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Abstract 

Dunkl operators are differential-difference operators on R N which generalize partial derivatives. They lead to gener- 
alizations of Laplace operators, Fourier transforms, heat semigroups, Hermite polynomials, and so on. In this paper we 
introduce two systems of biorthogonal polynomials with respect to Dunkl's Gaussian distributions in a canonical way. 
These systems, called Appell systems, admit many properties known from classical Hermite polynomials, and turn out to 
be useful for the analysis of Dunkl's Gaussian distributions. In particular, these polynomials lead to a new proof of a 
generalized formula of Macdonald due to Dunkl. The ideas for this paper are taken from recent works on non-Gaussian 
white noise analysis and from the umbral calculus. (~) 1998 Elsevier Science B.V. All rights reserved. 

A M S  classification: primary 33C80; secondary 43A32, 33C50, 60Bl 5, 82B23 
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1. Introduction 

Dunkl operators are differential-difference operators on ~N related to finite reflection groups. They 
can be regarded as a generalization of partial derivatives and play a major role in the description 
of Calogero-Moser-Sutherland models of quantum many-body systems on the line. Dunkl operators 
lead to generalizations of exponential functions, Fourier transforms, Laplace operators, and Gaussian 
distributions on R u. The corresponding basic theory is developed in [6-8, 10, 13, 16, 17] and will 
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be briefly reviewed in Section 2 below (with references to proofs). A more detailed approach to the 
Dunkl theory will be given in [18]. 

In this paper, we study systems of  biorthogonal polynomials with respect to generalized Gaussian 
distributions of the form w(x)exp{ -c l x [2} ,  where w is a homogeneous weight function with certain 
reflection group symmetries. Generalized Gaussians of  such type were first considered by Macdonald 
and Mehta (see [12]) and replace the classical Gaussian in the Dunkl theory. We mention that sys- 
tems of orthogonal polynomials related to Dunkl's Gaussian distributions on Nx, called generalized 
Hermite polynomials, have been studied in various contexts during the last years, see e.g [2, 5, 16, 
19] and references therein. In the case of  the symmetric group, the generalized Hermite polynomi- 
als play a role in quantum many-body systems of  Calogero-Moser-Sutherland type and are closely 
related to Jack polynomials. 

The biorthogonal systems of this paper are introduced in a canonical way; the method is as follows: 
In Section 3 we define the so-called modified moment functions m,. (vC 7/N) which form general- 

vl . vx ~N izations of the monomials x ~' := Xl • .x u on such that each m,. is a homogeneous polynomial of  
degree Iv[ = v~ + . . .  +VN. These functions lead to generalized moments of Dunkl's Gaussian distribu- 
tions and are very closely related to the classical moments of the classical Gaussian distributions on 
~u. Based on these modified moments, we introduce two systems R,.(t,x) and Sv(t,x) (v E yX, X E ~U, 
t C R) of  polynomials in N +  1 variables via two generating functions involving Dunkl's kernel K and 
Dunkl's Gaussian distribution. We show that for all t > 0 ,  the so-called Appell systems (R,.(t, .))v~.~ 
and (Sv(t, .))v~z~ form biorthogonal polynomials with respect to Dunkl's Gaussian distribution with 

variance parameter t. We also show that R,,( t ,x)=e-t~kmv(x)  and S,.( t ,x)= e-tA~x v hold where A~ 
denotes Dunkl's Laplacian. At the end of  this paper, we present some applications of these results 
including a Rodriguez-type formula and a new proof of  a generalized Macdonald-formula given orig- 
inally in [7]. We point out that the methods of this paper can be extended to other distributions and 
that there exist natural applications in martingale theory (which are well known for classical Hermite 
polynomials and Brownian motions); for details see [18]. The main purpose of this paper is to give 
a short introduction to the Appell systems (R,.(t, . ) ) , . ~  and (S,.(t, .)),.cz~ without a deeper probabilis- 
tic background. 

