Resonances of the Laplacian on noncompact Riemannian symmetric spaces of low rank

Angela Pasquale

Institut Élie Cartan de Lorraine
Université de Lorraine – Metz

(joint work with Joachim Hilgert and Tomasz Przebinda)

“Symmetries in Geometry, Analysis and Spectral Theory”
Conference on the occasion of Joachim Hilgert’s 60th Birthday
Paderborn, July 23, 2018
Statement of the problem

\(X = G/K \) is a Riemannian symmetric space of the noncompact type, where:

- \(G \) = connected noncompact real semisimple Lie group with finite center
- \(K \) = maximal compact subgroup of \(G \)

Examples:

- \(H^n(\mathbb{R}) = \text{SO}_0(1, n)/\text{SO}(n) \) real hyperbolic space
- \(\text{SU}(p, q)/\text{S}(\text{U}(p) \times \text{U}(q)) \), \(q \geq p \geq 1 \), Grassmannian of \(p \) subspaces of \(\mathbb{C}^{p+q} \) (complex hyperbolic space if \(p = 1 \))

\(\Delta \) = (positive) Laplacian on \(X \), with continuous spectrum \(\sigma(\Delta) = [\rho_X^2, +\infty[\) with \(\rho_X^2 > 0 \).

The resolvent of \(\Delta \)

\[
R_\Delta(u) = (\Delta - u)^{-1}
\]

is a bdd operator on \(L^2(X) \) depending holomorphically on \(u \in \mathbb{C} \setminus \sigma(\Delta) \), i.e.

\[
\mathbb{C} \setminus \sigma(\Delta) \ni u \longrightarrow R_\Delta(u) = (\Delta - u)^{-1} \in \mathcal{B}(L^2(X))
\]

is a holomorphic operator-valued function.

As operator on \(L^2(X) \), the resolvent \(R_\Delta \) has no extension across \(\sigma(\Delta) \).

Letting \(R_\Delta \) act on a smaller dense subspace of \(L^2(X) \), e.g. \(C_c^\infty(X) \), a meromorphic continuation of \(R_\Delta \) across \(\sigma(\Delta) \) is possible.
Theorem (Strohmaier, Mazzeo-Vasy, 2005)

Let X be an arbitrary Riemannian symmetric space of the noncompact type. There are $\Omega \subsetneq \mathbb{C}$ open with $\sigma(\Delta) \subset \Omega$ and M Riemann surface above Ω such that

$$R_\Delta : \Omega \setminus \sigma(\Delta) \ni u \mapsto R_\Delta(u) \in \text{Hom}(C_\infty_c(X), C_\infty_c(X)')$$

admits holomorphic extension to M.

\sim Ω is not large enough to find resonances.

Special cases showing that there might be resonances are classical:

Theorem (Guillopé-Zworski, 1995)

For $X = H^n(\mathbb{R})$ and $\Omega = \mathbb{C}$, the resolvent R_Δ has:

- holomorphic extension, if n is odd
- meromorphic extension (with infinitely many poles) if n even.

Problem 1: For general $X = G/K$, does R_Δ admit a meromorphic extension to a Riemann surface above $\Omega = \mathbb{C}$?

If so: what are the poles? What are the residues?

The poles of the meromorphically extended R_Δ are called the (quantum) resonances of the Laplacian.
(Quantum) resonances

In physics:

- Quantum mechanical systems which are bound can only assume certain discrete values of energy (=energy levels) which are constant in time.
- Quantum mechanical systems which are unbound might have states with energy that a certain starting time can assume certain discrete values, but are not constant in time, usually decreasing exponentially (=metastable states).
- Energy at a metastable state is described by a complex number ζ (a resonance): $\mathbb{Re} \zeta =$ energy at the starting time $\mathbb{Im} \zeta =$ rate of exponential time decreasing of the energy.
- The resonances are the poles of the meromorphic extension of the resolvent

$$\mathbb{C} \setminus \sigma(H) \ni u \longrightarrow R_H(u) = (H - u)^{-1}$$

of the Hamiltonian H, with continuous spectrum $\sigma(H)$, describing the unbound system.
In mathematics:

- **Classical situation:** Resonances for Schrödinger operators $H = \Delta_{\mathbb{R}^n} + V$
 - $\Delta_{\mathbb{R}^n} = -\sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$ is the positive Euclidean Laplacian
 - V is a potential

 (V chosen so that H is s.a. and $\sigma(H) \subset [0, +\infty[$ is continuous; e.g. $V = 0$).

