
DUNKL OPERATORS: THEORY AND APPLICATIONS

MARGIT RÖSLER

Abstract. These lecture notes are intended as an introduction to the theory of
rational Dunkl operators and the associated special functions, with an emphasis on
positivity and asymptotics. We start with an outline of the general concepts: Dunkl
operators, the intertwining operator, the Dunkl kernel and the Dunkl transform.
We point out the connection with integrable particle systems of Calogero-Moser-
Sutherland type, and discuss some systems of orthogonal polynomials associated with
them. A major part is devoted to positivity results for the intertwining operator and
the Dunkl kernel, the Dunkl-type heat semigroup, and related probabilistic aspects.
The notes conclude with recent results on the asymptotics of the Dunkl kernel.
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1. Introduction

While the theory of special functions in one variable has a long and rich history,
the growing interest in special functions of several variables is comparatively recent.
During the last years, there has in particular been a rapid development in the area
of special functions with reflection symmetries and the harmonic analysis related with
root systems. The motivation for this subject comes to some extent from the theory
of Riemannian symmetric spaces, whose spherical functions can be written as multi-
variable special functions depending on certain discrete sets of parameters. A key
tool in the study of special functions with reflection symmetries are Dunkl operators.
Generally speaking, these are commuting differential-difference operators, associated
to a finite reflection group on a Euclidean space. The first class of such operators,
now often called “rational” Dunkl operators, were introduced by C.F. Dunkl in the
late nineteen-eighties. In a series of papers ([D1-5]), he built up the framework for
a theory of special functions and integral transforms in several variables related with
reflection groups. Since then, various other classes of Dunkl operators have become
important, in the first place the trigonometric Dunkl operators of Heckman, Opdam
and the Cherednik operators. These will not be discussed in our notes; for an overview,
we refer to [He2]. An important motivation to study Dunkl operators originates in
their relevance for the analysis of quantum many body systems of Calogero-Moser-
Sutherland type. These describe algebraically integrable systems in one dimension and
have gained considerable interest in mathematical physics, especially in conformal field
theory. A good bibliography is contained in [DV].

The aim of these lecture notes is an introduction to rational Dunkl theory, with an
emphasis on the author’s results in this area. Rational Dunkl operators bear a rich
analytic structure which is not only due to their commutativity, but also to the existence
of an intertwining operator between Dunkl operators and usual partial derivatives.
We shall first give an overview of the general concepts, including an account on the
relevance of Dunkl operators in the study of Calogero-Moser-Sutherland models. We
also discuss some of the special functions related with them. A major topic will be
positivity results; these concern the intertwining operator as well as the kernel of the
Dunkl transform, and lead to a variety of positive semigroups in the Dunkl setting
with possible probabilistic interpretations. We make this explicit at hand of the most
important example: the Dunkl-type heat semigroup, which is generated by the analog
of the Laplacian in the Dunkl setting. The last section presents recent results on the
asymptotics of the Dunkl kernel and the short-time behavior of heat kernels associated
with root systems.

2. Dunkl operators and the Dunkl transform

This section gives an introduction to the theory of rational Dunkl operators, which
we call Dunkl operators for short, and to the Dunkl transform. References are [D1-5],
[DJO], [dJ1] and [O1]; for a background on reflection groups and root systems the
reader is referred to [Hu] and [GB]. We do not intend to give a complete exposition,
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but rather focus on aspects which will be important for the topics of these lecture
notes.

2.1. Root systems and reflection groups. The basic ingredient in the theory of
Dunkl operators are root systems and finite reflection groups, acting on some Euclidean
space (a, 〈 ., . 〉) of finite dimension N. It will be no restriction to assume that that a =

RN with the standard Euclidean inner product 〈x, y〉 =
∑N

j=1 xjyj . For α ∈ RN \{0} ,
we denote by σα the orthogonal reflection in the hyperplane 〈α〉⊥ perpendicular to α ,
i.e.

σα(x) = x− 2
〈α, x〉
|α|2

α ,

where |x| :=
√
〈x, x〉 . Each reflection σα is orthogonal with respect to the standard

inner product.

Definition 2.1. A finite subset R ⊂ RN \ {0} is called a root system, if

σα(R) = R for all α ∈ R.
The dimension of spanRR is called the rank of R . There are two possible additional
requirements: R is called

• reduced, if α ∈ R implies 2α /∈ R .
• crystallographic if R has full rank N and

2〈α, β〉
〈β, β〉

∈ Z for all α, β ∈ R.

The group W = W (R) ⊆ O(N,R) which is generated by the reflections {σα, α ∈ R}
is called the reflection group (or Coxeter group) associated with R . The dimension of
spanRR is called the rank of R .

If R is crystallographic, then spanZR forms a lattice in RN (called the root-lattice)
which is stabilized by the action of the associated reflection group.

In rational Dunkl theory, one usually works with reduced root systems which are
not necessarily crystallographic. On the other hand, the root systems occuring in
Lie theory and in geometric contexts associated with Riemannian symmetric spaces
are always crystallographic, and this requirement is also fundamental in the theory of
trigonometric Dunkl operators.

Lemma 2.2. (1) If α is in R , then also −α is in R .
(2) For any root system R in RN , the reflection group W = W (R) is finite.
(3) The set of reflections contained in W is exactly {σα , α ∈ R}.
(4) wσαw

−1 = σwα for all w ∈ W and α ∈ R .

Proof. (1) This follows since σα(α) = −α . (2) As R is fixed under the action of W ,
the assignment ϕ(w)(α) := wα defines a homomorphism ϕ : W → S(R) of W into
the symmetric group S(R) of R . This homomorphism is easily checked to be injective.
Thus W is naturally identified with a subgroup of S(R), which is finite. Part (3) is
slightly more involved. An elegant proof can be found in Section 4.2 of [DX]. Part (4)
is straight forward. �
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Properities (3) and (4) imply in particular that there is a bijective correspondence
between the conjugacy classes of reflections in W and the orbits in R under the
natural action of W . We shall need some more concepts: Each root system can be
written as a disjoint union R = R+ ∪ (−R+), where R+ and −R+ are separated
by a hyperplane 〈{x ∈ RN : 〈β, x〉 = 0} with β /∈ R . Such a set R+ is called a
positive subsystem. The set of reflecting hyperplanes {〈α〉⊥, α ∈ R} divides RN into
connected open components, called the Weyl chambers of R . It can be shown that the
topological closure C of any chamber C is a fundamental domain for W , i.e. C is
naturally homeomorphic with the space (RN)G of all W -orbits in RN , endowed with
the quotient topology (see Section 1.12 of [Hu]). W permutes the reflecting hyperplanes
as well as the chambers.

Examples 2.3. (1) I2(n), n ≥ 3: Root systems of the dihedral groups. Define Dn to
be the dihedral group of order 2n , consisting of the orthogonal transformations in the
Euclidean plane R2 which preserve a regular n-sided polygon centered at the origin.
It is generated by the reflection at the x-axis and the reflection at the line through the
origin which meets the x-axis at the angle π/n . Root system I2(n) is crystallographic
only for n = 2, 3, 4, 6.

(2) AN−1. Let SN denote the symmetric group in N elements. It acts faithfully
on RN by permuting the standard basis vectors e1, . . . , eN . Each transposition (ij)
acts as a reflection σij sending ei − ej to its negative. Since SN is generated by
transpositions, it is a finite reflection group. The root system of SN is called AN−1

and is given by

AN−1 = {±(ei − ej), 1 ≤ i < j ≤ N}.
This root system is crystallographic. Its span is the orthogonal complement of the
vector e1 + . . .+ eN , and thus the rank is N − 1.

(3) BN . Here W is the reflection group in RN generated by the transpositions σij
as above, as well as the sign changes σi : ei 7→ −ei , i = 1, . . . , N. The group of sign
changes is isomorphic to ZN

2 , intersects SN trivially and is normalized by SN , so W
is isomorphic with the semidirect product SN n ZN

2 . The corresponding root system
is called BN ; it is given by

BN = {±ei, 1 ≤ i ≤ N} ∪ {±(ei ± ej), 1 ≤ i < j ≤ N}.
BN is crystallographic and has rank N .

(4) BCN . This is the root system in RN given by

BCN = {±ei, ±2ei, 1 ≤ i ≤ N} ∪ {±(ei ± ej), 1 ≤ i < j ≤ N}.
BCN is crystallographic, but not reduced.

A root system R is called irreducible, if it cannot be written as the orthogonal disjoint
union R = R1 ∪ R2 of two root systems R1 , R2 . Any root system can be uniquely
written as an orthogonal disjoint union of irreducible root systems. There exists a
classification of all irreducible, reduced root systems in terms of Coxeter graphs. There
are 5 infinite series: An, Bn, Cn, Dn (which are crystallographic), as well as the rank
2 root systems I2(n) corresponding to the dihedral groups. Apart from those, there
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is a finite numer of exceptional root systems. The root systems BCn (n ≥ 1) are the
only irreducible crystallographic root systems which are not reduced. We mention that
the root system of a complex semisimple Lie algebra is always crystallographic and
reduced, and it is irreducible exactly if the Lie algebra is simple. For further details on
root systems, the reader is referred to [Hu] and [Kn].

2.2. Dunkl operators. Let R be a reduced (not necessarily crystallographic) root
system in RN and W the associated reflection group. The Dunkl operators attached
with R are modifications of the usual partial derivatives by divided difference operators
made up by reflections. The divided difference parts are coupled by parameters, which
are given in terms of a multiplicity function:

Definition 2.4. A function k : R → C on the root system R is called a multiplicity
function, if it is invariant under the natural action of W on R .

The set of multiplicity functions forms a C-vector space whose dimension is equal
to the number of W -orbits in R .

Throughout these notes, we shall require that the multiplicity is non-negative, that
is k(α) ≥ 0 for all α ∈ R . We write k ≥ 0 for short. Parts of the theory extend to
a larger range of multiplicities (depending on R), but the condition k ≥ 0 is essential
for positivity results and probability theory.