2. Dunkl operators and Dunkl transform 

In this section we collect some basic notations and facts from the Dunkl theory which will be 
important later on. General references here are [6-8, 10, 13]; for a background on reflection groups 
and root systems see, for instance, [9]. 

2.1. Basic notions 

For ~ E ~ N \ { 0 } ,  let o-~ be the reflection in the hyperplane//~ C ~N orthogonal to ~, i.e., o-~(x) = x -  
(2(~,x)/[~12)~, where (.,.) is the Euclidean scalar product on ~u and Ix[ := (xv/~,x~. 

A finite set R C RN\{0} is called a root system if R A ~ .  ~ = {-+-~} and o-~R = R for all ~ E R. For 
a given root system R the reflections a~ (~ E R) generate a group W, the reflection group associated 
with R. This group is finite, and all reflections in W correspond to suitable pairs of  roots; see 
[9]. Now fix fl c ~x \ U~ER ~ and a positive subsystem R+ = {~ c R: ( ~, r )  > 0}; then for each ~ c R 
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either ~ E R+ or - ~  E R+. We assume from now on, with no loss of generality, that the root system 
R is normalized, i.e, that 1~[ = x/2 for all ~ E R. 

A multiplicity function k on a root system R is defined as a W-invariant function k : R  ~ C. If 
one regards k as function on the corresponding reflections, this W-invariance just means that k is 
constant on the conjugacy classes of reflections in W. In this paper, we always assume that k i> 0 
(i.e. all values of  k are nonnegative), though several results may be extended to larger ranges of k. 
For abbreviation, we introduce 

7 :=7(  k ) : =  ~ k(~) and 
xER+ 

where wk is the weight function 

I-I I( ,x)l 

)' 
Ck := x e-Ixl: Wk(X) dx , (2.1) 

(2.2) 

Note that wk is W-invariant and homogeneous of degree 27. We shall use the following further 
abbreviations: ~ = C  [~x] denotes the algebra of polynomial functions on ~u and ~,,, (n E 7/+) the 
subspace of homogeneous polynomials of  degree n. We use the standard multi-index notations, i.e. 
for multi-indices v, p E 7/x we write 

Ivl:=v  + ' "  +vN, v! :=vl!"  v2!'-'v,v!, (;): (;1) (;;) 
as well as 

X V . v[ v~v' A V . _ _  ~"1 . Vh, • =xl  '"xA; and .--Al "'AN 

for x E ~X and any family A = (A, . . . . .  AN ) of  commuting operators on ~ .  Finally, the partial ordering 
~< on Z~ is defined by p<<,v:c~pi<<.vi for i =  1 . . . .  ,N. 

2.2. Dunkl  operators 

The Dunkl operators T~ ( i =  1 . . . .  ,N)  on ~N associated with the finite reflection group W and 
multiplicity function k are given by 

7",-f(x) := c~if(x) + ~ k(a) cti f ( x )  - f (a~x) ~R+ " (7,X} , f E C ' ( ~ x ) ,  (2.3) 

here ~i denotes the ith partial derivative. In case k = 0, the Ti reduce to the corresponding partial 
derivatives. The most important basic properties of the Ti are as follows (see [6]): 
(1) The set {T,.} generates a commutative algebra of  differential-difference operators on ~ .  
(2) Each T~ is homogeneous of  degree - 1  on ~ ,  i.e., T,.p E~,_I for pE~,, .  
(3) (Product rule:) T , . ( fg )=(T~f )  9 + f(T,.g) for i = 1  . . . . .  N and f,  gECl([~ N) such that g is 
W-invariant. 

