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Lexicographic Derivatives 

◆                       is L-smooth at          if it is loc. Lip. continuous 
and directionally differentiable, and if, for any                            
the following functions exist:  

 
 
◆  If the columns of     span    ,        is linear  
◆  If the columns of     span    , the L-derivative is 
◆  Lexicographic subdifferential: 

!!!f : X ⊂Rn →Rm x ∈ X

    
M = m(1) ! m(k )

⎡
⎣

⎤
⎦ ∈Rn×k

    

fx,M
(0) :d! f '(x;d)

fx,M
(1) :d! [fx,M

(0) ]'(m(1);d)

            "

fx,M
(k ) :d! [fx,M

(k−1)]'(m(k );d)

M Rn

!!!fx ,M
(k )

   
JLf (x;M) := Jfx,M

(k ) (0)

   ∂L f (x) :={JLf (x;M) : M ∈Rn×n ,  det M ≠ 0}

Nesterov (2005) 

This is the directional derivative mapping, viewed as a 
function of direction d

These are higher-order directional derivative mappings; 
directional derivatives of directional derivatives

M Rn
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Lexicographic Differentiation 

◆  Ex.: Probes local derivative information  

   
JL f (0;I) = Jf0,I

(2)(0) = [0 1]

Y. Nesterov (2005) 
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◆  The following functions are L-smooth: 
Ø  Continuously differentiable (C1) functions 
Ø  Piecewise differentiable (PCr) functions 
Ø  Convex functions (e.g. abs, 2-norm) 
Ø  Compositions of L-smooth functions: 
Ø  Integrals of L-smooth functions: 

Ø  Solutions of parametric nonsmooth ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs) w.r.t. parameter value 

Ø  Solutions of optimization problems (e.g. nonlinear programs) w.r.t. parameter value 
Ø  The list continues to grow…. 

L-smooth Functions 

x! h(g(x))

    
x! g(t,x) dt

a

b
∫

Nesterov (2005), Khan and Barton (2015), Barton et al., Opt. Meth. & Soft. (In Press), Stechlinski and Barton (2018)  
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◆  If                     is an L-smooth, scalar-valued function (e.g. 
objective function of an optimization problem): 

◆  If                       is PC1: 

◆  If                       is C1: 
◆  If                       is L-smooth: 

Generalized Derivatives Landscape 

   f : X ⊂ Rn → R

   ∂ f (x)
   ∂L f (x)

B ( )∂ f x

L ( )∂ f x ( )∂f x

L B( ) ( ) ( ) { ( )}∂ = ∂ = ∂ =f x f x f x Jf x

   {Ad : A ∈∂L f (x)}⊂{Ad : A ∈∂f (x)}   for each  d ∈Rn

   f : X ⊂ Rn → Rm

   f : X ⊂ Rn → Rm

   f : X ⊂ Rn → Rm

Nesterov (2005), Khan and Barton (2015), Khan and Barton (2014) 
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◆  Story so far: 
Ø  A broad class of functions (PCr, C1, convex, all compositions, …) are L-smooth 
Ø  Clarke Jacobian elements are computationally relevant in dedicated nonsmooth 

numerical methods (e.g. semismooth Newton method) but are difficult to compute 
automatically 

Ø  L-derivatives are Clarke Jacobian elements (or indistinguishable from Clarke Jacobian 
matrix-vector products) and are therefore computationally relevant  

◆  Question: Are L-derivatives “easy” to compute in an automated way? 
◆  Answer: Yes! L-derivatives satisfy sharp calculus rules, expressed 

naturally using LD-derivatives. 

L-smooth Functions & 
Lexicographic Derivatives 
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◆  Extension of classical directional derivative 
◆  LD-derivative of L-smooth function                        at           in 

the directions  
 
 
◆  If M is square and nonsingular: 

◆  If f is differentiable at x: 

◆  Sharp LD-derivative chain rule: 

 

Lexicographic Directional (LD-)Derivative 

    M = [m(1)  !  m(k ) ]∈Rn×k :
   f : X ⊂ Rn → Rm   x ∈X

    
f '(x;M) = [fx,M

(0) (m(1) )  !  fx,M
(k−1)(m(k ) )]

  f '(x;M) = JLf (x;M)M

  f '(x;M) = Jf (x)M

[f !g]'(x;M) = f '(g(x);g '(x;M))

Khan and Barton (2015) 
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◆  Procedure to compute an L-derivative from an LD-derivative: 
1.  Choose a nonsingular directions matrix  
 
2.  Calculate an LD-derivative via sharp calculus rules                                      

(e.g.                                           )   
 
3.  Obtain L-derivative via solving the linear equation system                                    

for                (which is unique solution since      is nonsingular)            

 

Computing L-Derivative from 
(LD-)Derivative 

  f '(x;M) = JLf (x;M)M

[f !g]'(x;M) = f '(g(x);g '(x;M))

 M

  JLf (x;M)  M
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◆  LD-derivative calculus rules for min, max, abs, 2-norm, etc. are 
based on lexicographical ordering 

◆  Procedure is similar to putting words in alphabetical order. In fact, 
lexicographical ordering is also known as alphabetical ordering: 

◆  Ex.  