Definition 2.5. Let k : R → C be a multiplicity function on R . Then for ξ ∈ RN ,
the Dunkl operator Tξ := Tξ(k) is defined on C1(RN) by

Tξf(x) := ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− f(σαx)

〈α, x〉
.

Here ∂ξ denotes the directional derivative corresponding to ξ , and R+ is a fixed pos-
itive subsystem of R . For the i-th standard basis vector ξ = ei ∈ RN we use the
abbreviation Ti = Tei .

By the W -invariance of k , the definition of the Dunkl operators does not depend on
the special choice of R+ . Also, the length of the roots is irrelevant in the formula for
Tξ . This is the basic reason for the convention which requires reduced root systems: a
Dunkl operator with summation over a non-reduced root system can be replaced by a
counterpart with summation about an associated reduced counterpart, teh multiplici-
ties being modified accordingly. Note further that the dependence of Tξ on ξ is linear.
In case k = 0, the Tξ(k) reduce to the corresponding directional derivatives.

The operators Tξ were introduced and first studied by C.F. Dunkl ([D1-5]). They
enjoy regularity properties similar to usual partial derivatives on various spaces of
functions. We shall use the following notations:

Notation 2.6. 1. Z+ := {0, 1, 2, . . .} .
2. Π := C[RN ] is the C-algebra of polynomial functions on RN . It has a natural

grading

Π =
⊕
n≥0

Pn ,
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where Pn is the subspace of homogeneous polynomials of (total) degree n .
3. S (RN) denotes the Schwartz space of rapidly decreasing functions on RN ,

S (RN) := {f ∈ C∞(RN) : ‖xβ∂αf‖∞,RN <∞ for all α, β ∈ ZN
+}.

It is a Fréchet space with the usual locally convex topology.

The Dunkl operators Tξ have the following regularity properties:

Lemma 2.7. (1) If f ∈ Cm(RN) with m ≥ 1, then Tξf ∈ Cm−1(RN).
(2) Tξ leaves C∞c (RN) and S (RN) invariant.
(3) Tξ is homogeneous of degree −1 on Π, that is, Tξ p ∈ Pn−1 for p ∈ Pn .

Proof. All statements follow from the representation

f(x)− f(σαx)

〈α, x〉
=

∫ 1

0

∂αf
(
x− t〈α, x〉α

)
dt for f ∈ C1(RN), α ∈ R

(recall our normalization 〈α, α〉 = 2). (1) and (3) are immediate; the proof of (2) (for
S (RN)) is also straightforward but more technical; it can be found in [dJ1]. �

Due to the G-invariance of k , the Dunkl operators Tξ are G-equivariant: In fact,
consider the natural action of O(N,R) on functions f : RN → C , given by

h · f(x) := f(h−1x), h ∈ O(N,R).

Then an easy calculation shows:

Exercise 2.8. g ◦ Tξ ◦ g−1 = Tgξ for all g ∈ G.

Moreover, there holds a product rule:

Exercise 2.9. If f, g ∈ C1(RN) and at least one of them is G-invariant, then

Tξ(fg) = Tξ(f) · g + f · Tξ(g). (2.1)

The most striking property of the Dunkl operators, which is the foundation for rich
analytic structures related with them, is the following

Theorem 2.10. For fixed k, the associated Tξ = Tξ(k), ξ ∈ RN commute.

This result was obtained in [D2] by a clever direct argumentation. An alternative
proof, relying on Koszul complex ideas, is given in [DJO]. As a consequence of Theorem
2.10 there exists an algebra homomorphism Φk : Π → EndC(Π) which is defined by

Φk : xi 7→ Ti, 1 7→ id.

For p ∈ Π we write

p(T ) := Φk(p).

The classical case k = 0 will be distinguished by the notation Φ0(p) =: p(∂). Of
particular importance is the k -Laplacian, which is defined by

∆k := p(T ) with p(x) = |x|2.
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Theorem 2.11.

∆k = ∆ + 2
∑
α∈R+

k(α)δα with δαf(x) =
〈∇f(x), α〉
〈α, x〉

− f(x)− f(σαx)

〈α, x〉2
; (2.2)

here ∆ and ∇ denote the usual Laplacian and gradient respectively.

This representation is obtained by a direct calculation (recall again our convention
〈α, α〉 = 2 for all α ∈ R) by use of the following Lemma:

Lemma 2.12. [D2] For α ∈ R , define

ραf(x) :=
f(x)− f(σαx)

〈α, x〉
(f ∈ C1(RN)).

Then ∑
α,β∈R+

k(α)k(β)〈α, β〉ραρβ = 0.

It is not difficult to check that

∆k =
N∑
i=1

T 2
ξi

for any orthonormal basis {ξ1, . . . , ξN} of RN , see [D2] for the proof. Together with
the G-equivariance of the Dunkl operators, this immediately implies that ∆k is G-
invariant, i.e.

g ◦∆k = ∆k ◦ g (g ∈ G).

Examples 2.13. (1) The rank-one case. In case N = 1, the only choice of R is
R = {±

√
2} , which is the root system of type A1 . The corresponding reflection group

is G = {id, σ} acting on R by σ(x) = −x . The Dunkl operator T := T1 associated
with the multiplicity parameter k ∈ C is given by

Tf(x) = f ′(x) + k
f(x)− f(−x)

x
.

Its square T 2 , when restricted to the even subspace C2(R)e := {f ∈ C2(R) : f(x) =
f(−x)} is given by a singular Sturm-Liouville operator:

T 2|C2(R)ef = f ′′ +
2k

x
· f ′ .

(2) Dunkl operators of type AN−1 . Suppose G = SN with root system of type
AN−1 . (In contrast to the above example, G now acts on RN ). As all transpositions
are conjugate in SN , the vector space of multiplicity functions is one-dimensional. The
Dunkl operators associated with the multiplicity parameter k ∈ C are given by

T Si = ∂i + k ·
∑
j 6=i

1− σij
xi − xj

(i = 1, . . . , N),

and the k -Laplacian is

∆S
k = ∆ + 2k

∑
1≤i<j≤N

1

xi − xj

[
(∂i − ∂j)−

1− σij
xi − xj

]
.
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(3) Dunkl operators of type BN . Suppose R is a root system of type BN ,
corresponding to G = SN n ZN

2 . There are two conjugacy classes of reflections in G ,
leading to multiplicity functions of the form k = (k0, k1) with ki ∈ C . The associated
Dunkl operators are given by

TBi = ∂i + k1
1− σi
xi

+ k0 ·
∑
j 6=i

[ 1− σij
xi − xj

+
1− τij
xi + xj

]
(i = 1, . . . , N),

where τij := σijσiσj .

2.3. A formula of Macdonald and its analog in Dunkl theory. In the classical
theory of spherical harmonics (see for instance [Hel]) the following bilinear pairing on
Π, sometimes called Fischer product, plays an important role:

[p, q]0 :=
(
p(∂)q

)
(0), p, q ∈ Π.

This pairing is closely related to the scalar product in L2(RN , e−|x|
2/2dx); in fact, in

his short note [M2] Macdonald observed the following identity:

[p, q]0 = (2π)−N/2
∫

RN
e−∆/2p(x) e−∆/2q(x) e−|x|

2/2 dx.

Here e−∆/2 is well-defined as a linear operator on Π by means of the terminating series

e−∆/2p =
∞∑
n=0

(−1)n

2nn!
∆np.

Both the Fischer product as well as Macdonald’s identity have a useful generalization
in the Dunkl setting. In the following, we shall always restrict to the case k ≥ 0.

Definition 2.14. For p, q ∈ Π define

[p, q]k :=
(
p(T )q

)
(0).

This bilinear form was introduced in [D4]. We collect some of its basic properties:

Lemma 2.15. (1) If p ∈ Pn and q ∈ Pm with n 6= m, then [p, q]k = 0.
(2) [xi p , q]k = [p, Ti q]k (p, q ∈ Π, i = 1, . . . , N).
(3) [g · p , g · q]k = [p, q]k (p, q ∈ Π, g ∈ G).

Proof. (1) follows from the homogeneity of the Dunkl operators, (2) is clear from the
definition, and (3) follows from Exercise 2.8. �

Let wk denote the weight function on RN defined by

wk(x) =
∏
α∈R+

|〈α, x〉|2k(α). (2.3)

It is G-invariant and homogeneous of degree 2γ , with the index

γ := γ(k) :=
∑
α∈R+

k(α). (2.4)
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Notice that by G-invariance of k , we have k(−α) = k(α) for all α ∈ R . Hence this
definition does again not depend on the special choice of R+ . Further, we define the
constant

ck :=

∫
RN
e−|x|

2/2wk(x)dx,

a a so-called Macdonald-Mehta-Selberg integral. There exists a closed form for it which
was conjectured and proved by Macdonald [M1] for the infinite series of root systems.
An extension to arbitrary crystallographic reflection groups is due to Opdam [O1], and
there are computer-assisted proofs for some non-crystallographic root systems. As far
as we know, a general proof for arbitrary root systems has not yet been found.

We shall need the following anti-symmetry of the Dunkl operators:

Proposition 2.16. [D5] Let k ≥ 0. Then for every f ∈ S (RN) and g ∈ C1
b (RN),∫

RN
Tξf(x)g(x)wk(x)dx = −

∫
RN
f(x)Tξg(x)wk(x)dx .

Proof. A short calculation. In order to have the appearing integrals well defined, one
has to assume k ≥ 1 first, and then extend the result to general k ≥ 0 by analytic
continuation. �

Proposition 2.17. For all p, q ∈ Π,

[p, q]k = c−1
k

∫
RN
e−∆k/2p(x) e−∆k/2q(x) e−|x|

2/2wk(x)dx. (2.5)

This result is due to Dunkl ([D4]). As the Dunkl Laplacian is homogeneous of degree
−2, the operator e−∆k/2 is well-defined and bijective on Π, and it preserves the degree.
We give here a direct proof which is partly taken from an unpublished part of M.
de Jeu’s thesis ([dJ2], Chap. 3.3). It involves the following commutator results in
EndC(Π), where as usual, [A,B] = AB −BA for A,B ∈ EndC(Π).

