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Signed hypergroups are convolution structures similar to hypergroups, though
being not necessarily positivity-preserving. We prove a generalized Plancherel
theorem for positive definite measures on a commutative signed hypergroup,
with an analogue of the classical Plancherel theorem as a special case. More-
over, signed hypergroups with subexponential growth are studied. As an
application, the dual of the Laguerre convolution structure on R, is deter-
mined.

1. Introduction

In [16] we introduced an axiomatic frame for convolution algebras on locally
compact Hausdorff spaces which generalizes the hypergroup axiomatics in sev-
eral points, mainly in abandoning positivity of the convolution. We called
these structures “signed hypergroups”, thus emphasizing their structurally
close connection to hypergroups in the sense of Jewett [12], Spector [18] and
Dunkl [4]. (When saying “hypergroup” in this article, we shall always refer
to the axiomatics of Jewett [12], which has meanwhile been widely adopted.)
An important example of a signed hypergroup which is indeed not positivity-
preserving is provided by the Laguerre convolution on R, . It has been
studied by several authors including McCully [14], Gorlich and Markett [9],
[10], Stempak [19] and Thangavelu [21]; see also the discussion of this exam-
ple in Rosler [16]. For the compact case, our signed hypergroups are closeley
related to the compact hypercomplex systems of Vainerman [23]; in the finite
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case, they essentially coincide with Wildberger’s finite signed hypergroups,
which were formerly called “ensembles”, see [27], [28]. Somewhat stronger
axioms than ours for compact and discrete signed hypergroups have recently
been proposed by Ross [17]. As to further concepts of not necessarily positive
convolution systems, in particular the hypercomplex systems of Berezansky
and Krein, we refer to Berezansky, Kaluzhny (1] and the surveys of Litvinov
(13] and Vainerman [22].

While in [16] some basic harmonic analysis for signed hypergroups was devel-
oped, the present paper shall continue the discussion of the dual of a com-
mutative signed hypergroup. In particular, we prove a generalized Plancherel
theorem for positive definite measures on a commutative signed hypergroup.
It includes a characterization of the support of the Fourier transform of a
positive definite measure which seems not yet to be written down even for
hypergroups. As a special case, a straight analogue of the classical Plancherel
theorem for commutative hypergroups (see Jewett [12]) is obtained. As far
as groups and hypergroups are concerned, Plancherel theoréms for positive
definite measures can be found in Berg, Forst [2] and in Bloom, Heyer (3]
respectively; see also Voit [26]. Our proof for signed hypergroups, however,
is derived from the abstract formulation of Plancherel’s theorem for positive
functionals on a commutative *-algebra in Fell, Doran [6]. This general ver-
sion is due to Godement [7]; see also Godement (8] for the special case of
Gelfand pairs.

Just as for hypergroups (cf. Voit [25]), the dual of a commutative signed
hypergroup coincides with the support of its Plancherel measure in case of so-
called subexponential growth. To give an example of application, we use this
criterion in order to determine the dual of the signed Laguerre hypergroup
explicitely.

2. Preliminaries

2.1. Notation. For a locally compact Hausdorff space X let Cy(X),Co(X)
and C.(X) denote the spaces of continuous functions on X which are boun-
ded, those which vanish at infinity and those having compact support respec-
tivelyy. By M(X) and M*(X) we abbreviate the spaces of Radon mea-
sures and positive Radon measures on X. The spaces My(X), M (X) and
ME(X) consist of all bounded regular Borel measures on X, those which
are positive, and the real ones respectively. For u € M,(X), |u| € M} (X)
is the total variation of s and 6, € M (X) denotes the point measure at
z € X. The weak- x-topology o(Mp(X),Co(X)) shall be referred to as the
T« -topology on M,(X). Finally, for a normed space N, we abbreviate by
B(N) the algebra of bounded linear operators on N.
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2.2. Signed hypergroups. Let X be a locally compact Hausdorff space
and w:X x X — My(X), (z,y) — 6 *6,, be a 7, -continuous convolution
of point measures on X such that

(i) |6z *6y|| £ C for all z,y € X with some constant C >0,
(ii)) for f € Cc(X) and = € X, the mappings Tf : y — 8, % 6,(f) and
Tof : y+ 6y % 6.(f) again belong to C.(X).

