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ontinuous Piec Linear Funct

Continuous Piecewise Linear Function

e definition: f(x): D € R?+ R is a piecewise linear
function, if there exist a finite number of affine/line
functions p;(x):

fx) € {p1(x),pa(x), -,y (%)} -

moreover, if f(x) is continuous, it is called continuous
piecewise linear function.
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Representations for Continuous Piecewise Linear Funct

Representations

@ piecewise representation
f(x) = pi(x),Vx € Q.
with continuity condition
pi(x) = pj(x),Vx € ﬂQj,Vi,j

@ piecewise representations by boolean variables
@ vertex representation

K
= deA;f,vj F) = F(ahAk,
k=0 j=1k=0

where, dk are breakpoints, satisfying: Zk 1 )\k =1, )\k >0
and {/\;“} is SOS2: special ordered set of type 2.
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Representations for Continuous Piecewise Linear Funct

Compact Representations

@ to represent a CPWL function as a sum/composition of
basic PWL functions;

composition of (finite) CPWL functions are still CPWL;
sum of (finite) CPWL functions are still CPWL.

@ properties

capability to represent all CPWL functions;
capability to approach any continuous function;
continuity is naturally guaranteed;

machine learning is applicable;

optimized as a regular non-smooth function.
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metric Models: PWL Neural Networks

Canonical Representation and Hinging Hyperplanes

@ canonical CPWL representation’

M
f(z) =agx+ by + Z Wi|a,) x + by

m=1
@ hinging hyperplanes?
M
f(z) =aj x+ by + Z Wy, max{0,a, X + by, }.
m=1

Chua, Kang, Section-wise piecewise-linear functions: Canonical representation, properties,
and applications, Proc. of IEEE, 1977.

2Breiman, Hinging hyperplanes for regression, classification and function approximation,
IEEE-TIT, 1993.
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Parametric Models: PWL Neural Networks

Learning and Optimization

e learn a and b from samples {x;,y;}}¥:

N M
min Yi — agx + by + Z Wy, max{0, a;xi + by}

i=1 m=1

e the function f(x)is PWL w.r.t. x and parameters a, b;
e the problem is piecewise quadratic to a, b, for squared error;
e the problem is piecewise linear to a, b, for absolute error.

e Hinge Finding Algorithm3
e for the m-th hinging hyperplane, select active set
T =1{i:alx;+b, >0}
e least squares on x;,1 € Z,, to update a,, and b,,.

SErmst7 Hinging hyperplane trees for approximation and identification; IEEE-CDG, 19982
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ametric Models: PWL Neural Networks

plications on Time-series Segmentation

@ number of subregions are controlled by number of basis function®

e 2 Zm:l Wi+ T3 Zi:l & + Zmzl Hm W]

M .
s.t. y(tl) = ei+w0+zm:1 wmgbm(tl)?Z = 1727"°7N7

) 500 1000 1500 2000 2500 ) 500 1000 1500 2000 2500
t t

4
Huang, Matijas, Suykens, Hinging hyperplanes for time-series segmentation,
IEEE-TNNLS, 2013




arametric Models: PWL Neural Networks

Limitation of Hinging Hyperplanes




Parametric Models: PWL Neural Networks

Towards Full Representation Capability

e high level CPWL representation®
e generalized hinging hyperplane®
B, (x) = max {aﬁox + bmo, &l 1 X + b, - - - ,a;‘gdx + bmd}
e in deep neural networks, max pooling and maxout” share
the theoretical discussion of GHH.
e adaptive hinging hyperplanes®
e irredundant lattice representation®
@ smoothing hinging hyperplanes!'?

=
L)Julién, Desages, Agamennoni, High-level canonical piecewise linear representation using a
simplicial partition, IEEE-CS, 1999.

Wang, Sun, Generalization of hinging hyperplanes, IEEE-TIT, 2005.
Goodfellow, Warde-Farley, Mirza, Courville, Bengio, Maxout networks, 2013

8Xu, Huang, Wang, Adaptive hinging hyperplanes and its applications in dynamic system
identification, Automatica, 2009

Xu, van den Boom, De Schutter, Wang, Irredundant lattice representations of continuous
piecewise affine functions, Automatica, 2016

Wang, Huang, Yeung, A neural network of smooth hinge functionsiIEEE-TNN, 2010
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metric Models: PWL Neural Networks

Compact Representation for Subregion

@ linear subregion, €2;, where a CPWL function is linear:
e (2; is a polyhedron;
e Q; could be represented by upper/lower boundary function

Q; = {x(d)’ | ﬁi(x(d—l)) <z(1) < ui(x(d—l))}’

e upper/lower boundaries are PWL functions in a lower space.