Lemma 2.18. For i = 1, . . . , N,

(1)
[
xi , ∆k/2

]
= −Ti ;

(2)
[
xi , e

−∆k/2
]

= Ti e
−∆k/2 .

Proof. (1) follows by direct calculation, c.f. [D2]. Induction then yields that[
xi , (∆k/2)n

]
= −nTi

(
∆k/2

)n−1
for n ≥ 1,

and this implies (2). �

Proof of Proposition 2.17. Let i ∈ {1, . . . , N}, and denote the right side of (2.5) by
(p, q)k . Then by the anti-symmetry of Ti in L2(RN , wk), the product rule for Ti and
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the above Lemma,

(p, Ti q)k = c−1
k

∫
RN
e−∆k/2p ·

(
Ti e

−∆k/2q
)
e−|x|

2/2wk dx

= − c−1
k

∫
RN
Ti
(
e−|x|

2/2e−∆k/2p
)
·
(
e−∆k/2q

)
wk dx

= c−1
k

∫
RN
e−∆k/2(xi p) ·

(
e−∆k/2q

)
e−|x|

2/2wk dx = (xi p, q)k.

But the form [ ., . ]k has the same property by Lemma 2.15(2). It is now easily
checked that the assertion is true if p or q is constant, and then, by induction on
max(deg p, deg q), for all homogeneous p, q . This suffices by the linearity of both
forms. �

Corollary 2.19. Let again k ≥ 0. Then the pairing [ . , . ]k on Π is symmetric and
non-degenerate, i.e. [p, q]k = 0 for all q ∈ Π implies that p = 0.

Exercise 2.20. Check the details in the proofs of Prop. 2.17 and Cor. 2.19.

2.4. Dunkl’s intertwining operator. It was first shown in [D4] that for non-negative
multiplicity functions, the associated commutative algebra of Dunkl operators is inter-
twined with the algebra of usual partial differential operators by a unique linear and
homogeneous isomorphism on polynomials. A thorough analysis in [DJO] subsequently
revealed that for general k, such an intertwining operator exists if and only if the
common kernel of the Tξ , considered as linear operators on Π, contains no ”singular”
polynomials besides the constants. More precisely, the following characterization holds:

Theorem 2.21. [DJO] Let Kreg :=
{
k ∈ K :

⋂
ξ∈RN KerTξ(k) = C · 1

}
. Then the

following statements are equivalent:

(1) k ∈ Kreg;
(2) There exists a unique linear isomorphism (”intertwining operator”) Vk of Π

such that

Vk(Pn) = Pn , Vk |P0 = id and TξVk = Vk ∂ξ for all ξ ∈ RN .

The proof of this result is by induction on the degree of homogeneity and requires
only linear algebra.

The intertwining operator Vk commutes with the G-action:

Exercise 2.22. g−1 ◦ Vk ◦ g = Vk (g ∈ G).

Hint: Use the G-equivariance of the Tξ and the defining properties of Vk .

Proposition 2.23. {k ∈ K : k ≥ 0} ⊆ Kreg.

Proof. Suppose that p ∈ ⊕n≥1Pn satisfies Tξ(k)p = 0 for all ξ ∈ RN . Then [q, p]k = 0
for all q ∈ ⊕n≥1Pn , and hence also [q, p]k = 0 for all q ∈ Π. Thus p = 0, by the
non-degeneracy of [ . , . ]k . �
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The complete singular parameter set K \ Kreg is explicitly determined in [DJO]. It
is an open subset of K which is invariant under complex conjugation, and contains
{k ∈ K : Re k ≥ 0}. Later in these lectures, we will in fact restrict our attention
to non-negative multiplicity functions. These are of particular interest concerning our
subsequent positivity results, which could not be expected for non-positive multiplici-
ties. Though the intertwining operator plays an important role in Dunkl’s theory, an
explicit “closed” form for it is known so far only in some special cases. Among these
are

1. The rank-one case. Here

Kreg = C \
{
− 1/2− n, n ∈ Z+

}
.

The associated intertwining operator is given explicitly by

Vk
(
x2n
)

=

(
1
2

)
n(

k + 1
2

)
n

x2n ; Vk
(
x2n+1

)
=

(
1
2

)
n+1(

k + 1
2

)
n+1

x2n+1 ,

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer-symbol. For Re k > 0, this
amounts to the following integral representation (see [D4], Th. 5.1):

Vk p(x) =
Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ 1

−1

p(xt) (1− t)k−1(1 + t)k dt. (2.6)

2. The case G = S3 . This was studied in [D6]. Here

Kreg = C \ {−1/2− n,−1/3− n,−2/3− n, n ∈ Z+}.
In order to bring Vk into action in a further development of the theory, it is important

to extend it to larger function spaces. For this we shall always assume that k ≥ 0. In
a first step, Vk is extended to a bounded linear operator on suitably normed algebras
of homogeneous series on a ball. This concept goes back to [D4].

Definition 2.24. For r > 0, let Br := {x ∈ RN : |x| ≤ r} denote the closed ball of
radius r, and let Ar be the closure of Π with respect to the norm

‖p‖Ar :=
∞∑
n=0

‖pn‖∞,Br for p =
∞∑
n=0

pn , pn ∈ Pn.

Clearly Ar is a commutative Banach-∗-algebra under the pointwise operations and
with complex conjugation as involution. Each f ∈ Ar has a unique representation
f =

∑∞
n=0 fn with fn ∈ Pn , and is continuous on the ball Br and real-analytic in its

interior. The topology of Ar is stronger than the topology induced by the uniform norm
on Br . Notice also that Ar is not closed with respect to ‖.‖∞,Br and that Ar ⊆ As
with ‖ . ‖Ar ≥ ‖ . ‖As for s ≤ r .

Theorem 2.25. ‖Vkp‖∞,Br ≤ ‖p‖∞,Br for each p ∈ Pn .

The proof of this result is given in [D4] and can also be found in [DX]. It uses the van
der Corput-Schaake inequality which states that for each real-valued p ∈ Pn ,

sup {|〈∇p(x), y〉| : x, y ∈ B1} ≤ n‖p‖∞,B1 .



12 MARGIT RÖSLER

Notice that here the converse inequality is trivially satisfied, because 〈∇p(x), x〉 =
np(x) for p ∈ Pn . The following is now immediate:

Corollary 2.26. ‖Vkf‖Ar ≤ ‖f‖Ar for every f ∈ Π, and Vk extends uniquely to a
bounded linear operator on Ar via

Vkf :=
∞∑
n=0

Vkfn for f =
∞∑
n=0

fn .

Formula (2.6) shows in particular that in the rank-one case with k > 0, the operator
Vk is positivity-preserving on polynomials. It was conjectured by Dunkl in [D4] that for
arbitrary reflection groups and non-negative multiplicity functions, the linear functional
f 7→ Vkf(x) on Ar should be positive. We shall see in Section 4.1. that this is
in fact true. As a consequence, we shall obtain the existence of a positive integral
representation generalizing (2.6), which in turn allows to extend Vk to larger function
spaces. This positivity result also has important consequences for the structure of the
Dunkl kernel, which generalizes the usual exponential function in the Dunkl setting.
We shall introduce it in the following section.

Exercise 2.27. The symmetric spectrum ∆S(A) of a (unital) commutative Banach-
∗-algebra A is defined as the set of all non-zero algebra homomorphisms ϕ : A → C
satisfying the ∗-condition ϕ(a∗) = ϕ(a) for all a ∈ A. It is a compact Hausdorff space
with the weak-*-topology (sometimes called the Gelfand topology).

Prove that the symmetric spectrum of the algebra Ar is given by

∆S(Ar) = {ϕx : x ∈ Br},
where ϕx is the evaluation homomorphism ϕx(f) := f(x). Show also that the mapping
x 7→ ϕx is a homeomorphism from Br onto ∆S(Ar).

2.5. The Dunkl kernel. Throughout this section we assume that k ≥ 0. Moreover,
we denote by 〈 . , . 〉 not only the Euclidean scalar product on RN , but also its bilinear
extension to CN × CN .

For fixed y ∈ CN , the exponential function x 7→ e〈x,y〉 belongs to each of the algebras
Ar , r > 0. This justifies the following

Definition 2.28. [D4] For y ∈ CN , define

Ek(x, y) := Vk
(
e〈 . ,y〉)(x), x ∈ RN .

The function Ek is called the Dunkl-kernel, or k - exponential kernel, associated with
G and k . It can alternatively be characterized as the solution of a joint eigenvalue
problem for the associated Dunkl operators.

Proposition 2.29. Let k ≥ 0 and y ∈ CN . Then f = Ek( . , y) is the unique solution
of the system

Tξ f = 〈ξ, y〉f for all ξ ∈ RN (2.7)

which is real-analytic on RN and satisfies f(0) = 1.
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Proof. Ek( . y) is real-analytic on RN by our construction. Define

E
(n)
k (x, y) :=

1

n!
Vk〈 . , y〉n(x), x ∈ RN , n = 0, 1, 2, . . . .

Then Ek(x, y) =
∑∞

n=0 E
(n)
k (x, y), and the series converges uniformly and absolutely

with respect to x . The homogeneity of Vk immediately implies Ek(0, y) = 1. Further,
by the intertwining property,

TξE
(n)
k ( . , y) =

1

n!
Vk ∂ξ〈 . , y〉n = 〈ξ, y〉E(n−1)

k ( . , y) (2.8)

for all n ≥ 1. This shows that Ek( . , y) solves (2.7). To prove uniqueness, suppose
that f is a real-analytic solution of (2.7) with f(0) = 1. Then Tξ can be applied
termwise to the homogeneous expansion f =

∑∞
n=0 fn , fn ∈ Pn , and comparison of

homogeneous parts shows that

f0 = 1, Tξfn = 〈ξ, y〉fn−1 for n ≥ 1.

