
Revolve - Program-Reversals for Time-stepping

Procedures

Philipp Stumm∗ Andrea Walther†

Abstract The C/C++ package revolve creates checkpointing schedules for adap-
tive and non-adaptive time stepping procedures. For non-adaptive time step-
pings, this package provides binomial checkpointing schedules, if the states are
only stored in main memory and multistage binomial checkpointing schedules, if
the states are held in main memory and on disc too. For adaptive time stepping
procedures, this package provides binomial-like checkpointing schedules that are
optimal over a wide range. We provide three example programs for the use of
revolve for an example adjoint ODE to be integrated. It is shown how all three
checkpointing approaches are implemented into the adjoint process.

Keywords PDE constrained optimal control, adjoints, program reversals

1 Introduction

In time-dependent flow control as well as in the framework of goal oriented time-
dependent a posteriori error control, the calculation of adjoint information forms
a basic ingredient to generate the required derivatives for the cost functional (see
e.g. [1, 4]). However, the corresponding computations may become extremely
tedious if possible at all. This is mainly due to the sheer size of the resulting
discretized problem as well as its nonlinear character which imposes a need to
keep track of the complete forward solution in order to be able to integrate
the corresponding adjoint differential equation backwards. This fact still forms
quite often a main bottleneck in the overall optimization process despite the
ever growing size of memory devices.
Checkpointing strategies use a small number of memory units (checkpoints) to
store the system state at distinct times. The recomputation of required states
that have not been stored is started from these checkpoints. Several check-
pointing techniques have been developed. These methods seek for an acceptable
compromise between memory requirement and runtime increase.
Depending on the time stepping procedure one distinguishes between two main

∗Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, Dresden, Ger-
many, Philipp.Stumm@tu-dresden.de

†Institut für Mathematik, Universität Paderborn, Paderborn, Germany,
Andrea.Walther@uni-paderborn.de

1

Revolve - Program-Reversals for Time-stepping Procedures 2

checkpointing strategies. If the number of time steps to be performed is not
known a priori, one has to use online checkpointing strategies. This means
that one has to decide on the fly where to place a checkpoint. The used online
checkpointing approaches in revolve can be found in [6, 8]. The number of
time steps to be performed for integrating the adjoint ODE is arbitrary because
revolve switches to the corresponding algorithms automatically. If the number
of time steps is known a priori, one can decide before the forward calculation
where to place the checkpoints. In this case, one uses offline checkpointing
strategies. Here, we consider only the binomial checkpointing strategy because
it yields a provably optimal, i.e. minimal, amount of recomputations [2, 3]. If
one extends this approach such that some checkpoints can be stored on disc too,
one can reduce the number of additional time steps. In this case, one has to take
the access cost to one checkpoint into account. The multistage offline binomial
checkpointing approach yields checkpointing schedules where checkpoints are
held in the main memory and on disc with time-minimal costs [5].
In the package revolve, there are three example programs how to use the check-
pointing class Revolve for the three presented checkpointing approaches for the
integration of time-dependent adjoint equations. The binomial checkpointing
stategy is presented in revolve binomial.cpp, the multistage technique in re-
volve multistage.cpp, and the online approach in revolve online.cpp. Addition-
ally, we provide the example program no checkpointing.cpp that integrates our
adjoint equation without checkpionting. For all four programs, we consider the
following ODE

dy1

dt
= 0.5 ∗ y1(t) + u(t) y1(0) = 1

dy2

dt
= y1(t)2 + 0.5 ∗ u(t)2 y2(0) = 0

(1)

to be integrated and an objective evaluated at t = 1 to be minimized

J(y) = y2(1) → min!

Then the adjoint equations fulfill

dl1
dt

= −0.5 ∗ l1(t)− 2 ∗ y1(t) ∗ l2(t) l1(1) = 0

dl2
dt

= 0 l2(1) = 1.