A major tool in this paper is a generalized exponential kernel K(x, y)  on ~x × ~N, which re- 
places the usual exponential function e (x'y>. It was introduced in [7] by means of an intertwining 
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isomorphism V of ~ which is characterized by the properties 

V(~,,)=~,, V[.~ o =id,  and T,.V= V~ ( i=  1,...,N). (2.4) 

Let B =  {x E ~U: IX[ ~< 1}. Then V extends to a bounded linear operator on the algebra 

A:= f ' B - - - + C ' f = ~ - ~ f ~  w i t h f , , E ~  and [[/[IA:= [If, l[~,~<oo 
n=0 n=0 

V oo by (~,=0 f~) := ~,=0 Vf~. The Dunkl kernel K is now defined by 

K(x,y)  := V(e("'l)(x) (x, y E  ~N). (2.5) 

K has a holomorphic extension to cN X C N and is symmetric in its arguments. We also note 
that for y E ~u, the function x ~--~K(x, y)  may be characterized as the unique analytic solution of 
T i f = y ~ f ( i =  1 . . . . .  N)  with f ( 0 ) =  1; see [13]. 

Example 2.1. (1) If k = 0 ,  then K(z, w ) = e  (z'W/:z e~-~; ~' lzj~ for all z, wE C N. 
(2) If N = 1 and W--7/2, then the multiplicity function is a single parameter k/>0, and for k >0 

the intertwining operator is given explicitly by 

r(k + ½) f ,  
Vkf(x) -- F( ½ ) F(k) J_ _, f (xt)(1 - t)k-'(1 + t) k dt, 

see [7]. The associated Dunkl kemel can be written as 
z w  

K(z,w) =jk_l/2(izw) + 2k +~jk+l/z(izw), z,w E C, 

where for ~ ~> - ½, j~ is the normalized spherical Bessel function 

J~z ~ (-1)n(z/2)2" 
L ( z ) = U F ( a  + 1) ) = F ( ~ +  1) n ! F ( n + a +  1)" 

n 0 

For details and related material see [8, 15, 18, 19], and references cited there. 

For later references, we next list some further known properties of K. 

Theorem 2.2. Let Z, w E C N, x, y E ~N /~ ~ C, and 9 E W. Then 
(1) K(z ,0 )= l ,  K(2z, w)=K(z ,  2w), K ( z ,w)=K(w , z ) ,  K( - ix ,  y )=K( ix ,  y), and K(9(x) ,9(y))= 

X(x, y). 
(2) TTK(x,y)---yjK(x,y) for  j - - 1  . . . . .  N, where the superscript x indicates that the operators act 

with respect to the x-variable. 
(3) For each x E g~N there is a unique probability measure p~ EMI(~ N) with supp px c {z E ~N: [Z[ 

~<]X[} such that 

ofu, ' e(~ ~'/d#x(Z) for  all y E C N. K(x, Y) 

In particular, K(x, y) > 0 for  all x, y E ~N. 
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(4) For all multi-indices v E Z N, 

]O".K(x,z )[ <<, [x[IVle IxllR¢~l. 

In particular [K(z, w)[ <~ el~llwl and [K(ix, y)[ ~< 1. 

Proof. Parts (1) and (2) follow from the characterizations of K in Section 2.2; cf. [7, 8]. Part (3) 
is shown in [17], and Part (4) is a consequence of Part (3). [] 

The generalized exponential function K gives rise to an integral transform, called the Dunkl 
transform on Rx, which was introduced in [8]. To emphasize the similarity to the classical Fourier 
transform, we use the following notion: 

2.3. The Dunkl transform 

The Dunkl transform associated with W and k ~> 0 is given by 

~" Ll(~ ~, wk(x) dx) ---* Cb(~ N ) ;  f ( y ) : = ~ . ,  f ( x ) K ( - i y ,  x)w~.(x)dx (yE Nx). 

The Dunkl transform of a function fEL~(~N,wk(x)dx) satisfies [Ifll  <ll.fll,,w c    by 
Theorem 2.2(4). Moreover, according to [8, 10, 18] many results from classical Fourier analy- 
sis on NN have analogues for the Dunkl transform, like the if-inversion theorem, the lemma of 
Riemann-Lebesgue, and Plancherel's formula. 

We next extend the Dunkl transform to measures. We denote the Banach space of all C-valued 
bounded Borel measures on N s by Mb(RU), while MI(R N) is the subspace consisting of all proba- 
bility measures on NN. 

