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On the Peak-to-Mean Envelope Power Ratio of

Phase-Shifted Binary Codes
Kai-Uwe Schmidt

Abstract

The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-

division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each

coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal

methods, the following question is considered in this paper. For a given binary code, how much PMEPR

reduction can be achieved when the phase shifts are taken from a 2h-ary phase-shift keying (2h-PSK)

constellation? A lower bound on the achievable PMEPR is established, which is related to the covering

radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the

covering radius of the binary code decreases. The bound is then applied to some well understood

codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed–Muller codes, and

convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the

literature attain or approach our bound.

Index Terms

BCH codes, convolutional codes, covering radius, orthogonal frequency-division multiplexing (OFDM),

peak-to-average power ratio (PAPR), peak-to-mean envelope power ratio (PMEPR), Reed–Muller codes

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM), a special kind of multicarrier commu-

nications, is a key concept in the development of wired and wireless communications systems in

the past decade. It provides excellent ability to cope with multipath propagation and fast-moving

environment. On the other hand, a principal drawback of OFDM is the typically high peak-

to-mean envelope power ratio (PMEPR) of uncoded OFDM signals. That is, the peak transmit

power can be many times the average transmit power.
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In order to ensure a distortionless transmission, all components in the transmission chain

must be linear across a wide range of signal levels. This makes the transmitter considerably

more expensive than one in a single-carrier system. Moreover, most of the time, the components

in the transmitter are operated at levels much below their maximum input level, which results

in power inefficiency. The latter issue is particularly acute in mobile applications, where battery

lifetime is a major concern. On the other hand, nonlinearities in the transmission chain may lead

to a loss of orthogonality among the carriers and to out-of-band radiation. The former has the

effect of degrading the total system performance and the latter is subject to strong regulations.

Among various approaches to solve this power-control problem, the use of block coding across

the carriers [16] combined with error protection [15] is one of the most promising concepts [22].

Here the goal is to design error-correcting codes that contain only codewords with low PMEPR.

A simple approach for the design of such codes was originally proposed by Jones and

Wilkinson [15] and further developed by Tarokh and Jafarkhani [26]. The idea is to take a

well understood code and to rotate each coordinate of the code by a fixed phase shift such

that the maximum PMEPR taken over all codewords is minimized. This modification leaves

unchanged the rate and the error-correcting properties of the code. Moreover a standard decoder

for the original code can be employed in the receiver upon back rotation of the phase shifts.

Unfortunately, except perhaps for very short codes, the computation of the optimal phase shifts

(which minimize the PMEPR) is considered to be extremely difficult and a feasible solution is

unknown. Several suboptimal algorithms have been proposed in the literature [15], [26], [29].

These techniques were applied to obtain phase shifts for short Hamming codes [15], convolutional

codes [26], [29], and nonredundant signaling [29]. However the achieved PMEPR reductions are

rather small. One reason for this may be the suboptimality of the employed algorithms: the

use of suboptimal techniques generally results in the convergence of the algorithm to a local

minimum, and therefore, it is never certain that the optimal phase shifts are computed.

In this paper we study the fundamental limit of the achievable PMEPR of phase-shifted binary

codes. We prove a lower bound for this limit and try to answer the question whether suboptimal

phase-shift-design algorithms reported in the literature are in principle useful to approach this

limit. The bound can be used to estimate the gap between the reduced PMEPR, obtained using

suboptimal methods, and the global minimum. This allows us, in many cases, to establish the

(near) optimality of some known phase-shift designs. We will also see that for several codes of

practical importance a significant PMEPR reduction is ruled out by our results.

An outline of the remainder of this paper is given below. In the next section we introduce a

simple OFDM model and state the problem formally. This involves a quantization of the phase

shifts such that the phase-shifted code is a 2h-ary phase-shift keying (2h-PSK) code. Theorem 2
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in Section III states a lower bound on the PMEPR of such codes. The general case, where the

restriction on the phase shifts is dropped, is then recovered in Corollary 3 by analyzing this

bound for h → ∞. The implication of this result for several codes, including nonredundant

BPSK signaling, BCH codes and their duals, Reed–Muller codes, and convolutional codes, is

discussed in Section IV. Section V contains the proofs of our main results. In Section VI we

close with some concluding remarks and a brief discussion of open problems.

