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Convolution Algebras which are not Necessarily
Positivity-Preserving

Margit Rosler

ABSTRACT. In this paper an axiomatic frame for convolution structures is introduced, which
generalizes the hypergroup axiomatics mainly in abandoning positivity of the convolution.
Essential facts of harmonic analysis, in particular for the commutative case, are developed.
Finally, several examples are discussed.

1. Introduction

The theory of generalized convolution algebras began in the late 1930s with
the study of the solutions of Sturm-Liouville eigenvalue problems. At that time,
Delsarte and Levitan introduced their generalized translation operators (see [5]
and [15], [16]), and a quite far-reaching harmonic analysis for them was developed.
Related structures are the hypercomplex systems of Berezansky and Krein, see
Berezansky, Kaluzhny [2], [3] and the references cited there. For an overview,
we refer to the survey of Litvinov [17]. In all these concepts, convolution occurs
as a convolution of L!-functions on the underlying space, with respect to some
distinguished measure. It is not always required to be positivity-preserving —
in contrast to the hypergroup axiomatics, which became widely adopted later on
with the work of Jewett [12], Spector (23] and Dunkl [6].

In this paper, we shall introduce a further axiomatic frame for generalized
convolution algebras on locally compact Hausdorff spaces, which we call signed
hypergroups. It is designed to generalize the hypergroup axiomatics in several
important points, though sticking close to it in its basic ideas. If X denotes the
basis space, then the convolution algebra under consideration is the space M;(X)
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of regular bounded Borel measures on X » just as in the hypergroup case. Convo-
lution need not be positivity-preserving, but should at least provide the structure
of a Banach- * -algebra with unit. Hereby, the involution in M(X) is assumed
to be induced by an involutive homeomorphism on X . Axioms on the support
of the convolution products of point measures are omitted. As for generalized
- translation operators' and non-positive hypercomplex systems, it cannot be ex-
pected to derive the existence of an invariant measure from the other axioms (see
Berezansky, Kaluzhny [2], where a submultiplicative measure, called m-measure,
is axiomatically required). So we also presuppose a substitute for Haar measure.

In order to give some motivation, we start with a short discussion of the La-
guerre convolution on R, as an example. This convolution has been studied by
several authors including Askey [1], McCully [18], Gérlich and Markett 19}, [10];
however, they did not embed their work into a more general frame of harmonic
analysis. The properties of the Laguerre convolution are then revealed in the
definition of a signed hypergroup. Especially, we do not generally require that
6z x6y(X) =1 for all z,y € X; this additional property is quite useful, but it
is not satisfied in the Laguerre case. In contrast, in their axiomatic treatment of
signed hypergroups, Wildberger [27] and Ross [21] require this property.

After some general analysis on signed hypergroups, the commutative case is
studied in more detail. Here duality theory can be developed in close analogy
to the hypergroup case; in particular, the spaces of (symmetric) multiplicative
functions on X may be canonically identified with the (symmetric) spectrum of
(Mp(X), *) . Furthermore, a Bochner theorem is valid. ; '

The paper ends with a discussion of some related ngructures and further ex-
amples: the compact hypercomplex systems in the sense of Vainerman (see [24]
and [25]), the finite signed hypergroups of Wildberger ([27], [28], [29]), and, £i-
nally, an example concerning duals of polynomial hypergroups.

1.1. Notation. Let X be a ldcally compact Hausdorff space. We denote
by Cy(X), Co(X) and C.(X) the spaces of continuous functions on X which
are bounded, those which vanish at infinity and those having compact support re-
spectively. They shall be endowed with the uniform norm oo - By M(X) and
M™*(X) we denote the spaces of Radon measures and positive Radon measures
on X. The spaces My(X), M; (X), ME(X) and M.(X) consist of all bounded
regular Borel measures on X » those which are positive, the real ones, and those
having compact support respectively. ; The total variation norm on these spaces
is abbreviated by ||.||, and the weak-v*-topology o(My(X),Co(X)) shall be re-
ferred to as the 7, -topology on My(X) . Finally, 6, € M (X) denotes the point
measure at z € X.
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2. The Laguerre convolution:

We consider the normalized Laguerre-functions L ,n € Ny, with parameter
a > —1. They are defined by

. - L"‘(x)
7 : 1:/2 n >
Ln(x) =e —%(0), z 0,

where L7 denotes the Laguerre polynomial

nw=3 (1)L,

v==0

From the orthogonality relation of the Laguerre-polynomials (see e.g. Chihara
[4]), it follows that

o Fa+1
/ L2 (z) LY (x)z%dz = S )5
Watson [26] proved the following product formula for Laguerre—polynomlals in the
case o > --

La(@)L(y) =
_Tn+ta+l) - spcost Ja—172(y/TYsint) o
i ) Lg(a:+y+2\/m—ycost)e V&Y cos {1 Jaysint)1/2 sin“® tdt.

This formula gives rise to a Laguerre convolution operator, which has been intro-
duced by McCully [18] and Askey [1] and further studied by Gérlich and Markett
(see [9], [10] and the references cited there). We rewrite the above product for-

mula in terms of Laguerre functions: .