The Dunkl transform of a measure # EMu(R N) is given by ~(y):= fa., K(- iy ,  x)dl~(x) (yE RN); 
it satisfies ~ E Cb(N N) with II~ll~ ~ II~ll; cf. Theorem 2.2(4). Moreover, 
(1) If #EMb(N x) and fELl(RX,wk(x)dx),  then 

~ ,  ~(x)f(x)wk(x) dx = £~, f d p ;  

(2) If #EMb(• N) satisfies ~ = 0, then # = 0 .  
In fact, Part (1) follows from Fubini's theorem, and Part (2) follows from Part (1) and the fact 

that (L~(~N,wk(x)dx)) A is 11. Jim-dense in C0(~w); see [10]. 
We next turn to Dunkl's Laplace operator and the associated heat semigroup: 

2.4. The generalized Laplacian 

The generalized Laplacian Ak associated with W and k >t0 is defined by 

N 

Akf := ~ 2 f ,  f EC2(~N). 
j= l  

(2.6) 
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It is shown in [16] that Ak is a closable linear operator on Co(~ N) and that its closure (again denoted 
by Ak) generates a positive, strongly continuous contraction semigroup (etAk)t>~O o n  Co(~X). This 
semigroup is given explicitly in terms of the following generalized heat kernels. 

2.5. Generalized heat kernels 

The generalized heat kernel Fk is defined by 

ck e-~lxl%l~'121'4t g ( ~/-~ v ~ )  Fk(x, y, t) :-- (4ty,+N/~ , (X, y E ~N, t > 0), (2.7) 

where ck is given in (2.1). The kernel Fk has the following properties (see Lemma 4.5 in [16]): Let 
x, y, z E ~N and t > 0. Then 

(1) Fk(x,y,t) Fk(y,x,t) ~2//A;,+N/2 . . . . .  = =ok/t- ,  )f~,,e 'l;l'K(lx,¢)K(-ly,~)wk(~)d¢, and by the inversion 
formula for the Dunkl transform, Fk(x,., t)A(z)= e 'r:12. K(-ix, z). 

(2) fR., Fk(x, y,t)wk(x)dx= 1 and IFk(x, y,t)I <<. M~/(t:~+x"2)e -(H-lyl)2/4'. 
Moreover, the integral operators 

H(t)f(x):=L.,. Fk(x,y,t)f(y)wk(y)dy for t > 0  and H(O) f := f  (2.8) 

are related to the semigroup (etA*)~>.0 by the fact that for all f E Co(R N) U~ 

e ta ' f=H(t ) f  (t>>.O). (2.9) 

For f E Co(ff~ N) this is shown in [16]. Moreover, by Proposition 2.1 of [8] we have 

1 (e-3~/2 p ( x ) =  ,~Fk(x,y, 5) p)(y)w~(y)dy for p E ~ .  (2.10) 

This proves (2.9) for t =  ½, as e -~/2 is the inverse of e A~/2 o n  ~ .  The general case t > 0  follows by 
renormalization (see Lemma 2.1 of  [ 16]). 

We next turn to a probabilistic interpretation of  the generalized heat kernels: 

2.6. k-Gaussian semigroups 

The k-Gaussian distribution pr(x,.) E M ~ (~N) with "center" x E ~N and "variance parameter" t > 0 
is given by 

P~r(x'A) := fA Fk(x, y, t)wk(y) dy (A C ~N a Borel set). 

In particular, 

pt/~(0,A) __ e ~  I e-lylZ/4t wk(y) dy. 
(4t) ~'+~'2 JA 

(2.11) 

It follows readily from the statements of  Section 2.5 that the k-Gaussian distributions Ptr(x, .) (t > 0 )  
have the following properties: 
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(1) The Dunkl transforms of the probability measures Pf(x,.) (t~O, x E EU) satisfy 

P f ( 0 , . ) A ( y ) = e  -'l-vl2 and Pf(x , . )A(y)=K(- ix ,  y).p,r(o,.)A(y) for y E  R u. 