◆  Putting two words in alphabetical order: 
  

0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

1
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    

x1

x2

!
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≺

y1

y2

!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

if x1 < y1 or (x1 = y1 and x2 < y2  (or x2 = y2  and x3 < y3 (or ...))).

x1

x2

!
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!

y1

y1

!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 otherwise.

Lexicographic Directional Derivative 
Calculus Rules   

   "about"≺ "above"

0<1 

  

0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≻

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

tie
1>0

  

0
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

tie
tie

irrelevant irrelevant 0<1 

generalized 
inequality using 
lexicographical 
ordering  
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◆  Ex. 

 

    

min′ x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

[m11 m12], if 
x
m11

m12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

y
m21

m22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

[m21 m22], if 
x
m11

m12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!

y
m21

m22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 
min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 0

1 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟  = 1 0⎡⎣ ⎤⎦ , = 0 1⎡⎣ ⎤⎦ ,

 
min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 0

0 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

   = SLmin((x,m11,m12 ),( y,m12,m22 ))

 
min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 1

1 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟  = [1 1]

Lexicographic Directional Derivative 
Calculus Rules   

   f (x) = min(x1,x2 ) :

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press) 



11 

◆  LD-Derivative calculus rules for elemental nonsmooth functions: 
Ø    

 

Ø                                                                          ,  where 

 
 
Ø     
 
 
Ø    

Lexicographic Directional Derivative 
Calculus Rules   

     

f ' x;[m1 ! mk ]( ) = [m1 ! mk ]T, if [x m1 ! mk ]T ! 0,

−[m1 ! mk ]T, if [x m1 ! mk ]T ≺ 0,

⎧
⎨
⎪

⎩⎪

   = fsign(x,m1,…,mk )[m1 ! mk ]T

  f (x) =| x |= abs(x) :

     f (x) =‖x‖= x1
2 +!+ xn

2 :    f ' x;M( ) = (fdir([x M]))T

     

fdir(A) = fdir([a(1) ! a(q) ]) =

0, if A = 0,
a( j* )

‖a( j* )‖
, j* = min{ j :a( j) ≠ 0}, if A ≠ 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

   f (x) = max(x1,x2 ) :

   f (x) = mid(x1,x2,x3) :
   
f ' x, y;

M1

M2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟ = SLmax((x,M1

T ),( y,M2
T ))

   f '(x, y, z;M) = SLmid((x,M1
T ),( y,M2

T ),(z,M3
T ))

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press) 
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◆  LD-Derivative calculus rules for function operations: 
 

Ø  Vector-valued functions: 

Ø  Sums of functions: 
 
Ø  Products of functions:                                                                          
 
Ø  Chain rule: 

»  If v and u are L-smooth, 

»  If    is C1 and u is L-smooth, 

»  If v is L-smooth and    is C1, 

Lexicographic Directional Derivative 
Calculus Rules   

   u '(x;M) = (u '1(x;M),u '2(x;M),…, ′um(x;M))

  [u+ v]'(x;M) = u '(x;M)+ v '(x;M)

   [uv]'(x;M) = u '(x;M)v(x)+ u(x)v '(x;M)

   [v !u]'(x;M) = v '(u(x);u '(x;M))

ψ

ψ

   [ψ !u]'(x;M) = Jψ (u(x))u '(x;M)

   [v !ψ ]'(x;M) = v '(ψ (x);Jψ (x)M)
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◆  Nonsmooth AD: 
Ø  Same underlying idea as classical AD 
Ø  Nonsmooth AD is achieved by simply adding “nonsmooth” derivative rules (i.e. LD-

derivative rules) to classical AD packages 
Ø  …and applying the sharp chain rule 

 
◆  Other remarks:  

Ø  LD-derivative rules can be added to symbolic differentiation packages, but they still suffer 
from the same underlying issues outlined earlier 

Ø  LD-derivative rules cannot be added to numerical differentiation packages in the same 
way; finite differencing is unsuitable for nonsmooth functions (“stepping” over nonsmooth 
points) 

Nonsmooth Automatic Differentiation 

Khan and Barton (2015) 
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Nonsmooth AD 
◆  Technique for calculating exact numerical derivatives 

Ø  Not finite differences (no truncation error) 
Ø  Not symbolic differentiation (no expression manipulation) 
Ø  Applies the LD-derivative chain rule systematically to numerical values 

◆  Ex.  

