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Horn’s problem, and Horn’s conjecture

A and B are n x n Hermitian matrices, and C = A + B.

Assume that the eigenvalues a; > -+ - > «, of A,

and the eigenvalues 81 > --- > (8, of B are known.

Horn’s problem : What can be said about the eigenvalues ;3 > -+ > v,
of C=A+B?

Weyl's inequalities (1912)

Vitj—1 < Oé,'—l—ﬂj fori+j<n+1,
Yitj—n > Oé,'—l—ﬂj fOI‘i—l—jZn—i-l.

Horn’s conjecture (1962) The set of possible eigenvalues 7, ...,~, for
C = A+ B is determined by a family of inequalities of the form

nyk S Zai +ZBJ7
kek iel jed

for certain admissible triples (/, J, K) of subsets of {1,...,n}.
Klyachko has proven Horn's conjecture,
and described these admissible trinles (1998)
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n=3 a=(3514-49), 3= (2 —0.86,—1.14).

Weyl'inequalities gives

aa < m<h
a2 < Mm<b
a3 < 73< b3

In the plane
X1 + X2 + X3 = O7

these inequalities determine a hexagon.
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a+ B
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One observes that the vertices of this hexagon are the points o + o ()
(o0 € &3). This is a special case of the following

Theorem (Lidskii-Wielandt) The set H(«a, 8) of possible
v = (71,-.-,7n) satisfies

H(a, B) C a+ C(B),

where C(3) is the convex hull of the points o(8) (0 € &,).
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We consider Horn's problem from a probabilistic viewpoint.

The set of Hermitian matrices X with spectrum {a,...,a,}

is an orbit O, for the natural action of the unitary group U(n):

X — UXU* (U € U(n)).

Assume that

the random Hermitian matrix X is uniformly distributed on the orbit O,
and the random Hermitian matrix Y uniformly distributed on Og.

What is the joint distribution of the eigenvalues of the sum Z =X +4+Y 7

This distribution is a probability measure on R” that we will determine
explicitly.
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Orbits for the action of U(n) on #,(C)

Spectral theorem : The eigenvalues of a matrix A € H,(C) are real
and the eigenspaces are orthogonal.
The unitary group U(n) acts on H,(C) by the transformations

X — UXU*
For A = diag(as, ..., a,), consider the orbit
O, ={UVAU" | U e U(n)}, a=(a,...,a, €R"
By the spectral theorem

On = {X € H,(C) | spectrum(X) = {ou, ..., an}}
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Orbital measures

The orbit O, carries a natural probability measure:

the orbital measure ji,

image of the normalized Haar measure w of the compact group U(n)
by the map U — UAU*. For a function f on O,

/ f(X)ua(dX):/ F(UAU")w(dU),
On

U(n)

A U(n)-invariant measure 1 on H,(C) can be seen
as an integral of orbital measures:
it can be written

/HH(C) F(X)u(dX) = /R (/U(n) f(Udiag(tl,...,dtn)U*)w(dU))y(dtL

where v is a & -invariant measure on R", called the radial part of p.
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If 1 is a U(n)-invariant probability measure,

and X a random Hermitian matrix with law g,
then the joint distribution of the eigenvalues of X
is the radial part v of p.

Assume that the random Hermitian matrix X is uniformly distributed

on the orbit O, i.e. with law i,

and Y uniformly distributed on Og, i.e. with law pg,

then the law of the sum Z = X + Y is the convolution product 1o * g,
and the joint distribution of the eigenvalues of Z

is the radial part v, g of the measure p1 = g * pig.

Hence the problem is to determine this radial part v, g.
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Fourier-Laplace transform
For a bounded measure p on H,(C),

Fu(Z) = / e (@) (dX).
H4(C)

If 11 is U(n)-invariant, then Fp is U(n)-invariant as well, and hence
determined by its restriction to the subspace of diagonal matrices.

For Z = diag(z,...,z,), T = diag(ty,...,t,), define
E(z,t) = / et (ZUTU") ().
U(n)

Then Fua(Z) = &(z, ).
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If i is U(n)-invariant,
Fu(Z)= | &(z,t)v(dt),
]Rn
where v is the radial part of p.

Taking 1t = pio * g,

E(z,)E(z,8) = | &(z,t)va,p(dt).

Rn
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This is the product formula of the spherical functions for the Gelfand pair
(G, K).

G = U(n) x H,s(C), K =U(n).
The group G acts on H,(C) by the transformations

g-X=UXU"+A (g=(U,A)).
The spherical functions are given by

¢z(g) = E(z2, 1),

where ty, ..., t, are the eigenvalues of the matrix g - 0. They satisfy the
functional equation:

| ederte)o(d) = c.(e)ele) (e 6).
With the identification
sz(gl) zg(z,a), @z(g2) 25(2,5)7

the functional equation becomes

E(z,)€(z,8) = | &(z,t)va,p(dt).

Rn
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Harish-Chandra-ltzykson-Zuber formula

Ais an Hermitian matrix with eigenvalues oy, ..., ap,
and B with eigenvalues (i,..., ().
e" (AUBUT) 4 (dU) = §,) —————— det(e®Pi) ..
/U(n) (@t V() Via(B) (") icisen
V,, is the Vandermonde polynomial: for x = (xq,...,Xxp),
Vi) = T — )
i<j

and

dnh=((M-1,n-2,...,2,1,0), &!=(n—-1Y(n=-2)...2!
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Heckman’s measure

Consider the projection g : H,(C) — D, onto the subspace D, of real
diagonal matrices.