(2)

The solution of this optimal control problem is given by (see [7])

y∗1(t) = (2 ∗ e3t + e3)/(e3t/2 ∗ (2 + e3))
y∗2(t) = (2 ∗ e3t − e6−3t − 2 + e6)/((2 + e3)2)
u∗(t) = (2 ∗ e3t − e3)/(e3t/2 ∗ (2 + e3))
l∗1(t) = (2 ∗ e3−t − 2 ∗ e2t)/(et/2 ∗ (2 + e3))
l∗2(t) = 1.

Revolve - Program-Reversals for Time-stepping Procedures 3

First, we present the program no checkpointing.cpp that computes the approxi-
mate solution of (1) at t = 1 and of (2) at t = 0 for u = u∗ without checkpointing,
because this is our basic program to be extended by checkpointing routines. The
time stepping is performed by a second order explicit Runge-Kutta method with
constant step size h. We denote the number of time steps by n, hence h = 1/n.
The computed solutions almost coincide with the optimal solutions depending
on h. In order to solve the adjoints numerically, we divide the solution process
into three parts.

1. Forward loop - Determination of the states y0, y1, . . . yn−1

2. Firstturn - Determination of state yn and adjoint state ln−1

3. Backward loop - Determination of the adjoint states ln−2, . . . l0

During the forward loop, every state yi has to be stored before the new state
yi+1 is determined. The adjoint calculation starts with the firstturn. During
the backward loop, every state yi stored has to be available before the adjoint
calculation. The entire integration process is given by

for i = 0, . . . , n− 1, 1
store yi, yi+1 = F (yi) // Forward loop

end for
yn = F (yn−1), ln−1 = F̄ (yn−1, ln) // Firstturn
for i = n− 2, 0,−1

restore yi, li = F̄ (yi, li+1) // Backward loop
end for

Next, we consider for our example program no checkpointing.cpp the interfaces
for the forward and adjoint time integration. Note that these interfaces are
adapted to the this special simple integration. In other applications, it may
look different. All states determined in the forward-loop are stored into an
array Y C. The routines for the forward time step F , the adjoint time step
F̄ , for storing a state in and retrieving states out of a checkpoint are given as
follows

void advance(Y,Y_H,t,h) // forward integration
double Y[2] // old state y(i)
double Y_H[2] // new state determined y(i+1)
double t // time t
double h // step length h

void adjoint(L_H,Y_H,L,t,h) // adjoint integration
double L_H[2] // old adjoint state l(i+1)
double Y_H[2] // state y(i)
double L[2] // new adjoint state determined l(i)
double t // time t

Revolve - Program-Reversals for Time-stepping Procedures 4

double h // step length h

void store(Y_H,Y_C,t,i) // store a state into the checkpoint i
double Y_H[2] // state to be stored
double **Y_C // checkpoint field
double t // time t
int i // index for storage

void restore(Y_H,Y_C,t,i) // retrieve a state out of the cp i
double Y_H[2] // state to be retrieved
double **Y_C // checkpoint field
double *t // time t
int i // index for retrieval

Then, the full solution process determining the states y0, . . . , yn and the adjoint
states l0, . . . , ln−1 without checkpointing as described in no checkpointing.cpp is
given by

// Initialization
h = 1./steps; t = 0.; Y[0] = 1.; Y[1] = 0.;
// forward loop
for(int i=0;i<steps-1;i++) {

store(Y,Y_C,t,i);
Y_H[0] = Y[0]; Y_H[1] = Y[1];
advance(Y,Y_H,t,h);
t += h;

}
// firstturn
advance(Y_final,Y_H,t,h);
L[0] = 0.; L[1] = 1.; t = 1.-h; L_H[0] = 0.; L_H[1] = 1.;
adjoint(L_H,Y_H,L,t,h);
// backward loop
for(int i=steps-2;i>=0;i--) {

restore(Y,Y_C,&t,i);
L_H[0] = L[0]; L_H[1] = L[1];
adjoint(L_H,Y,L,t,h); t = t - h; }

This paper is structured as follows. In the next section, we present the check-
pointing class Revove the user always has to deal with. In the following three
sections, we present the three example programs for the corresponding check-
pointing approaches and describe how to employ the class Revolve into these
programs.