  

v−1 = x1

v0 = x2

v1 = min(v−1,v0 )

v2 = max(0,v1)

y = v2   

v−1 = 0
v0 = 0
v1 = 0
v2 = 0
y = 0    

!V−1 = [1 0]
!V0 = [0 1]
!V1 = [0 1]
!V2 = [0 1]
!Y = [0 1]

    

!V−1 = !X1

!V0 = !X2

!V1 = SLmin((v−1,( !V−1)T ),(v0 ,( !V0 )T ))
!V2 = SLmax((0,0,0),(v1,( !V1)T ))
!Y = !V2

LD-derivative 
along 
directions M=I

   y = f (x) = max(0,min(x1,x2 )), at x1 = 0,x2 = 0 in directions M = I

   f '(0,0;I)  f (0,0)
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Nonsmooth AD 
◆  Technique for calculating exact numerical derivatives 

Ø  Not finite differences (no truncation error) 
Ø  Not symbolic differentiation (no expression manipulation) 
Ø  Applies the LD-derivative chain rule systematically to numerical values 

◆  Ex.     y = f (x) = max(0,min(x1,x2 )), at x1 = 0,x2 = 0 in directions M = −I

  

v−1 = x1

v0 = x2

v1 = min(v−1,v0 )

v2 = max(0,v1)

y = v2   

v−1 = 0
v0 = 0
v1 = 0
v2 = 0
y = 0

    

!V−1 = !X1

!V0 = !X2

!V1 = SLmin((v−1,( !V−1)T ),(v0 ,( !V0 )T ))
!V2 = SLmax((0,0,0),(v1,( !V1)T ))
!Y = !V2    

!V−1 = [−1 0]
!V0 = [0 −1]
!V1 = [−1 0]
!V2 = [0 0]
!Y = [0 0]

LD-derivative 
along directions 
M=-I

   f '(0,0;−I)  f (0,0)
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u  The Clarke Jacobian is a computationally relevant generalized 
derivative, but is generally difficult to compute in an automated way 

 
u  L-derivatives are attractive for several reasons: 

u The class of L-smooth functions is broad (includes C1, PC1, convex functions and all 
compositions) 

u L-derivatives are computationally relevant (i.e. can be supplied to dedicated nonsmooth 
methods) 

u L-derivatives can be computed in an automated way thanks to sharp calculus rules and 
nonsmooth automatic differentiation 

 

u  LD-derivatives can be computed for singular (or even nonsquare) 
directions matrices. This is crucial for compositions of problems; e.g. 
dynamic systems with optimization problems embedded or vice versa 

Summary 
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SENSITIVITY ANALYSIS OF 
NONSMOOTH IMPLICIT FUNCTIONS 
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u  If                                 is a loc. Lip. cts. function s.t.                    
and               for all 

   then there exists a Lip. cts. (implicit) function    such that                  
      near              

                                                 
u  Ex.  

 
 

   g : P × X ⊂ R p × Rn → Rn
  g(p0,x0 ) = 0

  det X ≠ 0
 r

  g(p,r(p)) = 0

   X ∈πx ∂g(p0,x0 ) ={X ∈Rn×n :  [Q X]∈∂g(p0,x0 )}

  p = p0

  x = r( p) = 1− | p |
  | p |+ | x |= 1

 p

 x

  0∈π x ∂g( p0 ,x0 )

No derivative (sensitivity) information

Clarke Jacobian  
Implicit Function Theorem Revisited 

  x = r( p) =| p |−1

F. H. Clarke, 1990. Optimization and Nonsmooth Analysis. Philadelphia, PA: SIAM. 
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u  If                                 is an L-smooth function s.t.                     
   and               for all 
   then there exists an L-smooth (implicit) function    such that                  

      near          and for any   ,                  is the solution of 
 
 
 
◆  Remarks: 

Ø  The matrix     is the directions matrix  
Ø  Sensitivity system provides generalized derivative information for implicit function 
Ø  Sensitivity system is nonsmooth (and thus nonlinear), but has a unique solution for any       
Ø  Computing solution of sensitivity system is practically implementable (more in a bit)  

   

 
                                                 

 
 

   g : P × X ⊂ R p × Rn → Rn
  g(p0,x0 ) = 0

  det X ≠ 0
 r

  g(p,r(p)) = 0

   X ∈πx ∂g(p0,x0 ) ={X ∈Rn×n :  [Q X]∈∂g(p0,x0 )}

  p = p0

L-Smooth Implicit Function Theorem 

  ′g (p0,x0;(P,X)) = 0

  ′r (p0;P) ≡ X

Nonsmooth sensitivity system

 P

 P

 P
 r

Khan and Barton, IEEE TAC. 62 (2017)
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u  Nonsmooth sensitivity system: 
 
 
 

Ø  Nonsmooth equation system 
 
Ø  Unique solution given that                 

for all 

Ø  If g is PC1, above condition can be     
replaced by                           for all 

 
 
