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Statement of the problem
X = G/K is a Riemannian symmetric space of the noncompact type, where:
G = connected noncompact real semisimple Lie group with finite center
K = maximal compact subgroup of G

Examples:
Hn(R) = SO0(1, n)/ SO(n) real hyperbolic space
SU(p, q)/ S(U(p)×U(q)), q ≥ p ≥ 1, Grassmannian of p subspaces of Cp+q

(complex hyperbolic space if p = 1)

∆= (positive) Laplacian on X , with continuous spectrum σ(∆) = [ρ2
X ,+∞[ with ρ2

X > 0.

The resolvent of ∆
R∆(u) = (∆− u)−1

is a bdd operator on L2(X ) depending holomorphically on u ∈ C \ σ(∆) , i.e.
C \ σ(∆) 3 u −→ R∆(u) = (∆− u)−1 ∈ B(L2(X )) .

is a holomorphic operator-valued function.

As operator on L2(X ), the resolvent R∆ has no extension across σ(∆).

Letting R∆ act on a smaller dense subspace of L2(X ), e.g. C∞c (X ), a meromorphic
continuation of R∆ across σ(∆) is possible.

A. Pasquale (IECL, Lorraine) Resonances of the Laplacian 2 / 22



Theorem (Strohmaier, Mazzeo-Vasy, 2005)
Let X be an arbitrary Riemannian symmetric space of the noncompact type.
There are Ω $ C open with σ(∆) ⊂ Ω and M Riemann surface above Ω such that

R∆ : Ω \ σ(∆) 3 u −→ R∆(u) ∈ Hom(C∞c (X ),C∞c (X )′)

admits holomorphic extension to M.

 Ω is not large enough to find resonances.

Special cases showing that there might be resonances are classical:

Theorem (Guillopé-Zworski, 1995)
For X = Hn(R) and Ω = C, the resolvent R∆ has:
� holomorphic extension, if n is odd
� meromorphic extension (with infinitely many poles) if n even.

Problem 1: For general X = G/K , does R∆ admit a meromorphic extension to a
Riemann surface above Ω = C?
If so: what are the poles? What are the residues?

The poles of the meromorphically extended R∆ are called the (quantum) resonances
of the Laplacian.
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(Quantum) resonances

In physics:

Quantum mechanical systems which are bound can only assume certain
discrete values of energy (=energy levels) which are constant in time.

Quantum mechanical systems which are unbound might have states with energy
that a certain starting time can assume certain discrete values, but are not
constant in time, usually decreasing exponentially (=metastable states).

Energy at a metastable state is described by a complex number ζ (a resonance):
Re ζ = energy at the starting time
Im ζ = rate of exponential time decreasing of the energy.
The resonances are the poles of the meromorphic extension of the resolvent

C \ σ(H) 3 u −→ RH(u) = (H − u)−1

of the Hamiltonian H, with continuous spectrum σ(H), describing the unbound
system.
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In mathematics:

Classical situation: Resonances for Schrödinger operators H = ∆Rn + V
where:
� ∆Rn = −

∑n
j=1

∂2

∂x2
j

is the positive Euclidean Laplacian

� V is a potential

(V chosen so that H is s.a. and σ(H) ⊂ [0,+∞[ is continuous; e.g. V = 0).

Geometric scattering: Resonances for the Laplacian ∆ of complete
non-compact Riemannian manifolds (with bounded geometry).
Motivations: scattering, dynamical systems, spectral analysis...
Very active field of research.

Why studying resonances on symmetric spaces?

� well understood geometry
� well developed Fourier analysis: HF (=Helgason-Fourier) transform
� radial part of ∆ on a Cartan subspace is a Schrödinger operator
� tools from representation theory
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Some usual renormalizations

X = G/K Riemannian symmetric space of the noncompact type.

Translate the spectrum [ρ2
X ,+∞) to [0,+∞)

i.e. consider ∆− ρ2
X instead of ∆

Change variables u = z2  choice of square root:
√
−1 = i

u ∈ C \ [0,+∞[ corresponds to z ∈ C+ = {w ∈ C : Im w > 0}.
Define

R(z) = R∆−ρ2
X

(z2) = (∆− ρ2
X − z2)−1

So R : C+ → B(L2(X )) is a holomorphic operator-valued function.

Goal:
Meromorphic continuation across R of R : C+ → Hom (C∞c (X ),C∞c (X )′)

 

C∞(X) instead of C∞c (X)′

for X = G/K symmetric
(Paley-Wiener theorem)
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Residue operators
Suppose we have a meromorphic continuation of R : C+ → Hom(C∞c (X ),C∞(X ))
across R, i.e.