II. PROBLEM STATEMENT

Consider a code C ⊆ Zn
2h , and let c = (c0, . . . , cn−1) be a codeword in C. The element ci is

referred to as the ith coordinate of C. With any c we associate another word ĉ = (ĉ0, . . . , ĉn−1),

where ĉi = ej2πci/2h and j is an imaginary unit such that j2 = −1. Then {ĉ | c ∈ C} is a 2h-PSK

code. Given a codeword c ∈ C, the transmitted OFDM signal is the real part of the complex

envelope, which can be written as

Sc(θ) =
n−1∑
i=0

ĉi e
j2π(i+ζ)θ, 0 ≤ θ < 1, (1)

where ζ is a positive constant. Note that the guard interval is omitted in our model since it does

not affect the PMEPR of the signal. Moreover our model only considers codes defined over PSK

constellations.
The signal |Sc(θ)|2, which is independent of ζ , is called the instantaneous envelope power

of Sc(θ). It is a consequence of Parseval’s identity that the mean value of |Sc(θ)|2 is equal to

||ĉ||2 =
∑n−1

i=0 |ĉi|2 = n. Therefore the PMEPR of the word c (or of the signal Sc(θ)) is given

by

PMEPR(c) :=
1

n
sup

0≤θ<1
|Sc(θ)|2. (2)

Occasionally we shall indicate the PMEPR of c as 10 · log10 PMEPR(c) [dB]. The PMEPR of

the code C is now defined to be

PMEPR(C) := max
c∈C

PMEPR(c).

Observe that PMEPR(C) can be as much as n, which occurs, for example, if C contains a

constant codeword. Hence the PMEPR of every linear code is equal to n.
The OFDM coding problem may now be stated as follows. Design codes of length n with high

rate, large minimum distance, and PMEPR significantly lower than n. This problem is considered

to be difficult, and only a few explicit constructions are known [22], [9], [21], [23], [24]. An

even more challenging problem is the construction of sequences of codes with increasing length

n, nonvanishing rate, and PMEPR growing strictly slower than linearly in n. Some results on

the existence of such codes have been established in [22], [25].
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The following approach for designing codes with reduced PMEPR was originally proposed

by Jones and Wilkinson [15].

Let B ⊆ Zn
2 be a binary code. We say that a code C ⊆ Zn

2h is equivalent to B if there exists

a permutation σ of {0, 1, . . . , n− 1} and an offset w ∈ Zn
2h such that

C =
{
2h−1σ(b) + w | b ∈ B

}
,

where we write σ(b) in place of (bσ(0), . . . , bσ(n−1)). Note that, if h = 1 and B is linear, C is

permutation equivalent to a coset of B.

The 2h-PSK code corresponding to C is given by{
b̂σ(0)e

j2πw0/2h

, . . . , b̂σ(n−1)e
j2πwn−1/2h ∣∣ b ∈ B

}
.

Such a code is a phase-shifted version of a code that is permutation equivalent to the BPSK

code associated with B, where the ith phase shift is equal to 2πwi/2
h with wi ∈ Z2h . Notice

that, when h tends to infinity, any phase shift can be approximated in this way with arbitrarily

high precision.

Now let Eh(B) be the set of all codes C ⊆ Zn
2h that are equivalent to B. By E∞(B) we denote

the infinite set Eh(B) when h tends to infinity (that is, the codes in E∞(B) are defined over the

2-adic integers Z2∞). Any code in Eh(B) has the same error-correcting capability and the same

rate as B, but the PMEPR of a particular C ∈ Eh(B) may be much lower than that of B.

The power-control problem for OFDM can now be tackled as follows. Given a positive integer

h and a good (in the classical coding-theoretic sense) binary error-correcting code B, find a code

in Eh(B) whose PMEPR is equal to

min
C∈Eh(B)

PMEPR(C). (3)

This problem is considered to be extremely difficult, and only suboptimal algorithms are known,

which may not even find a code whose PMEPR is close to the preceding expression. In this

light we ask: what is the value of (3)? A lower bound for this quantity will be stated in the next

section.

We remark that, although (3) is a nonincreasing function of h, in practice, h is typically small,

say 2 or 3, in order to allow efficient hardware implementation.

III. MAIN RESULT

Recall that the Hamming weight, wtH(b), of a binary vector b is equal to the number of

nonzero elements in b. Our lower bound for (3) will be expressed in terms of the covering

radius of the binary code B, which is defined below.
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Definition 1: The covering radius of a code B ⊆ Zn
2 is defined to be

ρ(B) := max
x∈Zn

2

min
b∈B

wtH(b + x).