Then in view of Theorem 1 in Pym [15],
wenlf)i= [ bxd(f) dwe (), 1€ CalX), my e M(X)
X

establishes a bilinear and separately 7, -continuous multiplication on M,(X)
which we call the canonical continuation of w. As usual, we shall write
f(zxy) for 6z %6,(f), f € Co(X)-
A signed hypergroup is a triple (X, m,w) consisting of a locally compact, o -
compact Hausdorff space X, a distinguished positive Radon. measure m €
M*(X) with suppm = X and a 7, -continuous mapping w : X x X —
ME(X), (z,y) — 6, * 6, , satisfying the following axioms:
(A1) For each =z € X and f € Cy(X), the translates T*f : y — 65 * 6,(f)
and T.f : y — 6, * 6-(f) again belong to Cy(X). Furthermore, for
f € Cc(X) and any compact subset K C X, the set
Uzex (supp(T=f) U supp(T. f)) is relatively compact in X.

(A2) |6z % 6y|| < C for all z,y € X with some constant C > 0.
(A3) The canonical continuation of w is associative.
(A4) There exists a neutral element e € X, which means that

Sexp=pxbe=p forall pe My(X).

(A5) There exists an involutive homeomorphism ~ on X such that for all
f,9 € Co(X) and z € X the following adjoint relation holds:

J @ pgam = [ s(a%g)im.
X X
We point out that axiom (A5) implies the follovying important property of ~

(0 *x6y)” =b5%6z forall z,y € X,

where p~(A) = pu(A~) for Borel measures ¢ on X and Borel sets A C X.
In fact, by the adjoint relation we obtain for z,y € X and any f,g € C.(X):

/ £(2) (62 % 85)™ * 6.) (g) dm(2) = / (82 %6, % 8,)(f) 9(2) dm(2) =
X X

[ = gdm = / T*f T9gdm = / £(2) (65 % 6+ 8.)(g) dm(2).
X X X

As suppm = X, this proves that (65 *6y)~ = by * 6z
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We shall from now on always assume that (X, m,w) is commutative, that is,
0z ¥ 6y = by %6, for all z,y € X. The algebra (M,(X),*) then becomes
a commutative Banach-*-algebra with unit &., the involution p +— pu*,
p*(A) := p(A-), and the norm |||’ := ||L,||, where L, € B(M,(X)) is
given by L,(v):=p*v. LY(X,m) with the same multipication and norm is
a closed *-ideal in (My(X),*,||.]|"), see Theorem 3.7 of Rasler [16]; for ab-
breviation, we shall refer to it as L!'(X). In particular, with f*(z):= f(Z) ,
the identity f*m = (fm)* holds for all f € L!(X).

2.3. The left-regular representation. According to Lemma 3.8 in [16],
the mapping A : L}(X) — B(L%*(X,m)), A(f)g := f g is well-defined and
norm-continuous. We call it the left-regular representation of L!(X). X is
a faithful *-representation of L!(X): The second property follows from the
fact that for all f, g, h € C.(X),

/(f'*g)ﬁdm = (freg)sh(e) = g+ (f+h)"(e) = / o (F+F) dm.
X X

In order to check that A is faithful, suppose that f € L}(X), f # 0. It
follows that there exists some g € C.(X) with A(f)g(e) = [ f~gdm # 0.
But as f*g belongs to Cp(X), A(f)g must be different from 0 in L?(X,m).

2.4. Multiplicative functions. As for commutative hypergroups, the spec-
trum A(LY(X)) and its symmetric part As(L1(X)) can be identified with
spaces of multiplicative functions on X in a canonical way. More explicitely,
let X,(X) and X denote the character space and the symmetric character
space of X respectively, that is

Xp(X) :={p € Cp(X) : p £0, p(z*y)=p(z)p(y) for all z,y € X},
X :={p € X(X): &) = o(z) for all z € X}.

Then equipped with the topology of uniform convergence on compact subsets
of X, Xy(X) and X are homeomorphic to A(L)(X)) and Ag(L!(X))
respectively via the mapping ¢ — F,, F,(u) = [, edp for p € My(X).
For details, we refer to Rosler [16].

In contrast to the hypergroup situation, the constant function 1 on X need
not belong to X ; so we have to make sure that X is not empty. This can
be seen as follows: Let A denote the subalgebra A = {A(f): f € L}(X)}
of B(L?%(X,m)). The left-regular representation A being faithful, we have
A # {0}. The norm-closure A of A is a commutative C* -algebra, hence
its spectrum A(A) is not empty and symmetric. Now if ¢ € A(A), then
¢ |a# 0 by continuity of ¢, and the mapping & : f — @(A(f)) obviously
defines an element of Ag(L!(X)).
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Finally, Fourier transforms of measures and functions as well as inverse Fou-
rier transforms are introduced in the usual way, see Rosler [16].

2.5. Approximate identities. A sequence (gn)nen C C.(X) is called an
approzimate identity, if gn >0, [, gn dm =1 for all n and suppg, — {e}
in the sense that for any open neighbourhood U of e, there exists an index
n(U) € IN such that supp g» CU for all n > n(U).