As {k ∈ K : k ≥ 0} ⊆ Kreg , it follows by induction that all fn are uniquely determined.

�

While this construction has been carried out only for k ≥ 0, there is a more general
result by Opdam which assures the existence of a general exponential kernel with
properties according to the above lemma for arbitrary regular multiplicity parameters.
The following is a weakened version of [O1], Prop. 6.7; it in particular implies that Ek
has a holomorphic extension to CN × CN :

Theorem 2.30. For each k ∈ Kreg and y ∈ CN , the system

Tξ f = 〈ξ, y〉f (ξ ∈ RN)

has a unique solution x 7→ Ek(x, y) which is real-analytic on RN and satisfies f(0) =
1. Moreover, the mapping (x, k, y) 7→ Ek(x, y) extends to a meromorphic function on
CN ×K × CN with pole set CN × (K \Kreg)× CN

We collect some further properties of the Dunkl kernel Ek .

Proposition 2.31. Let k ≥ 0, x, y ∈ CN , λ ∈ C and g ∈ G.

(1) Ek(x, y) = Ek(y, x)
(2) Ek(λx, y) = Ek(x, λy) and Ek(gx, gy) = Ek(x, y).

(3) Ek(x, y) = Ek(x, y).

Proof. (1) This is shown in [D4]. (2) is easily obtained from the definition of Ek
together with the homogeneity and equivariance properties of Vk . For (3), notice that

f := Ek( . , y), which is again real-analytic on RN , satisfies Tξf = 〈ξ, y〉 f, f(0) = 1.

By the uniqueness part of the above Proposition, Ek(x, y) = Ek(x, y) for all real x .

Now both x 7→ Ek(x, y) and x 7→ Ek(x, y) are holomorphic on CN and agree on RN .
Hence they coincide. �

Just as with the intertwining operator, the kernel Ek is explicitly known for some
particular cases only. An important example is again the rank-one situation:
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Example 2.32. In the rank-one case with Re k > 0, the integral representation (2.6)
for Vk implies that for all x, y ∈ C ,

Ek(x, y) =
Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ 1

−1

etxy(1− t)k−1(1 + t)k dt = exy · 1F1(k, 2k + 1,−2xy).

This can also be written as

Ek(x, y) = jk−1/2(ixy) +
xy

2k + 1
jk+1/2(ixy),

where for α ≥ −1/2, jα is the normalized spherical Bessel function

jα(z) = 2αΓ(α + 1) · Jα(z)

zα
= Γ(α + 1) ·

∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ α + 1)
. (2.9)

This motivates the following

Definition 2.33. [O1] The k -Bessel function (or generalized Bessel function) is defined
by

Jk(x, y) :=
1

|G|
∑
g∈G

Ek(gx, y) (x, y ∈ CN). (2.10)

Thanks to Prop. 2.31 Jk is G-invariant in both arguments and therefore naturally
considered on Weyl chambers of G (or their complexifications). In the rank-one case,
we have

Jk(x, y) = jk−1/2(ixy).

It is a well-known fact from classical analysis that for fixed y ∈ C , the function
f(x) = jk−1/2(ixy) is the unique analytic solution of the differential equation

f ′′ +
2k

x
f ′ = y2f

which is even and normalized by f(0) = 1. In order to see how this can be generalized
to the multivariable case, consider the algebra of G-invariant polynomials on RN ,

ΠG = {p ∈ Π : g · p = p for all g ∈ G}.

If p ∈ ΠG , then it follows from the equivariance of the Dunkl operators (Exercise 2.8)
that p(T ) commutes with the G-action; a detailed argument for this is given in [He1].
Thus p(T ) leaves ΠG invariant, and we obtain in particular that for fixed y ∈ CN , the
k -Bessel function Jk( . , y) is a solution to the following Bessel-system:

p(T )f = p(y)f for all p ∈ ΠG, f(0) = 1.

According to [O1], it is in fact the only G-invariant and analytic solution. We mention
that there exists a group theoretic context in which, for a certain parameters k , gener-
alized Bessel functions occur in a natural way: namely as the spherical functions of a
Euclidean type symmetric space, associated with a so-called Cartan motion group. We
refer to [O1] for this connection and to [Hel] for the necessary background in semisimple
Lie theory.
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The Dunkl kernel is of particular interest as it gives rise to an associated integral
transform on RN which generalizes the Euclidean Fourier transform in a natural way.
This transform will be discussed in the following section. Its definition and essential
properties rely on suitable growth estimates for Ek . In our case k ≥ 0, the best ones
to be expected are available:

Proposition 2.34. [R3] For all x ∈ RN , y ∈ CN and all multi-indices α ∈ ZN
+ ,

|∂αyEk(x, y)| ≤ |x||α|max
g∈G

eRe〈gx,y〉.

In particular, |Ek(−ix, y)| ≤ 1 for all x, y ∈ RN .

This result will be obtained later from a positive integral representation of Bochner-
type for Ek , c.f. Cor. 4.6. M. de Jeu had slightly weaker bounds in [dJ1], differing by

an additional factor
√
|G|.

We conclude this section with two important reproducing properties for the Dunkl
kernel. Notice that the above estimate on Ek assures the convergence of the involved
integrals.

Proposition 2.35. Let k ≥ 0. Then

(1)

∫
RN
e−∆k/2p (x)Ek(x, y) e−|x|

2/2wk(x)dx = ck e
〈y,y〉/2p(y) (p ∈ Π, y ∈ CN).

(2)

∫
RN
Ek(x, y)Ek(x, z) e

−|x|2/2wk(x)dx = ck e
(〈y,y〉+〈z,z〉)/2Ek(y, z) (y, z ∈ CN).

Proof. (c.f. [D5].) We shall use the Macdonald-type formula (2.5) for the pairing
[ . , . ]k . First, we prove that

[E
(n)
k (x, . ), . ]k = p(x) for all p ∈ Pn, x ∈ RN . (2.11)

In fact, if p ∈ Pn, then

p(x) = (〈x, ∂y〉n/n!)p(y) and V x
k p(x) = E

(n)
k (x, ∂y)p(y).

Here the uppercase index in V x
k denotes the relevant variable. Application of V y

k to

both sides yields V x
k p(x) = E

(n)
k (x, T y)V y

k p(y). As Vk is bijective on Pn , this implies

(2.11). For fixed y, let Ln(x) :=
∑n

j=0E
(j)
k (x, y). If n is larger than the degree of p,

it follows from (2.11) that [Ln, p]k = p(y). Thus in view of the Macdonald formula,

c−1
k

∫
RN
e−∆k/2Ln(x)e−∆k/2p(x)e−|x|

2/2wk(x)dx = p(y).

On the other hand, it is easily checked that

lim
n→∞

e−∆k/2Ln(x) = e−〈y,y〉/2Ek(x, y).

This gives (1). Identity (2) then follows from (1), again by homogeneous expansion of
Ek . �
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2.6. The Dunkl transform. The Dunkl transform was introduced in [D5] for non-
negative multiplicity functions and further studied in [dJ1] in the more general case
Re k ≥ 0. In these notes, we again restrict ourselves to k ≥ 0.

Definition 2.36. The Dunkl transform associated with G and k ≥ 0 is given by

.̂ k : L1(RN , wk) → Cb(RN); f̂ k(ξ) := c−1
k

∫
RN
f(x)Ek(−iξ, x)wk(x)dx (ξ ∈ RN).

The inverse transform is defined by f∨k(ξ) = f̂ k(−ξ).

Notice that f̂ k ∈ Cb(RN) results from our bounds on Ek . The Dunkl transform
shares many properties with the classical Fourier transform. Here are the most basic
ones:

Lemma 2.37. Let f ∈ S (RN). Then for j = 1, . . . , N,

(1) f̂ k ∈ C∞(RN) and Tj(f̂
k) = −(ixjf)∧k.

(2) (Tjf)∧k(ξ) = iξj f̂
k(ξ).

(3) The Dunkl transform leaves S (RN) invariant.

Proof. (1) is obvious from (2.7), and (2) follows from the anti-symmetry relation
(Prop. 2.16) for the Dunkl operators. For (3), notice that it suffices to prove that

∂αξ (ξβ f̂ k(ξ)) is bounded for arbitrary multi-indices α, β. By the previous Lemma, we

have ξβ f̂ k(ξ) = ĝ k(ξ) for some g ∈ S (RN). Using the growth bounds of Proposition
2.34 yields the assertion.

�

Exercise 2.38. (1) C∞c (RN) and S (RN) are dense in Lp(RN , wk), p = 1, 2.
(2) Conclude the Lemma of Riemann-Lebesgue for the Dunkl transform:

f ∈ L1(RN , wk) =⇒ f̂ k ∈ C0(RN).

Here C0(RN) denotes the space of continuous functions on RN which vanish at
infinity.

The following are the main results for the Dunkl transform; we omit the proofs but
refer the reader to [D5] and [dJ1]:

Theorem 2.39. (1) The Dunkl transform f 7→ f̂ k is a homeomorphism of S (RN)
with period 4.

(2) (Plancherel theorem) The Dunkl transform has a unique extension to an isomet-

ric isomorphism of L2(RN , wk). We denote this isomorphism again by f 7→ f̂ k .