(2) For each t > 0, P f  is a Markov kernel on R N, and (Pf)t  ~0 forms a semigroup of  Markov kernels 
on ~x; see Section 3.5 of [18] for details. 

3. Moment functions 

In this section we first introduce homogeneous polynomials m,. which generalize the monomials 
x' on R u. These monomials will be called generalized moment functions and will be used to define 
generalized moments of  k-Gaussian distributions. Our approach is motivated by similar notions in [4] 
and references there in the setting of probability measures on hypergroups. In the sequel, a reflection 
group W with root system R and multiplicity function k/> 0 is fixed. 

3.1. Modified moment functions 

As the Dunkl kemel K is analytic o n  C N×N, there exist unique analytic coefficient functions m, 
(VE~ N) on C u with 

m,.(x) , cN K(x ,y )= ~ ~. y (x, yE  ). (3.1) 

The restriction of  m,, to ~N is called the vth moment function. It is given explicitly by 

m,.(x) = (a~;K(x, Y))l,,=0 = V(x'), (3.2) 

where the first equation is clear by (3.1) and the second one follows from 

?~:K(x, y))l,,=0 = O):(~e (x'v>)1,,-0 = I,,:0) = V(x'); 

see Section 2.2. In particular, the homogeneity of  V ensures that m,, E ~1,'1- Moreover, for each 
n E 7/+, the moment functions (m,.)l,.l_,, form a basis of  the space ~ .  

We have the following Taylor-type formula involving the moment functions m,.: 

Proposition 3.1. Let f "  C N -'~ C be analytic in a neighborhood of  O. Then 

m,.(y) T"f(0) ,  f ( Y ) =  X v, 
n=O Ivl=n 

where the series ~,~o converges absolutely and uniformly in a neighborhood of  O. 

Proof. Assume first that f c ~ .  As V~, = ~ ,  we have 8 " f ( 0 ) =  VS"f (0)=  T"Vf(O). Thus, 
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which gives 

f(Y) = Z m~. y)Tvf(O)" 

The assertion now follows from the corresponding results for the classical case. [] 

Using the modified moment functions m,., we next introduce the modified moments of the 
k-Gaussian measures P~r(x, .). 

3.2. Modified moments of k-Gaussian measures 

For t > 0 ,  x E EN and v E Z N, the vth modified moment of Ptr(x,.) is defined by 

m"(Ptr(x' ")) := fRu m,, dptr(x, .). (3.3) 

These modified moments are closely related to the classical moments of  the classical normal distri- 
butions on ~N: 

Lemma 3.2. Let v E Z N, t > 0, and x E ~N. Then: 

(1) m,.(Ptr(x, .)) -- il' i a~: Pf(x, . )A(y ) l  ~_ 0 = i b'i a2i(K(x, - i y ) .  e -tlvb2)lv_ 0; 

(V )mp(ptr(o,.))m~. ,,(x); (2) mv(ptr(x,.))= ~ P 
p~v 

{ (2g')!tlI'l i fv=2#for some # E Z +  ~, /d 

(3) mv(Ptr(o,.))= 0 otherwise. 

Proof. (1) The first equation is obtained from (3.2) and inductive use of the dominated convergence 
theorem (which is applicable by Theorem 2.2(4)). The second assertion is clear. 

(2) By Part (1), Eq. (3.2) and the Leibniz rule for partial derivatives of products we obtain 

m,.(Ptr(x,.)) --ib'' ~ (p)~.{~(e-¢vl2)[,':°8:i-PK(x'-iy)ly =° 
pEZ~,p<~ v 

= Z  p 
p<~r 

(3) This follows from Part (1) for x = 0 and the power series of  the exponential function. [] 

4. Appeil systems for k-Gaussian semigroups 

Based on the moment functions of  the previous section and certain generating functions, we 
now construct two systems (Rv),.¢z~ and (Sv)~.EZ~ of  polynomials on ~ × ~N associated with the 
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k-Gaussian semigroup (Pf),~>0. These systems, called Appell characters and cocharacters, satisfy 
several algebraic relations, the most important being the biorthogonality established in Theorem 4.3 
below. Among other results, we present a new proof for a generalization of a formula of Macdonald 
[1 l] due to Dunkl [7]. Our approach and notations are motivated by related concepts in non-Gaussian 
white-noise-analysis (see [1, 3]) and the umbral calculus in [14]. 