£3(2)C3(y) = /O £2(2)dus (), 2,y 2 0,

with
K*(z,y, _z)z"dz, ifz,y#0
dpg ,(2) déz(2), - ify=0
déy(z), ifz=0,
where the kernel K is given by
. 20-1D(q + 1). ol
K%(w,y,2) = W"‘_) a-1 (0@ 4, 2))e(@,1:2)°72 Yy m g (var 2 (2);

Q( 7?!’Z) (Z—(\/_ \/_) )1/2((\/"+\/—)2_z)1/2

Obviously, K% is not posmve, but in case a > 0, it is at least quasi-positive:
) o0
/ lK“(a:, Y, z)lz"‘dz <1 forall z,y>0,a2>0,
0 .

as shown in [9]. This fact gives rise to a convolution of measures as follows:
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2.1. PROPOSITION. For a >0 and z,y € R, define 6:%6y € ME(R,) by

O * 6y (f) 1= /Ooo f(2)dug (), fe€Co(Ry).

Then * can be extended to a separately T, -continuous, bilinear and commutative
convolution on My(R,.) by setting

o= [ b (Pduen@y), [ ey
Ry xRy

It has the following further properties:

() lxvll < Nl - llwll - for all p,v € My(RL).

(2) = is associative. ‘

(B) Soxpu=p forall pe My(Ry).

(4) The mapping (z,y) — 6, * by 18 Ty ~continuous.

(5) For fized z € Ry and f € Cy(Ry), the function y 8:%6y(f) again belongs
to Cb(R+) . .

(6) For f € C(X) with suppf C [0,k], the support of y — 6, * 8,(f) is con-
tained in [0, (vz + Vk)2].

(7) For all f,g€ C.(Ry) and z € R, ,

/ ” b2 % 6y(fo(y)y*dy = / ” F(¥)8z * 6,(g)y>dy.
: 1] 0

Proof. As |jug || <1 forall ¢,y € R, the prqduct p*v is well-defined
in My(Ry) with |lu*v| < ||ull-]lv|. The bilinearity and commutativity of
are clear. Now, fix f € Co(R.). From the representation

_Ta+1) [T | Jacipp(ETsinG) .
(2.1) 6m*6y(f)——77_r-——/0 f(x+y+2\/a?§cost)-(% 2y sint)o=1/2 sin“® ¢ dt

it is easily seen that the function T [ defined by Tf(z,y) = 6, « 6y(f) belongs
to Co(R4 x Ry). Hence for p € M,(R.), the function Yy [ Tf(z, y)du(z)
is continuous (use a dominated convergence argument) and vanishes at infinity.
For any net (v,) in My(R.) with 7, — lim Vo =v € My(Ry) we thus obtain

Hm(u » vo)(f) = lim /0 ” ( /0 " Tf(, y)dn(w)) dva(y) =
| =A”(AmTﬂawwm0dww=u*Mﬁ.

This is the separate 7, -continuity of *. To prove associativity, it suffices to
consider point measures, But for z,y,2€ Ry and all n € Ny , the identity

(8 * (8y * 8))(£2) = LA LIW)LE(2) = (6, %) *8:)(£L7)

holds. As the convolution of two point measures has compact support, the same
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is true for & * (6, % 6,) and (8, *6,) * &, . So on the union of these supports,
continuous functions can be uniformly approximated by polynomials, and the
assertion follows. The remaining statements are quite easy to check: (3) is clear
from the fact that £2(0) = 1 for all n € Ny, (4), (5) and (6) are immediate
consequences of (2.1), and (7) follows from the symmetry of the kernel K in its
arguments.

2.2. REMARKS.

1. As §; %6y is not positive, but ||6; *8,|| <1, it follows that &, * 6,(R+) < 1
for all z,y #0.

2. dm(y) = y*dy is strictly subinvariant with respect to %, in the sense that

/oo Tf(z,y)y*dy < /°° f(y)y"dy
0 0

for all z € Ry and f € Cc(Ry),f £ 0, with f > 0. Indeed, part (7) of
Proposition 2.1 clearly remains true for g € Cy(R,.), and with g =1 we get

/ ” Tf(z,y)ydy = / ” F )6z x 6y (R )y*dy < / ” fy)ydy.
o]

Moreover, from Corollary 3.4.(2) it will follow that there exists no nontr1v1a1
invariant measure for the Laguerre convolution on' R .

3. Signed hypergroups

Let X be a locally compact Hausdorff space and T a linear mapping from
Co(X) to the space B(X x X) of all bounded functions on X x X. Following
Pym {20], we shall call T a generalized translation operator on X. Suppose that
(i) T is continuous with respect to ||.|ls onboth Cg(X)and B(X x X);

(ii) for f € Co(X)and z € X, the translates y — T'f(z,y) and y — Tf(y,z)
again are in Cp(X). ‘
Then for p € My(X), the function y— [Tf(z,y)du(z) is continuous, and by -

prv(f) = /X /X Tf(s,9) du(z)dv(y), f € Co(X),

a bilinear, separately T, -continuous multiplication on M;(X) is defined; see Pym
[20]. We call it the canonical continuation of the mapping w: X x X - My(X),
w(@9)(f) = Tf(z,y) for f € Co(X).