(3) (L1 -inversion) For all f ∈ L1(RN , wk) with f̂ k ∈ L1(RN , wk),

f = (f̂ k )∨k a.e.
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3. CMS models and generalized Hermite polynomials

3.1. Quantum Calogero-Moser-Sutherland models. Quantum Calogero-Moser-
Sutherland (CMS) models describe quantum mechanical systems of N identical parti-
cles on a circle or line which interact pairwise through long range potentials of inverse
square type. They are exactly solvable and have gained considerable interest in theo-
retical physics during the last years. Among the broad literature in this area, we refer
to [DV], [LV], [K], [BHKV], [BF1]-[BF3], [Pa], [Pe], [UW], [D7]. CMS models have in
particular attracted some attention in conformal field theory, and they are being used
to test the ideas of fractional statistics ([Ha], [Hal]). While explicit spectral resolu-
tions of such models were already obtained by Calogero and Sutherland ([Ca], [Su]), a
new aspect in the understanding of their algebraic structure and quantum integrability
was much later initiated by [Po] and [He1]. The Hamiltonian under consideration is
hereby modified by certain exchange operators, which allow to write it in a decoupled
form. These exchange modifications can be expressed in terms of Dunkl operators of
type AN−1 . The Hamiltonian of the linear CMS model with harmonic confinement in
L2(RN) is given by

HC = −∆ + g
∑

1≤i<j≤N

1

(xi − xj)2
+ ω2|x|2; (3.1)

here ω > 0 is a frequency parameter and g ≥ −1/2 is a coupling constant. In case
ω = 0, (3.1) describes the free Calogero model. On the other hand, if g = 0, then HC

coincides with the Hamiltonian of the N -dimensional isotropic harmonic oscillator,

H0 = −∆ + ω2|x|2.

The spectral decomposition of this operator in L2(RN) is well-known: The spectrum
is discrete, σ(H0) = {(2n + N)ω, n ∈ Z+} , and the classical multivariable Hermite
functions (tensor products of one-variable Hermite functions, c.f. Examples 3.5), form
a complete set of eigenfunctions. The study of the Hamiltonian HC was initiated
by Calogero ([Ca]); he computed its spectrum and determined the structure of the
bosonic eigenfunctions and scattering states in the confined and free case, respectively.
Perelomov [Pe] observed that (3.1) is completely quantum integrable, i.e. there exist N
commuting, algebraically independent symmetric linear operators in L2(RN) including
HC . We mention that the complete integrability of the classical Hamiltonian systems
associated with (3.1) goes back to Moser [Mo]. There exist generalizations of the
classical Calogero-Moser-Sutherland models in the context of abstract root systems,
see for instance [OP1], [OP2]. In particular, if R is an arbitrary root system on RN

and k is a nonnegative multiplicity function on it, then the corresponding abstract
Calogero Hamiltonian with harmonic confinement is given by

H̃k = −F̃k + ω2|x|2

with the formal expression

F̃k = ∆− 2
∑
α∈R+

k(α)(k(α)− 1)
1

〈α, x〉2
.
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If R is of type AN−1 , then H̃k just coincides with HC . For both the classical and the
quantum case, partial results on the integrability of this model are due to Olshanet-
sky and Perelomov [OP1], [OP2]. A new aspect in the understanding of the algebraic
structure and the quantum integrability of CMS systems was initiated by Polychron-
akos [Po] and Heckman [He1]. The underlying idea is to construct quantum integrals
for CMS models from differential-reflection operators. Polychronakos introduced them
in terms of an “exchange-operator formalism” for (3.1). He thus obtained a complete
set of commuting observables for (3.1) in an elegant way. In [He1] it was observed in
general that the complete algebra of quantum integrals for free, abstract Calogero mod-
els is intimately connected with the corresponding algebra of Dunkl operators. Let us

briefly describe this connection: Consider the following modification of F̃k , involving
reflection terms:

Fk = ∆− 2
∑
α∈R+

k(α)

〈α, x〉2
(k(α)− σα) . (3.2)

In order to avoid singularities in the reflecting hyperplanes, it is suitable to carry out

a gauge transform by w
1/2
k . A short calculation, using again results from [D2], gives

w
−1/2
k Fkw1/2

k = ∆k ,

c.f. [R4]. Here ∆k is the Dunkl Laplacian associated with G and k . Now consider the
algebra of ΠG of G-invariant polynomials on RN . By a classical theorem of Chevalley
(see e.g. [Hu]), it is generated by N homogeneous, algebraically independent elements.
For p ∈ ΠG we denote by Res (p(T )) the restriction of the Dunkl operator p(T ) to ΠG

(Recall that p(T ) leaves ΠG invariant!). Then

A :=
{

Res p(T ) : p ∈ ΠG}

is a commutative algebra of differential operators on ΠG containing the operator

Res (∆k) = w
−1/2
k F̃k w1/2

k ,

and A has N algebraically independent generators, called quantum integrals for the

free Hamiltonian F̃k .

3.2. Spectral analysis of abstract CMS Hamiltonians. This section is devoted
to a spectral analysis of abstract linear CMS operators with harmonic confinement.
We follow the expositions in [R2], [R5]. To simplify formulas, we fix ω = 1/2; corre-
sponding results for general ω can always be obtained by rescaling. We again work
with the gauge-transformed version with reflection terms,

Hk := w
−1/2
k (−Fk +

1

4
|x|2)w

1/2
k = −∆k +

1

4
|x|2.

Due to the anti-symmetry of the first order Dunkl operators (Prop. 2.16), this opera-
tor is symmetric and densely defined in L2(RN , wk) with domain D(Hk) := S (RN).
Notice that in case k = 0, Hk is just the Hamiltonian of the N -dimensional isotropic
harmonic oscillator. We further consider the Hilbert space L2(RN ,mk), where mk is
the probability measure

dmk := c−1
k e−|x|

2/2wk(x)dx (3.3)
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and the operator

Jk := −∆k +
N∑
i=1

xi∂i

in L2(RN ,mk), with domain D(Jk) := Π. It can be shown by standard methods that
Π is dense in L2(RN ,mk). We do not carry this out; a proof can be found in [R3] or
in [dJ3], where a comprehensive treatment of density questions in several variables is
given.

The next theorem contains a complete description of the spectral properties of Hk

and Jk and generalizes the already mentioned well-known facts for the classical har-
monic oscillator Hamilonian. For the proof, we shall employ the sl(2)-commutation
relations of the operators

E :=
1

2
|x|2, F := −1

2
∆k and H :=

N∑
i=1

xi∂i + (γ +N/2)

on Π (with the index γ = γ(k) as defined in (2.4)) which can be found in [He1]. They
are [

H,E
]

= 2E,
[
H,F

]
= −2F,

[
E,F

]
= H. (3.4)

Notice that the first two relations are immediate consequences of the fact that the
Euler operator

ρ :=
N∑
i=1

xi∂i (3.5)

satisfies ρ(p) = np for each homogeneous p ∈ Pn . We start with the following

Lemma 3.1. On D(Jk) = Π,

Jk = e|x|
2/4(Hk − (γ +N/2)) e−|x|

2/4.

In particular, Jk is symmetric in L2(RN ,mk).

Proof. From (3.4) it is easily verified by induction that[
∆k, E

n
]

= 2nEn−1H + 2n(n− 1)En−1 for all n ∈ N,

and therefore
[
∆k, e

−E/2 ] = −e−E/2H + 1
2
Ee−E/2. Thus on Π,

Hk e
−E/2 = −∆ke

−E/2 +
1

2
Ee−E/2 = −e−E/2∆k + e−E/2H = e−E/2(Jk + γ +N/2).

�

Theorem 3.2. The spaces L2(RN ,mk) and L2(RN , wk) admit orthogonal Hilbert space
decompositions into eigenspaces of the operators Jk and Hk respectively. More pre-
cisely, define

Vn := {e−∆k/2 p : p ∈ Pn } ⊂ Π, Wn := {e−|x|2/4 q(x), q ∈ Vn} ⊂ S (RN).
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Then Vn is the eigenspace of Jk corresponding to the eigenvalue n, Wn is the eigenspace
of Hk corresponding to the eigenvalue n+ γ +N/2, and

L2(RN ,mk) =
⊕
n∈Z+

Vn , L2(RN , wk) =
⊕
n∈Z+

Wn .

Remark 3.3. A densely defined linear operator (A,D(A)) in a Hilbert space H is
called essentially self-adjoint, if it satisfies

(i) A is symmetric, i.e. 〈Ax, y〉 = 〈x,Ay〉 for all x ∈ D(A);
(ii) The closure A of A is selfadjoint.

In fact, every symmetric operator A in H has a unique closure A (because A ⊆ A∗ ,
and the adjoint A∗ is closed). If H has a countable orthonormal basis {vn, n ∈ Z+} ⊂
D(A) consisting of eigenvectors of A corresponding to eigenvalues λn ∈ R , then it is
straightforward that A is essentially self-adjoint, and that the spectrum of the self-
adjoint operator A is given by σ(A) = {λn , n ∈ Z+} . (See for instance Lemma 1.2.2
of [Da]).

In our situation, the operator Hk is densely defined and symmetric in L2(RN , wk)
(the first order Dunkl operators being anti-symmetric), and the same holds for Jk in
L2(RN ,mk). The above theorem implies that Hk and Jk are essentially self-adjoint
and that

σ(Hk) = {n+ γ +N/2, n ∈ Z+}, σ(Jk) = Z+ .

Proof of Theorem 3.2. Equation (3.4) and induction yield the commuting relations[
ρ,∆n

k

]
= −2n∆n

k for all n ∈ Z+ , and hence[
ρ, e−∆k/2

]
= ∆k e

−∆k/2.

If q ∈ Π is arbitrary and p := e∆k/2q , it follows that

ρ(q) = (ρe−∆k/2)(p) = e−∆k/2ρ(p) + ∆ke
−∆k/2 p = e−∆k/2ρ(p) + ∆kq.

Hence for a ∈ C there are equivalent:

(−∆k + ρ)(q) = aq ⇐⇒ ρ(p) = ap ⇐⇒ a = n ∈ Z+ and p ∈ Pn.
Thus each function from Vn is an eigenfunction of Jk corresponding to the eigenvalue
n, and Vn ⊥ Vm for n 6= m by the symmetry of Jk . This proves the statements for
Jk because Π =

⊕
Vn is dense in L2(RN ,mk). The statements for Hk are then

immediate by the previous Lemma. �

3.3. Generalized Hermite polynomials. The eigenvalues of the CMS Hamiltonians
Hk and Jk are highly degenerate if N > 1. In this section, we construct natural
orthogonal bases for them. They are made up by generalizations of the classical N -
variable Hermite polynomials and Hermite functions to the Dunkl setting. We follow
[R2], but change our normalization by a factor 2.