In words, ρ(B) is the least nonnegative integer such that the spheres of radius ρ(B) around

the codewords of B cover the space Zn
2 . If B is linear, ρ(B) is equal to the maximum weight of

the coset leaders of B. Determining the covering radius of a binary code is generally nontrivial

[18]. In spite of this, many results are known. For a good overview we refer to [7] and [3].

Once and for all we fix the following parameters depending on h:

λ :=

1 if h = 1

2 if h > 1

and

ε :=

1 if h = 1

22h−3 sin2
(

π
2h

)
if h > 1.

We are now in a position to state our main result, whose proof can be found in Section V.

Theorem 2: Given a binary code B ⊆ Zn
2 with covering radius

ρ(B) ≤ n

(
1

ε
− 1

2

)
,

we have

min
C∈Eh(B)

PMEPR(C) ≥ 1

λn
[n(2− ε)− 2 ε ρ(B)]2 .

The preceding lower bound is a decreasing function of h. However this decrease is bounded,

and the corollary below states the asymptotic lower bound for h →∞.

Corollary 3: Let B ⊆ Zn
2 be a binary code with covering radius

ρ(B) ≤ n

(
8

π2
− 1

2

)
.

Then

min
C∈E∞(B)

PMEPR(C) ≥ 1

2n

(
n

16− π2

8
− π2

4
ρ(B)

)2

.

Proof: Recall that λ = 2 for any h > 1, and with the Taylor series

sin2 x = x2 + O(x4) (4)

we conclude

lim
h→∞

ε = lim
h→∞

22h−3 sin2
( π

2h

)
=

π2

8
.

The corollary is then immediate.
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We note that the condition ρ(B) ≤ n/2 (which is for h > 2 slightly stronger than those in

Theorem 2 and Corollary 3) is always met if B has strength 1 [7], [3], that is, each coordinate of

B takes the values ’0’ and ’1’ equally often. In particular every linear code without a coordinate

that is always zero has strength 1.
We conclude from Theorem 2 that a necessary condition to obtain a code over Z2h with low

PMEPR from a binary code is that the covering radius of the underlying binary code must be

larger than a certain threshold. More specifically, to obtain a sequence of codes with PMEPR

growth strictly less than order n from a sequence of binary codes, the covering radius of the

binary code must grow when n increases. In particular, in order to achieve a constant PMEPR,

the covering radius of the binary code B must satisfy

ρ(B) ≥ n

(
1

ε
− 1

2

)
−O(

√
n),

which can be replaced by the slightly stronger condition

ρ(B) ≥ n

2
−O(

√
n). (5)

We shall see in the next section that the preceding condition is satisfied for the duals of binary

primitive BCH codes and for rth-order Reed–Muller codes. On the other hand, we will also

see that Theorem 2 implies that the phase-shifted versions of many other codes have PMEPR

growing linearly in n.

IV. IMPLICATIONS

A. Nonredundant BPSK Signaling

Consider the code Zn
2 . The associated PSK code is a BPSK code without redundancy. Since

ρ(Zn
2 ) = 0, Theorem 2 and Corollary 3 imply the following.

Corollary 4: For h > 1 we have

min
C∈Eh(Zn

2 )
PMEPR(C) ≥ (2− ε)2

2
· n

and

min
C∈E∞(Zn

2 )
PMEPR(C) ≥ 2n

(
1− π2

16

)2

≈ 0.2936 · n.

In [29] Wunder and Boche proposed to use Newman phases [20] to reduce the PMEPR for

nonredundant BPSK signaling. Newman phases are given by

ϕi =
πi2

n
, i = 0, 1, . . . , n− 1.

Applying the phase shift ϕi to the ith coordinate of a BPSK code, we obtain a PSK code whose

underlying code over Z2∞ is equivalent to Zn
2 .
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Fig. 1. PMEPR reduction for nonredundant BPSK signaling and n carriers with Newman phases (+) and with Newman phases

rounded to points in a QPSK constellation (×), upper bounds (dashed lines)

For n = 16 and n = 128 in [29] the PMEPR could be reduced in this way from 12.04 dB

and 21.07 dB to 9.97 dB and 17.89 dB, respectively. We have used the algorithm described in

[29] to calculate the PMEPR reductions for lengths n = 2m, where m ranges from 2 to 16. In

addition we have rounded the Newman phases to the nearest points in {+1, +j,−1,−j}, i.e., the

phase-shifted code is a QPSK code. The results are presented in Figure 1. The figure also shows

the corresponding bounds on the PMEPR reductions obtained with Corollary 4 (−10 log10 0.5 ≈
3.01 dB for h = 2 and −10 log10 0.2936 ≈ 5.32 dB for h → ∞). By using rounded Newman

phases the bound in Corollary 4 is attained for m ≥ 9. With the original Newman phases the

PMEPR reduction seems to converge to approximately 3.9 dB. Thus for large n Newman phases

approach our bound by about 1.4 dB.