Ø  Practically implementable methods for 

numerical computation (up next)  

u  Smooth sensitivity system: 
 
 
 

Ø  Linear equation system 
 
Ø  Unique solution given that  
 
 
 
Ø  Efficient methods for numerical 

computation  

  

∂g
∂p

(p0,x0 )+ ∂g
∂x

(p0,x0 )X = 0

s.t. X ≡ Jr(p0 )

Implicit Function Sensitivities:  
Smooth vs. Nonsmooth 

  

′g (p0,x0;(P,X)) = 0

s.t. X ≡ r '(p0;P)

  
det ∂g

∂x
(p0,x0 ) ≠ 0

  det X ≠ 0
   X ∈{X ∈Rn×n :  [P X]∈∂g(p0,x0 )}

  sign(det X) = ±1

   
X ∈{X ∈Rn×n :  X j =

∂g(δ i ), j

∂x
(p0,x0 ),δ ∈{1,…,ness}

|ness |}
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u  Compute solution                 of                           two ways 
1.  Classical linear equation system: 
 

Ø  Cycle through essentially active selection functions satisfying                              
Ø  Verify solution: check if                               ,  otherwise choose new selection fn. 
Ø  Can apply efficient solvers and use techniques such as iterative refinement 
Ø    Only possible if g is PC1 

Ø    Worst-case computational cost: solving         linear equation systems      
   

2.  Nonsmooth equation system: 
Ø  Can apply dedicated nonsmooth equation-solving methods (e.g. nonsmooth 

Newton’s method or LP-Newton method) 
Ø  Can apply recently developed branch-locking techniques (Khan, OM&S, 2017) when 

solving the system columnwise 
Ø  Computational cost unclear at present 

Numerical Solution of  
Nonsmooth Sensitivity System 

   

∂g(i)

∂p
(p0,x0 )P +

∂g(i)

∂x
(p0,x0 )X = 0

  ′g (p0,x0;(P,X)) = 0

  ′g (p0,x0;(P,X)) = 0

  ′g (p0,x0;(P,X)) = 0  X ≡ r '(p0;P)

   
det

∂g(i)

∂x
(p0,x0 ) ≠ 0

  ness

Khan and Barton, IEEE TAC. 62 (2017); Khan, OM&S (In Press) 
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u  The L-smooth Implicit Function Theorem augments the Clarke 
Jacobian Implicit Function Theorem with generalized derivative 
information 

u  The nonsmooth sensitivity system is nonlinear but has a unique 
solution from which an L-derivative can be computed (given a 
nonsingular directions matrix) 

u  Practically implementable methods are available to compute the 
solution of the nonsmooth sensitivity system 

Summary 
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NONSMOOTH DIFFERENTIAL 

EQUATIONS 
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Differential-Algebraic Equations 
◆  Consider the semi-explicit differential-algebraic equations (DAEs): 

 
Ø  Consistent initialization: 

Ø  Consistency set: 

Ø  Regularity set (index-1):  

Ø  Underlying ODE: 

 
 

◆  Note: ODEs are a special case of DAEs 

    

!x(t) = f (x(t),y(t))
0 = g(x(t),y(t))
x(t0 ) = x0

 x

 y

    

!x(t) = f (x(t),y(t))

!y(t) = − ∂g
∂y

(x(t),y(t))⎛
⎝⎜

⎞
⎠⎟

−1
∂g
∂x

(x(t),y(t)) f (x(t),y(t))

nonsingular equivalent to differentiation index 1 

Kunkel and Mehrmann, 2006. EMS; Brenan, Campbell and Petzold, 1996. SIAM; Scott and Barton, Numerische Mathematik, 125 (2013)
 

  0 = g(x0 ,y0 )

  
det ∂g

∂y
(x, y) = 0

  g(x, y) = x2 + y2 −1= 0

   (x(t),y(t))∈G C ={(x,y) :g(x,y) = 0}

   
(x(t),y(t))∈G R ={(x,y) :det ∂g

∂y
(x,y) ≠ 0}



25 

Nonsmooth DAEs 
◆  Consider the following nonsmooth DAEs: 

 
Ø  Consistent initialization: 
Ø  Consistency set: 
Ø  Regularity set (index-1):  
Ø  Underlying ODE: 
 

◆  Classical index-1 DAE theory is established via implicit function 
theorem and classical ODE theory 

◆  Idea: apply nonsmooth implicit function theorem and nonsmooth 
ODE theory (well established) to nonsmooth DAE 

   

!x(t) = 1
1=| x(t) |+ | y(t) |
x(t0 ) = x0

 ??