Horn's theorem The projection g(O,,) of the orbit O, is the convex hull
of the points o(«)

q(0,) = C(a) := Conv({o(a) | o0 € G,})
(O’(Oé) = (aa(l), e ,Oég(,,)))

Heckman's measure is the projection M, = q(fta)

of the orbital measure fi.

It is a probability measure on R”, symmetric, i.e. Gp-invariant,
with compact support: support(M,) = C(«).
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Fourier-Laplace transform of a bounded measure M on R":

M(z) = / n e M(dx)

The Fourier-Laplace transform of Heckman's measure M,
is the restriction to D, of the Fourier-Laplace transform
of the orbital measure pi,:

for Z = diag(z, ..., z,),

—

Ma(2) = Fra(Z)

Therefore W/I\a(z) =&(z, ),
and by the Harish-Chandra-ltzykson-Zuber formula,

Mo (2) = 6, v

@ Vi) )

1<ij<n
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Define the skew-symmetric measure

(e(o) is the signature of the permutation o).
Fourier-Laplace of 7,:

op! op!

n — n (z]o(a)) — n zjaj .

Na(2) V(o) E e(o)e V() det(e%)1<; j<n
ce6,

By the Harish-Chandra-ltzykson-Zuber formula

Ta(2) = Va(2)Mal(2).

Proposition

Vn<_g)Ma = Na
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Elementary solution of Vn(a—ax)

Proposition Define the distribution E, on R”

<En7‘P> = /n(nz—l) QD(Z t,'jf:‘,'j) dt,-j
Ry

i<j
(eij = e — €j) Then

0

Va5 ) En = do.
Ox 0

Proof: An elementary solution of the first order differential operator

o o

e~ B is the Heaviside distribution
i j

(Vo) = /O " oty

Hence

is an elementary solution of Vn(%).
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Theorem
Ma = En * Mo

(@(x) = o(=x), (En, ) = (En, ¢)
Heckman's measure M,, is supported by the hyperplane
X1+"'+X,7:CV1+"'+C¥,,.

Next figure is for n = 3,
drawn in the plane x; + x + x3 = a1 + an + as.
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The radial part v,z

Recall

X is a random Hermitian matrix on O, with law pu,

and Y on Og with law pg.

The joint distribution of the eigenvalues of Z = X + Y is the radial part

Va,B of Ha * 13-

Theorem
11
Vap = ) Vi (X)na * Mg
11 Vy(x)
= m(s—n' Vn(a) Z 6(0’)(50(@) * Mﬁ

The sum has positive and negative terms.
However v,.3 is a probability measure on R".
The measure v, g is symmetric (invariant by G,).
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This theorem can be seen as a special case of a result by Graczyk and
Sawyer (2002).
A similar result, but slightly different, is given by Rdsler (2003).
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The set of possible systems of eigenvalues for the sum Z =X+ Y is

S(a, B) = support(va,z)

The proof amounts to check that the measure

vV =

1
] Via(x)na * Mg

satisfies the relation

&z, t)v(dt) = E(z,0)&(z, B)

Rn

Next figure is for n =3, a = (3,0,-3), 5 =(1,0,-1)
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Next figure is for n =3, a = (3,0,-3), 5 =(2,0,-2)
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In the first case the condition
sup |6; — il < inflai — oy
is satisfied, and, under that condition,
H(e, B) = S(a, B) N Cy = a+ C(B)
where C, is the chamber
Co={x1>x > >x}.

In the second case the condition is not satisfied. There are cancellations
and the situation is more complicated.
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Relation to representation theory

my irreducible representation of U(n) with highest weight A,

Littlewood-Richardson coefficients ¢ 4:
Mo @ W5 = Z C;’VBWA,.
gl

Theorem c_) ; # 0 if and only if v € H(a, B);
i.e. there exist n x n Hermitian matrices A, B, C with C = A+ B, the o;
are the eigenvalues of A, the §; of B, the ~; of C.

(Klyachko, 1998; Knutson, Tao, 1999)
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In the case of the space of real symmetric matrices H,(RR),

with the action of the orthogonal group O(n), for n > 3,

we don’t know any explicit formula for Heckman's measure,

and for the measures v, g.

This setting is natural, however the problem is more difficult

that in the case of the space of Hermitian matrices,

and one should not expect any explicit formula.

However the supports should be the same as in the case of H,(C)
with the action of the unitary group U(n), according to Fulton (1998).



Horn's problem, and Fourier analysis

There should be an analogue of our results

in case of pseudo-Hermitian matrices.

In this setting, an analogue of Horn's conjecture has been established by
Foth (2010).

An analogue of our result could probably be obtained by using a formula
for the Laplace transform of an orbital measure

for the action of the pseudo-unitary group U(p, q)

on the space H,(C") (n= p+ q).

This formula is due Ben Said and @rsted (2005).
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More generally one could consider Horn's problem

for the adjoint action of a compact Lie group on its Lie algebra.

The Fourier transform of an orbital measure is explicitely given

by the Harish-Chandra integral formula [1957].

Heckman's paper [1982] is written in this framework. One can expect
that there is an analogue of our result in this setting.

In particular one can consider the action of the orthogonal group

on the space of real skew-symmetric matrices, as Zuber did (2017).
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