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Lexicographic Derivatives
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o f:XcR"—>R"is L-smooth at x& X if it is loc. Lip. continuous

and directionally differentiable, and if, for any M:[m(l) m(k)}eR”Xk
the following functions exist:
f(()l\)/[ d f'(x;d) > This is the directional derivative mapping, viewed as a

function of direction d

—_—

(1 . (0) v .
£ 1> (£ 1'(m, ;d)
: These are higher-order directional derivative mappings;
directional derivatives of directional derivatives

£ a0 T (m s d)

e

¢ If the columns of M span R", f ' is linear
+ If the columns of M span R, the L-derivative is J, f(x;M):= Jf}}; (0)
¢ Lexicographic subdifferential: o, f(x)={J, f(x;M):M eR"™", det M # 0}

Nesterov (2005)
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L-smooth Functions

¢ The following functions are L-smooth: Solution of parametric DAL at snapshots in time

» Continuously differentiable (C!) functions j -
> Piecewise differentiable (PC") functions S e
» Convex functions (e.g. abs, 2-norm) *'.2_2 P |
» Compositions of L-smooth functions: x h(g(x)) ~ |
> Integrals of L-smooth functions: T 0 ws o os i s

b i 13// R

X > J o(t,x) dt T R R T

a

» Solutions of parametric nonsmooth ordinary differential equations (ODEs) and differential-

Y

algebraic equations (DAEs) w.r.t. parameter value
Solutions of optimization problems (e.g. nonlinear programs) w.r.t. parameter value
The list continues to grow....

Nesterov (2005), Khan and Barton (2015), Barton et al., Opt. Meth. & Soft. (In Press), Stechlinski and Barton (2018) 4



Generalized Derivatives Landscape

o If f: XcR"—>Ris an L-smooth, scalar-valued function (e.g.

objective function of an optimization problem):

2, f(x) /af (x)
o If f:XcR">R"is PCt: 9 f(x) of (x)

~

— dpf(x)

e If f:XcR">R"isCl: e d; £(x) = d,f(x) = (x) = {JF(x)}

o If f:XcR"—>R"is L-smooth: {Ad:Ae9, f(x)} c{Ad:Aeof(x)} foreach deR”"

Nesterov (2005), Khan and Barton (2015), Khan and Barton (2014)

5
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I'lii L-smooth Functions & '
Lexicographic Derivatives

¢ Story so far:
> A broad class of functions (PCr, C!, convex, all compositions, ...) are L-smooth

» Clarke Jacobian elements are computationally relevant in dedicated nonsmooth
numerical methods (e.g. semismooth Newton method) but are difficult to compute
automatically

» L-derivatives are Clarke Jacobian elements (or indistinguishable from Clarke Jacobian
matrix-vector products) and are therefore computationally relevant

¢ Question: Are L-derivatives “easy” to compute in an automated way?

¢ Answer: Yes! L-derivatives satisfy sharp calculus rules, expressed
naturally using LD-derivatives.
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Lexicographic Directional (LD-)Derivative

¢ Extension of classical directional derivative

¢ LD-derivative of L-smooth function f: X c R" > R"at X € X in
the directions M =[m , - (k)]eR”Xk-

£ M) =[fy(m ) - £ (m,)]

¢ If M is square and nonsingular: f'(x;M)=J, f(x;M)M
¢ If f is differentiable at x: f'(x;M)=Jf(x)M

¢ Sharp LD-derivative chain rule: [fogl'(x;M)=1'(g(x);g'(x;M))

Khan and Barton (2015) 7
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I'li" Computing L-Derivative from :
(LD-)Derivative

¢ Procedure to compute an L-derivative from an LD-derivative:
1. Choose a nonsingular directions matrix M

2. Calculate an LD-derivative via sharp calculus rules
(e.g. [fog]'(x;M)=1'(g(x);8'(x;M)) )

3. Obtain L-derivative via solving the linear equation system f'(x;M)=J, f(x;M)M
for J, f(x;M) (which is unique solution since M is nonsingular)



I'li Lexicographic Directional Derivative IS=L
Calculus Rules

¢ LD-derivative calculus rules for min, max, abs, 2-norm, etc. are
based on lexicographical ordering