  1=| x0 |+ | y0 |

  (x(t), y(t))∈G C ={(x, y) :| x |+ | y |= 1}

  (x(t), y(t))∈G R = ??

 x

 y

  g(x, y) = | x |+ | y |−1= 0
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Well-Posedness of Nonsmooth DAEs 
◆  Nonsmooth semi-explicit DAEs: 

Ø  f is discontinuous w.r.t. t, continuous w.r.t.      , and g is locally Lipschitz 
Ø  Consistency set: 
Ø  Regularity set (generalized differentiation index-1): 
 

◆  Well-posedness results:  
Ø  Existence of (local) solutions: 
Ø  Uniqueness of a solution:                                         and f locally Lipschitz 
Ø  Continuation of solutions: a regular solution (i.e. generalized diff. index-1) can be 

extended 

   (t,x(t),y(t))∈G C ={(t,x,y) :g(t,x,y) = 0}

   
(t,x(t),y(t))∈G R ={(t,x,y) :detY ≠ 0, for all Y ∈π y ∂g(t,x,y)}

    

!x(t) = f (t,x(t),y(t))
0 = g(t,x(t),y(t))
x(t0 ) = x0

   {(x(t),y(t)) : t ∈T}⊂ G C ∩G R

   (x0 ,y0 )∈G C ∩G R

nonsmooth implicit 
function theorem can 
be applied 

  x,y

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)
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◆  Ex. continued: 

Ø  f is PC1 and g is PC1 

Ø  Consistency set: 
Ø  Regularity set: 

◆  Existence and uniqueness of a “regular” solution: 
 
 
◆  Indeed, unique regular solution is  

  G C ={(x, y) :| x |+ | y |= 1}

 x

 y

  
0∈π y ∂g(x, y) = [−1,1]

  
π y ∂g(x, y) ={−1}

  
π y ∂g(x, y) ={1}

  

(x(t), y(t)) =
t + x0 ,1− t + x0( ), if y0 > 0,

t + x0 ,−1+ t + x0( ), if y0 < 0,

⎧
⎨
⎪

⎩⎪

  (x0 , y0 )∈G C ∩G R ={(x, y) :| x0 |+ | y0 |= 1, y0 ≠ 0}

Well-Posedness of Nonsmooth DAEs 

   

!x(t) = 1
1=| x(t) |+ | y(t) |
x(t0 ) = x0

  G R ={(x, y) : y ≠ 0}

  

π y ∂g(x, y) =
{−1}, if  y < 0
[−1,1], if y = 0
{1}, if y > 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)
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◆  Nonsmooth semi-explicit DAEs: 

Ø  Consistency set: 
Ø  Regularity set (generalized differentiation index-1): 
 

◆  A regular solution                 is:  
Ø  Continuous w.r.t. p if f is cts. and g is locally Lipschitz 
Ø  Lipschitz w.r.t. p if f is locally Lipschitz and g is locally Lipschitz 
Ø  L-smooth w.r.t. p if f is L-smooth and g is L-smooth  

   (t,p,x(t,p),y(t,p))∈G C ={(t,p,x,y) :g(t,p,x,y) = 0}

   
(t,p,x(t,p),y(t,p))∈G R ={(t,p,x,y) :detY ≠ 0, for all Y ∈π y ∂g(t,p,x,y)}

    

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

   (x(t,p),y(t,p))

Dependence of Solutions of 
Nonsmooth DAEs on Parameters 

can we calculate LD-derivatives?... 

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)
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◆  Smooth semi-explicit DAEs: 

 
 

◆  A regular solution                   is C1 w.r.t. p (from diff. index-1) 
 
◆  Sensitivities:  

    

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

   (x(t,p),y(t,p))

Smooth DAEs  
Classical Dynamic Sensitivities 

   
sx ≡

∂x
∂p

, s y ≡
∂y
∂p
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Dynamic Optimization of Smooth DAEs 

◆  Sequential approach (e.g. single or multiple shooting): 

    

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))

Update p via optimization  

p
0p

   x(t,p0 ),y(t,p0 )

t t

   

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

   
sx =

∂x
∂p

, s y =
∂y
∂p

Semi-explicit index-1 DAEs 

Linear sensitivity DAEs 

   
φ(x(t f ,p),y(t f ,p))
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Dynamic Optimization of Nonsmooth DAEs 

◆  Sequential approach in nonsmooth setting: 

Semi-explicit index-1 DAEs 

Sensitivity DAEs 

    

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))

Update p via optimization  

   
φ(x(t f ,p),y(t f ,p))

p
0p

   x(t,p0 ),y(t,p0 )

t

   

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

   
sx =

∂x
∂p

, s y =
∂y
∂p

??? 
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◆  Nonsmooth ODE case: 

 
 

◆  Goal: given reference parameter    , characterize (local) sensitivity 
information by computing element of 

◆  Linear Newton Approximation (Pang & Stewart, 2009; Clarke, 1980): 
 
 

Ø  Pros: relatively easy to evaluate 
Ø  Cons: Satisfies                          ; does not reduce to derivative when         is C1; does not 

reduce to subdifferential when         is convex; no sufficient optimality condition     
 

    

!x(t,p) = f (t,x(t,p))
x(t0 ,p) = p

Nonsmooth ODEs  
Classical Dynamic Sensitivities 

    Γ(τ) = conv X(τ) : !X(t)∈∂[ft ](x(t,p0 ))X(t); X(0) = I{ }

   ∂[x(t,⋅)](p0 )
  p0

   ∂[x(t,⋅)](p0 )⊂ Γ(t)    x(t,⋅)
   x(t,⋅)
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2
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6

t

Γ[
x(
2,
⋅)]
(t)

◆  Linear Newton Approximation (LNA): 
 
◆  Ex. 