- **Geometric scattering:** Resonances for the Laplacian Δ of complete non-compact Riemannian manifolds (with bounded geometry).
 Motivations: scattering, dynamical systems, spectral analysis...

Very active field of research.

Why studying resonances on symmetric spaces?

- well understood geometry
- well developed Fourier analysis: HF (=Helgason-Fourier) transform
- radial part of Δ on a Cartan subspace is a Schrödinger operator
- tools from representation theory
Some usual renormalizations

$X = G/K$ Riemannian symmetric space of the noncompact type.

- Translate the spectrum $[\rho^2_X, +\infty)$ to $[0, +\infty)$
i.e. consider $\Delta - \rho^2_X$ instead of Δ

- Change variables $u = z^2 \leadsto$ choice of square root: $\sqrt{-1} = i$
$u \in \mathbb{C} \setminus [0, +\infty[$ corresponds to $z \in \mathbb{C}^+ = \{w \in \mathbb{C} : \text{Im } w > 0\}$.

- Define

$$R(z) = R_{\Delta - \rho^2_X}(z^2) = (\Delta - \rho^2_X - z^2)^{-1}$$

So $R : \mathbb{C}^+ \rightarrow \mathcal{B}(L^2(X))$ is a holomorphic operator-valued function.

Goal:

Meromorphic continuation across \mathbb{R} of $R : \mathbb{C}^+ \rightarrow \text{Hom}(C^\infty_c(X), C^\infty_c(X)')$

\downarrow

$C^\infty(X)$ instead of $C^\infty_c(X)'$
for $X = G/K$ symmetric
(Paley-Wiener theorem)
Residue operators

Suppose we have a meromorphic continuation of $R : \mathbb{C}^+ \to \text{Hom}(\mathcal{C}_c^\infty(X), \mathcal{C}^\infty(X))$ across \mathbb{R}, i.e.

- a Riemann surface M with $\Omega \subset \mathbb{C}$ open, $\Omega \cap \mathbb{R} \neq \emptyset$

- $\tilde{R} : M \to \text{Hom}(\mathcal{C}_c^\infty(X), \mathcal{C}^\infty(X))$ meromorphic and extending a lift of R to M:

\[
\begin{array}{ccc}
M & \xrightarrow{R} & \text{Hom}(\mathcal{C}_c^\infty(X), \mathcal{C}^\infty(X)) \\
\downarrow_{\pi} & & \\
\Omega & \xrightarrow{\tilde{R}} & \text{Hom}(\mathcal{C}_c^\infty(X), \mathcal{C}^\infty(X))
\end{array}
\]

- z_0 is a resonance (=pole of \tilde{R}).

The residue operator at z_0 is the linear operator

\[\text{Res}_{z_0} \tilde{R} : \mathcal{C}_c^\infty(X) \to \mathcal{C}^\infty(X) \]

“defined” for $f \in \mathcal{C}_c^\infty(X)$ by

\[\text{Res}_{z_0} \tilde{R}(f) : X \ni y \mapsto \text{Res}_{z=z_0}[\tilde{R}(z)(f)](y) \in \mathbb{C} \]

[“defined”: residues are computed wrt charts in M, so up to nonzero constant multiples]

Well-defined: the subspace $\text{Res}_{z_0} := \tilde{R}(\mathcal{C}_c^\infty(X))$ of $\mathcal{C}^\infty(X)$.

The rank of the residue operator at z_0 is $\dim(\text{Res}_{z_0})$.
Problem 2: Find image and rank of the residue operator at \(z_0 \).