B. Linear Codes

Next we present a lower bound for the PMEPR of codes over Z2h that are equivalent to a

given binary linear code as a function of the code rate.

Corollary 5: Let B ⊆ Zn
2 be a binary linear code with rate

R ≥ 3

2
− 1

ε
.

Then

min
C∈Eh(B)

PMEPR(C) ≥ 4n

λ

[
1− ε

(
3

2
−R

)]2

.
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Proof: Let k be the dimension of B such that R = k/n. The redundancy bound [7], [3]

states

ρ(B) ≤ n− k. (6)

The condition k/n ≥ 3/2− 1/ε then implies that

ρ(B) ≤ n

(
1

ε
− 1

2

)
.

Hence we can plug (6) into the inequality in Theorem 2, which yields the desired expression.

The above corollary shows explicitly that it is impossible to construct a sequence of codes

over Z2h from a sequence of binary linear codes with rate R > 3/2− 1/ε and PMEPR growth

slower than linear in n.

We remark that some improved bounds for linear codes can be obtained by taking bounds

for the covering radius that are better than the redundancy bound, e.g., the Griesmer-like upper

bound on the covering radius of linear codes [14], which takes the minimum distance of the

code into account.

C. Binary Primitive BCH Codes and Their Duals

In what follows we will analyze lower bounds on the PMEPR of codes that are equivalent to

binary primitive t-error-correcting BCH codes, B(t,m), and their duals, B⊥(t,m). These codes

have length 2m − 1. See, e.g., [17] for details on these codes.

Corollary 6: Let n = 2m − 1. Then we have

min
C∈Eh(B(t,m))

PMEPR(C) ≥ 1

λn
[n(2− ε)− ε(4t− 2)]2

for t = 1, m ≥ 2 , for t = 2, m ≥ 3, for t = 3, m ≥ 4, and for arbitrary t and m ≥ m0, where

m0 is finite and depends on t.

Proof: It is known that ρ(B(1, m)) = 1 for m ≥ 2 (B(1, m) is perfect), ρ(B(2, m)) = 3

for m ≥ 3 [11], ρ(B(3, m)) = 5 for m ≥ 4 [12]. More generally, it was proved in [28] that

there exists an m0 depending on t such that ρ(B(t,m)) = 2t− 1 for all m ≥ m0. Putting these

values into Theorem 2 yields the statement in the corollary.

Remark: It has been shown in [8] that m0 satisfies

m0 ≤ dlog2([(2t− 1)! (2t− 3)]2 + 1)e.

The preceding corollary shows that every code in Eh(B(t,m)) has PMEPR growing linearly

in n.
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Jones and Wilkinson [15] applied a learning algorithm to obtain phase shifts for B(1, 3) and

B(1, 4), the first nontrivial Hamming codes. As a result, [15] reports binary phases that reduce

the PMEPR from 8.45 dB and 11.76 dB to 5.53 dB and 10.52 dB, respectively. These values

meet the lower bound in Corollary 6, and we conclude that the binary phase shifts computed in

[15] are the best possible. In [15] the learning algorithm was also applied to find offsets over

Z8. The respective reduced PMEPRs are 3.42 dB and 8.47 dB. For B(1, 3) Corollary 6 fails to

provide a nontrivial lower bound. For B(1, 4) Corollary 6 yields the lower bound 5.30 dB.
Let us turn our attention to B⊥(t,m).
Corollary 7: Let n = 2m − 1. Then

min
C∈E1(B⊥(t,m))

PMEPR(C) ≥ 1

n

[
1 + 2(

√
t− 6

√
t)
√

n− t− 1
]2

.

Proof: The corollary follows from Theorem 2 and a result from [27]

ρ(B⊥(t,m)) ≤ n− 1

2
− (

√
t− 6

√
t)
√

n− t− 1.

Observe that the covering radius of B⊥(t,m) satisfies (5), and the lower bound on the

PMEPR is asymptotically independent of the code length. However notice that the rate is strictly

decreasing with increasing length. It is noteworthy that Paterson and Tarokh [22] obtained a

bound on the PMEPR of the nonzero codewords of B⊥(t,m), which has order (log n)2, and

they speculated that by taking cosets of B⊥(t,m) the PMEPR may be significantly further

reduced. This conjecture is supported by Corollary 7.

