides excellent ability to cope with
multipath propagation and fast-moving environment. On the other hand, a principal drawback
of OFDM is the typically high peak-to-mean envelope power ratio (PMEPR) of uncoded OFDM
signals. That is, the peak transmit power can be many times the average transmit power.

In order to ensure a distortionless transmission, all components in the transmission chain must
be linear across a wide range of signal levels. This results in power inefficiency, which is particularly
severe in mobile applications, where battery lifetime is a major concern. On the other hand,
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nonlinearities in the transmission chain can lead to a loss of orthogonality among the carriers and
to out-of-band radiation. The former has the effect of degrading the total system performance and
the latter is subject to strong regulations.

In this letter, we consider biphase modulation of the OFDM subcarriers. Let F = GF(2) be
the finite field containing two elements. For any word c ∈ Fn, write c = (c0, c1, . . . , cn−1). Given
c ∈ Fn, the OFDM modulator outputs the complex baseband signal

Sc(θ) =
n−1∑
j=0

(−1)cje
√
−12πjθ for 0 ≤ θ < 1.

The PMEPR of this signal (or of the modulating word c) is given by

PMEPR(c) :=
1
n

sup
0≤θ<1

|Sc(θ)|2.

By a (binary) code of length n we mean a nonempty subset of Fn. Given a code C, the PMEPR of
C is defined to be

PMEPR(C) := max
c∈C

PMEPR(c).

Note that each linear code of length n has PMEPR equal to n, which is caused by the existence of
the all-zero word in the code.

The general objective is to construct codes of a given length n having high rate, large minimum
Hamming distance, and small PMEPR. Explicit code constructions with small PMEPR are scarce;
we refer to [1] for a good overview. In this letter, we analyze a simple approach by Jones and
Wilkinson [2] to construct codes with given minimum Hamming distance and small PMEPR. This
method will be described next. Given s ∈ Fn, a translate of a code C of length n is defined to be

s+ C := {s+ c : c ∈ C}.

If C is linear, then a translate of C is a coset of C, and there are exactly 2n/|C| such cosets. Note
that the rate and the minimum Hamming distance of each translate of a code C equal those of the
original code. The idea of [2] is to take a known code and to choose a translate of this code with
reduced PMEPR. Compared to many other approaches to construct codes with small PMEPR, the
advantage of this method is that encoding and decoding is standard (by choosing an appropriate
original code).

The following existence result was obtained by Litsyn and Wunder [3, Thm. 15]. Given a code
C of length n, there exists an s ∈ Fn such that, for all real λ, the proportion of codewords in s+ C
with PMEPR at least λ is at most the proportion of codewords in Fn with PMEPR at least λ.
However, this does not ensure the existence of translates with PMEPR significantly less than its
worst-case value, namely n.

Ideally, given a code C of length n, we would like to find a translate of C with minimum
PMEPR. However, except for small n, the computation of a translate with minimum PMEPR is a
difficult problem in combinatorial optimization. A feasible solution is currently unknown, although
suboptimal algorithms have been proposed in the literature [2], [4], [5]. In order to asses the
outcome of such an algorithm, it is of importance to have information about the minimum PMEPR
over all translates of the input code C. In [6] the author proved a lower bound for this minimum.
This bound depends on the covering radius of C, which is defined to be

ρ(C) := max
s∈Fn

min
c∈C

d(s, c),
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where d(s, c) is the Hamming distance between s and c.

Proposition 1 ([6, Thm. 2]). Let C be a code of length n, and suppose that ρ(C) ≤ n
2 . Then, for

each s ∈ Fn, we have

PMEPR(s+ C) ≥ 1
n

(n− 2ρ(C))2 .

This bound was derived in [6] as part of a more general result that holds for nonbinary translates
of C. The result was used in [6] to show that for many families of codes it is impossible to reduce
the PMEPR significantly by taking translates of them. For example, every translate of a linear
code C of length n with rate R ≥ 1

2 must have PMEPR at least 4n(R− 1
2)2, which depends linearly

on n.
On the other hand, [6] exhibits code families for which Proposition 1 imposes very weak re-

strictions on the PMEPR of its translates, among them are the duals of the binary primitive BCH
codes. This motivates further investigation of the minimum PMEPR over all their translates.