Now suppose w : X X X — My(X), (z,y) — &, * by, defines a convolution
of point measures such that ||6; * 6,|| < C for all z,y € X with some constant
C>0, and that for f € Co(X) and z € X the mappings T®f : y = 8, * 6,(f)
and Tnf :y > 6y % 6,( f) again belong to C.(X). Then the translation operator
T on X defined by Tf(z,y) = 6, * 6,(f) satisfies the conditions (i) and (i)
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above, from which it follows that w has a canonical continuation to a separately
Ty ~continuous multiplication * on My(X). In case w is additionally required to
be 7, -continuous, this multiplication can be written as

per= [ axd(imen(Ey), feo).

We note at this point that T« -continuity of w does not in general involve 7, -
continuity of its canonical continuation. ' ‘
We are now able to formulate the definition of a signed hypergroup:

3.1. DEFINITION. Let X be a locally compact, o -compact Hausdorff space
and m a positive Radon measure on it with suppm = X . Further, let w :
XXX — MPX), (z,y) — 6, *by, be a T, -continuous mapping. Then the triple
(X,m,w) is called a signed hypergroup, if the following azioms are satisfied:

(A1) For each z € X and [ € Co(X), the translates TCf y v 6, %6,(f) and
Tof 1y 6y % 6,(f) again belong to Cy(X). Furthermore, for f e Ce(X)

and any compact subset K C X, the set Uzex (supp(T*f) U supp(Tf)) s
relatively compact in X. :

(A2) (16, %8, < C forall z,y € X with some constant C > 0.
(A3) The canonical continuation of w is associative.
(A4) There exists a neutral element e & X, such that

be*pp=p*b=u for all p € My(X).
(A5) There exists an involutive homeomorphism = on X such that
(65 % 6)~ = bgx bz for all 1,y € X,
where for a Borel measure K oon X, the measure u~ on X is defined by

B (A):=p(d"),Ac X any Borel set.
(A6) Forall f,g€ Co(X) and z € X the Jollowing adjoint relation holds:

/X(Tmf)gdm = /Xf(ng)dm.

. According to Proposition 2.1, the Laguerre convolution leads to a signed hy-
pergroup, namely (R.,m,w), where dm(z) = z%dzx, w(z,y) = Kz, > and the
involution on R, is the identity mapping. Clearly, any ¢ -compact hypergroup
(in the sense of Jewett [12]) with a Haar measure is in particular a signed hyper-
group. Further examples will be discussed in Chapter 5.

Let (X,m,w) be a signed hypergroup. Before working out some harmonic
analysis, we want to discuss the role of the measure m , which obviously serves as
a substitute for a left Haar measure on X. We shall see that m does not have
the invariance property of a Haar measure in general, but only under some extrs
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requirement on the convolution. For this, we need two lemmata which will also '
be used later on; the first one is essentially based on the ¢ -compactness of X .

3.2. LemMaA. For f € Co(X), the mapping (z,y) — 6y % 6,(f) is measur-
able, and the following identities hold:

(1) pxv(f) = /X R Op ¥ 6y (fld(p®v)(z,y)  for all p,v € My(X).
(2) L(Tzf)gdm = /Xf(TEg)dm for al! zeX and g € Cc(X).

Proof. Choose compact subsets K,, n € IN of X such that X = UnEIN K,
and K, C K3,; for all n € N. According to Urysohn’s lemma, there exists a
sequence (gn)nen in Cc(X) with 0 < g, <1, suppgn C K, and g, =1 on

K, . Define h,, € C.(X) by hy := gnf. By the dominated convergence theorem,
we obtain that (z,y) — 6 * 6y(f) = lim, o0 05 * 6y(hy) is measurable, and

prv(f) = nlinéou *xv(hyp) = lim Oz * by (hy)d(p @ V)(z,y) =

00 JxXx X
= [ aes(Dimeney)
XxX :

for any p,v € My(X). So (1) is proved. By the same way, (2) results from (AS6).

3.3. LEMMA. Let n € M+ (X) be arbitrary. Then for f € C.(X) the
mappings Oy and Yy : X — Co(X) defined by Ps(z) := T°f, ¥p(z) = T f
are continuous with respect to ||.||1,n - -

Proof. We restrict to ®;; for Wy the proof is analogous. Fix zp € X
and choose a relatively compact neighbourhood U of zy in X. According to
Axiom (Al), there exists a compact set M C X, such that Uzer{supp(T®f)}-
is contained in M . Now the mapping (z,y) — 8 *6,(f) is uniformly continuous
on U x M. Thus for € > 0 there exists a neighbourhood U. C U of z, with
|6 % 6y (f) ~ 8y # 6y(f)| <€ for all z € U, and all y € M. Hence for z € U,

24 (2) = @4 (@o)ll1,n = /M 16 % 8y (f) = bzq * 6y(f)ldn(y) < en(M).

3.4. COROLLARY.

(1) The following statements are equivalent:
(i) m is left-translation invariant with respect to * , that is

/T“”fdm =/ fdm  forall x € X and f € C.(X).
X X

(i) 6z *6y(X)=1 forall z,ye X .
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(2) If n € M(X) is left-translation invariant with respect to *, then n = cm
~ with a constant ¢ € C. In particular, if condition (1)(ii) is not satisfied, then
there exists no nontrivial left-translation invariant measure on (X, m,w).