• a Riemann surface
M

Ω

π with Ω ⊂ C open, Ω ∩ R 6= ∅

• R̃ : M → Hom(C∞c (X),C∞(X)) meromorphic and extending a lift of R to M:

M Hom(C∞c (X),C∞(X))

Ω ∩ C+

R̃

R

• z0 is a resonance (=pole of R̃).

 ∀f , g ∈ C∞c (X):
〈R̃(·)f , g〉L2(X)

lifts and extends

to M the function 〈R(·)f , g〉L2(X)

The residue operator at z0 is the linear operator

Resz0 R̃ : C∞c (X)→ C∞(X)

“defined” for f ∈ C∞c (X) by

Resz0 R̃(f ) : X 3 y −→ Resz=z0

[
R̃(z)(f )

]
(y) ∈ C

[ “defined”: residues are computed wrt charts in M, so up to nonzero constant multiples]

Well-defined: the subspace Resz0 := R̃
(
C∞c (X)

)
of C∞(X).

The rank of the residue operator at z0 is dim
(
Resz0

)
.
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Problem 2: Find image and rank of the residue operator at z0.

Additional properties appear as X is endowed with a G-invariant Riemannian metric.

The Laplacian ∆ of X is G-invariant
 R(z) and its mero extension R̃(z) are G-invariant
 the residue operator at a resonance z0 is a G-invariant operator C∞c (X )→ C∞(X )

 its image Resz0 ⊂ C∞(X ) is a G-module
(a K -spherical representation of G in our case)

Problem 3: Which (spherical) representations of G do we obtain?
Rank of residue operator ≡ dimension of the corresponding representation
Irreducible? Unitary?
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Overview of results
General X of real rank one:
• R. Miatello and C. Will (2000):
meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).
• J. Hilgert and A.P. (2009):
meromorphic continuation of the resolvent (using HF transform).
� no resonances if X = Hn(R) with n odd.
� (infinitely many) resonances for X 6= Hn(R) with n odd.
� Finite rank residue operators, image: irreducible finite dim K -spherical reps of G.

General X of real rank ≥ 2: (R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005))
� analytic continuation of the resolvent of ∆ from C+ across R{

to an open domain in C, if the real rank of X is odd
to a logarithmic cover of an open domain in C, if the real rank of X is even

The open domain is not large enough to find resonances.
� If any, resonances are along the negative imaginary axis.
� No resonances in the even multiplicity case (= Lie algebra of G has one conjugacy

class of Cartan subalgebras)

Specific X = G/K of real rank 2: (J. Hilgert, A.P., T. Przebinda)
Complete answers to the three problems:
� for almost all rank 2 irreducible X
� for direct products X = X1 × X2, with X1,X2 of rank one.
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The resolvent of ∆ on X = G/K

Explicit formula for the resolvent R(z) of ∆ on C∞c (X ) via HF transform:

For z ∈ C+

R(z) = (∆− ρ2
X − z2)−1 : C∞c (X ) 3 f → R(z)f ∈ C∞(X )

is given by

[R(z)f ](y) �
∫
a∗

1
〈λ, λ〉 − z2 (f × ϕiλ)(y)

dλ
c(iλ)c(−iλ)

(y ∈ X ) ,

where

a∗ = dual of a Cartan subspace a  real rank of X := dim a∗

〈·, ·〉 = inner product on a∗ induced by the Killing form of the Lie algebra of G
 extend 〈·, ·〉 to the complexification a∗C of a∗ by C-bilinearity

ϕλ = spherical function on X of spectral parameter λ ∈ a∗C
 spherical functions = (normalized) K -invariant joint eigenfunctions of the commutative algebra of G-invariant

diff ops on X

f × ϕiλ = convolution on X of f and ϕiλ

 by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in λ ∈ a∗C

c(λ) = Harish-Chandra’s c-function
1

c(iλ)c(−iλ)
= Plancherel density for the HF-fransform
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The Plancherel density [c(iλ)c(−iλ)]−1

a (=Cartan subspace) y g (=Lie algebra of G) by adjoint action ad H with H ∈ a

Σ = roots of (g, a)
Σ+ = choice of positive positive roots in Σ

gα = {X ∈ g : ad H(X ) = α(H)X for all H ∈ a} = root space of α ∈ Σ
mα = dimR gα = multiplicity of the root α
ρ = 1/2