The main result of this letter, to be proved in Section 2, is roughly speaking the following.
Given a code C of length n, then for sufficiently large n there is a translate of C having PMEPR
at most k log(|C|n1+ε) for all ε > 0 and some k independent of n. We then apply this result in
Section 3 to the lengthened duals of binary primitive t-error-correcting BCH codes to show that
for n ≥ 32 there is a translate of such a code with PMEPR at most 8(t+ 2) log n. This answers a
question raised by Paterson and Tarokh [7].

2 Main Result

We begin with a standard result from probability theory, known as Hoeffding’s inequality.

Lemma 2 ([8, Thm. 2]). Let X0, X1, . . . , Xn−1 be independent random variables satisfying E(Xj) =
0 and |Xj | ≤ 1 for all j satisfying 0 ≤ j < n. Then, for all real λ ≥ 0,

Pr

(( n−1∑
j=0

Xj

)2

≥ λ

)
≤ 2 e−

λ
2n .

We shall also need the following lemma that allows us to compute an upper bound for the
PMEPR of a codeword c ∈ Fn from N equi-spaced samples of its associated signal, whenever
N > n.

Lemma 3 ([1, Thm. 4.8]). Let K > 1 be such that Kn is integer. Then, for each c ∈ Fn, we have

PMEPR(c) ≤ 1(
cos π

2K

)2 1
n

max
0≤`<Kn

∣∣∣Sc( `
Kn

)∣∣∣2.
Our main result is the following.

Theorem 4. Let C be a code of length n. Let K > 1 be such that Kn is integer, and let ε > 0 be
real. Then there exists s ∈ Fn such that

PMEPR(s+ C) ≤ 4(
cos π

2K

)2 log
(
|C|n1+ε

)
(1)
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for each n ≥ n0, where n0 is the smallest integer n that satisfies

4K
nε

< 1− 1
2n
. (2)

Proof. We regard s to be drawn randomly from the sample space Fn, whose 2n elements each occur
with the same probability 1

2n . Write

a(n) := 4n log(|C|n1+ε), (3)

let c ∈ Fn, and let θ be real. Then

Pr
(∣∣Ss+c(θ)∣∣2 ≥ a(n)

)
≤ Pr

((
<[Ss+c(θ)]

)2 ≥ 1
2a(n)

)
+ Pr

((
=[Ss+c(θ)]

)2 ≥ 1
2a(n)

)
, (4)

where <[z] and =[z] denote the real and the imaginary part of z ∈ C, respectively. Writing
s = (s0, s1, . . . , sn−1) and c = (c0, c1, . . . , cn−1), we have

<(Ss+c(θ)) =
n−1∑
j=0

(−1)sj+cj cos(2πjθ)

=(Ss+c(θ)) =
n−1∑
j=0

(−1)sj+cj sin(2πjθ).

We can therefore use Lemma 2 to bound the probabilities on the right-hand side of (4). This gives

Pr
(∣∣Ss+c(θ)∣∣2 ≥ a(n)

)
≤ 4 e−

a(n)
4n .

Now by a crude estimate,

Pr
(

max
c∈C

max
0≤`<Kn

∣∣Ss+c( `
Kn)

∣∣2 ≥ a(n)
)

≤
∑
c∈C

Kn−1∑
`=0

Pr
(∣∣Ss+c( `

Kn)
∣∣2 ≥ a(n)

)
≤ 4Kn|C| e−

a(n)
4n .

Using the definition (3) of a(n), this is equivalent to

Pr
(

max
c∈C

max
0≤`<Kn

∣∣Ss+c( `
Kn)

∣∣2 ≥ 4n log(|C|n1+ε)
)
≤ 4K

nε
. (5)

The assumption (2) implies that this probability is strictly less than 1 − 1
2n , so there must be at

least one s ∈ Fn for which

max
c∈C

max
0≤`<Kn

∣∣Ss+c( `
Kn)

∣∣2 ≤ 4n log(|C|n1+ε). (6)

The theorem follows from Lemma 3.
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We remark that, since the probability in (5) tends to zero as n→∞, the proof of the theorem
shows in fact that the conclusion of the theorem holds for almost all s, that is, for all s in Fn except
a fraction of Fn that tends to zero as n→∞.

We also note that the constant in (1) can be improved. In (4), we have estimated the magnitude
of Ss+c(θ) by inspecting the magnitudes of the real and imaginary parts of Ss+c(θ). This approach
can be generalized by projecting Ss+c(θ) onto more than two lines through the origin in the complex
plane, leading to a slightly better constant (see [1, Sec. 4.5] for details).