A0 =xh, A0 =L

0, AWAWADAED O

A -ARINE) AL | A ) A0 K0 <A (<0

d A,00-2,0050 | A0 A K10 3

A0 43,2 AR =131
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1etric Models: PWL Neural Networks

Domain Partition based Neural Networks

@ a continuous piecewise linear function in R? can be

represented by the boundary functions!!,

M
flx) = Z Wy, MAaX {O, {X(l) — Lo (x4,
m=1

Unn (D) = Ly (x D)} }

@ recursive definition leads to deep structure;

@ initialization and training by back propagation.

1
‘Wang, Huang, Junaid, Configuration of continuous piecewise linear neural networks,
IEEE-TNN, 2008
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Parametric Models: PWL Neural Networks

Deep PWL Neural Network

@ linear modules in convolutional neural networks
e convolutional operator: > ;> e wijFij
o fully connected layer: >, > w;; Fij
e averaging pooling: % >, F;
@ piecewise linear modules in convolutional neural networks
e ReLu: max{0,u}
o LeakyReLu: max{—7u,u}
e max pooling: max{Fiy, Fy,..., F,}

CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING
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Non-parametric Models: PWL Kernels

Non-parametric Models

@ support vector machine learns a discriminant function from
training data {x;, v}, x; € R4 y; € {—1,+1}.

1 N
§HwH§2 + C’Zizl max {1 — Y (ngZ)(Xi) + b) ,0} .

o dual problem
N

Hgn Zz 1 Z yzaz Xia Xj)ajyj - Zi:l Q5
s.t. Z Vit = 0, 0<o; <C,Vi.
1=

@ kernel trick
K(xi,x;) = ¢(x;) " d(x;)

and

f(l“) = WT¢(XZ-) +b= Zj\il yiailC(xi, X) + b.
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Non-parametric Models: PWL Kernels

Non-parametric Models

e sparsity and support vectors
e only a part of samples, support vector, have «; # 0;
e sparsity is beneficial for storage and computation;
o if K(x;,x) is piecewise linear, then only «; # 0 provides
non-convexity.

ENTATION MODELS 19/40



Non-parametric Models: PWL Kernels

Piecewise Linear Kernels

e multiconlitron'?: a separable model;

e intersection kernel'® 1 C(u,v) = 3% min{u(i), v(i)}
e additive kernel;
e subregion structure;
e truncated ¢; kernel (TL1 kernel)':
K(u7 V) = max{(), p— Hu - V||f1}
e non-separable functions

e flexible subregion structure;
e non-PSD (positive semi-definite) kernel.

12
Li, Liu, Yang, Fu, Li, Multiconlitron:A general piecewise linear classifier, IEEE-TNN, 2011

18
31\/[aji, Berg, Malik, Classification using intersection kernel support vector machines is
efficient, CVPR, 2008

141\/Iaji, Berg, Malik, Efficient classification for additive kernel SVMs, IEEE-TPAMI, 2013

5Huang, Suykens, Wang, Hornegger, Maier, Classification with truncated 11 distance kernel,
IEEE-TNNLS, 2018.
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Non-parametric Models: PWL Kernels

Indefinite Learning

@ indefinite learning

. 1 <N N N
min oY N ek x)agy; = ) o

N .
s.t. Zi:l yia; =0, 0<a; <C,Vi.

e there is no ¢ such that K(u,v) = ¢(u) " ¢(v);
e the kernel matrix K : IC;; = K(x;,x;) is non-PSD and the
problem is non-convex;

@ non-separable PWL kernels are likely to be indefinite.

the 125th Shanon Meetir
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Non-parametric Mode PWL Kernels

Indefinite Learning

@ reproducing kernel Hilbert space (RKHS) —
reproducing kernel Krein spaces (RKKS)!'6

e feature space interpretation'”
o generalized representer theorem'8

@ convex problem — non-convex problem;

kernel generated model;

eigenvalue cutting!® /flipping?’ /squaring?* )
finding the nearest PSD kernel??, e.g., ming [|[K - K| r
23

e non-convex optimization

G. Loosli, S. Canu, and C. S. Ong, Learning SVM in Krein spaces, TPAMI, 2016.
17Y4 Ying, C. Campbell, M. Girolami, Analysis of SVM with indefinite kernels, NIPS 2009

16

18C. S. Ong, X. Mary, S. Canu, A. J. Smola, Learning with non-positive kernels, ICML 2004
19E. Pekalska, et al., Kernel discriminant analysis for PSD/indefinite kernels, TPAMI, 2009.