¢ Procedure is similar to putting words in alphabetical order. In fact,
lexicographical ordering is also known as alphabetical ordering:

generalized _xl | _J’l | _xl ] _yl |
inequality using X y . x y .
lexicographical —% < :2 ifx, <y or(x,=y andx, <y, (orx, =y, and x; < y, (or ...))). :2 - :1 otherwise.
ordering ' ' '
_xl’l_ _yl’l_ _xl’l_ _yl’l_
¢ EX. 0 ] || «— O<I 0 0 || «— tie 0 0 || «— tie
11<]0 1 [|>]0|e«— 150 0<]|0 || «e— tie
irrel t
0] |1] Heievan 0] |1 } irrelevant 0] |l ]e— 0O<I

¢ Putting two words in alphabetical order: "about" < "above"
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I'li’ L exicographic Directional Derivative
Calculus Rules

¢ Ex. f(x)=min(x,x,):
- -4 r - f(z,y) = min(z,y)

[m, m,], 1if |m

9

o X m, m, | My | Mg |

min : = - TD o T
y my, My, X y

[my, my,], if |m

1Y
3

= SLmin((X, mllamlz)a(y’mIZ’mzz ))

(e o () o -

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press) 10
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I'li Lexicographic Directional Derivative IS=L
Calculus Rules

¢ LD-Derivative calculus rules for elemental nonsmooth functions:

> f(X) =| X |= abs(x) . [m, - mk]T if [x m - mk]T >0,
f'(x;[ml mk]): : T
—[m, - m], if[x m - m] <0,

= fsign(x,my,...,m)[m, - m]

> f(x)=||x||=\/xf+---+x§: f'(x;M)=(fdir(x M])", where
(0, if A=0,
fdir(A):fdir([a(l) a(q)]):< A

, j =min{j:a . 20}, ifA=0
fa I W

> f(x)=max(x,,x,): f'[xd{xl D = SLmax((x,M)),(y,M1))
2

> f(x)=mid(x,x,,x3):  f'(x,y,z;M)=SLmid((x,M,"),(y,M,"),(z,M,"))

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press)



I'li Lexicographic Directional Derivative

Calculus Rules

¢ LD-Derivative calculus rules for function operations:

» Vector-valued functions:
» Sums of functions:
» Products of functions:
» Chain rule:
» If v and u are L-smooth,

» If Yy is Cl and u is L-smooth,

» If v is L-smooth and V¥ is Cli,

u'(x;M) = (u', (x;M),u',(x;M),...,u (x;M))
[u+v]'(x;M)=u'(x;M)+Vv'(x;M)

[uv]'(x; M) = u'(x; M)v(x) + u(x)v'(x; M)

[Voul]'(x;M) = v'(u(x);u'(x;M))

[y cu]'(x;M) = Jy/ (u(x))u'(x; M)

[Voy ' (x;M) = v'(y(x);Jy(x)M)

15

12
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N 0
Nonsmooth Automatic Differentiation

¢ Nonsmooth AD:
» Same underlying idea as classical AD
» Nonsmooth AD is achieved by simply adding "nonsmooth” derivative rules (i.e. LD-
derivative rules) to classical AD packages

» ...and applying the sharp chain rule

¢ Other remarks:
> LD-derivative rules can be added to symbolic differentiation packages, but they still suffer
from the same underlying issues outlined earlier

» LD-derivative rules cannot be added to numerical differentiation packages in the same
way; finite differencing is unsuitable for nonsmooth functions (“stepping” over nonsmooth

points)

Khan and Barton (2015) 13



Nhnr l
Nonsmooth AD

¢ Technique for calculating exact numerical derivatives
» Not finite differences (no truncation error)
» Not symbolic differentiation (no expression manipulation)
» Applies the LD-derivative chain rule systematically to numerical values

15
i

¢ Ex. y=/f(x)=max(0,min(x,x,)), atx, =0,x, =0 in directions M =1

v, =X, v =0 V. =X V.‘l =[1 0] } ELIiIgr—lc;erivative
Vo =X, Vo = 0 V = X Vo =[0 1] directions M=I
vi=min(v_,v)) vy =0 V. =SLmin((v_,(V)"),(v,,(V)")  V,=[0 I
v, = max(0,v, v,=0 V, = SLmax((0,0,0),(v,,(V,)")) V,=[0 1
y=v, y=0 Y=V, =[0 1