D. Reed–Muller Codes

Next we establish lower bounds on the PMEPR of codes that are equivalent to rth-order

Reed–Muller codes of length 2m, RM(r, m). See, e.g., [17] for details on these codes. For r = 1

we have the following.
Corollary 8: The PMEPR of any code in E1(RM(1, m)) is at least 2 for odd m ≤ 7 and is

lower bounded by 1 in all other cases.
Proof: It was proved in [13] that

2m−1 − 2(m−1)/2 ≤ ρ(RM(1, m)) ≤ 2m−1 − 2m/2−1, (7)

where the upper bound is tight when m is even. The lower bound of 1 for the PMEPR follows

then from Theorem 2 (for odd m the lower bound can be tightened slightly by taking into

account that ρ(RM(1, m)) must be an integer). In the special case where m is odd and m ≤ 7

it is known that the lower bound in (7) is tight [1], [19]. Therefore Theorem 2 states that the

PMEPR is lower bounded by 2 in this case.
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Indeed Davis and Jedwab [9] explicitly constructed m!/2 binary offsets for RM(1, m) that

reduce the PMEPR to values not exceeding 2 for any m. Hence the bound in Corollary 8 is

attained for odd m ≤ 7.
Corollary 8 only considers the case when h = 1. However, even if ρ(RM(1, m)) attains the

lower bound in (7), Theorem 2 yields the trivial lower bound 1 for the PMEPR of quaternary

codes equivalent to RM(1, m) for all choices of m.
Let us turn our attention to Reed–Muller codes of arbitrary order. For r > 1 general explicit

results for the covering radius of RM(r, m) are unknown. For small r and m a few values and

bounds are given in [3, page 802]. However good asymptotic bounds are known, which enable

us to analyze the asymptotic behavior of Theorem 2 for all Reed–Muller codes of fixed order.

Previous asymptotic bounds for ρ(RM(r, m)) (r > 1) have been recently improved in [6] to

ρ(RM(r, m)) ≤ 2m−1 −
√

15

2

(√
2 + 1

)r−2

· 2m/2 + O(1).

Observe that the covering radius satisfies (5). Hence for fixed r Theorem 2 yields a lower bound

that is asymptotically a constant. More specifically, we obtain the following.
Corollary 9: When m tends to infinity, we have

min
C∈E1(RM(r,m))

PMEPR(C) ≥ 15
(√

2 + 1
)2r−4

for r > 1.
This bound is indeed independent of the length of the code. But notice that for fixed r the

code rate tends to zero as the length of the code increases.

E. Convolutional Codes

Consider a convolutional encoder with k0 binary inputs, n0 binary outputs, and constraint

length ν + 1. Suppose that the initial state of the encoder is arbitrary. The corresponding

convolutional code consists of all possible output sequences of infinite length. The set of all

binary output sequences of length `n0 may be viewed as a linear block code C` with generator

matrix 

gν 0 · · · 0 0 0 · · · 0

gν−1 gν · · · 0 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g0 g1 · · · gν 0 0 · · · 0

0 g0 · · · gν−1 gν 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0 0 · · · g0


,
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where g0, g1, . . . , gν are matrices of size k0×n0 with elements in Z2, and 0 is the all-zero matrix

of the same size. Then C` has length n = `n0 and dimension k = (`+ν)k0. Note that the first νk0

information bits are fed into the encoder to produce the initial state. This situation corresponds

to the case where a block of ` subsequent symbols of a continuous stream of encoder outputs

is used as a binary codeword of length `n0 to modulate one OFDM symbol. So the initial state

of this block is the final state of the previous block.

The normalized covering radius of a convolutional code C is defined to be [2], [4]

ρ̃(C) := lim
`→∞

ρ(C`)

`n0

.

Bounds for the normalized covering radius of some convolutional codes can be found in [2] and

[4]. The covering radius of C` satisfies [2]

ρ(C`) ≤ n ρ̃(C).

With Theorem 2 the next corollary is now immediate.

Corollary 10: With the notation as above, suppose that

ρ̃(C) ≤ 1

ε
− 1

2
.

Then

min
D∈Eh(C`)

PMEPR(D) ≥ 4n

λ

[
1− ε

(
ρ̃(C) +

1

2

)]2

.