Additional properties appear as \(X \) is endowed with a \(G \)-invariant Riemannian metric.

The Laplacian \(\Delta \) of \(X \) is \(G \)-invariant
\(\leadsto \) \(R(z) \) and its mero extension \(\tilde{R}(z) \) are \(G \)-invariant
\(\leadsto \) the residue operator at a resonance \(z_0 \) is a \(G \)-invariant operator \(C^\infty_c(X) \to C^\infty(X) \)
\(\leadsto \) its image \(\text{Res}_{z_0} \subset C^\infty(X) \) is a \(G \)-module
(a \(K \)-spherical representation of \(G \) in our case)

Problem 3: Which (spherical) representations of \(G \) do we obtain?
Rank of residue operator \(\equiv \) dimension of the corresponding representation
Irreducible? Unitary?
Overview of results

General \(X \) of real rank one:

 meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).
 meromorphic continuation of the resolvent (using HF transform).

\(\diamond \) no resonances if \(X = H^n(\mathbb{R}) \) with \(n \) odd.
\(\diamond \) (infinitely many) resonances for \(X \neq H^n(\mathbb{R}) \) with \(n \) odd.
\(\diamond \) **Finite rank** residue operators, image: irreducible finite dim \(K \)-spherical reps of \(G \).

General \(X \) of real rank \(\geq 2 \):

(R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005))

\(\diamond \) analytic continuation of the resolvent of \(\Delta \) from \(\mathbb{C}^+ \) across \(\mathbb{R} \)

\[\begin{cases}
\text{to an open domain in } \mathbb{C}, & \text{if the real rank of } X \text{ is odd} \\
\text{to a logarithmic cover of an open domain in } \mathbb{C}, & \text{if the real rank of } X \text{ is even}
\end{cases} \]

The open domain is **not large enough** to find resonances.

\(\diamond \) **If any**, resonances are along the negative imaginary axis.

\(\diamond \) **No resonances** in the even multiplicity case (\(= \) Lie algebra of \(G \) has one conjugacy class of Cartan subalgebras)

Specific \(X = G/K \) of real rank 2:

(J. Hilgert, A.P., T. Przebinda)

Complete answers to the three problems:

- for almost all rank 2 irreducible \(X \)
- for direct products \(X = X_1 \times X_2 \), with \(X_1, X_2 \) of rank one.
The resolvent of Δ on $X = G/K$

Explicit formula for the resolvent $R(z)$ of Δ on $C_c^\infty(X)$ via HF transform:

For $z \in \mathbb{C}^+$

$$R(z) = (\Delta - \rho_X^2 - z^2)^{-1} : C_c^\infty(X) \ni f \mapsto R(z)f \in C^\infty(X)$$

is given by

$$[R(z)f](y) \asymp \int_{\alpha^*} \frac{1}{\langle \lambda, \lambda \rangle - z^2} \left(f \times \varphi_{i\lambda}\right)(y) \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \quad (y \in X),$$

where

- α^* = dual of a Cartan subspace α \(\mapsto\) real rank of $X := \dim \alpha^*$
- $\langle \cdot, \cdot \rangle$ = inner product on α^* induced by the Killing form of the Lie algebra of G
 \(\mapsto\) extend $\langle \cdot, \cdot \rangle$ to the complexification $\alpha^*_\mathbb{C}$ of α^* by \mathbb{C}-bilinearity

- φ_λ = spherical function on X of spectral parameter $\lambda \in \alpha^*_\mathbb{C}$
 \(\mapsto\) spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative algebra of G-invariant diff ops on X

- $f \times \varphi_{i\lambda}$ = convolution on X of f and $\varphi_{i\lambda}$
 \(\mapsto\) by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in $\lambda \in \alpha^*_\mathbb{C}$

- $c(\lambda) = \text{Harish-Chandra’s } c\text{-function}$

$$\frac{1}{c(i\lambda)c(-i\lambda)} = \text{Plancherel density for the HF-transform}$$
The Plancherel density \([c(i\lambda)c(-i\lambda)]^{-1}\)