7 N

/(0,0 /(0,01

14



15
i

Nhnr l
Nonsmooth AD

¢ Technique for calculating exact numerical derivatives
» Not finite differences (no truncation error)
» Not symbolic differentiation (no expression manipulation)
» Applies the LD-derivative chain rule systematically to numerical values

¢ Ex. y= f(x)=max(0,min(x,,x,)), atx, =0,x, =0 in directions M = —I

V=X v, =0 V. =X =[-1 0] ) LD-derivative
v, =X, v, =0 V — X V.=[0 -1 };}Iozng_lg directions
vy=min(v_,v) v =0 V. =SLmin((v_,(V_)"),(v,.(V,)")) V,=[-1 0]
v, =max(0,v)) v, =0 V, = SLmax((0,0,0),(v,,(V.)")) V,=[0 0]
y=v, =0 Y-V, Y=[0 O

/1

15
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Summary

¢ The Clarke Jacobian is a computationally relevant generalized
derivative, but is generally difficult to compute in an automated way

¢ L-derivatives are attractive for several reasons:

€ The class of L-smooth functions is broad (includes C1, PC1, convex functions and all
compositions)

€ L-derivatives are computationally relevant (i.e. can be supplied to dedicated nonsmooth
methods)

€ L-derivatives can be computed in an automated way thanks to sharp calculus rules and
nonsmooth automatic differentiation

¢ LD-derivatives can be computed for singular (or even nonsquare)
directions matrices. This is crucial for compositions of problems; e.g.
dynamic systems with optimization problems embedded or vice versa

16



SENSITIVITY ANALYSIS OF
NONSMOOTH IMPLICIT FUNCTIONS

17



I'li’ Clarke Jacobian IG=L
Implicit Function Theorem Revisited

o If g:PXXcR"XR">R" s a loc. Lip. cts. function s.t. g(p,.x,)=0
and det X#0 for all Xen_dg(p,.Xx,)={XeR"™: [Q X]eodg(p,.x,)}

then there exists a Lip. cts. (implicit) function r such that
g(p,r(p)) =0 near p=p,

e Ex. |p|+|x|=1 *

A

x=r(p)=1-|p

No derivative (sensitivity) information / \
/);<7 | N
0Oem dg(p,,x,) x=r(p)=lp|-1

F. H. Clarke, 1990. Optimization and Nonsmooth Analysis. Philadelphia, PA: SIAM. 18
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L-Smooth Implicit Function Theorem

o If g:PXXcR”XR" > R" js an L-smooth function s.t. g(p,.x,)=0
and det X#0 for all Xer_dg(p,.X,)={XeR": [Q X]eodg(p,.X,)}

then there exists an L-smooth (implicit) function ¥ such that
g(p.,r(p))=0 near p=p,and for any P, r'(p,;P)=Xis the solution of

g'(po,xo;(P,X)) =0

\

Nonsmooth sensitivity system

¢ Remarks:
> The matrix P is the directions matrix
> Sensitivity system provides generalized derivative information for implicit function I’
> Sensitivity system is nonsmooth (and thus nonlinear), but has a unique solution for any P
» Computing solution of sensitivity system is practically implementable (more in a bit)

Khan and Barton, IEEE TAC. 62 (2017) 19



I'li Implicit Function Sensitivities: 5

Smooth vs. Nonsmooth

¢ Nonsmooth sensitivity system:

¢ Smooth sensitivity system:

( ag ag )
g(pO’XO)_Fa_X(pO’XO)X =0
| st X=Jr(p,) )

» Linear equation system
» Unique solution given that
Jog
deta—x(po,xo);tO

> Efficient methods for numerical
computation

e

.

g'(Py-X(:(P.X)) =0
s.t. X=r'(p,;P)

J

» Nonsmooth equation system

> Unique solution given that det X #0
forall Xe{XeR"™": [P X]edg(p,.X,)}

> If g is PC1, above condition can be
replaced by sign(det X) = =1 for all

g s .
(6,).) n_|
ax (p07X0)766{17"'9ness} }

» Practically implementable methods for
numerical computation (up next)