The following result will be of use later on:

2.6. Lemma. Let (gn)new C Cc(X) be an approzimate identity. Then
for any f € Cc(X), the set U, e supp (f * gn) is relatively compact, and
I"nn-—»co“f*gn - f”oo = 0.

Proof. Take f € C.(X). Then

f % alz) = / £ (@ % 2)ga(y) dm(y),

supp gn

and as |J,en Suppgn is relatively compact in X, axiom (Al) for signed
hypergroups yields that |J,cp supp(f * gn) is relatively compact as well.
Now let K C X be compact with supp f C K and |J,cn supp(f*gn) C K,
and choose any € > 0. The mapping (z,y) — f(7* z) being continuous on
X x X, there exists a neighbourhood U of e such that |f(F*z) — f(z)| < €
for all y € U and = € K. As suppg, is contained in U for n > n(U), it
follows that ||f * gn — flleo = ||f *9n — fllk < € for all n > n(U).

For hypergroups, the property e € supp (6, *6,) <= y =T is axiomatically
required. In our more general setting, we can at least deduce the following:

2.7. Corollary. If z € X satisfies e ¢ supp(6; *6y) for all y # T, then
e 1is contained in supp (65 * 6z) .

Proof. Suppose e ¢ supp (6, * 6z). Then our assumption on = entails that
e ¢ supp (6, * u) for all u € My(X). Now let (gn)new C C.(X) be an

approximate identity. Then for h € C.(X) with h(z) # 0 there exists an
index N € N such that suppg, N supp (6 * h~m) =0 for n > N. Thus

b+ gn(z) = /X WG + )gn(y) dmly) = /X gn(z * 9)h™(y) dm(y) = 0.

On the other hand, the above lemma says that lim,_.o h*gn(z) = h(z) # 0;
a contradiction. -
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3. A generalized Plancherel theorem for positive definite measures

Let (X,m,w) be a commutative signed hypergroup. The following definition
takes over the notion of positive definiteness in the case of groups (Berg, Forst
[2]) and hypergroups (Bloom, Heyer [3]):

3.1. Definition. A Radon measure p € M(X) is called positive definite on
(Xa m, LU), Zf
/(f*f*)du > 0 for all f € C.(X).
x

3.2. Examples. 1. For p € My(X) the measure pxpu* is positive definite;
indeed, for f € C.(X) a short calculation leads to

/(f*f‘)d(#*u‘) = / |~ * f|2dm > 0.
X X

2. Let P be the set of all (not necessarily bounded) positive definite func-
tions, that is

P={fec(x): [ Ifldlp+8,| <co and [ fd(uru) 20
X X
for all p € My(X) with compact support}.

(The first condition meets the fact that supp (6 * 6,) need not be compact.)
Then for f € C(X), fm is positive definite if and only if f € P.

For the proof, we first note that for any g € C.(X) and f € C(X) satisfying
Jx |f1d|éz % 6y| < 0o for all z,y € X, the adjoint relation

/x (T=f) gdm = /X £(T=g)dm

holds for all = € X . This is shown exactly in the same way as in Lemma 3.2
of Rosler [16] for f € Cy(X) and g € C.(X).
Now take f € P. Then for any g € C.(X), the above adjoint relation yields

| @@ @ an@) = [ )] 0@+ @an(e)im) =
[ @[ 9@+ aama))im) = [ ragmegm) > o

So fm is positive definite. The reverse direction is clear.
3. Let X* be the set of semicharacters on X, that is
X* = {p e C(X): /x ol di6s % 6,] < 00, @(F)=p(z) and

p(z*y) = ¢(z)p(y) for all z,y € X}.
As X* C P, pm is positive definite for every ¢ € X*.
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4. Let X be a commutative hypergroup and H a compact subhypergroup
of X with normalized Haar measure mpy . For p € H, the identity

(/x lp|*dmpy) - pmy = pmy * pmy
holds, where * denotes the convolution in X . Thus pmy , as an element of

My(X), is positive definite.

Besides positive definiteness, the decisive property of a measure p € M(X)
in order to allow a generalized Plancherel theorem will be the condition

[ rraxg s du <Ml [ 949 dn
(B) X X
for all f,g € C.(X), with some constant M > 0.

This condition is not very comfortable to handle with; in fact, the proof of
the generalized Plancherel theorem on commutative hypergroups in Bloom,
Heyer [3] does not involve it, but instead requires shift-boundedness of the
positive definite measure under consideration, see Voit [26]. Indeed, shift-
boundedness ensures that (B) is satisfied, as we shall now see in the slightly
more general setting of signed hypergroups. As for hypergroups, we call a
measure pu € M(X) shift-bounded, if for every f € C.(X) the function

ws f(z) = /X @+ 2)du(y) = /X T £~ dy

belongs to Cy(X). (Note that T=f~ has compact support according to
Axiom (A1) for signed hypergroups, and that continuity of p* f follows from
Lemma 3.3 in Rosler [16].)