The starting point for our construction is the Macdonald-type identity: if p, q ∈ Π,
then

[p, q]k =

∫
RN
e−∆k/2p(x)e−∆k/2q(x)dmk(x), (3.6)
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with the probability measure mk defined according to (3.3). Notice that [ . , . ]k is a
scalar product on the R- vector space ΠR of polynomials with real coefficients. Let
{ϕν , ν ∈ ZN

+} be an orthonormal basis of ΠR with respect to the scalar product [. , .]k
such that ϕν ∈ P|ν| . As homogeneous polynomials of different degrees are orthogonal,
the ϕν with fixed |ν| = n can for example be constructed by Gram-Schmidt orthog-
onalization within Pn ∩ ΠR from an arbitrary ordered real-coefficient basis. If k = 0,
the canonical choice of the basis {ϕν} is just ϕν(x) := (ν!)−1/2xν .

Definition 3.4. The generalized Hermite polynomials {Hν , ν ∈ ZN
+} associated with

the basis {ϕν} on RN are given by

Hν(x) := e−∆k/2ϕν(x). (3.7)

Moreover, we define the generalized Hermite functions on RN by

hν(x) := e−|x|
2/4Hν(x), ν ∈ ZN

+ . (3.8)

Hν is a polynomial of degree |ν| satisfying Hν(−x) = (−1)|ν|Hν(x) for all x ∈ RN .
By virtue of (3.6), the Hν , ν ∈ ZN

+ form an orthonormal basis of L2(RN ,mk).

Examples 3.5. (1) Classical multivariable Hermite polynomials. Let k = 0, and
choose the standard orthonormal system ϕν(x) = (ν!)−1/2xν , with respect to
[ . , . ]0 . The associated Hermite polynomials are given by

Hν(x) =
1√
ν!

N∏
i=1

e−∂
2
i /2(xνii ) =

2−|ν|/2√
ν!

N∏
i=1

Ĥνi(xi/
√

2), (3.9)

where the Ĥn, n ∈ Z+ are the classical Hermite polynomials on R defined by

Ĥn(x) = (−1)n ex
2 dn

dxn
e−x

2

.

(2) The one-dimensional case. Up to sign changes, there exists only one orthonor-
mal basis with respect to [ . , . ]k . The associated Hermite polynomials are
given, up to multiplicative constants, by the generalized Hermite polynomials
Hk
n(x/
√

2) on R . These polynomials can be found in [Chi] and were further
studied in [Ros] in connection with a Bose-like oscillator calculus. The Hk

n are

orthogonal with respect to |x|2ke−|x|2 and can be written as{
Hk

2n(x) = (−1)n22nn!L
k−1/2
n (x2),

Hk
2n+1(x) = (−1)n22n+1n!xL

k+1/2
n (x2);

here the Lαn are the usual Laguerre polynomials of index α ≥ −1/2, given by

Lαn(x) =
1

n!
x−αex

dn

dxn

(
xn+αe−x

)
.

(3) The AN−1 -case. There exists a natural orthogonal system {ϕν} , made up by
the so-called non-symmetric Jack polynomials. For a multiplicity parameter
k > 0, the associated non-symmetric Jack polynomials Eν , ν ∈ ZN

+ , as intro-
duced in [O2] (see also [KS]), are uniquely defined by the following conditions:
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(i) Eν(x) = xν +
∑
µ<P ν

cν, µx
µ with cν,µ ∈ R ;

(ii) For all µ <P ν ,
(
Eν(x), xµ

)
k

= 0

Here <P is a dominance order defined within multi-indices of equal total length
(see [O2]), and the inner product (., .)k on Π ∩ ΠR is given by

(f, g)k :=

∫
TN
f(z)g(z)

∏
i<j

|zi − zj|2kdz

with T = {z ∈ C : |z| = 1} and dz being the Haar measure on TN . If f
and g have different total degrees, then (f, g)k = 0. The set {Eν , |ν| = n}
forms a vector space basis of Pn ∩ ΠR . It can be shown (by use of AN−1 -type
Cherednik operators) that the Jack polynomials Eν are also orthogonal with
respect to the Dunkl pairing [ . , . ]k ; for details see [R2]. The corresponding
generalized Hermite polynomials and their symmetric counterparts have been
studied in [La1], [La2] and in [BF1] - [BF3].

As an immediate consequence of Theorem 3.2 we obtain analogues of the classical
second order differential equations for generalized Hermite polynomials and Hermite
functions:

Corollary 3.6. (i)
(
−∆k +

N∑
i=1

xi∂i
)
Hν = |ν|Hν .

(ii)
(
−∆k +

1

4
|x|2
)
hν = (|ν|+ γ +N/2)hν .

Various further useful properties of the classical Hermite polynomials and Hermite
functions have extensions to our general setting. We conclude this section with a list
of them. The proofs can be found in [R2]. For further results on generalized Hermite
polynomials, one can also see for instance [vD].

Theorem 3.7. Let {Hν} be the Hermite polynomials and Hermite functions associated
with the basis {ϕν} on RN and let x, y ∈ RN . Then

(1) Hν(x) = (−1)|ν|e|x|
2/2ϕν(T )e−|x|

2/2 (Rodrigues-Formula)

(2) e−|y|
2/2Ek(x, y) =

∑
ν∈ZN+

Hν(x)ϕν(y) (Generating relation)

(3) (Mehler formula) For all 0 < r < 1,∑
ν∈ZN+

Hν(x)Hν(y)r|ν| =
1

(1− r2)γ+N/2
exp

{
−r

2(|x|2 + |y|2)

2(1− r2)

}
Ek

( rx

1− r2
, y
)
.

The sums on the left are absolutely convergent in both cases.

The Dunkl kernel Ek in (2) and (3) replaces the usual exponential function. It comes
in via the following relation with the (arbitrary!) basis {ϕν} :

Ek(x, y) =
∑
ν∈ZN+

ϕν(x)ϕν(y) (x, y ∈ RN).
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Proposition 3.8. The generalized Hermite functions {hν , ν ∈ ZN
+} are a basis of

eigenfunctions of the Dunkl transform on L2(RN , wk) with

h∧kν = (−i)|ν|hν .

4. Positivity results

4.1. Positivity of Dunkl’s intertwining operator. In this section it is always as-
sumed that k ≥ 0. The reference is [R3].

We shall say that a linear operator A on Π is positive, if A leaves the positive cone

Π+ := {p ∈ Π : p(x) ≥ 0 for all x ∈ RN}
invariant. The following theorem is the central result of this section:

Theorem 4.1. Vk is positive on Π.

Once this is known, more detailed information about Vk can be obtained by its
extension to the algebras Ar , which were introduced in Definition 2.24. This leads to

Theorem 4.2. For each x ∈ RN there exists a unique probability measure µkx on the
Borel-σ -algebra of RN such that

Vkf(x) =

∫
RN
f(ξ) dµkx(ξ) for all f ∈ A|x|. (4.1)

The representing measures µkx are compactly supported with suppµkx ⊆ co {gx, g ∈ G},
the convex hull of the orbit of x under G. Moreover, they satisfy

µkrx(B) = µkx(r
−1B), µkgx(B) = µkx(g

−1(B)) (4.2)

for each r > 0, g ∈ G and each Borel set B ⊆ RN .

The proof of Theorem 4.1 affords several steps, the crucial one being a reduction
from the N -dimensional to a one-dimensional problem. We shall give an outline, but
beforehand we turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. Fix x ∈ RN and put r = |x|. Then the mapping

Φx : f 7→ Vkf(x)

is a bounded linear functional on Ar , and Theorem 4.1 implies that it is positive on the
dense subalgebra Π of Ar , i.e. Φx(|p|2) ≥ 0. Consequently, Φx is a positive functional
on the full Banach-∗-algebra Ar . There exists a representation theorem of Bochner for
positive functionals on commutative Banach-∗-algebras (see for instance Theorem 21.2
of [FD]). It implies in our case that there exists a unique measure νx ∈ M+

b (∆S(Ar))
such that

Φx(f) =

∫
∆S(Ar)

f̂(ϕ) dνx(ϕ) for all f ∈ Ar,

with f̂ the Gelfand transform of f . Keeping Exercise 2.27 in mind, one obtains
representing measures µkx supported in the ball Br ; the sharper statement on the
support is obtained by results of [dJ1]. The remaining statements are easy. �
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The key for the proof of Theorem 4.1 is a characterization of positive semigroups on
polynomials which are generated by degree-lowering operators. We call a linear oper-
ator A on Π degree-lowering, if deg(Ap) < deg(p) for all Π. Again, the exponential
eA ∈ End(ΠN) is defined by a terminating power-series, and it can be considered as a
linear operator on each of the finite dimensional spaces {p ∈ Π : deg(p) ≤ m} . Impor-
tant examples of degree-lowering operators are linear operators which are homogeneous
of some degree −n < 0, such as Dunkl operators. The following key result charac-
terizes positive semigroups generated by degree-lowering operators; it is an adaption
of a well-known Hille-Yosida type characterization theorem for so called Feller-Markov
semigroups which will be discussed a little later in our course, see Theorem 4.18.

Theorem 4.3. Let A be a degree-lowering linear operator on Π. Then the following
statements are equivalent:

(1) etA is positive on Π for all t ≥ 0.
(2) A satisfies the “positive minimum principle”

(M) For every p ∈ Π+ and x0 ∈ RN , p(x0) = 0 implies Ap (x0) ≥ 0.

Exercise 4.4. (1) Prove implication (1) ⇒ (2) of this theorem.
(2) Verify that the (usual) Laplacian ∆ satisfies the positive minimum principle

(M). Can you extend this result to the Dunkl Laplacian ∆k ? (C.f. Exercise
4.20!)