Xe{XeR™": X, =

20



I'liT Numerical Solution of '

15
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Nonsmooth Sensitivity System

¢ Compute solution X=r'(p,;P) of g’(p,.x,;(P,X))=0 two ways
i i i . g, og,,
1. Classical linear equation system: %(poaxo)ﬂ%(poaxo)kﬂ

VV V V VY

g,
Cycle through essentially active selection functions satisfying det a;)(pO’Xo)io

Verify solution: check if g’(p,,x,;(P,X))=0, otherwise choose new selection fn.
Can apply efficient solvers and use techniques such as iterative refinement

Only possible if g is PC1

Worst-case computational cost: solving ness linear equation systems

2. Nonsmooth equation system: g'(p,,x,:;(P,X))=0

>

>

Can apply dedicated nonsmooth equation-solving methods (e.g. nonsmooth
Newton’s method or LP-Newton method)

Can apply recently developed branch-locking techniques (Khan, OM&S, 2017) when
solving the system columnwise

Computational cost unclear at present

Khan and Barton, IEEE TAC. 62 (2017); Khan, OM&S (In Press) 21
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Summary

¢ The L-smooth Implicit Function Theorem augments the Clarke
Jacobian Implicit Function Theorem with generalized derivative

information

¢ The nonsmooth sensitivity system is nonlinear but has a unique
solution from which an L-derivative can be computed (given a

nonsingular directions matrix)

¢ Practically implementable methods are available to compute the
solution of the nonsmooth sensitivity system

22



NONSMOOTH DIFFERENTIAL
EQUATIONS

23



I"hir LLr

Differential-Algebraic Equations
¢ Consider the semi-explicit differential-algebraic equations (DAES):

X(1) = £(x(2),y(2)) y oo
0= g(x(1),y(1)) pooderg () =0

x(to) =X,

» Consistent initialization: 0=g(x,,y,) &4

° »—> X

> Consistency set: (x(2),y(?) € G, ={(x,y):g(x,y) =0} \/
0

» Regularity set (index-1): (x(7),y()) G, = {(x,y):deta—g(x,y) # (0} g(x,y)=x*+1y*-1=0
y

» Underlying ODE: x(1)=1(x(1),y(¢)) nonsingular equivalent to differentiation index 1
(1) = —[g—gu(r),y(r»] %8 (x(0Y(1) F(x(0).¥(0)
y ox

¢ Note: ODEs are a special case of DAEs
Kunkel and Mehrmann, 2006. EMS; Brenan, Campbell and Petzold, 1996. SIAM; Scott and Barton, Numerische Mathematik, 125 (2013) 24
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Nonsmooth DAEs

¢ Consider the following nonsmooth DAEs:

x(t)=1 J,:
1=|x(2)|+|y(2)] glx,y)=lx[+|y[-1=0
x(2,)=x,
> Consistent initialization: 1=|x,[+]y, | X
» Consistency set: (x(2),y(#) € G, ={(x,y):[x[+|y[F1}
> Regularity set (index-1): (x(¢),y(¢)) e G ,=7?

> Underlying ODE: ?7?

o Classical index-1 DAE theory is established via implicit function
theorem and classical ODE theory

¢ Idea: apply nonsmooth implicit function theorem and nonsmooth
ODE theory (well established) to nonsmooth DAE

25
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Well-Posedness of Nonhsmooth DAEs

¢ Nonsmooth semi-explicit DAEs:
x(¢)=1(2,x(2),y(2))
0=g(2,x(2),y())
x(Z,) =X,
> f is discontinuous w.r.t. t, continuous w.r.t. X, ¥, and g is locally Lipschitz
> Consistency set(?,x(¢),y(¢)) € G ={(¢,x,y) :g(¢,x,y) = 0}
» Regularity set (generalized differentiation index-1): nonsmooth implicit

function theorem can

(6,x(0),y(1) € G, ={(t,x,y) :detY #0, forall Y e = _0g(#,X,y)} “~  be applied

¢ Well-posedness results:
> Existence of (local) solutions: (x,,y,)€G_.NG,
> Uniqueness of a solution: {(x(¢),y(?)):te T} c G_.NG, and f locally Lipschitz