Revolve - Program-Reversals for Time-stepping Procedures 5

2 The Checkpointing class Revolve

The user who wants to use a checkpointing approach has to deal with the class
Revolve. For this reason, it is presented in detail in this section. The class
Revolve with its most important functions looks

class Revolve
{

Revolve(steps,snaps); // offline checkpointing
Revolve(steps,snaps,snaps_in_ram);//offline with diff. stores
Revolve(snaps); // online checkpointing

ACTION::action revolve(); // tells the user what to do
void turn(final); // function for Online Checkpointing
int getcheck(); // function for store or restore
int getcheckram(); // function for (re)store for Multistage CP
int getcheckrom(); // function for (re)store for Multistage CP
int getcapo(); // function for advance
int getinfo(); // function for error
int getoldcapo(); // function for advance
bool getwhere(); // function for Multistage CP

};

The main routine of this class is revolve(). The return value is of type

enum action {
advance,takeshot,restore,firsturn,youturn,terminate,error}.

The namespace ACTION is used because terminate also exists for the names-
pace std being used in revolve.h. The return value tells the user what to do as
described as follows:

• takeshot - store a state into a checkpoint

• advance - make forward calculations

• firsturn - do the first reversal step

• youturn - do one reversal step

• restore - retrieve a state from a checkpoint

• error - an error occured

After the initialization, the integration process, hence all three integration steps
- forward loop, firstturn and backward loop - has to be included into a do-while-
loop where the function revolve is called each time. Therefore, the whole loop
in every checkpointing approach reads

Revolve - Program-Reversals for Time-stepping Procedures 6

... // Initializations to be done
do {
whatodo = r->revolve();
if (whatodo == ACTION::takeshot) { }
if (whatodo == ACTION::advance) { }
if (whatodo == ACTION::firsturn) { }
if (whatodo == ACTION::youturn) { }
if (whatodo == ACTION::restore) { }
if (whatodo == ACTION::error)

cerr << " irregular termination of revolve " << endl;
}
while((whatodo!=ACTION::terminate)&&(whatodo!=ACTION::error));

The special actions to be performed in the if-clauses are explained later for every
single checkpointing approach. If an error occurs, the program is immediately
aborted and the user may ask for more detailed information by using the func-
tion getinfo(). The possible return values of this function with an explanation
of the occured error is given as follows.

• 10 - number of checkpoints stored exceeds the predefined value checkup

• 11 - number of checkpoints stored exceeds the value snaps

• 12 - number of time steps must be increased

• 13 - number of checkpoints must be increased

• 14 - number of snaps exceeds the predefined value snapsup

• 15 - number of reps exceeds the predefined value repsup

The current values for checkup, snapsup, and repsup are

• checkup = 10000

• repsup = 6400

• snapsup = 10000

This means that no more than 10000 checkpoints can be used and the repetition
number should be less than 6400. These values can be found in revolve.h and
changed, if necessary.
At the beginning of the three checkpointing programs, the user may ask for
additional information of the return values of the function revolve during the
adjoint integration process by defining the variable info. This variable may have
the following values

1. no information,

2. write only the takeshots,

Revolve - Program-Reversals for Time-stepping Procedures 7

3. write all actions the routine revolve returns.

The next sections are devoted to each of the three checkpointing approaches and
to the three example programs, respectively. It is shown how the class Revolve
is used and how the if-clauses of the do-while-loop are filled.