\(\alpha (=\text{Cartan subspace}) \trianglelefteq \mathfrak{g} (=\text{Lie algebra of } G)\) by adjoint action \(\text{ad } H\) with \(H \in \alpha\)

\(\Sigma = \text{roots of } (\mathfrak{g}, \alpha)\)

\(\Sigma^+ = \text{choice of positive positive roots in } \Sigma\)

\(\mathfrak{g}_\alpha = \{X \in \mathfrak{g} : \text{ad } H(X) = \alpha(H)X \text{ for all } H \in \alpha\}\) = root space of \(\alpha \in \Sigma\)

\(m_\alpha = \dim_{\mathbb{R}} \mathfrak{g}_\alpha = \text{multiplicity of the root } \alpha\)

\(\rho = 1/2 \sum_{\alpha \in \Sigma^+} m_\alpha \alpha \in \mathfrak{a}^*\)

Notation: For \(\lambda \in \mathfrak{a}_C^*\) and \(\alpha \in \Sigma\) set \(\lambda_\alpha = \frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}\)

Harish-Chandra c-function:

\(\Sigma^+_\ast = \{\beta \in \Sigma^+ : 2\beta \notin \Sigma\}\) (the unmultipliable positive roots)

\[c_\beta(\lambda) = \frac{2^{-2\lambda_\beta} \Gamma(2\lambda_\beta)}{\Gamma(\lambda_\beta + \frac{m_\beta}{4} + \frac{1}{2}) \Gamma(\lambda_\beta + \frac{m_\beta}{4} + \frac{m_\beta}{2})}\]

for \(\beta \in \Sigma^+_\ast\)

\[c(\lambda) = c_0 \prod_{\beta \in \Sigma^+_\ast} c_\beta(\lambda)\]

where \(c_0\) is a normalizing constant so that \(c(\rho) = 1\).

Many rules: e.g. if both \(\beta\) and \(\beta/2\) are roots, then \(m_{\beta/2}\) is even and \(m_\beta\) is odd.

**Many simplifications using classical formulas for }\Gamma\text{ : e.g. } \Gamma(ix)\Gamma(-ix) = \frac{i\pi}{x \sinh(\pi x)}\).

Example: If \(G/K\) of even multiplicities, then \([c(i\lambda)c(-i\lambda)]^{-1}\) is a polynomial.
\[\tilde{\rho}_\beta = \frac{1}{2} \left(\frac{m_{\beta}/2}{2} + m_\beta \right) \]

Lemma

Set:
\[
\Pi(\lambda) = \prod_{\beta \in \Sigma^+_*} \lambda_\beta, \\
P(\lambda) = \prod_{\beta \in \Sigma^+_*} \left(\prod_{k=0}^{(m_{\beta}/2)/2-1} \left[i\lambda_\beta - \left(\frac{m_{\beta}/2}{4} - \frac{1}{2} \right) + k \right] \prod_{k=0}^{2\tilde{\rho}_\beta-2} \left[i\lambda_\beta - (\tilde{\rho}_\beta - 1) + k \right] \right), \\
Q(\lambda) = \prod_{\beta \in \Sigma^+_* \text{ odd}} \coth(\pi(\lambda_\beta - \tilde{\rho}_\beta)) .
\]

(Empty products are equal to 1)

Then:
\[
[c(\lambda)c(-\lambda)]^{-1} \asymp \Pi(\lambda)P(\lambda)Q(\lambda).
\]

Hence: \([c(i\lambda)c(-i\lambda)]^{-1}\) has at most first order singularities along the hyperplanes

\[\mathcal{H}_{\beta,k,\pm} = \{ \lambda \in a^*_{\mathbb{C}} : \lambda_\beta = \pm i(\tilde{\rho}_\beta + k) \} \]

where \(\beta \in \Sigma^+_*\) has multiplicity \(m_\beta\) odd and \(k \in \mathbb{Z}_{\geq 0}\).

\[\Sigma^+_{*,\text{odd}} = \{ \alpha \in \Sigma^+_* : m_\alpha \text{ is odd} \} \]
Extension of the resolvent of Δ on $X = G/K$

Suppose: real rank of $X = \dim a^* =: n \geq 2$.