∑
α∈Σ+ mαα ∈ a∗

Notation: For λ ∈ a∗C and α ∈ Σ set λα = 〈λ,α〉
〈α,α〉

Harish-Chandra c-function:

Σ+
∗ = {β ∈ Σ+ : 2β /∈ Σ} (the unmultipliable positive roots)

cβ(λ) =
2−2λβ Γ(2λβ )

Γ
(
λβ+

mβ/2
4 + 1

2

)
Γ
(
λβ+

mβ/2
4 +

mβ
2

) for β ∈ Σ+
∗

c(λ) = c0
∏
β∈Σ+

∗
cβ(λ)

where c0 is a normalizing constant so that c(ρ) = 1.

Many rules: e.g. if both β and β/2 are roots, then mβ/2 is even and mβ is odd.
Many simplifications using classical formulas for Γ: e.g. Γ(ix)Γ(−ix) = iπ

x sinh(πx)
.

Example: If G/K of even multiplicities, then [c(iλ)c(−iλ)]−1 is a polynomial
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ρ̃β = 1
2

(
mβ/2

2 + mβ

)
Lemma
Set:

Π(λ) =
∏
β∈Σ+

∗
λβ ,

P(λ) =
∏
β∈Σ+

∗

(∏(mβ/2)/2−1
k=0

[
iλβ −

(mβ/2
4 − 1

2

)
+ k

]∏2ρ̃β−2
k=0 [iλβ − (ρ̃β − 1) + k ]

)
,

Q(λ) =
∏

β∈Σ+
∗

mβ odd

coth(π(λβ − ρ̃β)) .

(empty products are equal to 1)

Then:
[c(λ)c(−λ)]−1 � Π(λ)P(λ)Q(λ).

Hence: [c(iλ)c(−iλ)]−1 has at most first order singularities along the hyperplanes

Hβ,k,± = {λ ∈ a∗C : λβ = ±i(ρ̃β + k)}

where β ∈ Σ+
∗ has multiplicity mβ odd and k ∈ Z≥0.

Σ+
∗,odd = {α ∈ Σ+

∗ : mα is odd}
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Extension of the resolvent of ∆ on X = G/K
Suppose: real rank of X=dim a∗ =: n ≥ 2.

Let f ∈ C∞c (X ) and y ∈ X be fixed.
Recall

[R(z)f ](y) �
∫
a∗

1
〈λ, λ〉 − z2︸ ︷︷ ︸

singularities along C-spheres radius±z

(f × ϕiλ)(y)
dλ

c(iλ)c(−iλ)︸ ︷︷ ︸
singularities along hyperplanesHβ,k,±

Polar coordinates in a∗ give

R(z) := [R(z)f ](y) =

∫ ∞
0

1
r 2 − z2 F (r)r dr

where

F (r) = Ff ,y (r) = r n−2
∫

Sn−1
(f × ϕirσ)(y)

ω(σ)

c(irσ)c(−irσ)

and
ω(σ) = pullback to Sn−1 of the SO(n)-invariant (n − 1)-form

ω(z) =
n∑

j=1

(−1)j−1zj dz1 · · · d̂zj · · · dzn, z = (z1, . . . , zn) ∈ Cn ≡ a∗C
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Set a = min{ρ̃β |β| : β ∈ Σ+
∗,odd} (and a = +∞ if mβ even for all β ∈ Σ∗+)

Lemma
For every fixed σ ∈ a∗ with |σ| = 1, the function r 7→ [c(irσ)c(−irσ)]−1 is
holomorphic on C \ i

(
]−∞,−a] ∪ [a,+∞[

)
.

The function
C \ i

(
]−∞,−a] ∪ [a,+∞[

)
3 w → F (w) ∈ C

is holomorphic.

Let U = C− ∪ {z ∈ C : Re z > 1, 0 ≤ Im z < 1}, where
C− = {z ∈ C : Im z < 0}.
Then ∃ holo function H = Hf ,y : U → C such that

R(z) = H(z) + iπF (z) for z ∈ U ∩ C+

.

Corollary
The mero extension of R across the negative imaginary axis (where the
resonances could be) is equivalent to that of F .

If any, the resonances are located on i]−∞,−a].
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The set Σ+
∗,odd

Let Σ be an irreducible root system in a∗ such that Σ+
∗,odd 6= ∅.

Σ∗ is a reduced and irreducible root system. So it has at most two root lengths.