3 Application to Lengthened Duals of BCH Codes

In this section we apply our results to the lengthened dual of the binary primitive t-error-correcting
BCH code.

Let m ≥ 2 be integer. For 1 ≤ 2t − 1 ≤ 2bm/2c, let C−t be the dual of the binary primitive
t-error-correcting BCH code of length 2m − 1. It is well known [9, p. 281] that C−t is a linear code
of length 2m − 1, dimension mt, and minimum Hamming distance at least 2m−1 − (t− 1)2m/2.

By lengthening C−t , we obtain the code Ct, which is a linear code of length n = 2m, dimension
mt + 1, and minimum Hamming distance at least 2m−1 − (t − 1)2m/2. Letting α be a primitive
element in GF(2m), a generator matrix for Ct is given by

1 1 1 1 · · · 1
0 1 α α2 · · · αn−1

0 1 α3 α6 · · · α3(n−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1 α2j−1 α(2j−1)2 · · · α(2j−1)(n−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1 α2t−1 α(2t−1)2 · · · α(2t−1)(n−1)


, (7)

where, as usual, an element β ∈ GF(2m) is replaced by its corresponding vector of size m × 1
containing the coordinates of β relative to a fixed basis for GF(2m) over GF(2). Note that a
generator matrix for C−t is obtained from (7) by deleting the first row and the first column.

Paterson and Tarokh [7, Cor. 18] proved that every nonconstant codeword of Ct has PMEPR
at most

(2t− 1)2
(

2
π log n+ 2

π log 2 + 3
)2
, (8)

and noted [7, p. 1985] that, by taking translates of Ct, it may be possible to obtain a significant
reduction of the PMEPR. In what follows we analyze the PMEPR of translates of Ct.

We first discuss the lower bound given in Proposition 1. It is known [10] that the covering
radius of C−t is bounded above by

ρ(C−t ) ≤ 2m−1 − 1−
(√
t− 6
√
t
)√

2m − t− 2.

It is readily verified that ρ(Ct) ≤ ρ(C−t ) + 1, which gives

ρ(Ct) ≤
n

2
−
(√
t− 6
√
t
)√
n− t− 2.

We then find from Proposition 1 that for all s ∈ Fn we have

PMEPR(s+ Ct) ≥ 4
(√
t− 6
√
t
)2 n− t− 2

n
.
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This bound is asymptotically independent of n. Noting that |Ct| = 2nt, application of Theorem 4
with K = 2 and ε = 3

4 gives the following existence result.

Corollary 5. Let Ct be the code of length n = 2m as defined above. Then there exists s ∈ Fn such
that

PMEPR(s+ Ct) ≤ 8(t+ 2) log n (9)

for each m ≥ 5.

The leading constant in (9) can be clearly improved, especially for large m. The essential point
is that the PMEPR of translates of Ct can be O(log n) as n → ∞, whereas (8) asserts that the
PMEPR of the nonconstant codewords of Ct is O((log n)2) as n → ∞. Moreover, by the remark
after Theorem 4, a translate s+ Ct will satisfy (9) almost surely for large n.

4 Discussion

We have shown that for sufficiently large n there exists a translate of a code C of length n whose
PMEPR is roughly logarithmic in |C|n. For many codes however (including for our example) there
is still a large gap between the lower bound, given in Proposition 1, and the existence result,
given in Theorem 4. It is known that the lower bound is best possible in certain nontrivial cases.
One example is C1, which is the first-order Reed–Muller code. By assuming a particular ordering
of the coordinates of C1, Davis and Jedwab [11] exhibited cosets of C1 with PMEPR at most 2.
Proposition 1 implies [6, Cor. 8] that this is best possible at least for m ∈ {3, 5, 7}. This does
however not mean that the upper bound in Theorem 4 can be significantly improved. Notice that
the bounds in Proposition 1 and Theorem 4 hold uniformly for all codes obtained by permuting
the n coordinates of a given code of length n, and it might be possible that the minimum PMEPR
over all translates of a code strongly depends on the ordering of its coordinates. We leave potential
improvements of the upper and lower bounds on the minimum PMEPR over all translates of a
given code as a challenging open problem.
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