Let $f \in C_c^\infty(X)$ and $y \in X$ be fixed.

Recall
\[
[R(z)f](y) \asymp \int_{a^*} \frac{1}{\langle \lambda, \lambda \rangle - z^2} (f \times \varphi_{i\lambda})(y) \frac{d\lambda}{c(i\lambda)c(-i\lambda)}
\]

singularities along \mathbb{C}-spheres radius $\pm z$ singularities along hyperplanes $\mathcal{H}_{\beta,k,\pm}$

Polar coordinates in a^* give
\[
R(z) := [R(z)f](y) = \int_0^\infty \frac{1}{r^2 - z^2} F(r)r \, dr
\]

where
\[
F(r) = F_{f,y}(r) = r^{n-2} \int_{S^{n-1}} (f \times \varphi_{ir\sigma})(y) \frac{\omega(\sigma)}{c(ir\sigma)c(-ir\sigma)}
\]

and
\[
\omega(\sigma) = \text{pullback to } S^{n-1} \text{ of the } SO(n)\text{-invariant } (n-1)\text{-form}
\]

\[
\omega(z) = \sum_{j=1}^n (-1)^{j-1} z_j \, dz_1 \cdots \hat{dz}_j \cdots dz_n, \quad z = (z_1, \ldots, z_n) \in \mathbb{C}^n \equiv a^*_\mathbb{C}
\]
Set \(a = \min\{\tilde{\nu}_\beta | \beta| : \beta \in \Sigma_{*, \text{odd}}^+ \} \) (and \(a = +\infty \) if \(m_\beta \) even for all \(\beta \in \Sigma^*_+ \))

Lemma

- For every fixed \(\sigma \in a^* \) with \(|\sigma| = 1 \), the function \(r \mapsto [c(ir\sigma)c(-ir\sigma)]^{-1} \) is holomorphic on \(\mathbb{C} \setminus i(-\infty, -a] \cup [a, +\infty) \).

The function

\[
\mathbb{C} \setminus i(-\infty, -a] \cup [a, +\infty) \ni w \to F(w) \in \mathbb{C}
\]

is holomorphic.

- Let \(U = \mathbb{C}^- \cup \{z \in \mathbb{C} : \Re z > 1, 0 \leq \Im z < 1\} \), where \(\mathbb{C}^- = \{z \in \mathbb{C} : \Im z < 0\} \).

Then \(\exists \) holo function \(H = H_{f,y} : U \to \mathbb{C} \) such that

\[
R(z) = H(z) + i\pi F(z) \quad \text{for} \ z \in U \cap \mathbb{C}^+
\]

Corollary

- The mero extension of \(R \) across the negative imaginary axis (where the resonances could be) is equivalent to that of \(F \).

- If any, the resonances are located on \(i(-\infty, -a] \).
The set $\Sigma_{*,\text{odd}}^+$

Let Σ be an irreducible root system in α^* such that $\Sigma_{*,\text{odd}}^+ \neq \emptyset$.

- Σ_* is a reduced and irreducible root system. So it has at most two root lengths.
- Roots of same length form a unique Weyl group orbit and have therefore same root multiplicity m_β.
- If there is a unique root length, then m_β is constant and $\Sigma_{*,\text{odd}}^+ = \Sigma^+_*$.
 (This happens for $\Sigma = \Sigma_*$ of type A,D or E)
- If there are two root lengths (i.e. for Σ_* of type B,C,F or G), then $\Sigma_{*,\text{odd}}^+ = \Phi_1 \sqcup \Phi_2$, where roots in Φ_j have same length, and $\Sigma_{*,\text{odd}}^+ \in \{\Sigma^+_*, \Phi_1, \Phi_2\}$.
 $\Sigma^+_* = \Phi_1 \sqcup \Phi_2$ is obtained from the following decompositions:

$$B_n = (A_1)^n \sqcup D_n \quad C_n = (A_1)^n \sqcup D_n \quad F_4^+ = D_4^+ \sqcup D_4^+ \quad G_2^+ = A_2^+ \sqcup A_2^+$$