3 Offline Checkpointing - revolve binomial.cpp

The constructor for binomial offline checkpointing is Revolve(steps,snaps), where
steps denotes the number of time steps and snaps the number of checkpoints
used. There are three functions of the class Revolve that are needed for binomial
offline checkpointing. The return value of the function getcheck() tells the user
in which checkpoint the current state is to be stored or the contents of which
checkpoints should be restored. This function has to be used for the actions
ACTION::takeshot and ACTION::restore. In the case of ACTION::advance, one
has to perform some forward time steps from the return value of getoldcapo()
to the return value of getcapo(). Then, the solution of the adjoint equations (1)
and (2) fitting into the binomial offline checkpointing approach is given by

r=new Revolve(steps,snaps)
do {

whatodo = r->revolve();
if (whatodo == ACTION::takeshot)

store(Y,Y_C,t,r->getcheck());
if (whatodo == ACTION::advance) {

for(int j=r->getoldcapo();j<r->getcapo();j++) {
Y_H[0] = Y[0]; Y_H[1] = Y[1];
advance(F,F_H,t,h); t += h; } }

if (whatodo == ACTION::firsturn) {
advance(Y_final,Y,t,h);
L[0] = 0.; L[1] = 1.; t = 1.-h; L_H[0] = 0.; L_H[1] = 1.;
adjoint(L_H,Y_H,L,t,h); }

if (whatodo == ACTION::youturn) {
L_H[0] = L[0]; L_H[1] = L[1];
adjoint(L_H,Y,L,t,h); t = t - h; }

if (whatodo == ACTION::restore)
restore(Y,Y_C,&t,r->getcheck());

if (whatodo == ACTION::error)
cerr << " irregular termination of revolve \n";

}
while ((whatodo != ACTION::terminate)&&(whatodo != ACTION::error));

Revolve - Program-Reversals for Time-stepping Procedures 8

4 Online Checkpointing - revolve online.cpp

The constructor for online checkpointing is Revolve(snaps), where snaps denotes
the number of checkpoints used. First, the user has to store the initial state in
checkpoint 0, hence

store(Y,Y C,0.,0)

There are at least four functions of the class Revolve the user has to deal with
for online checkpointing. The return value of the function getcheck() tells the
user in which checkpoint a current state is to be stored or the content of which
checkpoint has to be restored. This function has to be used for the actions
ACTION::takeshot and ACTION::restore. If the action to be performed is AC-
TION::advance, one has to perform some forward time steps from the return
value of getoldcapo() to the return value of getcapo(). Since the number of time
steps is unknown a priori, the user has to tell Revolve when to start the reversal
process. This is done by using the function turn(final) with the argument final
telling Revolve the maximum number of time steps performed. The condition
in our case for starting the reversal is capo = final-1 but it may be completely
different in other applications. Then, the solution of the adjoint equations (1)
and (2) fitting into the online checkpointing approach is given by

r=new Revolve(snaps);
store(Y,Y_C,0.,0);
do {

whatodo = r->revolve();
if (whatodo == ACTION::takeshot)

store(Y,Y_C,t,r->getcheck());
if (whatodo == ACTION::advance) {

if (r->getcapo() >= final-1)
r->turn(final);

for(int j=r->getoldcapo();j<r->getcapo();j++) {
Y_H[0] = Y[0]; Y_H[1] = Y[1];
advance(Y,Y_H,t,h); t += h; } }

if (whatodo == ACTION::firsturn) {
advance(Y_final,Y,t,h);
L[0] = 0.; L[1] = 1.; t = 1.-h; L_H[0] = 0.; L_H[1] = 1.;
adjoint(L_H,Y_H,L,t,h); }

if (whatodo == ACTION::youturn) {
L_H[0] = L[0]; L_H[1] = L[1];
adjoint(L_H,Y,L,t,h); t = t - h; }

if (whatodo == ACTION::restore)
restore(Y,Y_C,&t,r->getcheck());

if (whatodo == ACTION::error)
cerr << " irregular termination of revolve " << endl;

}

Revolve - Program-Reversals for Time-stepping Procedures 9

while((whatodo!=ACTION::terminate)&&(whatodo!=ACTION::error));