4.1. Appell characters 

As the Dunkl kernel K is analytic, we have a power series expansion of the form 

--~y l' 
K ( x , - i y )  _ g(x,-iy)e@'l~ = ~ ( ) R,,(t,x) for t i>0 and x, y E NN 

P,(0, . ) " ( y )  , ,c~ " 

with certain functions Rv on [0, oc[ x N N. Analogous to (3.4), these are given by 

~_0 = ~ (;)a, ._e(t)m,,(x) ,  R,.(t,x)= ib'lS~;(K(x,-iy)e 'M~) 
p<~v 

where 

{ a;(t):=il~l~(e&"l~)v=°= 0 

(4.1) 

(4.2) 

if 2 = 2# for # E 7/x+, (4.3) 

otherwise. 

In particular, the Rv are real polynomials in the (N + 1) variables (t,x) of degree Iv[, and after 
analytic continuation, Rv(t, .) is a polynomial of degree Iv[ for each t E ~. The polynomials Rr are 
called the Appell characters associated with the semigroup (Pf),~>0. 

We next collect some properties and examples of Appell characters. 

Lemma 4.1. In the setting of  Section 4.1, the following holds for all v E 7/N: 
(1) Inversion formula: For all x E ~N and t E ~, 

V 

z 
pEZ'~,p~v 

(2) For all t E ~  and n E Z + ,  the family (Rv(t,.)),,cpLH<~, is a basis of  the space ~)~=0~ of  all 
polynomials o f  degree at most n. 

(3) For x E ~x and t >>- O, 

f Rv(t,y) .)(y) mr(x). d p, r ( x , 

(4) For t > 0  and x E  ~U, Rv(t,x)= x/~HR~,(1,x/x/~). 
(5) For all x E ~  N, t E R  and j E { 1  . . . . .  N},  

T iR~.+e,(t,x)=(v j + 1)R~.(t,x), 

here the Dunkl operator Tj. acts with respect to the variable x and ej E 7_ u is the jth unit vector. 
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Proof. (1) Using (4.1) and (4.3), we obtain 

K(x,-iy)=e-tlyl2.(etlyl2K(x,-iy))= (~.a;(~).l)(-iy);) (i,~z+(-ipy)F)Rp(t,x)) 

( ( p ) )  ( - iy)"  = ~ ~_, a,._p(-t)R,,(t,x) v! 
vEZ+ p<<. v 

A comparision of this expansion with Eq. (3.1) leads to Part (1). 
(2) This follows from Part (1) of this lemma, and the fact that (m,.)l,,r= j is a basis of ~ .  
(3) Comparison of formula (4.3) and Lemma 3.2(3) shows that m~.(Pf(O, . ) )= a~(-t). Hence, by 

(4.2) and Lemma 3.2(2), 

~ R~(t,y)dPf(x,.)(y)=p~<.,(Vp)a,, p(t)~, m.(y)dPf(x,.)(y) 

= i,~<, ( p ) a )  P(t) C~<.~,(Vp)m'(Pf(O"))m'-;(x) ) 

,x, 
= Z  o p~<v 

The assertion now follows from the inversion formula of Part (1). 
(4) This is a consequence of the homogeneity of the moment functions my and of (4.2) and (4.3). 
(5) Note first that by (3.2) and the intertwining property of V, 

~m,.+ei=(vj+l)mv ( j = I , . . . , N ,  vEzN). 