Proof. (1) (ii) = (i) is clear by setting f =1 in identity (2) of Lemma 3.2.
(i) = (ii): Suppose &, * 6y(X) # 1 for some z,y € X, say g % 6y(X) < 1.
As the mapping y — 6§, * 6y(1) is continuous by Axiom (A1), there exists some
neighbourhood U of y such that b * 6,(X) <1 forall z€ U. Take fe
Ce(X), £ 20, f 20, with supp f CU. In view of Lemma 3.2, we obtain

[ @ $im = [ 1@ s 8. (X)dmz) < [ #Gzyimez) = [ sam

The case 6, % 6,(X) > 1 is treated analogously.

(2) By Lemma 3.3, this is proved in the same way as the uniqueness of Haar
measure on a hypergroup; see Jewett [12], 5.2.

We are now going to define the convolution of functions and measures on a
signed hypergroup (X, m, w):

3.5. LEMMA..

(1) For f € Co(X) and K € My(X) there are defined functions wx fond fxp

wr i@ = [ 175 @auty), £ uta) = | Tot@auty)

3
(2) If f€C(X) and b€ M(X), then puxf and f*p belong to Ce(X) again.
(8) For f € Cu(X) and 1€ My(X), the identity, (B* f)m = px fm holds, and

et fllm < C - (| Fllm - (1l

Proof. (1) follows from Theorem 1.1 in Pym [20] (Note that p « flz) =
B~ % 6,(f) and Fx* (@) = b * p=(f) for f € Co(X)); (2) is an immediate
consequence of Axiom (Al). '
(3) By (AS), we obtain for each h ¢ Co(X):

/ @) (ux f)(z)dm(z) = / / @) T7 f(2)dp(y)dm(z) =
X XJX
-/ [ Pr@)duty(fm)(z),
X JX .

and thus (u* f)m = p* fm. The rest is cleér.
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3.6. REMARK. For f,g € C.(X) a function fxg € C.(X) is defined by-
f*g:= fmx*g. This leads to a convolution on C.(X) which is commutative
if and only if the basic convolution on M;,(X ) is commutative. In this case, the
identity f % g(e) = g* f(e) holds for any f,g € Cc(X), and from this it is
immediately seen that m~ =m.

We introduce a norm .| on. My(X) by ||g|’ = max (|| Lyl ||Ry]]), where
L, -and R, denote the continuous multiplication operators on My(X) given by
Lu(w):=px*v and R,(v) :=vxp, v € My(X). The subset of those measures
in My(X) which are absolutely continuous with respect to m shall be identified
with L'(X,m) in the sense of the Radon-Nikodym theorem. Furthermore, for
1 € Mp(X) we define the measure u* € My(X) by p* := p—, where the outer
bar is conjugation.

3.7. THEOREM.

(1) (Mp(X),*,]L.|l") is a Banach-*-algebra with unit element 8¢ and the involution
B pt ‘ ;
(2) (LMX,m),,||.|) 4s a closed left-ideal in (My(X), *, 111

Proof. (1) From (A2) it follows that [|u « vl| < C-lpll - |lvl for all p,v e
M;(X) . Thus taking [jul|; := ILull as the norm on My(X), (Mp(X), %) becomes
a Banach algebra with unit 6, (see Th.10.2 in Rudin [22]). The same is true
with {|ufl2 == [|R,| as a norm on My(X), and therefore, |.||’ := max(||.]|1, ||.l2)
is equivalent to ||.|| and makes (M;(X),*) into a Banach algebra with unit
bc as well. The operation .+ u* on My(X) is clearly conjugate-linear with
(u*)* = w. Further, by (Ab) and the fact that the convolution product of point
measures belongs to ME(X), we obtain

(B*v)* =v= % p= = v % y*

for all u,v € My(X); hence * is an involution on (My(X),+). It remains
to show that * is isometric with respect to |.|/. But as el = flull for all
i € My(X), we have ' '

IZull = sup [l * vl = sup flv* |l = | R,
<1 <1

Analogously, ||R,x|| = lLull- It follows that ||p*| = |jul’ for all pE My(X).
(2) It is clear that L'(X,m) is ||.|’-closed in M,(X); thus it remains to
show that for any f e L!(X, m) and p € My(X) the product u* fm is abso-
lutely continuous with respect to m . Choose a sequence (fn)new C Co(X) with
f =limp o fn in LY(X,m). According to Lemma 3.5.3), (4% fa)nen is a
Cauchy-sequence in L!(X,;m); denote its limit by wp* f. By the ||.|| -continuity
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of * we now obtain
prfm= lim px fom= lim (u* fo)m = (1% fm,
ke ol n-r00

from which the assertion follows.