» Continuation of solutions: a regular solution (i.e. generalized diff. index-1) can be
extended

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017) 26
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Well-Posedness of Nonhsmooth DAEs

15
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¢ EX. continued: Y
x(O=1 e My<O m 9g(e) = | 0ex ag(xy)=[-LI
=[x |+ |y [ > 7 9g(r.)={ [-L1]. if y=0
x(2,)=x, {1}, if y>0 [
L y »——> X
> fis PCl and g is PC!
> Consistency set: G, ={(x,y):[x[+|y=1} 5 -
> Regularity set: G, ={(x,y):y#0} 7,0g(x,y) =11}

¢ Existence and uniqueness of a “regular” solution:
(%) €G- NG, ={(x,»):|x,|+]y, EL y, # 0}

-

(t+x0,1—‘t+x0

_ . ). ify, >0,
+ Indeed, unique regular solution is (x(2),y(#)) =+

(£ x,,—1+]t +x,

), ify, <0,

\

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017) 27
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I'lit Dependence of Solutions of !
Nonsmooth DAEs on Parameters

¢ Nonsmooth semi-explicit DAEs:

x(¢,p) =f(z,p,x(¢,p),y(2,p))
0=g(z,p,x(z,p),y(¢,p))
x(¢,,p)=1,(p)

> Consistency set: (¢,p,x(z,p),y(¢,p)) € G . ={(¢,p,X,y) : g(¢,p,X,y) = 0}
» Regularity set (generalized differentiation index-1):

(7,p.X(2,p), Y(1,p)) € G , = {(¢,p,X,y) : detY # 0, for all Y e _dg(,p,X,y)}

¢ A regular solution (x(z,p).y(zp)) is:
» Continuous w.r.t. p if fis cts. and g is locally Lipschitz
> Lipschitz w.r.t. p if f is locally Lipschitz and g is locally Lipschitz
» L-smooth w.r.t. p if fis L-smooth and g is L-smooth «~—__ = . iste LD-derivatives?. .

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017) 28



I'lit Smooth DAEs 1SS

Classical Dynamic Sensitivities

¢ Smooth semi-explicit DAEs:

x(¢,p) =1(z,p,x(¢,p),y(2,p))
0=g(z,p,x(¢,p),y(¢,p))
x(¢,,p)=1,(p)

¢ A regular solution (x(z,p),y(z,p)) is C! w.r.t. p (from diff. index-1)
ox _dy

¢ Sensitivities: s =—, § =
Y odp 7 dp

29
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Dynamic Optimization of Smooth DAEs

¢ Sequential approach (e.g. single or multiple shooting):

/Semi-explicit index-1 DAES\
4 A
x(¢,p) = £(2,p,x(2,p), y(z,p))
0=g(#,p,x(z,p),y(,p))

\. J

Linear sensitivity DAEs

4 )

. af af of

$ +—S

g ap ox g Jy
Jg og og

0= ’e
8p+8xsx+8ys

\\

)

-

X(t p() y(t po) S __9 y

%%

@ Update p via optlmization

g
P(x(1,,p),¥(¢,.p))

[\

\

N b,

>Pp

j 30
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Dynamic Optimization of Nonsmooth DAEs

¢ Sequential approach in nonsmooth setting:

-

\ 4 Ix )
Semi-explicit index-1 DAEs x(t,p,),y(t.p,) %,4\/:\&—3
4 2 P Jd
X(Ep) = fEpx(tpLyep) | [
0=g(2,p,X(1,p),¥(1,p)) ,, 227

L ) \ )
Sensitivity DAEs @ Update p via optimization
4 ) ~ ~N

of of

P(x(t,,p),¥(t,.p))

31
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I'li"f Nonsmooth ODEs '
Classical Dynamic Sensitivities

¢ Nonsmooth ODE case:
x(z,p) =1(z,x(z,p))
x(Z,,p)=p

¢ Goal: given reference parameter p,, characterize (local) sensitivity
information by computing element of J[x(¢,-)I(p,)

¢ Linear Newton Approximation (Pang & Stewart, 2009; Clarke, 1980):