This, together with identity (4.2) and Proposition 3.1, yields 

( ) TyRv+ej(t,x)= ~ v+ej Tjmp(x)av+e,_,,(t)= ~-~, p+ej/ (p;+ l)mp(x)a,._p(t) 
p<~ v+e i P p ~ v  

=(vj+l)'Z(p)m,(x)a,._p(t)=(D+l)R,.(t,x). [] 
p<~v 

Example 4.2. (1) In the classical case k = 0  with m,,(x):=x", Eq. (4.3) leads to 

R,.(t,x)=v~lVlH,.(~--~) (XCRN, VE77N, tc~\{O}), 

where the/~v are the classical, N-variable Hermite polynomials defined by 

X [n/2J (_ l )Jn  ! (2y)n-ZJ; 
/l~(x) = IIH,,,(x/) with H.(y)= ~ j).~-7~7) ! 

i=1 j=O 

c.f. Section 5.5 of [20] for the one-dimensional case. 

(4.4) 
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(2) If  N =  1, W = 7 ]  2 and k>~0, then Example 2.1(2) easily leads to an explicit formula for the 
moment functions m,. Using then (4.2), we finally obtain 

R2,( t,x ) = ( -  1 )"22"n!t"L~k-1/Z)(xZ /4t ) 

and 

R2,,+1 (t,x) = ( -  1 )"22"+1 n!t"xL~k+l/2)(xZ/4t) 

for n E 7]+; here the L~ ) are the Laguerre polynomials (see Section 5.1 of [20]) given by 

~ x  e ~xgx,(X e ) =  j=0 - J! 

The polynomials (R,),~0 are called generalized Hermite polynomials and studied e.g. in [19]. For 
each t > 0 the polynomials (R,(t, .)),~>0 are orthogonal with respect to the k-Gaussian measure 

dp, r(0, .)(x) - F(k + 1/2) ix12%_x2,4t dx. 
(4t)k+l.'2 

An uninformed reader might suggest from these examples that k-Gaussian Appell characters are 
always orthogonal with repect to P~r(0,.) for t > 0 .  This is, however, not correct in general for the 
SN- and BN-cases; see Section 8 of  [18]. To overcome this problem, we introduce the so-called 
Appell cocharacters, which turn out to form biorthogonal systems for the Appell characters. 

4.2. Appell cocharacters 

The noncentered k-Gaussian measures Ptr(x,.) admit P/(0,.)-densities 0t(x,.) for t > 0 ,  x c ~N. 
These densities are given by 

dPtr(x")(Y) =e-M2J4'K(x, y /2t)= ~ ~ ~ S v ( t ,  y), 
Ot(x, y) :-- dptr(o ' .)(y) .:o i,,1=. 

(4.5) 

where in view of Proposition 3.1 the coefficients S,. are given by 

S~.(t, y) = T~"(e-lXl-~;atK(x, y/2t))lx=O. 

We mention that the function Ot (with t = 1 ) appears also as the generating function of the generalized 
Hermite polynomials associated with W and k in [16]. By Proposition 3.8 of  [16], the convergence 
of  the series ~ ,~0 in (4.5) is locally uniform on CN)'( C N. Just as the R,., the functions S,, are 
polynomials of  degree H;  they are called the Appell cocharacters of the k-Gaussian semigroup 

Using the homogeneity of  m,,, we obtain the following analogue of Lemma 4.1(4): 

Sv(t,y)= \ x / t J  S,,(1,y/v~) ( t>0 ) .  (4.6) 
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Proof. In view of  Section 2.5, Lemma 4.1(3)just  says that etAkRv(t,x)= my(x) for t ~>0. This shows 
the first part for t >~0. As both sides are polynomials in t (write e - tAt  a s  terminating power series 
of operators acting on polynomials!), the first equation holds generally. Let A~ be the k-Laplacian 
acting on the variable y, and let V~ be the intertwining operator acting on the variable x. Then 

Now, consider on both sides the homogeneous part IV, of degree n in the variable x. Using the 
left-hand side, we obtain from (4.5) that 

Using the right-hand side, we conclude from the identity V~(x")= my(x) that 

W, = ~ (y/Zt)" = 
I I~,q=. 