For p € My(X) consider the convolution operator Ly : C(X) = Co(X)
defined by L,(f) == p* f. According to the above theorem, it can be uniquely
extended to a continuous linear operator on L'(X,m). We shall now prove that
the same is true for any space IP(X,m),1 < p < 00, thus establishing the
convolution of measures with functions of L?(X,m):

- 3.8. LEMMA. For every u € My(X), the operator L, can be extended to a
continuous linear operator on LP(X,m),1 < p < 0o, satisfying [Lull < C - llpll

Proof. The case p = 1 is already clear. By the Fubini theorem, for any
f,9 € Co(X) the relation

(3.1) | /X (1 * £)(@)g(z)dm(z) = /X (@)™ * g) ()dm(z)

holds. Now for f € L*°(X,m) define u* f as the unique element. of L*(X, m),
~ which satisfies (3.1) for all g € L(X, m). This yields a continuation of L, to a
continuous linear operator on L>(X,m) with L.l < C - ||lu||. Now the Riesz-
Thorin interpolation theorem can be applied; it shows that for any p €]1,00[, L,
extends uniquely to a continuous linear operator on: LP(X,m) with ILufllp <
C-llull-lIfll, for all e LP(X,m). ,1

If m~ = m, then all statements concerning left-translations and left-con-
volutions by measures can be analogously carried over to right-translations and
right-convolutions. In particular, for f € Ce(X) and pu € M,(X) the identity
(f*u)ym = fm*u holds, which assures that (LY (X, m), %, |.]") is a two-sided
ideal in (M,(X),*,|.I"). It is also self-adjoint, because (fm)* = f*m with
f*(z) = f(Z) for every f ¢ LY(X,m).

As already mentioned, the condition m~ =m is satisfied in the abelian case.
A further important class of examples is provided by the following lemma:

3.9. LEMMA. Let (X,m,w) be a compact signed hypergroup, with the addi-
tional property that & x 6,(X) =1 for all z,y€X. Then m™ =m.

Proof. According to Corollary 3.4, m is left-invariant with respect to #*.
Now it is immediately checked that for any z € X the measure m x 8z € My(X)
is left-invariant as well. By Corollary 3.4(2), there exists a constant c(z) € C
with m 6z = c(z)m . Furthermore, m 6z(X ) =m(X), and therefore c(z) =1,
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which means that m is right-invariant. Hence m™ is left-invariant, and SO
Corollary 3.4(2) yields m™ = cm with some c€ €. As m~(X) = m(X) #0, it
follows that ¢ = 1. ‘

4. Harmonic analysis for commutative signed hypergroups
In this chapter, (X, m,w) shall always be a commutative signed hypergroup.

4.1. DEFINITION. A character of (X,m,w) is a function ¢ € Cy(X),
@ # 0, which satisfies '

bz % 6y() = p(z)p(y) for all z,y € X.
We denote the set of characters of (X,m,w) by Xy(X). Furthermore,

X:={¢pe Xp(X) 1 (&) = p(x) forall z € X}

shall denote the subset of those characters in Xy(X) which are symmetric. X is
also called the dual of X.

4.2. REMARKS.
(1) If p € X(X), then p(e) =1 and |j¢]leo < C. This follows from the facts

() = 8% 6e(p) = p(x)p(e) and ()] = |8  6:(¢)| < C - [|¢]lco-

(2) If ¢ € X, then d*(p) = o(yp) for all o € Mb(X ). This is clear, because
pT=1¢. 3

In the theory of commutative hypergroups, the identification of the space of
bounded multiplicative functions on a hypergroup with the maximal ideal space
of the associated L'-convolution algebra (Jewett [12],.Chap.6.3) is of decisive
importance. This correspondence can be established quite analogously for general
commutative signed hypergroups.

Ap(X) and X shall be equipped with the topology of uniform conver-
gence on compact sets. Further, we denote by A the maximal ideal space of
(My(X),*,1I.Il") , equipped with the Gelfand topology ¢ , and by Ag the closed
subspace of A consisting of those functionals which are symmetric with respect
to * . We introduce the spaces

A’ :={FeA:F#0 on L'(X,m)},
A% = AoﬂAs.

These are open subsets of A and Ag respectively, and hence in particular locally
compact Hausdorff spaces. Just as in the hypergroup case, they can be identified
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in a natural way with the maximal ideal spaces A(L!(X,m)) and Ag(LH(X,m))
respectively.

4.3. PROPOSITION. Every functional F € A® can be represented as
FG) = [ pedn, e y(x),

for a unique character @p € X,(X). Conversely, each ¢ € Xp(X) is of the
form o = pp for some F € A°. In the same way, the symmetric characters on
(X,m,w) correspond to the functionals from AY .

Proof. 1. Take ¢ € X,(X). As suppm = X, ¢ represents an-element
in L*(X,m) different from 0. Hence Fu) = ulyp ) defines a functional F €
M,(X)* which does not vanish on L!(X, m). In view of Lemma 3.2, we have

Flusv) = /X () = /X B * 8@ @) (2,3) = wev(p) = F)F()

for all p,v € My(X). It follows that F € A® and. ¢ = pp.