Let us now outline the proof of Theorem 4.1. We consider the generalized Laplacian
∆k associated with G and k , which is homogeneous of degree −2 on Π. With the
notation introduced in (2.2), it can be written as

∆k = ∆ + Lk with Lk = 2
∑
α∈R+

k(α)δα . (4.3)

Here δα acts in direction α only.

Theorem 4.5. The operator e−∆/2e∆k/2 is positive on Π.

Proof. We shall deduce this statement from a positivity result for a suitable semigroup.
For this, we employ Trotter’s product formula, which works for degree-lowering oper-
ators just as on finite-dimensional vector spaces: If A,B are degree-lowering linear
operators on Π, then

eA+Bp (x) = lim
n→∞

(
eA/neB/n

)n
p (x).

Thus, we can write

e−∆/2e∆k/2 p (x) = e−∆/2e∆/2+Lk/2 p (x) = lim
n→∞

e−∆/2
(
e∆/2n eLk/2n

)n
p (x)

= lim
n→∞

n∏
j=1

(
e−(1−j/n)·∆/2 eLk/2n e(1−j/n)·∆/2

)
p (x).

It therefore suffices to verify that the operators

e−s∆etLkes∆ (s, t ≥ 0)
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are positive on Π. Consider s fixed, then

e−s∆etLkes∆ = etA with A = e−s∆Lke
s∆ .

It is easily checked that A is degree-lowering. Hence, in view of Theorem 4.3, it remains
to show that A satisfies the positive minimum principle (M). We may write

A = e−s∆Lke
s∆ = 2

∑
α∈R+

k(α)e−s∂
2
αδα e

s∂2
α ;

here it was used that δα acts in direction α only. It can now be checked by direct
computation that the one-dimensional operators e−s∂

2
αδαe

s∂2
α satisfy (M), and as the

k(α) are non-negative, this must be true for A as well. �

Proof of Theorem 4.1. Notice first that

[Vk p, q]k = [p, q]0 for all p, q ∈ Π. (4.4)

In fact, for p, q ∈ Pn with n ∈ Z+ , one obtains

[Vk p, q]k = [q, Vk p]k = q(T )(Vk p) = Vk(q(∂)p) = q(∂)(p) = [p, q]0 ;

here the characterizing properties of Vk and the fact that q(∂)(p) is a constant have
been used. For general p, q ∈ Π, (4.4) then follows from the orthogonality of the spaces
Pn with respect to both pairings.

Combining the Macdonald-type identity (2.5) with part (4.4), we obtain for all p, q ∈
Π the identity

c−1
k

∫
RN
e−∆k/2(Vkp)e

−∆k/2q e−|x|
2/2wk(x)dx = c−1

0

∫
RN
e−∆/2p e−∆/2q e−|x|

2/2dx.

As e−∆k/2(Vk p) = Vk
(
e−∆/2p

)
, and as we may also replace p by e∆/2p and q by

e∆k/2q in the above identity, it follows that for all p, q ∈ Π

c−1
k

∫
RN
Vkp q e

−|x|2/2wk(x)dx = c−1
0

∫
RN
p e−∆/2e∆k/2q e−|x|

2/2dx. (4.5)

Due to Theorem 4.5, the right side of (4.5) is non-negative for all p, q ∈ Π+ . From
this, the assertion can be deduced by standard density arguments (Π is dense in

L2(RN , e−|x|
2/4wk(x)dx)). �

Corollary 4.6. For each y ∈ CN , the function x 7→ Ek(x, y) has the Bochner-type
representation

Ek(x, y) =

∫
RN
e〈ξ, y〉dµkx(ξ), (4.6)

where the µkx are the representing measures from Theorem 4.2. In particular, Ek
satisfies the estimates stated in Prop. 2.34, and

Ek(x, y) > 0 for all x, y ∈ RN .

Analogous statements hold for the k -Bessel function Jk .
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In those cases where the generalized Bessel functions Jk(., y) allow an interpretation
as the spherical functions of a Cartan motion group, the Bochner representation of these
functions is an immediate consequence of Harish-Chandra’s theory ([Hel]). There are,
however, no group-theoretical interpretations known for the kernel Ek so far.

4.2. Heat kernels and heat semigroups. We start with a motivation: Consider the
following initial-value problem for the classical heat equation in RN :{

∆u− ∂tu = 0 on RN × (0,∞),

u( . , 0) = f
(4.7)

with initial data f ∈ C0(RN), the space of continuous functions on RN which vanish
at infinity. (We could equally take data from Cb(RN), but C0(RN) is more convenient
in the following considerations). The basic idea to solve (4.7) is to carry out a Fourier
transform with respect to x . This yields the candidate

u(x, t) = gt ∗ f(x) =

∫
RN
gt(x− y)f(y)dy (t > 0), (4.8)

where gt is the Gaussian kernel

gt(x) =
1

(4πt)n/2
e−|x|

2/4t.

It is a well-known fact from classical analysis that (4.8) is in fact the unique bounded
solution within the class C2(RN × (0,∞)) ∩ C(RN × [0,∞)).

Exercise 4.7. Show that H(t)f(x) := gt∗f(x) for t > 0, H(0) := id defines a strongly
continuous contraction semigroup on the Banach space (C0(RN), ‖.‖∞) in the sense of
the definition given below.
Hint: Once contractivity is shown, it suffices to check the continuity for functions from
the Schwartz space S (RN). For this, use the Fourier inversion theorem.

Definition 4.8. Let X be a Banach space. A one-parameter family (T (t))t≥0 of
bounded linear operators on X is called a strongly continuous semigroup on X , if it
satisfies

(i) T (0) = idX , T (t+ s) = T (t)T (s) for all t, s ≥ 0
(ii) The mapping t 7→ T (t)x is continuous on [0,∞) for all x ∈ X .

A strongly continuous semigroup is called a contraction semigroup, if ‖T (t)‖ ≤ 1 for
all t ≥ 0.

Let L(X) denote the space of bounded linear operators in X . If A ∈ L(X), then

etA =
∞∑
n=0

tn

n!
An ∈ L(X)

defines a strongly continuous semigroup on X (this one is even continuous with respect
to the uniform topology on L(X)). We obviously have

A = lim
t↓0

1

t
(etA − id) in L(X).
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Definition 4.9. The generator of a strongly continuous semigroup (T (t))t≥0 in X is
defined by

Ax := lim
t↓0

1

t
(T (t)x− x), with domain

D(A) :={x ∈ X : lim
t↓0

1

t

(
T (t)x− x

)
exists in X}. (4.9)

Theorem 4.10. The generator A of (T (t))t≥0 is densely defined and closed.

An important issue in the theory of operator semigroups and evolution equations
are criteria which characterize generators of strongly continuous semigroups.

Let us return to the Dunkl setting. As before, ∆k denotes the Dunkl Laplacian
associated with a finite reflection group on RN and some multiplicity function k ≥ 0,
and the index γ is defined according to (2.4). We are going to consider the following
initial-value problem for the Dunkl-type heat operator ∆k − ∂t :

Find u ∈ C2(RN × (0,∞)) which is continuous on RN × [0,∞) and satisfies{
(∆k − ∂t)u = 0 on RN × (0,∞),

u( . , 0) = f ∈ Cb(RN).
(4.10)

The solution of this problem is given, just as in the classical case k = 0, in terms of
a positivity-preserving semigroup. We shall essentially follow the treatment of [R2].

Lemma 4.11. The function

Fk(x, t) :=
1

(2t) γ+N/2ck
e−|x|

2/4t

solves the generalized heat equation ∆ku− ∂tu = 0 on RN × (0,∞).

Proof. A short calculation. Use the product rule (2.1) as well as the identity∑N
i=1 Ti(xi) = N + 2γ . �

Fk generalizes the fundamental solution for the classical heat equation which is given
by F0(x, t) = gt(x) (as defined above). It is easily checked that∫

RN
Fk(x, t)wk(x)dx = 1 for all t > 0.

In order to solve (4.10), it suggests itself to apply the Dunkl transform under suitable
decay assumptions on the initial data. In the classical case, the heat kernel gt(x − y)
on RN is obtained from the fundamental solution simply by translations. In the Dunkl
setting, it is still possible to define a generalized translation which matches the action
of the Dunkl transform, i.e. makes it a homomorphism on suitable function spaces.

The notion of a generalized translation in the Schwartz space S (RN) is as follows (c.f.
[R2]):

τyf(x) :=
1

ck

∫
RN
f̂ k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ; y ∈ RN . (4.11)
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In the same way, this could be done in L2(RN , wk). A powerful extension to C∞(RN)
is due to Trimèche [T]. Note that in case k = 0, we simply have τyf(x) = f(x + y).
In the rank-one case, the above translation coincides with the convolution on a so-
called signed hypergroup structure which was defined in [R1]; see also [Ros]. Similar
structures are not yet known in higher rank cases. Clearly, τyf(x) = τxf(y); moreover,
the inversion theorem for the Dunkl transform assures that τ0f = f and

(τyf)∧k(ξ) = Ek(iy, ξ)f̂
k(ξ).

From this it is not hard to see that τyf belongs to S (RN) again. Let us now con-
sider the “fundamental solution” Fk(. , t) for t > 0. A short calculation, using the
reproducing property Prop. 2.35(2), shows that

F̂ k
k (ξ, t) = c−1

k e−t|ξ|
2

. (4.12)

By the quoted reproducing formula one therefore obtains from (4.11) the representation

τ−yFk(x, t) =
1

(2t)γ+N/2ck
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
.

This motivates the following

Definition 4.12. The generalized heat kernel Γk is defined by

Γk(t, x, y) :=
1

(2t)γ+N/2ck
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
, x, y ∈ RN , t > 0.