I'(1) = conv{X(1): X(¢) € I[f, 1(x(2,p, )X (1); X(0) =1}

» Pros: relatively easy to evaluate

> Cons: Satisfies d[x(¢,)](p,) € I'(¢) ; does not reduce to derivative when X(¢,") is C!; does not
reduce to subdifferential when x(z,-) is convex; no sufficient optimality condition

32



I'lit Nonsmooth ODEs
Classical Dynamic Sensitivities

¢ Linear Newton Approximation (LNA):
I'(1) = conv{X(1): X(¢) € A[f, 1(x(t,p, )X (1); X(0) =1}
+ EX. X(t,p):(l—t)|X(t,p)|
x(0,p)=p
> The solution x(2,-) is C! and convex w.r.t. p at p=0 5
> The LNA is calculated asT72(z,-)](0)=[1/e,e], but a[x(z,-)](O):{l}: {a—x(z,O)}
p

5¢ 6. .
!
/
J

x(2,)](t)

\--~
-~
R e
--__.__-.-
~
-
N
-

!

33
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I'liTf Nonsmooth ODEs '
Dynamic LD-Derivatives

¢ Nonsmooth ODEs: x(t,p) = £(£,p,x(£,p))

x(¢,,p)=1,(p)
» If f and f, are L-smooth functions, then X(#,p) is L-smooth w.r.t. p
¢ Nonsmooth ODE sensitivity system:

X(0)=[f,1'(pg>X(£,po);(M,X(1))),  X(0)=1;'(py;M)

> LD-derivative mapping ¢ > [x(Z,")]'(p,;M) is unique solution of sensitivity system

> If M is nonsingular, then an L-derivative can be computed for any ¢ via the linear
equation system X(z)=J, [x(¢,)](p,;M)M

» If f and fyare C! and M=I then the classical sensitivity system is recovered:

: I
X(0) =[f,1'(py,x(1,py); (1, X(2))) = th(PO,X(f,po)){X(tJ = g—:;(f,po,X(t,po)) + g—i(t,PO,X(l‘,po))X(t)

Khan and Barton, Journal Opt. Theory Appl. 163 (2014) 34



I'liT Nonsmooth ODEs GEL
Dynamic LD-Derivatives

¢ EX. continued: =x(p)=01-1)|x(,p)]|

x(0,p)=p
» Nonsmooth sensitivity system: X(t) =(1- t)fsign(x(t,po),X(t))X(t) =(1-1)| X(?)]
X(0)=m
whose unique solution X (¢) =[x(¢,-)]'(0;m) satisfies X(2)= X(0)=m = —(2 0)m v
5¢ » [-LNA bounds /
g 5|l —Lex. deriv. bounds ,'I
g e == % 3
* B N\ E ol
3
-5 . . ; 0

o
—_
—
[\
w
o

35



I'lif Nonsmooth DAEs IG=L
Dynamic LD-Derivatives
+ Nonsmooth DAEs: X(2,p) =1(z,p.x(2,p),y(¢.p))

0=g(p,x(¢,p),y(¢,p))

x(¢,,p)=1£,(p)
> If f and g and f, are L-smooth functions, then X(¢,p) and Y(?,p) are L-smooth w.r.t. p

¢ Nonsmooth DAE sensitivity system:

X(1)=[£,) (o X(:py ) Y(£.P:(MLX(0), Y(1)))

0=[g,]'(py,x(t,py), Y(#, Py ); (M, X(?), Y(2)))

L X(0)=1,'(py;M) )

> LD-derivative mappings ¢ > [x(¢,")]'(p,; M) and ¢ = [y(Z,)]'(p,;M) uniquely solve the
nonsmooth sensitivity system

» If M is nonsingular, then L-derivatives can be computed for any ¢
> If f, g and f,are C! and M=I then the classical sensitivity DAE system is recovered

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016) 36
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Dynamic Optimization of Nonsmooth DAEs

¢ Sequential approach in nonsmooth setting:

(s

emi-explicit index-1 DAEs

~

r

.

x(¢,p)=f(p,x(¢,p),y(zp))
0=g(p,x(z,p),y(t,p))

~N

J

LD-Derivative Sensitivity DAEs

f

\&

X =[f]'(p,,X,y;(M,X,Y))
0 — [g]'(poaxa Ya(Maan))

~

J/

)

-

..............................