Roots of same lenght form a unique Weyl group orbit and have therefore same
root multiplicity mβ .

If there is a unique root length, then mβ is constant and Σ+
∗,odd = Σ+

∗ .
(This happens for Σ = Σ∗ of type A,D or E)

If there are two root lengths (i.e. for Σ∗ of type B,C,F or G), then Σ+
∗ = Φ1 t Φ2,

where roots in Φj have same length, and Σ+
∗,odd ∈ {Σ

+
∗ ,Φ1,Φ2}.

Σ+
∗ = Φ1 t Φ2 is obtained from the following decompositions:

Bn = (A1)n t Dn Cn = (A1)n t Dn F +
4 = D+

4 t D+
4 G+

2 = A+
2 t A+

2

Consequences: If Σ+
∗,odd 6= ∅, then:

� The hyperplane arrangement H = {kerβ : β ∈ Σ+
∗,odd} is simplicial (= every

connected component of a∗ \ ∪H is the intersection of n = dim a∗ open halfspaces,
i.e. is the positive linear span of n lin. indep. vectors).

� For some Σ of types B,C or BC, we have Σ+
∗,odd = (A1)n.
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Example: G/K or rank 3 and root system Σ of type BC, B or C

Σ+ = Σ+
s t Σ+

m t Σ+
l , where:

Σ+
s = {ej ; 1 ≤ j ≤ n}, multiplicity ms,

Σ+
m = {ei ± ej ; 1 ≤ i ≥ j ≤ n}, multiplicity mm,

Σ+
l = {2ej ; 1 ≤ j ≤ n}, multiplicity ml.

G/K Σ mα Σ+
∗,odd

SL(4,R)/ SO(3) A3 1 Σ+

SU∗(8)/ Sp(8) A3 4 ∅
SU(3, q)/ S(U(3)× U(q))

(q ≥ 3)

C3 (q = 3)
BC3 (q > 3)

(2(q − 3), 2, 1) Σ+
l

SO0(3, q)/ SO(3)× SO(q)

(q > 3)
B3 (q − 3, 1, 0)

Σ+
m (q odd)

Σ+
s t Σ+

m (q even)
SO∗(12)/U(6) BC3 (4, 4, 1) Σ+

l

Sp(6,R)/U(3) C3 (0, 1, 1) Σ+
m t Σ+

l

Sp(3, q)/ Sp(3)× Sp(q)

(q ≥ 3)
BC3 (4(q − 3), 4, 3) Σ+

l

e7(−25)/(e6 + R) C3 (0, 8, 1) Σ+
l

When Σ+
∗,odd = Σ+

l , the mero extension of F for G/K can be deduced from that for a
direct product of rank-one symmetric spaces.
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Direct products of rank-one symmetric spaces

X = X1 × · · · × Xn where Xj=rank-one Riemannian symmetric noncompact type

(the index j indicates objects associated with Xj )

a∗ = a∗1 ⊕ · · · ⊕ a∗n , 〈·, ·〉 = 〈·, ·〉1 ⊕ · · · ⊕ 〈·, ·〉n
Σ = Σ1 × · · · × Σn with Σj ∈ {A1,BC1}
∆ =

∑n
j=1(id⊗ · · · ⊗∆j ⊗ · · · id), σ(∆) = [ρ2

X ,+∞[, ρ2
X = ρ2

X1
+ · · ·+ ρ2

Xn

c(λ) = c1(λ1) · · · cn(λn), λ = λ1 · · ·+ λn ∈ a∗C with λj ∈ aj
∗
C

The Plancherel density of Xj is singular iff Xj 6= Hn(R) with n odd.

The Plancherel density of X is the product of the Plancherel densities of the Xj ’s.
It has first order singularities along N mutually orthogonal families of
hyperplanes parallel to the coordinate axes, where
N = ]{j ∈ {1, . . . , n} : Xj 6= Hn(R), n odd}.
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Example: product of two rank-one Riemannian symmetric spaces

J. Hilgert, A.P. and T. Przebinda (2017):

� meromorphic continuation of R to suitable Riemann surfaces over C
� No resonances if one of the two spaces is Hn(R) with n odd,
� infinitely many resonances in the other cases
� residue operators with finite rank
� range of the residue operators realized by finite direct sums of tensor products of
finite dim irr K -spherical reps of G1 and G2

(where X1 = G1/K1 and X2 = G2/K2 are the symm spaces)
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The integral defining F for X = X1 × · · · × Xn

Suppose Xj 6= Hn(R), n odd, exactly for j = 1, . . . ,N with N ≤ n.