2. For a given F € A, the restriction F of F to L'(X,m) is a nonzero
element of L(X,m)*, represented by a umque Y € L®(X,m), v # 0. Now
choose some h € C.(X) with Jx whdm = 1. Then for any f € C:(X),

[ sam = FIF® = F(rem = [ [ 9(6) 6048,0) £ )imeyimy).
X xJx
Therefore the function w:X — C defined by

o) = / (Th)dm

is a representative of 1, that is, F = [ x pfdm for all f e LYX,m); fur-
thermore, ¢ is continuous by Lemma 3 3. Thus for any f,g € C.(X),

(/X ofdm) (/X pgdm) = F(f)F(g) = F(f » g) =

= [ ([ 080 o(a)am(y) ) dm(a),
X MXx
where Lemma 3.2 was used to obtain the last identity. It follows that
(4.1) o(@) | pfim= [ @o)f dm= [ @=o)s am
. X X X
for m-almost all z. Furthermore, the function

z / () fdm = / (T f)dm

is continuous on X according to Lemma 3. 3, whence (4.1) must hold for all
z € X . But this proves the multiplicativity of ¢, because the 1ntegrands in both
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sides of (4.1) are continuous (Axiom (A1)).
Now choose f € L'(X,m) with F(f) = 1. As L}(X,m) is an ideal in
My(X), we can write

Fu)=Flux )= [ pauns) = [ o 6,(P)d(u ® fm)(s,y) =

/‘, =(/ wdu)-(/ wfdm)=/ wdp

for any pu € M,(X). Thus ¢ is a representing character for F as claimed; its
uniqueness is clear.

Finally, in case F' € A} we have ¢(z) = F(6%) = (%) for all z ex ; hence
pelX.

4.4. LEMMA. The mapping X x A — €, (z,F) — ¢p(z) is continuous..

Proof. Let ¢ > 0,z € X and F € A° be given; furthermore choose
h € Ce(X) with F(h) = 1. According to Lemma 3.3, there exists an open
- neighbourhood U(z) of x such that [[(TVh—T®R)m|' < for all y € U(z).
For any y € U(z) and G € A satisfying

|G(h) = F(h)| < €, |G(T®h) — F(T%h)| < ¢,
we first obtain
lea(y) = er(@)] < loc@)(F(h) ~ G(R)| + |(ve(y) - pa(x))G(R)| +
+ lpa(@)G(h) — pr(z)F(h)|.
By Lemma 3.2,

eo@@r) = [ Ta)him = [ pa(r7Rydm = G(r7h).
This leads to the estimation | ,
Nec() = o)l < € llpalleo + IG(TPh ~T7h)| + |G(T®h) — F(T®R)| <
< Ce + (TR — T*hYm|’ + € < €(C +2),
which shows the continuity of (z, F) — ¢r(z).

We have now done all the preliminary work for the following main theorem;
its proof is essentially the same as in the group case (see e.g. Hewitt, Ross [11],
Th. 23.15) and will therefore be omitted here.

4.5. TueorEM. A° and A} are homeomorphic to Xy(X) and X respec-

tively, via the bijection ® : F — @p . In particular, Xb(X ) and X are locally
compact H, ausdorff spaces.
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4.6. ProrosITIiON.

(i) If X s discrete, then X is compact,

(i) If X s compact then X is discrete, and all multiplicative functions on X
are symmetrzc and orthogonal in L*(X,m).

Proof. (i) is clear by the above theorem; (ii) is shown exactly in the same
way as for hypergroups; see Dunkl [6], 3.5.

Next we introduce Fourier transforms on X and X and collect some of their
elementary properties. After this, we shall define positive definite functions and
prove an analogue to Bochner’s theorem for commutative signed hypergroups.

4.7. DEFINITION.
(1) Given p € My(X), the function

p: X0, ﬁ(so):=/<‘ﬁdu

is called the Fourier-Stieltjes transform of w. In case p=fm, f e LY(X,m),
[ is.also called the Fourier transform of [

(2) For a € My(X), the inverse Fourier-Stieltjes transform & : X — © is
defined by

&(z) = /gw(w)da(w

4.8. LEMMA. :

(1) The Fourier-Stieltjes tmnsform . is an algebm homomorphism from
(My(X), %) to (Cy(X),"), satisfying ¥ = F. :

2) feCo(X ) forall fe L'(X,m) (Riemann-Lebesgue-Lemma).

(3) Theset A:={f:fe Ce(X)} is a dense, self-adjoint subalgebra of
(CoX) ).

(4) The inverse transform * is an injective mapping from M,(X ) to Cp(X).

Proof. By identification of X with A% according to Theorem 4. 5, for each
B € My(X) the transform [ is just the restriction to AY of the Gelfand trans-
form of 4~ as an element of (My(X),*,|[.||"). This yields (1). In the same way,
(2) follows from the fact that for f € LY(X,m), f is the Gelfand transform of
f~ as an element of (L'(X,m),*,|I.||"), restricted to As(LY(X,m)).

(3) For f,g € C.(X) the functions fxg and f* belong to C.(X) again,
satisfying (f*g)m = fmxgm and f*m = (fm)*. By use of (1) and (2) it is now
seen that A is a self-adjoint subalgebra of (Co(X),|I. lloo) - Finally, A separates
points on X , and for each ¢ € X there exists some [ €C(X) with f (<p) #0;
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these properties result from the separation properties of the Gelfand transform.
Now the Stone-Weierstrafi theorem yields the assertion.

(4) The continuity of & for o € M,(X) follows, just as for hypergroups
(12.1.D in [12]), from the continuity of the mapping X x X — €, (x, @)+ p(z).
Now suppose & = 0. If o # 0, then by (3) there would exist some f € C.(X)

such that .
0 # /A fda = / &f~ dm,
X X '

4.9. DEFINITION. A function f € Cb(X) is called positive-definite on
(X7 m, )) Zf

a contradiction.