The preceding corollary states that, whenever ρ̃(C) ≤ 1/ε − 1/2, the PMEPR of any code

in Eh(C`) grows linearly in n. We remark that for a particular n the result can be tightened

slightly by taking into account that the covering radius of a block code of finite length must be

an integer.

As an example let us consider the scenario of binary signaling in the HiPerLAN/2 OFDM

system [10], which uses 48 carriers for data transmission. The employed convolutional code C
is completely described by

(g0, g1, . . . , g6) = ((11), (01), (11), (11), (00), (10), (11)),

so ν = 6, k0 = 1, and n0 = 2. Tarokh and Jafarkhani [26] have computed quaternary, octary, and

16-ary phase shifts for C24 of length 48. The respective reduced PMEPR is equal to 12.7 dB,

12.6 dB, and 12.4 dB. We used a simple search algorithm in combination with the techniques

reported in [29] to find a binary offset that reduces the PMEPR to 14.6 dB. Notice that the

PMEPR of the original code C24 is equal to 16.8 dB since the code is linear and, therefore,

contains the all-zero word.
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From [2] we know that ρ̃(C) ≤ 1/5, therefore, ρ(C24) ≤ 9. However direct computation

yields ρ(C24) = 6. Applying Theorem 2 directly, the PMEPR of any code in Eh(C24) is at least

14.3 dB, 11.3 dB, 8.4 dB, and 7.4 dB for h = 1, 2, 3, 4, respectively. We conclude that for h = 1

a significant PMEPR reduction is precluded by our results and the reduced PMEPR approaches

our bound by 0.3 dB, for h = 2 the PMEPR reduction obtained in [26] is at least close to the

best possible, and for h = 3, 4 the gap between the reduced PMEPR and our lower bound is

about 4–5 dB. This gap may have the following reasons: (i) Theorem 2 is not tight in this case,

(ii) the optimization algorithm in [26] converged to a local minimum, or (iii) a lower PMEPR

can be obtained by applying another permutation to the coordinates of the code.

V. PROOFS

A. Proof of Theorem 2 When h = 1

Here λ = 1 and ε = 1. Let a = (a0, . . . , an−1) ∈ Zn
2 . From (2) and (1) we have

PMEPR(a) ≥ 1

n
|Sa(0)|2

=
1

n

∣∣∣∣∣
n−1∑
i=0

(−1)ai

∣∣∣∣∣
2

=
1

n
[n− 2wtH(a)]2.

It follows that

min
C∈E1(B)

PMEPR(C) = min
σ

min
w∈Zn

2

max
b∈B

PMEPR(σ(b) + w)

≥ 1

n
min

σ
min
w∈Zn

2

max
b∈B

[n− 2wtH(σ(b) + w)]2

=
1

n
min
w∈Zn

2

max
b∈B

[n− 2wtH(b + w)]2.

The condition ρ(B) ≤ n/2 implies that n− 2ρ(B) is nonnegative. Therefore we arrive at

min
C∈E1(B)

PMEPR(C) ≥ 1

n
[n− 2 max

w∈Zn
2

min
b∈B

wtH(b + w)]2

=
1

n
[n− 2ρ(B)]2,

and the theorem follows for h = 1.
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B. Proof of Theorem 2 When h > 1

We need some preliminaries in order to set out the proof. The Lee weight of the word a =

(a0, . . . , an−1) ∈ Zn
2h is defined to be

wtL(a) :=
n−1∑
i=0

min
{
ai, 2

h − ai

}
.

Lemma 11: For each a, b ∈ Zn
2h and h > 1 we have

||â− b̂||2 ≤ 2h sin2
( π

2h

)
wtL(a− b).

Proof: It suffices to prove the lemma for n = 1. It is straightforward to establish that

||â− b̂||2 = 4 sin2
(
(a− b)

π

2h

)
= 4 sin2

(
wtL(a− b)

π

2h

)
.

Hence we have to show that

sin2
(
w

π

2h

)
≤ 2h

4
sin2

( π

2h

)
w (8)

holds for h > 1 and w = 0, 1, . . . , 2h−1. When h = 2, equality in (8) is easily proved by

hand. For h ≥ 3 the idea of the proof is as follows. Consider the function f : R → R with

f(x) = sin2(x π/2h), which is a continuous equivalent of the LHS of (8). First a tangent to

the curve f(x) at some 0 < x0 ≤ 2h−1 is constructed that passes through the origin. Then it is

shown that for 0 ≤ x ≤ 2h−1 and h ≥ 3 the curve f(x) is upper bounded by this tangent and

the slope of this tangent is at most
2h

4
sin2

( π

2h

)
, (9)

which is the coefficient of w in the RHS of (8).