20\/4 Roth, J. Laub, M. Kawanabe, J. M. Buhmann, Optimal cluster preserving embedding
of nonmetric proximity data, TPAMI, 2003

21H4 Sun et al., LS regression with indefinite kernels and coefficient regul., ACHA, 2011

22

23

R. Luss, et al., SVM classification with indefinite kernels, NIPS 2008.

F. Schleif, P. Tino, Indefinite proxlmlty learning: A review, Neural’Computation, 2015
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Non-parametric Models: PWL Kernels

LS-SVM

@ primal problem:
- L M
min gV W +C Zi:l &
st y(wlo(x)+b)=1-§&, Vie{l,...,m}

@ dual problem:

0o yr ) r [0
y H_i_%]: [aala”'uaN] - 1 3

where I is an identity matrix, 1 is an all ones vector with
the proper dimension, and H is given by

Hij = yiy;Kij = yiy; K(xi, %;).
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Representations for Cc
Parametric Mode
Non-p m
Optimization and

‘onclusior

Indefinite LS-SVM

@ choose a non-PSD kernel K, the dual problem of LS-SVM is still easy

to solve, but it lacks of feature space interpretation.?*

Theorem
The dual problem of

N
. 1, 7 T ol 2
w+glvlfl,b,5 §(W+W+ —wow_)+ by Z&

S.t. yi(w£¢+(xi) +WT¢,(X¢) +b)=1-¢&, Vie{l,2,...,N}
S -
0 y 0
y H+%I b,oa,...,am]" = 1

24 .
Huang, Maier, Hornegger, Suykens, Indefinite kernels in least squares support vector
machine and principal component analysis, Applied and Computo Harmoenic Analysis,=2017




Non-parametric Models: PWL Kernels

Learning Performance of PWL Kernel

Table: Average Accuracy and Standard Deviation on Test Data

dataset

M (o by cross-validation)

RBF kernel

TL1 kernel
(p=0.Tn)

Qsar
Splice
Guide3
Madelon
Spamb.
ML-prove
Guidel
Wilt
Phish.
Magic
RNA

528
1000
1243
2000
2300
3059
3089
4339
5528
9510

59535

86.92 + 1.31%
89.83 + 0.09%
84.15 + 3.45%
58.83 4+ 0.00%
93.32 + 0.60%
72.48 +0.32%
96.84 + 0.16%
85.80 + 0.74%
95.92 + 0.30%
86.48 + 0.45%
96.66 + 0.20%

86.05 + 1.21%
92.74 £ 0.02%
97.56 + 0.00%
61.33 + 0.00%
94.05 £+ 0.56%
79.08 £+ 0.00%
97.12 £+ 0.04%
86.80 + 0.44%
93.83 + 0.48%
86.04 £+ 0.43%
95.74 + 0.22%

on Meeting 201
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Non-parametric Models: PWL Kernels

Indefinite kernel PCA

@ primal problem:
M

i o 1 ¢
Eors 521:15 vV

st &G =w!(p(xi) — fip),Vi € {1,..., M},

where fi4 is the centering term, i.e., iy = = Zle d(x;).
@ dual problem:
Qo = A,

where the centered kernel matrix € is induced from K:
1 M
Q'LJ = K(Xi,Xj) - M Z ]C(.’Ei,xr)
1

_MZiil K(xj,xr) + M2 Z o 257 K(xp, xs).

26,40



Non-parametric Models: PWL Kernels

Indefinite kernel PCA with PWL kernel

Figure: Reduce data of two classes in three dimensional space into
two dimensional space
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Optimization and Training for PWL Models

Example 1: Chiller Plants Optimization

@ operation optimization for centrifugal chiller plants

Cooling Tower

Cooling Water
Pump

—»  Refrigerant
— Cooling Water

— chiledWater  MITSUBISHI

e

Compressor 2

) Condenser

—

Compressor 1

Evaporator <§: ‘
A

<

Economizer

Valva

Terminal
Unit

Chilled Water
Pump
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Optimization and Training for PWL Models

Example 1: Chiller Plants Optimization

@ model the input-output relationship by PWL functions;
@ surrogate optimization via sub linear programmings;

Cooling Tower and = g Terminal Unit and
Cooling Water Pump Chilled Water Pump

N\

N % o

P B

AN 4

Envi 8 N P
ORI Power Consuming 7

600 kW 1500 kW 2400 kW 3300 kW

o

\2 water out of the chiller

10°C  37.74% 30.69% 12.91% 19.85%
15°C 14.05% 17.28% 17.68% 09.79%
20°C  25.30% 02.11% 06.13% 16.92%

25°C  24.51% 10.87% 10.04% 09.99%
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Optimization and Training for PWL Models