5 Multistage Checkpointing - revolve multistage.cpp

Revolve(steps,snaps,snaps in ram) is the constructor for multistage offline check-
pointing, where steps denotes the number of time steps, snaps the overall number
of checkpoints and snaps in ram the number of checkpoints held in main mem-
ory. Hence, the number of checkpoints held on disc is snaps-snaps in ram. There
are four functions of the class Revolve the user has to deal with for binomial mul-
tistage offline checkpointing. If the action to be performed is ACTION::advance,
one has to perform some forward time steps from the return value of getoldcapo()
to the return value of getcapo(). There also exists the function getwhere() telling
the user to place the checkpoint either in main memory or on disc. If the return
value of getwhere() is true, the state has to be stored or restored in main mem-
ory otherwise on disc. Since the storage places in the checkpointing distribution
may not be equally distributed, there exists two checkpointing distributions -
one for the states held in main memory and the other one for the states on disc.
The return value of the function getcheckram() tells the user in which checkpoint
in main memory to store or restore a state if getwhere() returns true. The return
value of the function getcheckrom() tells the user in which checkpoint on disc
to store or restore a state if getwhere() returns false. These three function have
to be used for the actions ACTION::takeshot and ACTION::restore. Additionally,
the two extra functions are provided for storing and restoring a state into or
out of a checkpoint on disc. Here are the interfaces.

void store_rom(Y_H,t,check) // store a state on disc
double Y_H[2] // state Y to be stored
double t // time t
int check // index of checkpoint

void restore_rom(Y_H,t,check)
double Y_H[2] // state Y to be restored
double *t // time t
int check // index of checkpoint

Note, that these interfaces may differ for other applications. It is only adapted
to our example. Then, the solution of the adjoint equations (1) and (2) fitting
into the binomial offline multistage checkpointing approach reads

r=new Revolve(steps,snaps,snaps_in_ram);
do {

whatodo = r->revolve();
if (whatodo == ACTION::takeshot) {

if(r->getwhere())
store(Y,Y_C,t,r->getcheckram());

else

Revolve - Program-Reversals for Time-stepping Procedures 10

store_rom(Y,t,r->getcheckrom()); }
if (whatodo == ACTION::advance) {

for(int j=r->getoldcapo();j<r->getcapo();j++) {
Y_H[0] = Y[0]; Y_H[1] = Y[1];
advance(Y,Y_H,t,h); t += h; } }

if (whatodo == ACTION::firsturn) {
advance(Y_final,Y,t,h);
L[0] = 0.; L[1] = 1.; t = 1.-h; L_H[0] = 0.; L_H[1] = 1.;
adjoint(L_H,F_H,L,t,h); }

if (whatodo == ACTION::youturn) {
L_H[0] = L[0]; L_H[1] = L[1];
adjoint(L_H,Y,L,t,h); t = t - h; }

if (whatodo == ACTION::restore) {
if(r->getwhere())

restore(Y,Y_C,&t,r->getcheckram());
else

restore_rom(Y,&t,r->getcheckrom()); }
if (whatodo == ACTION::error)

cout << " irregular termination of revolve " << endl;
abort(); }

}
while((whatodo!=ACTION::terminate)&&(whatodo!=ACTION::error));

Appendix

We list all functions used in the sections before where we presented the interfaces
in the appendix.

void advance(double F[2],double F_H[2],double t,double h)
{

double k0[2],k1[2],G[2];
func(F_H,t,k0);
G[0] = F_H[0] + h/2.*k0[0];
G[1] = F_H[1] + h/2.*k0[1];
func(G,t+h/2.,k1);
F[0] = F_H[0] + h*k1[0];
F[1] = F_H[1] + h*k1[1];

}

void adjoint(double L_H[2],double F_H[2],double L[2],double t,
double h)

{
double k0[2],k1[2],G[2],BH[2],Bk0[2],Bk1[2],BG[2];
func(F_H,t,k0);
G[0] = F_H[0] + h/2.*k0[0];