Ø  The solution           is C1 and convex w.r.t. p at p=0 
Ø  The LNA is calculated as                           , but    

Nonsmooth ODEs  
Classical Dynamic Sensitivities 

  x(2,⋅)

  Γ[2(t,⋅)](0) = [1/ e,e]
  
∂[x(2,⋅)](0) = 1{ } = ∂x

∂p
(2,0)

⎧
⎨
⎩

⎫
⎬
⎭

   

!x(t, p) = (1− t) | x(t, p) |
x(0, p) = p

0 1 2 3-5

0

5

t

x(
t,c
)

    Γ(τ) = conv X(τ) : !X(t)∈∂[ft ](x(t,p0 ))X(t); X(0) = I{ }
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◆  Nonsmooth ODEs: 

 
Ø  If f and f0 are L-smooth functions, then            is L-smooth w.r.t. p 

◆  Nonsmooth ODE sensitivity system: 

 
Ø  LD-derivative mapping                               is unique solution of sensitivity system 
Ø  If M is nonsingular, then an L-derivative can be computed for any    via the linear 

equation system 
Ø  If f and f0 are C1 and M=I then the classical sensitivity system is recovered: 

   x(t,p)
    

!x(t,p) = f (t,p,x(t,p))
x(t0 ,p) = f0(p)

Nonsmooth ODEs  
Dynamic LD-Derivatives 

    
!X(t) = [ft ]'(p0,x(t,p0 );(M,X(t))), X(0) = f0 '(p0;M)

    t! [x(t,⋅)]'(p0;M)

   X(t) = JL[x(t,⋅)](p0;M)M
 t

    
!X(t) = [ft ]'(p0,x(t,p0 );(I,X(t))) = Jft (p0,x(t,p0 ))

I
X(t)
⎡

⎣
⎢

⎤

⎦
⎥ =

∂f
∂p

(t,p0,x(t,p0 ))+ ∂f
∂x

(t,p0,x(t,p0 ))X(t)

Khan and Barton, Journal Opt. Theory Appl. 163 (2014)
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◆  Ex. continued: 

Ø  Nonsmooth sensitivity system: 

    whose unique solution                                satisfies  

Nonsmooth ODEs  
Dynamic LD-Derivatives 

   

!x(t, p) = (1− t) | x(t, p) |
x(0, p) = p

0 0.5 1 1.5 2 2.5 30

1

2
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4

5

6

Time (t)
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LNA bounds
Lex. deriv. bounds

0 1 2 3-5

0

5

t

x(
t,c
)

  X (t) = [x(t,⋅)]'(0;m)
   

!X (t) = (1− t)fsign(x(t, p0 ), X (t))X (t) = (1− t) | X (t) |
X (0) = m

  
X (2) = X (0) = m = ∂x

∂p
(2,0)m
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◆  Nonsmooth DAEs: 

 
Ø  If f and g and f0 are L-smooth functions, then           and            are L-smooth w.r.t. p 

◆  Nonsmooth DAE sensitivity system: 

 
 
 
Ø  LD-derivative mappings                               and                              uniquely solve the 

nonsmooth sensitivity system 
Ø  If M is nonsingular, then L-derivatives can be computed for any      
Ø  If f, g and f0 are C1 and M=I then the classical sensitivity DAE system is recovered 

   x(t,p)

Nonsmooth DAEs 
Dynamic LD-Derivatives 

    

!X(t) = [ft ]'(p0,x(t,p0 ),y(t,p0 );(M,X(t),Y(t)))
0 = [gt ]'(p0,x(t,p0 ),y(t,p0 );(M,X(t),Y(t)))
X(0) = f0 '(p0;M)

    t! [x(t,⋅)]'(p0;M)

 t

    

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

   y(t,p)

    t! [y(t,⋅)]'(p0;M)

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016)
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Dynamic Optimization of Nonsmooth DAEs 

◆  Sequential approach in nonsmooth setting: 

    

!x(t,p) = f (p,x(t,p),y(t,p))
0 = g(p,x(t,p),y(t,p))

   x(t,p0 ),y(t,p0 )

Update p via optimization  

p
0p

   

!X = [f ]'(p0 ,x,y;(M,X,Y))
0 = [g]'(p0 ,x,y;(M,X,Y))