The curve f(x) has a local minimum at x = 0 and a local maximum at x = 2h−1, and has

exactly one inflection point between them. Since x0 > 0, it is then obvious that the tangent

must meet the curve f(x) in the concave part at some 0 < x0 ≤ 2h−1, where x0 is uniquely

determined. We conclude that f(x) is upper bounded by the tangent for 0 ≤ x ≤ 2h−1.

Since the tangent passes through the origin, x0 must satisfy

f(x0) = f ′(x0)x0,

or equivalently,
2πx0

2h
= tan

(πx0

2h

)
. (10)
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Now we aim to show that f ′(x0) is at most (9), which is equivalent to showing that

4π sin

(
2πx0

2h

)
≤ 22h sin2

( π

2h

)
, (11)

where x0 satisfies (10). Notice that (10) is a transcendental equation, which generally does not

have a closed-form solution. However we can apply numerical methods to solve (10), and find

that the LHS of (11) is upper bounded by 9.12. The RHS of (11) is an increasing function in h,

and by using (4), we conclude that when h →∞, it converges to π2, clearly greater than 9.12.

Hence there exists an integer h0 so that (11) is true for all h ≥ h0. Numerical analysis yields

h0 = 3.

The following definition was mentioned in [5] as a generalization of the classical Gray map.

Definition 12: For any integer h > 1 we define the map φ : Z2h → Z2h−1

2 as follows. If

0 ≤ a ≤ 2h−1, the image φ(a) is the binary word (000 · · · 111) with Hamming weight equal to

a. If 2h−1 < a < 2h, the image φ(a) is the binary word (111 · · · 000) with Hamming weight

equal to 2h − a. We also define the maps β, γ : Z2h → Z2h−2

2 such that for each a ∈ Z2h

φ(a) = (β(a), γ(a)).

Finally the maps φ, β, and γ are extended in the obvious way to act on words in Zn
2h .

In the special case when h = 2, φ is the classical Gray map [5]. By virtue of its definition, φ

is a weight-preserving map from Zn
2h supported by the Lee weight to Z2h−1n

2 supported by the

Hamming weight, i.e., for each a ∈ Zn
2h we have

wtL(a) = wtH(φ(a))

= wtH(β(a)) + wtH(γ(a)).

We will need the following identities.

Lemma 13: For a ∈ Zn
2h and b ∈ Zn

2 we have

(i) β(a− 2h−2) = γ(a), γ(a− 2h−2) = β(a)

(ii) β(a + 2h−1b) = β(a) + β(2h−1b),

where the addition of scalars is understood to be componentwise, and γ(a) denotes the comple-

ment of γ(a).

Proof: The statements in the lemma are immediate consequences of the apparent fact that

for a, δ ∈ Z2h the binary word φ(a + δ) is equal to a negacyclic shift by δ positions to the left

of the binary word φ(a).

We are now in a position to complete the proof of Theorem 2.
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Proof of Theorem 2 When h > 1: Now we have λ = 2 and ε = 22h−3 sin2(π/2h). Let

a = (a0, . . . , an−1) ∈ Zn
2h . It follows from (2) and (1) that

PMEPR(a) ≥ 1

n
|Sa(0)|2

=
1

n

∣∣∣∣∣
n−1∑
i=0

âi

∣∣∣∣∣
2

.

Using the easily verified identities

||â− 1||2 = 2n− 2<

{
n−1∑
i=0

âi

}

||â− j||2 = 2n− 2=

{
n−1∑
i=0

âi

}
,

where we interpret the addition of scalars to sequences componentwise, we obtain

PMEPR(a) ≥ 1

n

[(
n− 1

2
||â− 1||2

)2

+

(
n− 1

2
||â− j||2

)2
]

.

The inequality

x2 + y2 =
1

2

[
(x + y)2 + (x− y)2

]
≥ 1

2
(x + y)2, x, y ∈ R

yields

PMEPR(a) ≥ 1

2n

[
2n− 1

2

(
||â− 1||2 + ||â− j||2

)]2

.