Consequences: If $\Sigma_{*,\text{odd}}^+ \neq \emptyset$, then:

- The hyperplane arrangement $\mathcal{H} = \{\ker \beta : \beta \in \Sigma_{*,\text{odd}}^+\}$ is simplicial (= every connected component of $\alpha^* \setminus \cup \mathcal{H}$ is the intersection of $n = \dim \alpha^*$ open halfspaces, i.e. is the positive linear span of n lin. indep. vectors).
- For some Σ of types B, C or BC, we have $\Sigma_{*,\text{odd}}^+ = (A_1)^n$.

A. Pasquale (IECL, Lorraine) Resonances of the Laplacian 15 / 22
Example: G/K or rank 3 and root system Σ of type BC, B or C

$\Sigma^+ = \Sigma^+_s \sqcup \Sigma^+_m \sqcup \Sigma^+_l$, where:

$\Sigma^+_s = \{e_j; 1 \leq j \leq n\}$, multiplicity m_s,

$\Sigma^+_m = \{e_i \pm e_j; 1 \leq i \geq j \leq n\}$, multiplicity m_m,

$\Sigma^+_l = \{2e_j; 1 \leq j \leq n\}$, multiplicity m_l.

<table>
<thead>
<tr>
<th>G/K</th>
<th>Σ</th>
<th>m_α</th>
<th>$\Sigma^+_{*,\text{odd}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL(4, \mathbb{R})/SO(3)</td>
<td>A_3</td>
<td>1</td>
<td>Σ^+</td>
</tr>
<tr>
<td>SU*(8)/Sp(8)</td>
<td>A_3</td>
<td>4</td>
<td>\emptyset</td>
</tr>
<tr>
<td>SU(3, q)/S(U(3) \times U(q)) ($q \geq 3$)</td>
<td>C_3 ($q = 3$) BC_3 ($q > 3$)</td>
<td>$(2(q - 3), 2, 1)$</td>
<td>Σ^+_l</td>
</tr>
<tr>
<td>$\Sigma^+_m (q \text{ odd})$ $\Sigma^+_s \sqcup \Sigma^+_m (q \text{ even})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_0$(3, q)/SO(3) \times SO(q) ($q > 3$)</td>
<td>B_3</td>
<td>$(q - 3, 1, 0)$</td>
<td>Σ^+_l</td>
</tr>
<tr>
<td>SO*(12)/U(6)</td>
<td>BC_3</td>
<td>$(4, 4, 1)$</td>
<td>Σ^+_l</td>
</tr>
<tr>
<td>Sp(6, \mathbb{R})/U(3)</td>
<td>C_3</td>
<td>$(0, 1, 1)$</td>
<td>$\Sigma^+_m \sqcup \Sigma^+_l$</td>
</tr>
<tr>
<td>Sp(3, q)/Sp(3) \times Sp(q) ($q \geq 3$)</td>
<td>BC_3</td>
<td>$(4(q - 3), 4, 3)$</td>
<td>Σ^+_l</td>
</tr>
<tr>
<td>$\Sigma^+_m \sqcup \Sigma^+_l$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ^+_l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When $\Sigma^+_{*,\text{odd}} = \Sigma^+_l$, the mero extension of F for G/K can be deduced from that for a direct product of rank-one symmetric spaces.
Direct products of rank-one symmetric spaces

\(X = X_1 \times \cdots \times X_n \) where \(X_j \) = rank-one Riemannian symmetric noncompact type

(the index \(j \) indicates objects associated with \(X_j \))

\(a^* = a_1^* \oplus \cdots \oplus a_n^*, \quad \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_1 \oplus \cdots \oplus \langle \cdot, \cdot \rangle_n \)