A comparison of  the corresponding coefficients leads to the second equation. [] 

We now combine Theorem 4.3 and Proposition 4.4 to rediscover a generalization of a formula of  
Macdonald [11] due to Dunkl [7]. However, our proof is completely different from [7]. We need 
the following notation: For a multiplicity function k ~> 0, we introduce the bilinear form 

[P,q]k :=(p (T )q ) (O)  for p, q E ~ .  (4.8) 

Notice that [p, q]k = 0 for p E ~ , ,  q E ~m with n 4: m. 

Corollary 4.5. For all p, q E ~ ,  and t > O, 

[ P , q ] k -  (2t)" ,, e- t~(P)e- tAk(q)dPtr(O'  ")" 

In particular, [., .]k is a scalar product  on ~ .  

Proof. Let t > 0  and v,p  E 7/N+. Then, by Theorem 4.3(1) and Proposition 4.4, 

1 
~, ,  e t~(x")e-tA~(mp)dt]tr(o, . )= v! . ~,',t,. 

(2t)1,'1 

On the other hand, as V acts on ~ in a homogeneous way, 

[x", mp]k ~ (TVmp)(O) = (T"VxR)(O) = (VOVxP)(O) = v! . 6v,,,. (4.9) 

This yields the first statement. The second statement is clear. [] 
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For this, we use the adjoint operator ~* We give a further application of Theorem 4.3 for t = 5" 
of  the Dunkl operator ~ ( j  = 1,... ,N)  in L2(~ N, dplr2(0,.)), which is given by 

Tj*f(x)  = x j f ( x )  - Tjf(x)  = - eiXl2;2Tj(e -1~1'-/2 f ( x ) )  ( f  E '~); (4.10) 

see Lemma 3.7 of  [7]. (The second equation is a consequence of the product rule of Section 
2.2). 

Corollary 4.6. For all v E Z N, j = 1 . . . .  , N, x ~ ~N and t > 0, 
(1) s, ,+e,(½,x)= 
(2) Rodriguez formula: &,(t,x) = (-1)l"le Ixl~/4' • T"(e-lxl~'4'). 

Proof. Using Theorem 4.3(1) and Lemma 4.1(5), we obtain for all p E Z  N that 

= a,,,,.. (p + = R,,+,.,Sv+e, dP ,2(0, .). 

1 As ~ is dense in L2(•N, dpIF/2(O,.)), this implies Part (1). Part (2) for t = 5 now follows from (4.10), 
and the general case is a consequence of formula (4.6). ~ 

Remark 4.7. In Example 4.2 (i.e., in the classical case k = 0  and in the one-dimensional case), 
Proposition 4.4 implies that the systems (Sv(t, .)),.~z~ and (R~,(t, .))v~Z~ coincide - up to multiplicative 
factors which depend on t and v. Recall also that in these cases they are orthogonal with respect 
to Ptr(0,.), and can be considered as generalized Hermite polynomials. In general, however, both 
systems fail to be orthogonal. In any case, Corollary 4.5 allows to introduce orthogonal polynomials 
with respect to Ptr(0, .). For this, one has to choose an orthogonal basis (q~,.),,~z~ c ~' with respect to 

the scalar product [., .]k in (4.8) with ~p,, E ~lvl for v E Z N. (Note that by (4.9), ~ J_ ~ for n # m.) It 
is then clear from Corollary 4.5 that (Hv :=e-tA'~Pv),.cz~ forms a system of  orthogonal polynomials 

with respect to Pf(0, . ) .  These generalized Hermite polynomials are studied (for t - - J )  in [16], and 
their relations to the Appell systems (Rv)v~x~ and (Sv)vcz~ are studied in [18]. We also refer to 
related investigations in [2, 5] and references given there. 
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