Notice in particular that Γk > 0 (thanks to Corollary 4.6) and that y 7→ Γk(t, x, y)
belongs to S (RN) for fixed x and t . We collect a series of further fundamental
properties of this kernel which are all more or less straightforward.

Lemma 4.13. The heat kernel Γk has the following properties:

(1) Γk(t, x, y) = c−2
k

∫
RN
e−t|ξ|

2

Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ .

(2)

∫
RN

Γk(t, x, y)wk(y)dy = 1.

(3) Γk(t, x, y) ≤ 1

(2t)γ+N/2ck
max
g∈G

e−|gx−y|
2/4t .

(4) Γk(t+ s, x, y) =

∫
RN

Γk(t, x, z) Γk(s, y, z)wk(z)dz.

(5) For fixed y ∈ RN , the function u(x, t) := Γk(t, x, y) solves the generalized heat
equation ∆ku = ∂tu on RN × (0,∞).

Proof. (1) is clear from the definition of generalized translations. For details concerning
(2) see [R2]. (3) follows from our estimates on Ek , while (4) is obtained by inserting
(1) for one of the kernels in the integral. Finally, (5) is obtained from differentiating
(1) under the integral. For details see again [R2]. �
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Definition 4.14. For f ∈ Cb(RN) and t ≥ 0 set

H(t)f(x) :=


∫

RN
Γk(t, x, y)f(y)wk(y)dy if t > 0,

f(x) if t = 0
(4.13)

Notice that the decay of Γk assures the convergence of the integral. The properties
of the operators H(t) are most easily described on the Schwartz space S (RN). The
following theorem is completely analogous to the classical case.

Theorem 4.15. Let f ∈ S (RN). Then u(x, t) := H(t)f(x) solves the initial-value
problem (4.10). Moreover, H(t)f has the following properties:

(1) H(t)f ∈ S (RN) for all t > 0.
(2) H(t+ s) f = H(t)H(s)f for all s, t ≥ 0.
(3) ‖H(t)f − f‖∞,RN → 0 as t→ 0.

Proof. (Sketch) By use of Lemma 4.13 (1) and Fubini’s theorem, we write

u(x, t) = H(t)f(x) = c−1
k

∫
RN
e−t|ξ|

2

f̂ k(ξ)Ek(ix, ξ)wk(ξ)dξ (t > 0). (4.14)

In view of the inversion theorem for the Dunkl transform, this holds for t = 0 as well.
Properties (1) and (3) as well as the differential equation are now easy consequences.
Part (2) follows from the reproducing formula for Γk (Lemma 4.13 (4)). �

Exercise 4.16. Carry out the details in the proof of Theorem 4.15.

We know that the heat kernel Γk is positive; this implies that H(t)f ≥ 0 if f ≥ 0.

Definition 4.17. Let Ω be a locally compact Hausdorff space. A strongly continu-
ous semigroup (T (t))t≥0 on (C0(Ω), ‖.‖∞) is called a Feller-Markov semigroup, if it is
contractive and positive, i.e. f ≥ 0 on Ω implies that T (t)f ≥ 0 on Ω for all t ≥ 0.

We shall prove that the linear operators H(t) on S (RN) extend to a Feller-Markov
semigroup on the Banach space (C0(RN), ‖.‖∞). This could be done by direct cal-
culations similar to the usual procedure for the classical heat semigroup, relying on
the positivity of the kernel Γk . We do however prefer to give a proof which does not
require this rather deep result, but works on the level of the tentative generator. The
tool is the following useful variant of the Lumer-Phillips theorem, which characterizes
Feller-Markov semigroups in terms of a “positive maximum principle”, see e.g. [Kal],
Thm. 17.11. In fact, this Theorem motivated the positive minimum principle 4.3 in
the positivity-proof for Vk .

Theorem 4.18. Let (A,D(A)) be a densely defined linear operator in (C0(Ω), ‖.‖∞).
Then A is closable, and its closure A generates a Feller-Markov semigroup on C0(Ω),
if and only if the following conditions are satisfied:

(i) If f ∈ D(A) then also f ∈ D(A) and A(f) = A(f).
(ii) The range of λid− A is dense in C0(Ω) for some λ > 0.

(iii) If f ∈ D(A) is real-valued with a non-negative maximum in x0 ∈ Ω, i.e.
0 ≤ f(x0) = maxx∈Ω f(x), then Af(x0) ≤ 0. (Positive maximum principle).
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We consider the Dunkl Laplacian ∆k as a densely defined linear operator in C0(RN)
with domain S (RN). The following Lemma implies that it satisfies the positive max-
imum principle:

Lemma 4.19. Let Ω ⊆ RN be open and G-invariant. If a real-valued function f ∈
C2(Ω) attains an absolute maximum at x0 ∈ Ω, i.e. f(x0) = supx∈Ω f(x), then

∆kf(x0) ≤ 0 .

Exercise 4.20. Prove this lemma in the case that 〈α, x0〉 6= 0 for all α ∈ R . (If
〈α, x0〉 = 0 for some α ∈ R , one has to argue more carefully; for details see [R2].)

Theorem 4.21. The operators (H(t))t≥0 define a Feller-Markov semigroup on C0(RN).
Its generator is the closure ∆k of (∆k,S (RN)). This semigroup is called the general-
ized heat semigroup on C0(RN).

Proof. In the first step, we check that ∆k (with domain S (RN)) satisfies the conditions
of Theorem 4.18: Condition (i) is obvious and (iii) is an immediate consequence of
the previous lemma. Condition (ii) is also satisfied, because λid − ∆k maps S (RN)
onto itself for each λ > 0; this follows from the fact that the Dunkl transform is a

homeomorphism of S (RN) and
(
(λI −∆k)f

)∧k
(ξ) = (λ + |ξ|2)f̂ k(ξ). Theorem 4.18

now implies that ∆k is closable, and that its closure ∆k generates a Feller-Markov
semigroup (T (t))t≥0 . It remains to show that T (t) = H(t) on C0(RN). Let first f ∈
S (RN). From basic facts in semigroup theory, it follows that the function t 7→ T (t)f
is the unique solution of the so-called abstract Cauchy problem

d

dt
u(t) = ∆ku(t) for t > 0,

u(0) = f
(4.15)

within the class of all (strongly) continuously differentiable functions u on [0,∞) with
values in (C0(RN), ‖.‖∞). It is easily seen from Theorem 4.15, and in particular from
formula (4.14), that t 7→ H(t)f satisfies these conditions. Hence T (t) = H(t) on
S (RN). This easily implies that Γk ≥ 0 (which we did not presuppose for the proof!),
and therefore the operators H(t) are also contractive on C0(RN). A density argument
now finishes the proof. �

Based on this result, it is checked by standard arguments that for data f ∈ Cb(RN),
the function u(x, t) := H(t)f(x) solves the initial-value problem (4.10). Uniqueness
results are established by means of maximum principles, just as with the classical heat
equation. Moreover, the heat semigroup (H(t))t≥0 can also be defined (by means of
(4.13)) on the Banach spaces Lp(RN , wk), 1 ≤ p < ∞ . In case p = 2, the following is
easily seen by use of the Dunkl transform:

Proposition 4.22. [R2] The operator (∆k,S (RN)) in L2(RN , wk) is densely defined
and closable. Its closure generates a strongly continuous and positivity-preserving con-
traction semigroup on L2(RN , wk) which is given by

H(t)f(x) =

∫
RN

Γk(t, x, y)f(y)wk(y)dy , (t > 0).
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Theorem 4.21 was the starting point in [RV] to construct an associated Feller-Markov
process on RN which can be considered a generalization of the usual Brownian motion.
The transition probabilities of this process are defined in terms of a semigroup of
Markov kernels of RN , as follows: For x ∈ RN and a Borel set A ∈ B(RN) put

Pt(x,A) :=

∫
A

Γk(t, x, y)wk(y)dy (t > 0), P0(x,A) := δx(A),

with δx denoting the point measure in x ∈ RN . Then (Pt)t≥0 is a semigroup of Markov
kernels on RN in the following sense:

(1) Each Pt is a Markov kernel, and for all s, t ≥ 0, x ∈ RN and A ∈ B(RN),

Ps ◦ Pt(x,A) :=

∫
RN
Pt(z, A)Ps(x, dz) = Ps+t(x,A).

(2) The mapping [0,∞) → M1(RN), t 7→ Pt(0, . ), is continuous with respect to
the σ(M1(RN , Cb(RN))-topology.

Moreover, the semigroup (Pt)t≥0 has the following particular property:

(3) Pt(x, . )
∧k(ξ) = Ek(−ix, ξ)Pt(0, . )∧k(ξ) for all ξ ∈ RN ,

hereby the Dunkl transform of the probability measures Pt(x, . ) is defined by

Pt(x, . )
∧k(ξ) :=

∫
RN
Ek(−iξ, x)Pt(x, dξ).

The proof of (1) – (3) is straightforward by the properties of Γk and Theorem 4.21.
In the classical case k = 0, property (3) is equivalent to (Pt)t≥0 being translation-
invariant, i.e.

Pt(x+ y, A+ y) = Pt(x,A) for all y ∈ RN .

In our general setting, a positivity-preserving translation on M1(RN) cannot be ex-
pected (and does definitely not exist in the rank-one case according to [R1]). Property
(3) thus serves as a substitute for translation-invariance. The reader can see [RV] for
a study of the semigroup (Pt)t≥0 and the associated Feller-Markov process.

5. Notation

We denote by Z, R and C the sets of integer, real and complex numbers respectively.
Further, Z+ = {n ∈ Z : n ≥ 0} . For a locally compact Hausdorff space X , we
denote by C(X), Cb(X), Cc(X), C0(X) the spaces of continuous complex-valued func-
tions on X, those which are bounded, those with compact support, and those which
vanish at infinity, respectively. Further, Mb(X), M+

b (X), M1(X) are the spaces of
regular bounded Borel measures on X, those which are positive, and those which are
probability-measures, respectively. Finally, B(X) stands for the σ -algebra of Borel
sets on X .
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