\(\Sigma = \Sigma_1 \times \cdots \times \Sigma_n \) with \(\Sigma_j \in \{ A_1, BC_1 \} \)

\(\Delta = \sum_{j=1}^{n} (\text{id} \otimes \cdots \otimes \Delta_j \otimes \cdots \text{id}), \quad \sigma(\Delta) = [\rho_X^2, +\infty[, \quad \rho_X^2 = \rho_{X_1}^2 + \cdots + \rho_{X_n}^2 \)

\(c(\lambda) = c_1(\lambda_1) \cdots c_n(\lambda_n), \quad \lambda = \lambda_1 \cdots + \lambda_n \in a^*_C \) with \(\lambda_j \in a^*_C \)

- The Plancherel density of \(X_j \) is singular iff \(X_j \neq H^n(\mathbb{R}) \) with \(n \) odd.
- The Plancherel density of \(X \) is the product of the Plancherel densities of the \(X_j \)'s.

It has first order singularities along \(N \) mutually orthogonal families of hyperplanes parallel to the coordinate axes, where

\(N = \# \{ j \in \{ 1, \ldots, n \} : X_j \neq H^n(\mathbb{R}), \ n \text{ odd} \} \).
Example: product of two rank-one Riemannian symmetric spaces

J. Hilgert, A.P. and T. Przebinda (2017):

◇ meromorphic continuation of R to suitable Riemann surfaces over \mathbb{C}
◇ No resonances if one of the two spaces is $H^n(\mathbb{R})$ with n odd,
◇ infinitely many resonances in the other cases
◇ residue operators with finite rank
◇ range of the residue operators realized by finite direct sums of tensor products of finite dim irr K-spherical reps of G_1 and G_2

(where $X_1 = G_1/K_1$ and $X_2 = G_2/K_2$ are the symm spaces)
The integral defining F for $X = X_1 \times \cdots \times X_n$

Suppose $X_j \neq H^n(\mathbb{R})$, n odd, exactly for $j = 1, \ldots, N$ with $N \leq n$.

For $j = 1, \ldots, N$ define:

$p_j : \mathbb{C}^n \ni z = (z_1, \ldots, z_n) \rightarrow z_j \in \mathbb{C},$

$L_j = (a_j + b_j \mathbb{Z}_{\geq 0}) \cup (-a_j - b_j \mathbb{Z}_{\geq 0})$ with $a_j > 0$, $b_j > 0$

$L = \bigcup_{j=1}^N \ p_j^{-1}(L_j) = \bigcup_{j=1}^N \bigcup_{l_j \in L_j} \{ z \in \mathbb{C}^n : z_j = l_j \}$

$a = \min\{a_1, \ldots, a_N\}.$

$S^{n-1}(\mathbb{C}) = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n : z_1^2 + \cdots + z_n^2 = 1 \} \quad \text{(the complex sphere)}$

$\omega(z) = \sum_{j=1}^n (-1)^{j-1} z_j \, dz_1 \cdots \, \hat{dz}_j \cdots \, dz_n,$ \quad $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be meromorphic on \mathbb{C}^n and holomorphic on $\mathbb{C}^n \setminus iL$.

Since $f(z)\omega(z)$ is a closed form of top complex dimension on $S^{n-1}(\mathbb{C}) \setminus iL$ the function

$$C \setminus i((-\infty, -a] \cup [a, \infty)) \ni w \rightarrow F(w) = \int_{S^{n-1}} f(wz)\omega(z) \in \mathbb{C}$$

is well defined and holomorphic.

Remark: For the study of the resolvent on X, one chooses

$f(wz) = w^{n-2}(f \times \varphi_{iwz})(y) \left[c(iwz)c(-iwz) \right]^{-1}$, having identified $a^*_C \ni \lambda \equiv z \in \mathbb{C}^n.$
Fix $v_0 \in]-\infty, -a] \cup [a, \infty[$. Then $S^{n-1}(\mathbb{R}) \cap \frac{1}{v_0} L \neq \emptyset$ is possible and therefore the integral $\int_{S^{n-1}} f(wz)\omega(z)$, with $w = iv_0$, might diverge.