Applying Lemma 11 we arrive at

PMEPR(a) ≥ 1

2n

[
2n− ε

2h−2

(
wtL(a) + wtL(a− 2h−2)

)]2

, (12)

provided that the expression inside the square is nonnegative. This will be assumed in the

following and justified at the end of the proof. We now use the weight-preserving property of

the generalized Gray map φ (cf. Definition 12) and Lemma 13 (i) to establish

wtL(a) + wtL(a− 2h−2)

= wtH(φ(a)) + wtH(φ(a− 2h−2))

= wtH(β(a)) + wtH(γ(a))

+ wtH(β(a− 2h−2)) + wtH(γ(a− 2h−2))

= 2wtH(β(a)) + wtH(γ(a)) + wtH(γ(a))

= 2wtH(β(a)) + 2h−2 n,
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where γ(a) is the complement of γ(a). Hence

PMEPR(a) ≥ 1

2n

[
2n− ε

2h−2
(2wtH(β(a)) + 2h−2n)

]2

=
1

2n

[
n(2− ε)− ε

2h−3
wtH(β(a))

]2

.

Indeed

min
C∈Eh(B)

PMEPR(C)

= min
σ

min
w∈Zn

2h

max
b∈B

PMEPR(2h−1σ(b) + w)

≥ 1

2n
min

σ
min

w∈Zn
2h

max
b∈B

[
n(2− ε)− ε

2h−3
wtH(β(w + 2h−1σ(b)))

]2

=
1

2n
min

w∈Zn
2h

max
b∈B

[
n(2− ε)− ε

2h−3
wtH(β(w + 2h−1b))

]2

=
1

2n
min

w∈Zn
2h

max
b∈B

[
n(2− ε)− ε

2h−3
wtH(β(w) + b′)

]2

,

where Lemma 13 (ii) has been employed in the last step and b′ is given by

b′ = β(2h−1b) = (b b · · · b︸ ︷︷ ︸
2h−2 times

).

Recall that we imposed

ρ(B) ≤ n

(
1

ε
− 1

2

)
,

which implies that the expression n(2− ε)− 2 ε ρ(B) is nonnegative. Hence we can write

min
C∈Eh(B)

PMEPR(C)

≥ 1

2n
min

u∈Z2h−2n
2

max
b∈B

[
n(2− ε)− ε

2h−3
wtH(u + b′)

]2

=
1

2n
min
u∈Zn

2

max
b∈B

[n(2− ε)− 2 ε wtH(u + b)]2

=
1

2n

[
n(2− ε)− 2 ε max

u∈Zn
2

min
b∈B

wtH(u + b)

]2

=
1

2n
[n(2− ε)− 2 ε ρ(B)]2 .

Since the terms inside the squares in the preceding expressions are nonnegative, our assumption

leading to (12) holds, and the proof is completed.
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VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have analyzed the reduction of the PMEPR of a code when a permutation

and a fixed phase shift is applied to its coordinates. A lower bound on the PMEPR for the case

where the phase shifts are quantized (i.e., they are in the set {2πi/2h | i = 0, 1, . . . , 2h − 1})

was proved, and the asymptotic behavior for h →∞ was examined. The bound asserts that the

achievable region of the PMEPR shrinks as the covering radius of the original code decreases.
For h = 1 and h = 2 we exhibited examples where the lower bound in Theorem 2 is

attained. Theorem 2 was also employed to show that most phase-shift designs from the literature

are (nearly) optimal. It was demonstrated as well that for several code families of practical

importance, including BCH codes and convolutional codes, a significant PMEPR reduction is

ruled out by Theorem 2.
We close with a discussion of some open problems and possible further research directions

suggested by our work.
We have identified codes for which the lower bound on the PMEPR is asymptotically in-

dependent of the length of the code. Namely these are the duals of the binary primitive BCH

codes and Reed–Muller codes. Indeed Davis and Jedwab [9] constructed m!/2 cosets of the

first-order Reed–Muller code, RM(1, m), with PMEPR at most 2. We ask: do there exist cosets

of arbitrary Reed–Muller codes whose PMEPR is upper bounded by a constant? If so, find a

way to construct them.
We have analyzed lower bounds on the expression in (3). Although such a bound can be

used to rule out significant PMEPR reductions in certain cases, the bound does not claim the

existence of 2h-ary codes equivalent to binary codes whose PMEPR is equal to or close to this

bound. Therefore it would be interesting to find a good upper bound for (3). Such a bound could

provide results on the existence of good phase shifts.
Finally we wish to restate the most essential (and most difficult) open problem within this

context. Given h and a binary code B ⊆ Zn
2 , find a code in Eh(B) whose PMEPR is equal to

the value in (3).
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