For j = 1, . . . ,N define:

pj : Cn 3 z = (z1, . . . , zn)→ zj ∈ C,

Lj = (aj + bjZ≥0) ∪ (−aj − bjZ≥0) with aj > 0, bj > 0

L =
⋃N

j=1 p−1
j (Lj ) =

⋃N
j=1

⋃
lj∈Lj
{z ∈ Cn : zj = lj}

a = min{a1, . . . , aN}.

Sn−1(C) = {z = (z1, . . . , zn) ∈ Cn : z2
1 + · · ·+ z2

n = 1} (the complex sphere)

ω(z) =
∑n

j=1(−1)j−1zj dz1 · · · d̂zj · · · dzn, z = (z1, . . . , zn) ∈ Cn

Let f : Cn → C be meromorphic on Cn and holomorphic on Cn \ iL.

Since f(z)ω(z) is a closed form of top complex dimension on Sn−1(C) \ iL the function

C \ i((−∞,−a] ∪ [a,∞)) 3 w → F (w) =

∫
Sn−1

f(wz)ω(z) ∈ C
is well defined and holomorphic.

Remark: For the study of the resolvent on X , one chooses
f(wz) = wn−2(f × ϕiwz)(y) [c(iwz)c(−iwz)]−1, having identified a∗C 3 λ ≡ z ∈ Cn.

A. Pasquale (IECL, Lorraine) Resonances of the Laplacian 19 / 22



Fix v0 ∈]−∞,−a] ∪ [a,∞[. Then Sn−1(R) ∩ 1
v0

L 6= ∅ is possible and therefore the
integral

∫
Sn−1 f(wz)ω(z), with w = iv0, might diverge.

• Suppose Civ0 ⊆ Sn−1(C) \ 1
v0

L is a cycle homologous to Sn−1 in Sn−1(C).

 Civ0
is a “deformation” of Sn−1 within Sn−1(C) which is disjoint with 1

v0
L

Since L is a locally finite family of hyperplanes, ∃ an open neighborhood W ⊆ C of iv0

such that Civ0 ⊆ Sn−1(C) \ i
W L. So

W 3 w →
∫

Civ0

f(wz)ω(z) ∈ C

is well defined and is holomorphic.

• Fix w0 ∈ W ∩ CRe>0. Suppose we have found finitely many cycles

Ck ⊆ Sn−1(C) \ i
w0

L (k = 1, 2, . . . ,M)

such that [Sn−1] = [Civ0 ] +
∑

k [Ck ] in Hn−1(Sn−1(C) \ i
w0

L).

Then, by Stokes Theorem, for w ∈ CRe>0 near w0∫
Sn−1

f(wz)ω(z) =

∫
Civ0

f(wz)ω(z) +
∑

k

∫
Ck

f(wz)ω(z).

The first integral on the RHS is holo on W . One hopes to choose the Ck ’s so that
residue computations in z yield a mero function of w ∈ W .
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The homology of Sn−1(C) \ {hyperplane arrangement} is not known, unlike the
case of Cn \ {hyperplane arrangement}
(Goresky-MacPherson).
Useful description: Sn−1(C) can be identified with the tangent bundle

TSn−1 = {(u, v) ∈ Rn × Rn : |u| = 1, u · v = 0}

to Sn−1 by means of the isomorphism

τ : Sn−1(C) 3 z = x + iy →
(

x
|x | , y

)
∈ TSn−1

with inverse

τ−1 : TSn−1 3 (u, v)→
√

1 + |v |2u + iv ∈ Sn−1(C).

The general construction of the cycles is not yet achieved Civ0 and Ck , even in
rank 3.
Easiest possible case of rank 3: X = X1 × X2 × X3 with X1 6= Hn(R), n odd, and
X2 = X = 3 = Hn(R), n odd.
One family of parallel singular hyperplanes perpendicular to x1-axis.

For v0 ∈]−∞,−a] ∪ [a,∞[: S2 ∩ 1
v0

L 6= ∅ if and only if
∣∣ l

v0

∣∣ ≤ 1, and∣∣ l
v0

∣∣ < 1 ⇒ intersection is a circle perpendicular to x1 axis (generic case)∣∣ l
v0

∣∣ = 1 ⇒ intersection is a single point ∈ {(±1, 0, 0)}.
Theorem. The resolvent R extends holomorphically to C (no resonances).
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