   
"sx "= X, " s y "= YSemi-explicit index-1 DAEs 

LD-Derivative Sensitivity DAEs 

   
φ(x(t f ,p),y(t f ,p))
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DAE Sensitivities: 
Nonsmooth vs. Smooth 

Ø  Smooth DAE sensitivities: 

 
Ø  Linear DAE system 

Ø  Unique solution and unique initialization 

Ø              continuous 

◆  Smooth vs. nonsmooth cases: 
 

Ø  Nonsmooth DAE sensitivities: 

 

Ø  Nonsmooth (and nonlinear) DAE system 

Ø  Unique solution and unique initialization  

Ø      continuous,    discontinuous 

   
sx , s y

X Y

    

!X = [f ]'(p0 ,x,y;(M,X,Y))
0 = [g]'(p0 ,x,y;(M,X,Y))
X(t0 ) = [f0]'(p0;M)

    

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

sx (t0 ) = Jf0(p0 )

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016)
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◆  Nonsmooth DAE model of simple const. P flash: 

 
 
◆  Does there exist a (regular) solution?  

Ø  Yes, under appropriate initial conditions and some simplifying assumptions                       
contains no singular matrices. This implies existence and uniqueness of a regular solution 
(since right-hand side functions are PC1) 

Simple Flash Process: Well-Posedness 

   

!H t( ) =U Tout −T t( )( )
M = M L t( ) + MV t( )
H t( ) = MhV t( )− M L t( )Δhvap T t( )( )
hV t( ) = Cp T t( )−T0( )
log Psat t( )( )=A - B/ T t( ) +C( )
0 = mid MV (t), P − Psat (T (t)),−M L(t)( )
"

!Q

VM

LM

outT
P

   π y ∂g(H ,T , M L )

Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press)
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◆  Nonsmooth sensitivities                                                                
of simple const. P flash: 

 
 
 

◆  No notion of mode sequence needed   

Simple Flash Process: Sensitivities 

   

!SH t( ) =U 1− ST t( )( )
SH t( ) = MCpST t( )− Δhvap ' T t( )( )ST t( )
0 = mid ' MV t( ), P − Psat T (t)( ),−M L t( );(SV (t),−Psat '(T (t))ST (t),−SL(t))( )
SV t( ) = −SL t( )
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Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press)
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◆  Nonsmooth ODEs/DAEs/hybrid automata 

◆  Open loop optimal control                                                              
with nonsmooth ODE/DAEs:  

 
 

◆  ODEs with LPs embedded: 
 
 
◆  Etc… 

Nonsmooth Dynamical Systems 

    

!x(t,p) = f (p,x(t,p),h(x(t,p)))
h(x(t,p)) = min

v
cTv

s.t. Av = b(x(t,p))
v ≥ 0

   

inf
p
Φ(p) ≡ φ(t f ,p,u(t f ,p),x(t f ,p,u),y(t f ,p,u))

s.t. (x,y) satisfy nonsmooth DAE system

Khan and Barton, Journal Opt. Theory Appl. 163 (2014); Stechlinski and Barton, 55th CDC. (2016);
Höffner, Khan, and Barton. Automatica. 63 (2016); Khan and Barton, 53rd CDC. (2014);

Barton, Khan, Stechlinski, Watson, Opt. Meth. & Soft. (In Press);
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u  Nonsmooth ODEs and DAEs possess a strong mathematical theory 
(recently for DAEs) 

u  Easy-to-use and solve models that act as a natural framework in 
many physical problems 

u  Open to tractable numerical implementations 
u  Applicable to a wide range of process operations 
u  Future work in adjoint sensitivities (?) and discontinuous dynamical 

systems  

Summary 
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SENSITIVITY ANALYSIS OF 
OPTIMIZATION PROBLEMS 
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◆  Consider the following parametric NLP: 

◆  Goal: given     and corresponding minimizer    , calculate                 
to characterize        near  

◆  Note: this is different than calculating a minimizer, for which 
there are established methods 

Parametric Nonlinear Programs (NLPs) 

   

min
x

f (p,x)

s.t. g(p,x) ≤ 0

  p0   x0
  

∂x
∂p

(p0 )
  x(p)   p = p0
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◆  Consider the following parametric NLP: 

 
 
◆  A point                 is called a Karush-Kuhn-Tucker (KKT) point if 

it satisfies the following equations: 

KKT Equation System 

   

min
x

f (p,x)

s.t. g(p,x) ≤ 0

   

∇x f (p0 ,x0 )+
i=1

m

∑ µi∇xg(p0 ,x0 ) = 0,

g(p,x) ≤ 0,
µ ≥ 0,

µigi (p0 ,x0 ) = 0, i = 1,…,m

stationarity

  (p0 ,x0 ,µ0 )

primal feasibility

dual feasibility

complementary 
slackness
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◆  Linear independence constraint qualification (LICQ) holds at          :        
the set of vectors                                     are linearly independent, 
where                                      is the set of active constraints 