Revolve - Program-Reversals for Time-stepping Procedures 11

G[1] = F_H[1] + h/2.*k0[1];
func(G,t+h/2.,k1);
L[0] = L_H[0];
L[1] = L_H[1];
Bk1[0] = h*L_H[0];
Bk1[1] = h*L_H[1];
func_adj(Bk1,G,BG);
L[0] += BG[0];
L[1] += BG[1];
Bk0[0] = h/2.*BG[0];
Bk0[1] = h/2.*BG[1];
func_adj(Bk0,F_H,BH);
L[0] += BH[0];
L[1] += BH[1];

}

void store(double F_H[2], double **F_C,double t,int i)
{

F_C[0][i] = F_H[0];
F_C[1][i] = F_H[1];
F_C[2][i] = t;

}

void restore(double F_H[2], double **F_C,double *t,int i)
{

F_H[0] = F_C[0][i];
F_H[1] = F_C[1][i];
*t = F_C[2][i];

}

void store_rom(double F_H[2], double t, int check)
{

string txtl = "check_rom/dat_";
stringstream s;
s << check;
txtl += s.str() + ".txt";
char *txt = new char [txtl.size()+1];
strcpy (txt, txtl.c_str());
ofstream cp_rom;
cp_rom.open(txt);
cp_rom << F_H[0] << " " << F_H[1] << " " << t;
cp_rom.close();

}

void restore_rom(double F_H[2],double *t,int check)
{

Revolve - Program-Reversals for Time-stepping Procedures 12

string txtl = "check_rom/dat_";
stringstream s;
s << check;
txtl += s.str() + ".txt";
char *txt = new char [txtl.size()+1];
strcpy (txt, txtl.c_str());
ifstream cp_rom;
cp_rom.open(txt);
cp_rom >> F_H[0];
cp_rom >> F_H[1];
cp_rom >> *t;
cp_rom.close();

}

double func_U(double t)
{
return 2.*(pow(e,3.*t)-pow(e,3))/(pow(e,3.*t/2.)*(2.+pow(e,3)));
}

void func(double X[2],double t, double F[2])
{

F[0] = 0.5*X[0]+ func_U(t);
F[1] = X[0]*X[0]+0.5*(func_U(t)*func_U(t));

}

void func_adj(double BF[2], double X[2], double BX[2])
{

BX[0] = 0.5*BF[0]+2.*X[0]*BF[1];
BX[1] = 0.;

}

References

[1] R. Becker and R. Rannacher. An optimal control approach to error esti-
mation and mesh adaptation in finite element methods. In Acta Numerica
2000, pages 1–101. Iserles A (ed). Cambridge University Press, 2001.

[2] A. Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and Soft-
ware, pages 35–54, 1992.

[3] A. Griewank and A. Walther. Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Software, 26:19 – 45, 2000.

Revolve - Program-Reversals for Time-stepping Procedures 13

[4] M.D. Gunzburger. Perspectives in flow control and optimization. Advances
in Design and Control 5. Philadelphia, PA: Society for Industrial and Applied
Mathematics (SIAM). xiv, 261 p. , 2003.

[5] P. Stumm and A. Walther. Multistage approaches for optimal offline check-
pointing. SIAM Journal on Scientific Computing, 31(3):1946–1967, 2009.

[6] P. Stumm and A. Walther. New algorithms for optimal online checkpointing.
SIAM Journal on Scientific Computing, 32(2):836–854, 2010.

[7] A. Walther. Automatic differentiation of explicit Runge-Kutta methods for
optimal control. Comput. Optim. Appl., 36(1):83–108, 2007.

[8] Q. Wang, P. Moin, and G. Iaccarino. Minimal repetition dynamic check-
pointing algorithm for unsteady adjoint calculation. SIAM Journal on Sci-
entific Computing, 31(4):2549–2567, 2009.