/ fd(p*p*) >0 for all pe€ My(X).
X ’ ' .

4.10. LemmAa. If f € Cy(X) is positive-definite on (X, m,w), then
[fll <C-fle) and w*(f)=u(f) forall pe M(X).

Proof. With v := §, + 26,,z € C, the condition » % v*(f) >.0 yields the
relations f(z) = f*(z) and [f(2)|® < f(e) - 6. * 62(f) < C- f(&)||flloo, from
which the assertions follow.

4.11. THEOREM. For f € Cy(X) the following are equwalent
(i) .f is positive-definite on (X, m,w). 1 ‘
(ii) f= & with a unique measure a € M;"(X).

Proof. (i) = (i): This is straightforward by the above definition, Remark
4.2.(2) and Lemma 3.2.

(i) = (ii): By Fy(u) == p(f) there is defined a positive functional on the
commutative Banach-*-algebra (M, (X )% l.II"). By a well-known representation
theorem (Th.3 in Naimark [19], §20 Chap. IV), F} is of the form

Fy(y) = /A AF)ABE), ue My(X),
' S

for a measure ﬂ €-M;(As). Here i denotes the Gelfand transform-of u. For
h € L'(X,m), hm. vanishes outside of A® < ; hence

Fe(h) = /A . hm(F)dB(F)  for all he LY(X,m).
S

If we define o € M;F (X ) as the image measure of £ | ag under the bijection @
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from Theorem 4.5, this becomes
Fy(h) = /A h=(p)da(p)"  forall he LYX,m).
X

It follows that

/x Thdm = /_;? /X (2)h(z)dm(z)do(p) = /X a”hdm.

As f and a¥ are continuous, the identity f = a" results. The uniqueness of o
is clear from the injectivity of V.

5. Related structures and further examples

5.1. Hypercomplex systems with a compact basis. In the compact case,
the hypercomplex systems introduced by Vainerman ([24], [25]) provide an essen-
tially more general convolution concept than ours; they do not involve a Banach
algebra. structure on My (X), but they allow duality ‘theory in close analogy to
the Pontryagin duality principle for compact and discrete groups.

Let X be a second countable, compact Hausdorff space. Then according to
[25], My(X) is called a real hypercomplex system with a compact basis, if it has
/the structure of a * -algebra with unit 7, satisfying the following axioms:

(1) BFT=T+7 forall p,ve My(X) .

(2) There exists an involutive homeomorphism z + % :on X , such that 6} = 6z
forall z € X . ‘ ‘

(3) Multiplication in My(X) is separately continuous with respect to the weak
topology o(My(X),T), where T is a [|-llo -dense subspace of C(X) which

is invariant with respect to the mappings fr f and f (z) — f(Z).

For 1€ My(X) and f €T a function pxf €T is then defined by 1/(,u x f) =

B+ v(f), v € My(X). :

(4) The mapping (z, Yy) = 65 %6, is continuous with respect to o(M(X),T).

(5) There exists a’ unique (up to a positive factor) measure m € M+(X ) with
suppm = X , which satisfies the identities

m* =m and u*fmA:(u*f_)m forall pe My(X), feT.

(m is called a Plancherel measure on X )

(6) lle * fllzm < C - el - | fllm for all t € My(X) and f € T, with some
-~ -comstant C>(0.

Every compact, second countable signed hypergroup (X, m,w) satisfies these
axioms with T'= C(X) in a canonical way — provided that m is unique up to
a multiplicative constant. This follows immediately from Definition 3.1, together
with Lemmata 3.9, 3.5 and 3.8.
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L

5.2. Wildberger’s finite signed hypergroups. These are introduced in
Wildberger [27], [29] as classes of finite objects which satisfy all the requirements
of a finite hypergroup except non-negativity of the convolution; see also [28]. He
originally called these objects “ensembles”. Abelian signed hypergroups occur in
a canonical way as the duals of finite abelian hypergroups; see also Example 9.1.C
in Jewett [12]. .

According to [29], a finite signed hypergroup is a pair (C,A), where C =
{coy-+- ,c,;} and A is a *-algebra over € with unit ¢, having the following
properties:

(E1) C is a linear basis of A.
(E2) C* CC, that-is ¢} = c,(;y with a certain permutation o of {0,1,---,n}.
(E8) The structure constants nf; € R defined by cic; =3, nf jCk satisfy the
conditions
ng,a(i) >0, ng’j =0 for j # o(3).
(B4) Yynk;=1 forall 4,j.

A mass functional m on C is defined by
1

> 0.
ng(i),z‘

m(ci) =

Note that as a vector space, A may be canonically identified with M,(C) .

5.2.1. PROPOSITION, :

(1) Let (C,A) be a finite signed hypergroup in the sense of Wildberger, and let C
be endowed with the discrete topology. Then with LU(C«L,CJ‘);":= cicj, (Cym,w) is
a signed hypergroup in the sense of Definition 3.1.

(2) Let (X,m,w) be a finite signed hypergroup in the sense of Definition 8.1, with
the additional property that &, * 6,(X) =1 for all z,y € X. Then, with the
same multiplication and * -operation, (X, My(X)) is a signed hypergroup in
the sense of Wildberger. Up to a multiplicative constant, its mass functional
coincides with m .