◆  Strong second-order sufficient condition (SSOSC) holds at                : 
 

Regularity of NLP KKT Points 

   d
T∇xx

2 L(p0 ,x0 ,µ0 )d > 0, for all d ≠ 0 s.t. (∇x gi (p0 ,x0 ))T d = 0, i ∈A+ (p0 ,x0 ,µ0 )

   {∇x gi (p0 ,x0 ) : i ∈A(p0 ,x0 )}

  (p0 ,x0 ,µ0 )

  (p0 ,x0 )

   A(p0 ,x0 ) ={i : gi (p0 ,x0 ) = 0}

   A
+ (p0 ,x0 ,µ0 ) ={i : gi (p0 ,x0 ) = 0 < µ0,i} is the strongly active set
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◆  Assumptions: KKT point                satisfies LICQ and SSOSC and 
strict complementarity (i.e.                                      ) 

 
◆  Then               are smooth near         and sensitivities satisfy linear 

equation system: 

 

 
 

Classical Sensitivity System 

   gi (p0 ,x0 ) < µ0,i for all i = 1,…,m
  (p0 ,x0 ,µ0 )

( ), ( )x p pµ   p = p0

Fiacco and McCormick, 1968. Wiley

   

∇xx
2 L ∇xg A+

−(∇xg A+ )T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∂x
∂p
∂µ

A+

∂p

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−∇xp

2 L

(∇pg A+ )T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  

∂µ
A−

∂p
= 0
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◆  Let               be an NLP KKT point; i.e.  

 
◆  Observe that                           is equivalent to                   , so that 

 
 
◆  Idea: regularity conditions allow for application of the nonsmooth 

implicit function theorem to the nonsmooth KKT equation system  
◆  Nonsmooth sensitivity system: which simplifies to… 

 

 

 
 

Nonsmooth KKT Equation System 

   
Φ(p,x,µ) =

∇x L(p,x,µ)
min(g(p,x),µ)
⎡

⎣
⎢

⎤

⎦
⎥ = 0

0 0 0, )( ,p x µ

0 0 0

0 0 0

, , )
( , )

(L∇ =
≤ − ⊥ ≥
x p x 0
0 g p x 0

µ
µ   notation: 0 ≤ a ⊥ b ≥ 0 ⇔ a ≥ 0,b ≥ 0,ab = 0

  a ≥ 0,b ≥ 0,ab = 0   min(a,b) = 0
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◆  Assumptions: KKT point                satisfies LICQ and SSOSC 
 
◆  Then               are PC1 near         and sensitivities 
                    (uniquely) satisfy nonsmooth equation system: 

 

 
 

Nonsmooth Sensitivity System 

  (p0 ,x0 ,µ0 )

( ), ( )x p pµ   p = p0

Stechlinski, Khan and Barton, SIAM Journal on Optimization. (2018)

   

∇xx
2 L ∇xg A+∪A0

−(∇xg A+∪A0 )T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X
U

A+∪A0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−∇xp
2 L

(∇pg A+ )T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

P

LMmin(− (∇pg A0 )T P − (∇xg A0 )T X,U
A0 ) = 0

  X = x '(p0;P)

  U = µ '(p0;P)
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◆  Assumptions: KKT point                satisfies LICQ and SSOSC and 
strict complementarity 

 
◆  Then               are smooth near         and sensitivities (uniquely) 

satisfy linear equation system: 

 

 
 

  (p0 ,x0 ,µ0 )

( ), ( )x p pµ   p = p0

   

∇xx
2 L ∇xg A+∪A0

−(∇xg A+∪A0 )T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X
U

A+∪A0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−∇xp
2 L

(∇pg A+ )T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
P

LMmin(− (∇pg A0 )T P − (∇xg A0 )T X,U
A0 ) = 0

Sensitivity Systems:  
Smooth vs. Nonsmooth 



51 

u  Nonsmooth NLP sensitivity system admits a unique solution, which is 
computationally relevant generalized derivative information 

u  Recovers classical theory of Fiacco and McCormick in absence of 
weakly active sets 

u  Numerical solution is based on same ideas as calculating LD-
derivative of nonsmooth implicit function. There are three 
approaches: 
Ø  Cycle through selection functions (i.e. solve a number of classical sensitivity systems) 
Ø  Directly solve nonsmooth sensitivity systems (e.g. via nonsmooth Newton methods), 

which can be improved by fathoming weakly active constraints along the way in the spirit 
of branch-locking techniques 

Ø  Solve sequence of (convex?) QPs 

u  Extension to nonunique multipliers is underway, where current 
results only yield directional derivative information (Ralph & Dempe), 
VIs via natural or normal maps 

Summary 
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