- Suppose $C_{iv_0} \subseteq S^{n-1}(\mathbb{C}) \setminus \frac{1}{v_0} L$ is a cycle homologous to S^{n-1} in $S^{n-1}(\mathbb{C})$.

 $\rightsquigarrow C_{iv_0}$ is a “deformation” of S^{n-1} within $S^{n-1}(\mathbb{C})$ which is disjoint with $\frac{1}{v_0} L$

Since L is a locally finite family of hyperplanes, \exists an open neighborhood $W \subseteq \mathbb{C}$ of iv_0 such that $C_{iv_0} \subseteq S^{n-1}(\mathbb{C}) \setminus \frac{i}{W} L$. So

$$W \ni w \rightarrow \int_{C_{iv_0}} f(wz)\omega(z) \in \mathbb{C}$$

is well defined and is holomorphic.

- Fix $w_0 \in W \cap \mathbb{C}_{Re>0}$. Suppose we have found finitely many cycles

$$C_k \subseteq S^{n-1}(\mathbb{C}) \setminus \frac{i}{w_0} L \quad (k = 1, 2, \ldots, M)$$

such that $[S^{n-1}] = [C_{iv_0}] + \sum_k [C_k]$ in $H_{n-1}(S^{n-1}(\mathbb{C}) \setminus \frac{i}{w_0} L)$.

Then, by Stokes Theorem, for $w \in \mathbb{C}_{Re>0}$ near w_0

$$\int_{S^{n-1}} f(wz)\omega(z) = \int_{C_{iv_0}} f(wz)\omega(z) + \sum_k \int_{C_k} f(wz)\omega(z).$$

The first integral on the RHS is holo on W. One hopes to choose the C_k’s so that residue computations in z yield a mero function of $w \in W$.

A. Pasquale (IECL, Lorraine) Resonances of the Laplacian
- The homology of $S^{n-1}(\mathbb{C}) \setminus \{\text{hyperplane arrangement}\}$ is not known, unlike the case of $\mathbb{C}^n \setminus \{\text{hyperplane arrangement}\}$ (Goresky-MacPherson).

Useful description: $S^{n-1}(\mathbb{C})$ can be identified with the tangent bundle

$$TS^{n-1} = \{(u, v) \in \mathbb{R}^n \times \mathbb{R}^n : |u| = 1, u \cdot v = 0\}$$

to S^{n-1} by means of the isomorphism

$$\tau : S^{n-1}(\mathbb{C}) \ni z = x + iy \to \left(\frac{x}{|x|}, y\right) \in TS^{n-1}$$

with inverse

$$\tau^{-1} : TS^{n-1} \ni (u, v) \to \sqrt{1 + |v|^2}u + iv \in S^{n-1}(\mathbb{C}).$$

- The general construction of the cycles is not yet achieved C_{iv_0} and C_k, even in rank 3.

Easiest possible case of rank 3: $X = X_1 \times X_2 \times X_3$ with $X_1 \neq H^n(\mathbb{R})$, n odd, and $X_2 = X = 3 = H^n(\mathbb{R})$, n odd.

One family of parallel singular hyperplanes perpendicular to x_1-axis.

For $v_0 \in]-\infty, -a] \cup [a, \infty[$: $S^2 \cap \frac{1}{v_0}L \neq \emptyset$ if and only if $\left|\frac{l}{v_0}\right| \leq 1$, and

$$\left|\frac{l}{v_0}\right| < 1 \Rightarrow \text{intersection is a circle perpendicular to } x_1 \text{ axis (generic case)}$$

$$\left|\frac{l}{v_0}\right| = 1 \Rightarrow \text{intersection is a single point } \in \{\pm 1, 0, 0\}.$$

Theorem. The resolvent R extends holomorphically to \mathbb{C} (no resonances).
Happy Birthday, Joachim!
Happy Birthday, Joachim!