o[ IIZlo----zzzIzIIiiziizzzy

_________

J
@ Update p via optimization
4 )
o(x(t,,p),y(t,.p))
ﬁ \//\
4 >
\_ Py P ) 37
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I'lir DAE Sensitivities: !
Nonsmooth vs. Smooth
¢ Smooth vs. nonsmooth cases:

> Nonsmooth DAE sensitivities: » Smooth DAE sensitivities:

e ) ( of of  of
X=[f]'(py %, y:(M, X, Y)) o ox oy
0:[ ]' 9X9 ; MDXQY
g(po' Ys( ) 0=£+£sx+£s
X(,)=[f,1(p,;M) dp ox © dy ’
\_ y,
\sx(to) =Jf (p,)

» Nonsmooth (and nonlinear) DAE system _
» Linear DAE system

» Unique solution and unique initialization _ _ _ S
» Unique solution and unique initialization

> X continuous, Y discontinuous

> Sx, Sy continuous

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016)
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Simple Flash Process: Well-Posedness

¢ Nonsmooth DAE model of simple const. P flash:
T ‘ ‘ 0.5

H(l‘)=U(T0m—T(l‘)) out P 120 ' | ' _
= b ()0 ) m < =

H(t)=Mn, (t)- M, (t)An, (T(2)

h (1)=Cp(7(1)-T,) : ;. ____________ %‘f:-
log( P (¢))=4-B/(T(¢)+C) . "
0=mid (M, (1), P~ P*(T(t)),~ M, (1)) o S

¢ Does there exist a (regular) solution?
> Yes, under appropriate initial conditions and some simplifying assumptions %, 0g(H,T, M)
contains no singular matrices. This implies existence and uniqueness of a regular solution
(since right-hand side functions are PC1)

Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press) 39
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Simple Flash Process: Sensitivities

¢ Nonsmooth sensitivities s, ()=v(1-5,())
of simple const. P flash: 5,,(£) = MCps, ()= an, (7(1))s, (¢)

0=mid'(M, (r),P= P, (T(0)),—M,(t):(S,(1),— P, (T(1))S,(1),-S, (1))

5, (=5,

0.03

w
(@)

SMI
SMv q

W
o
—o
!
S
1 1 -

0.02 |

N
(6]
T

0.01 |

dT/dT _ [K/K]
- N
[6)] o
dM /dT . [kg/K]

—_
o

0

- 001}
-0.02
-0.03

500 1000 1500 0 500 1000 1500
t [sec] t [sec]

T out

S
S

(¢)] o (63}
& T

o

¢ No notion of mode sequence needed

Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press) 40
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Nonsmooth Dynamical Systems
¢ Nonsmooth ODEs/DAEs/hybrid automata

7

¢ Open loop optimal control inf O(p) =9(7,.p,u(t,p).x(1,p,u),y({ . p,w))

with nonsmooth ODE/DAES: s.t. (x,y) satisfy nonsmooth DAE system

\. J

¢ ODEs with LPs embedded: (X(t,p) = f(p,x(z,p), i(x(2,p)))
h(x(¢,p))=minc'v
s.t. Av=Db(x(¢,p))

g ,
Khan and Barton, Journal Opt. Theory Appl. 163 (2014); Stechlinski and Barton, 55" CDC. (2016);
Hoffner, Khan, and Barton. Automatica. 63 (2016); Khan and Barton, 53" CDC. (2014);

Barton, Khan, Stechlinski, Watson, Opt. Meth. & Soft. (In Press);

15
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Summary

¢ Nonsmooth ODEs and DAEs possess a strong mathematical theory
(recently for DAES)

¢ Easy-to-use and solve models that act as a natural framework in
many physical problems

¢ Open to tractable numerical implementations
¢ Applicable to a wide range of process operations

¢ Future work in adjoint sensitivities (?) and discontinuous dynamical
systems

42
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Parametric Nonlinear Programs (NLPs)

¢ Consider the following parametric NLP:

min  f(p,X)
s.t. g(p,x)<0

: . L ox
+ Goal: given P, and corresponding minimizer x,, calculate ——(p,)

to characterize x(p) near p=p, Jp

+ Note: this is different than calculating a minimizer, for which
there are established methods

