Analysis für Informatiker

– Aufgaben für die Tutorien – Blatt 8

Die Zwischenklausur wird Donnerstag, den 19.12.2013, von 12:45 - 13:45 Uhr, im Audimax stattfinden.

Zugelassenes Hilfsmittel ist ein einseitig beschriebenes DIN A4 Blatt.

Aufgabe T 1. Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Welche der folgenden Aussagen sind äquivalent zur Stetigkeit von f im Punkt $x_0 \in D$?

- (a) $\forall \delta > 0 \ \exists \varepsilon > 0 : \ |f(x) f(x_0)| < \varepsilon \text{ für alle } x \in D \text{ mit } |x x_0| < \delta$
- (b) $\exists (x_n)_{n \in \mathbb{N}} \subseteq D \text{ mit } x_n \to x_0 \text{ und } f(x_n) \to f(x_0)$
- (c) $\forall \varepsilon > 0 \ \exists \delta > 0$: für alle $x \in D$ mit $|x x_0| < \delta$ folgt $|f(x) f(x_0)| < \varepsilon$
- (d) $\forall \varepsilon > 0 \ \forall \delta > 0 : \exists x \in D \text{ mit } |x x_0| < \delta \text{ und } |f(x) f(x_0)| < \varepsilon$

Aufgabe T 2 (Lipschitz-Stetigkeit). Eine Funktion $f: D \to \mathbb{R}$ heißt Lipschitz-stetig auf D, wenn

$$\exists L > 0: |f(x) - f(y)| \le L|x - y| \forall x, y \in D.$$

- (a) Beweisen Sie, dass jede Lipschitz-stetige Funktion stetig auf D ist.
- (b) Auf welchen die folgenden Definitionsbereichen ist $f(x) := x^2$ Lipschitz-stetig?

(i)
$$D = \mathbb{R}$$

(ii)
$$D = [-1, 1]$$

Aufgabe T 3. In welchen $x \in \mathbb{R}$ sind die folgenden Funktionen stetig? (Begründung!)

(a)
$$f(x) := \frac{e^{3x} + \sin(x^2)}{|x| - 1}$$

(b) Die **Dirichletfunktion**
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := \begin{cases} 1 & \text{falls } x \in \mathbb{Q}, \\ 0 & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Aufgabe T 4.

(a) Zeigen Sie, dass die Sinus-Funktion die folgende, für jedes $x \in \mathbb{R}$ absolut konvergente Reihenentwicklung besitzt:

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

(b) Zeigen Sie, dass für alle $x \in \mathbb{R}$ gilt:

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

Universität Paderborn Institut für Mathematik M. Rösler / A. Schmied

Analysis für Informatiker

- Hausübungen - Blatt 8

Aufgabe H 1 (Cosinus hyperbolicus und Sinus hyperbolicus). Wir setzen für $z \in \mathbb{C}$

$$\cosh z := \frac{e^z + e^{-z}}{2}, \qquad \qquad \sinh z := \frac{e^z - e^{-z}}{2}.$$

Zeigen Sie:

(a) cosh und sinh besitzen für jedes $z \in \mathbb{C}$ die folgenden absolut konvergenten Reihenentwicklungen:

$$\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$
 und $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

(b) folgende Additionstheoreme für alle $z, w \in \mathbb{C}$

$$\sinh(z+w) = \sinh z \cdot \cosh w + \cosh z \cdot \sinh w,$$

 $\cosh(z+w) = \cosh z \cdot \cosh w + \sinh z \cdot \sinh w$

und die Gleichung $\cosh^2 z - \sinh^2 z = 1$.

(c) Für alle $x \in \mathbb{R}$ gilt:

$$\sin x = -i \cdot \sinh(ix)$$
 und $\cos x = \cosh(ix)$

6 Punkte

Aufgabe H 2. Zeigen Sie die Eischließungsformel für den Sinus:

$$0 \le x - \frac{x^3}{6} \le \sin x \le x \qquad \text{für } x \in [0, 2]$$

3 Punkte

Aufgabe H 3. Eine Funktion $f: D \to \mathbb{R}$ heißt beschränkt, wenn es ein M > 0 gibt mit |f(x)| < M für alle $x \in D$. Es sei nun $g: \mathbb{R} \to \mathbb{R}$ beschränkt. Zeigen Sie, dass die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x \cdot g(x)$$

im Punkt $x_0 = 0$ stetig ist.

2 Punkte

Aufgabe H 4.

- (a) Zeigen Sie, dass es zu jedem $x \in \mathbb{R}$ eine Folge rationaler Zahlen $(q_n)_{n \in \mathbb{N}}$ gibt mit $\lim_{n \to \infty} q_n = x$. Hinweis: Blatt 7, Aufgabe T 3.
- (b) Es seien $f, g : \mathbb{R} \to \mathbb{R}$ stetige Funktionen. Es gelte f(q) = g(q) für alle $q \in \mathbb{Q}$. Zeigen Sie, dass f(x) = g(x) für alle $x \in \mathbb{R}$ gilt.

3 Punkte

Abgabe der Übungen: Bis Dienstag, den 17. Dezember 2013, 11:00 Uhr im jeweiligen orangen Briefkasten auf D1. Bitte schreiben Sie auf Ihr Deckblatt deutlich Namen, Matrikelnummer und Übungsgruppennummer.