Example 2: PVC Production Process Optimization

@ PVC production process
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Optimization and Training for PWL Models

Example 2: PVC Production Process Optimization

@ equations: 13871

@ optimization variables: 5064 (discrete), 8119 (continuous)

@ optimization time (MILP): around 2000 s (MINLP: around 14000 s)

Optimization Model Current Model improvement
absolute value (¥) Relative value (%)

total cost 156,796,000 166,392,500 9,596,500 58]
energy cost 68,424,300 79,406,633.5 10,982,334 13.8]
coal cost 68,424,300 75,949,933.5 7,525,634 99|

inventory cost 1,602,600 229,380 1,373,220 598.71

material cost 86,712,400 86,712,386.5 14 —

switching cost 56,700 44,100 12,600 28.61




Optimization and Training for PWL Models

PWL Optimization Problems

@ optimization based on learned PWL models;
e for unknown or complicated function g(x), model a
surrogate PWL function f(x) and optimize f(x);
e discussion on specific PWL model, e.g., local optimality?®
and global heuristic;
e training for PWL models
@ piecewise linear penalty/loss — piecewise linear optimization
@ /1-norm regularization term, total variation, non-convex
sparsity enhancer?® 27 p(u) = Zf:l |ulk]|
@ absolute loss, quantile loss (k-th maximum loss), hinge loss,
ramp loss, ...
e smooth penalties/loss — piecewise smooth optimization
@ /yo-norm regularization term
@ squared loss, sigmoid loss, logarithmic loss, ....

2 . .
5Huang, Xu, Wang, Exact penalty and optimality condition for nonseparable continuous
piecewise linear programming, Journal of Optimization Theory and Applications, 2012

26
Wang, Yin, Sparse signal recon. via iterative support detection, STAM. Imag. Sci. 2010

Huang, Van Huffel, Suykens, Two-level £1 minimization for [CS., Signal Processing, 2015
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Optimization and Training for PWL Models

Example 3: Ramp-LPSVM

@ /1-norm penalty (sparsity) + ramp loss (robustness)?

o p(u) =35y [u(@)], lramp(u) = max{0, min{u, 1}};
@ ramp loss linear programming SVM

N
min 41y o) +%eramp <1 — i (ZN laz"C(Xij)»
% =1

=

7

@ difference of convex functions:
1 N N
min MZ|01|+N;maX{1—yi (Zj_l Oéi/C(Xz‘,Xj)> ,0}
A 1=
1 N N
-5 ; max {—yi <Zj:1 a; (%, xj)> , 0}
28

Huang, Shi, Suykens, Ramp loss linear programming support vector machine, JMLR, 2034.
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Optimization and Training for PWL Models

Example 3: Ramp-LPSVM

@ solving ramp-LPSVM
e linear programming for a local optimum;
o hill detouring?, i.e., search on contour lines of a concave
PWL function;

29
Huang, Xu, Mu, Wang, The hill detouring method for minimizing hinging hyperplanes
functions, Computers & Operations Research, 2012.
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Optimization and Training for PWL Models

Example 3: Ramp-LPSVM

Table: Accuracy on Test Data and Number of SV (10% outliers)

Spect

Monk1

Monk?2

Monk3

Breast

C-SVM 81.42%  #79 76.22%  #51 72.41%  #99 80.05%  #57 89.69% #34

ramp-LPSVM 87.88% #34 79.33% #51 81.57% #70 83.43%  #39 93.35% #24
‘ Pima Trans. Haber. Tonos.

C-SVM 61.66% #61 70.33% #73 70.65%  #42 85.79% #78

ramp-LPSVM 68.51%  #37 75.28% #8 74.62% #4 90.35%  #29

@ robustness to outliers is improved;

@ sparsity is enhanced;

@ algorithm is not applicable to large-scale problems.
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Conclusion

@ Conclusion
e compact continuous piecewise linear models
@ parametric models and its link to neural networks:
DP-CPLNN, AHH, SHH, ...
@ non-parametric models and indefinite learning: TL1 kernel,
indefinite LS-SVM, and indefinite kPCA, ...
e optimization based on compact piecewise linear models
@ surrogate optimization for chiller plants and PVC
production process
@ machine learning based on piecewise linear models, e.g.,
ramp-LPSVM
o Outlook
e learning behavior and interpretation
o deep piecewise linear neural networks
e piecewise linear indefinite kernels
e piecewise linear optimization
e fast local search and efficient global search
o training piecewise linear neural networks
e conversation among different piecewise linear models
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