Proof. (1) Besides Axiom (A6), all properties of a signed hypergroup are
clearly satisfied, with ¢; — ¢} as the involution on C and ¢y as the unit
element. Property (A6) is equivalent to the condition

(6.1) nf’jm(cj) = nf;(i)’km(ck) for all 4, 5, k.

To prove this equality, we calculate the coefficient hy of the product Co(k)CiCl
in two ways, according to the associativity of multiplication in A . This leads to

e i 0 — ! 0
ho = Z"m‘ Ro(k)l = Z"a(k),z’ Ny -
! ~ l
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Hence, in view of (E3),

k o(4)

ni; m(c;) = )i MCk)-

Now as * is an involution on A and the structure constants are real, the identity

nggf))’a(j) = nfz holds for all i,7,k. Thus (5.1) is satisfied.

(2) When setting k = 0 in identity (5.1) (which is equivalent to Axiom (A6)
for signed hypergroups), we obtain

13 ;m(¢;) = 8,3y, ;m(co). -

(Here 6 denotes the. Kronecker symbol.) This proves (Es) and the final statement
concerning the mass functional. The rest is clear. ‘

Finaily, we note that Ross [21] gives an account of some of Wildberger’s re-

sults using the notation of harmonic analysis which is similar to our presentation.

5.3. Dual structures of polynomial hypergroups. Let (Pn)nemo be a
real orthogonal polynomial system with respect to = € M *(R), satisfying the
following properties:

(1) There exists some zy € suppr with Pr(z0) =1 for all n e N, .
(2) The linearization coefficients in

n-+m
PP, = Z g(n,m, k)P, n,m € IN,

k={n—m)|
are nonnegative.

Then (Pn)nelNO induces the structure of a polynomial hypergroup on INg,
with the convolution derived from the above linearization in the obvious way; for
details see Lasser [14]. In particular, supp is contained in the compact set

Ds:={zeR: (Pra(2))nenv, is a bounded sequence},

which is homeomorphic to the dual of N .
Suppose further that '

(3) For z,y e X := suppm , there exists a measure bay € ME(X) such thét
@) Pa(2)Pa(y) = /X Po(2) dpiny(7) forallz,ye X
() . eyl <C foralae,ye X, with some constant C > 0.
Now deﬁne w: X XX = My(X) by w(z,y)(f) = Ix f(é)duz,y(z).
5.3.1. ProPOSITION. (X, T,w) is a commutative signed hypergroup with

unit zo and the identity mapping as involution; the measure m on X is the
orthogonalization measure 7.
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Proof. 7, -continuity of w is proved exactly in the same way as the corre-
sponding statement for weak duals of commutative hypegroups; see Lasser [14],
Prop.l. Furthermore, as Axioms (A1) and (A2) are clearly satisfied, w has a
canonical continuation * on M(X), which is, by a standard argument, com-
mutative and associative. xg € X serves as a unit, and by the orthogonality of
the P,,

[ =P Pt)any) = / Pu(y)(T°B) (y)dn(y)
X X

holds for all z € X and k,l € Ny . As finite linear combinations of the P, ’s are
uniformly dense in C(X), Axioms (A5) and (A6) are satisfied with the identity
mapping as the involution on X.

We add two classes of examples, provided by the Jacobi- and generalized
Chebyshev polynomials:

(i) Denote by (R2# Jnen, the Jacobi polynomials of order (e, ), o, > ~1 ,
normalized such that R{™® )(1) =1 for all n € INy. They are orthogonal on
[~1,1] with respect to dn(®P)(z) = (1 — 2)*(1 +z)?dz (Chihara [4]). As shown
by Gasper in [7] and [8], conditions (1) to (3) are satisfied for (R{™? ))nEINO with
Zo = 1, f and only if @ > 8> -1 and a+ B > —1. As D, = supprn(®F) =
[~1,1}, the dual of the polynomial hypergroup induced by the R s then a
commutative signed hypergroup on [—1,1]. If the measures u&?‘f ) are positive
— which is the case exactly if # > —1/2 or a+ 3 > 0 — then the underlying
polynomial hypergroup is known to be a Pontryagin hypergroup; see Lasser [14].

(ii) The generalized Chebyshev polynomials (qua’ﬂ))nemo. are the polynomi-
als orthogonal on [—1,1] with respect to di(®#)(z) = (1—2?)%|z|2P*1 o, 8> —1
(Chihara [4], Chap.V). We assume them to be normalized such that T*® (1) =1
for all n € Ng. If o > 3+ 1, they give rise to a polynomial hypergroup on INg
(Lasser [14]). The corresponding dual structure has been studied by Laine in
(13]; see also [14]. In paticular, condition (3) is satisfied for the above range
of parameters. Again zp = 1 and D, = suppr(®Ff) = [~1,1]. Thus the dual
of the polynomial hypergroup induced by the T,(la’ﬁ ) isa signed hypergroup on
[-1,1]. However, it is not a hypergroup for any choice of parameters, because
hypergroup-specific conditions on the support of the convolution product of point
measures are not satisfied. |
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