44
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KKT Equation System

¢ Consider the following parametric NLP: min f(p,Xx)

s.t. g(p,x)<0

¢ A point (p,.X,,l,) is called a Karush-Kuhn-Tucker (KKT) point if
it satisfies the following equations:

V_f(p,.x,)+ Z wv g(p,.x,)=0, < stationarity
i=l
g(p,x)<0, < primal feasibility
n=0, < dual feasibility

g (p,.x,)=0, i=1,...,m «<—— complementary

slackness 45
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Regularity of NLP KKT Points

¢ Linear independence constraint qualification (LICQ) holds at (p,.X,):
the set of vectors {V_g.(p,.x,):i€ A(p,.X,)} are linearly independent,
where A(p,.x,)=1i:g,(p,.X,) =0} is the set of active constraints

g1(x) =0 P

¢ Strong second-order sufficient condition (SSOSC) holds at (Py>X,oM1,)
d'V: L(p,,x,,1u,)d>0, foralld=0s.t.(V_g.(p,.Xx,) d=0,ie 4" (p,,x,,1,)

A7 (Py-Xy M) =1{i: g,(py>X,) =0< 4} is the strongly active set

46
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Classical Sensitivity System

¢ Assumptions: KKT point (p,,X,,H,)satisfies LICQ and SSOSC and
strict complementarity (i.e. g,(p,.X,) <U,, foralli=1,...,m)

¢ Then x(p), w(p) are smooth near P =P, and sensitivities satisfy linear
equation system:

; ol ox ] i
ViXL ngA+ ap _ —VipL
-Vg )" 0 I . Vg )
i I = i ]
W,
=0
op

Fiacco and McCormick, 1968. Wiley 47
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Nonsmooth KKT Equation System
¢ Let (py.X,,1,) be an NLP KKT point; i.e.

V. L(Po.Xg, 1) =0
0<—-g(p,.x,) LU, 20
¢ Observe that ¢>0,6>0,ab=0 is equivalent to min(a,b) =0, so that

V. L(p,X, 1) }: 0
| min(g(p,x), L)

notation: 0<a 1l b=20<=a=20,b=0,ab=0

D(p,x, 1) =

¢ Idea: regularity conditions allow for application of the nonsmooth
implicit function theorem to the nonsmooth KKT equation system

¢ Nonsmooth sensitivity system: which simplifies to...

48
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Nonsmooth Sensitivity System

¢ Assumptions: KKT point (p,,X,,H,)satisfies LICQ and SSOSC

¢ Then x(p), u(p) are PC! near p=p,and sensitivities X=x'(p,;P)
U=u'(p,;P) (uniquely) satisfy nonsmooth equation system:

V2L Vg X -V: L
XX X _ Xp P

_(VXgA+uA0 )T 0 UA+UAO (VpgA+ )T

ATuA4°

LMmin(_ (Vpng )T P— (VXng )T XaUAo ) =0

Stechlinski, Khan and Barton, STAM Journal on Optimization. (2018) 49



I'lir Sensitivity Systems: ISEL
Smooth vs. Nonsmooth

¢ Assumptions: KKT point (p,,X,,M,)satisfies LICQ and SSOSC and
strict complementarity

¢ Then x(p), W(p) are smooth near p=Pp, and sensitivities (uniquely)
satisfy linear equation system:

V:L - X -V, L
_(VXgA+UAO )T 0 UA+k>£ i (VpgA+ )T |

50
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Summary

¢ Nonsmooth NLP sensitivity system admits a unique solution, which is
computationally relevant generalized derivative information

¢ Recovers classical theory of Fiacco and McCormick in absence of
weakly active sets

¢ Numerical solution is based on same ideas as calculating LD-
derivative of nonsmooth implicit function. There are three
approaches:

» Cycle through selection functions (i.e. solve a number of classical sensitivity systems)

» Directly solve nonsmooth sensitivity systems (e.g. via nhonsmooth Newton methods),
which can be improved by fathoming weakly active constraints along the way in the spirit

of branch-locking techniques
» Solve sequence of (convex?) QPs
¢ Extension to nonunique multipliers is underway, where current
results only vyield directional derivative information (Ralph & Dempe),

VIs via natural or normal maps .
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