3.3. Lemma. If a positive definite measure p on (X,m,w) is shift-
bounded, then it satisfies condition (B).

Proof. For any f,g € C.(X), we can write
/X frgxg** f*du = hy *x ha(e) = /hg(i)hl(x)dm(:c),

where hy := fx f* € Co(X), and hg := p~ x g * g* € Cp(X) is positive
definite. In particular, |he(z)| < C - ha(e) for all z € X, which leads to

/Xf*g*g‘*f'dn < C-ha(e) - [hallam < Cz'llfllf,m'/xg*y'du-

3.4. Examples. 1. Every measure p € My(X) is clearly shift-bounded.

2. For ¢ € X*, pm is shift-bounded if and only if ¢ is bounded. This
follows immediately from the identity mx*f(z) = f((p)-cp(a:) for f € C.(X).
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Let C(X) denote the dense subalgebra (C.(X),*) of LY(X). If u € M(X)
is positive definite, then it induces a positive functional p, on C(X) by
of) = J. x fdu. Now assume that p also satisfies condition (B). Then
Nu(X) :={f € Ce(X) : pu(f*f*) = 0} is an ideal in C(X), and p, gives rise
to an inner product (-,-), on the quotient space C,(X) := C(X)/N.(X)
according to

(p(£), p(9))u = pu(f *g%) for f,g € C(X),

where p is the quotient map C(X) — Cu(X). We set |||, := /{h, ),
for h € C,(X), and denote by H,(X) the Hilbert space which is obtained
from C,(X) by completion with respect to ||.||, . The natural representation
T of C(X) on Cu(X), given by T(f)(p(g)) := p(f * g), is easily seen to
preserve the *-operation. Moreover, condition (B) ensures that T is norm-
continuous. Hence it can be uniquely extended to a norm-continuous *-
representation T, : L'(X) — B(H,(X)). We shall refer to the operator
norm of T,(f), f € LX(X), as |Tu(P)-

We are now going to apply the generalized Plancherel theorem for positive
functionals on a commutative *-algebra, see Fell, Doran [6], 21.4 and 21.6, to
functionals of the form p, on C(X). Before doing so, we have to ensure the
following density criterion on C(X):

3.5. Lemma. Forany f € C(X) and € > 0, there exist g,h € C(X) such
that pu((f —g*h)x(f—g*h)*) < e

Proof. Choose an approximate identity (gn)nenw C C.(X) and set h, :=
f—f*gn € Co(X). Then |, supphs is relatively compact according to
Lemma 2.6; hence there exist compact subsets K, L C X with supph, C K
and supp(h, x h%) C L for all n € IN. Furthermore, ||Anlleo < € if n is
large enough. So for such n, we obtain

Pullin +13) < [ W Kollodis < C - m(K) - (D)
L

3.6. Theorem. Let p € M(X) be positive definite and satisfy condition
(B). Then there ezists a unique measure o, € M +(X), called the Fourier
transform of p, such that

(1) feL?*(X,0,) forall f € C(X) and
/ f*xg*du = /Afida“ for all f,g € Co(X).
X X _

Furthermore, the following hold:
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(2) The Fourier transform = on C.(X) gives rise to a unique isometric
isomorphism ®: H, — L2()?,ap) with ®(p(f)) =F for fe C.(X).
(3) The representantion T, is unitarily equivalent under ® with the * -repre-
sentation W of L}(X) on L3*(X,0,) given by
W(f)h = Fh.

(4) suppoy, = {9 € X : |f(@)| S ITu(F)| for all f € C(X)}.

Proof. Items (1) to (3) result directly from the generalized Plancherel theo-
rem in Fell, Doran [6], 21.4 and 21.6, when applied to the dense *-subalgebra
C(X) of L'(X) and the positive functional p,. (In [6], 21.4, the additional
assumption is made that the underlying Banach-*-algebra should be symmet-
ric; however, a careful reading shows that this condition is not necessary.)
For the proof of (4), set

Sui={p € X :|f(¢)| S ITu(f)Il for all f € C(X)}.
Let My, g € Cy(X), denote the multiplication operator on L%(X ,ou) de-
fined by Mgy(h) = gh. Its operator norm is given by

”Mg”vy = “g” suppoy +— SuP{lg(‘p)l P E suppa,‘}.
Thus according to (3), we obtain that

1T (DN = IM7lloy = 15 lsuppos

for every f € C.(X). This yields the inclusion suppo, C S,. For the reverse
inclusion, it is enough to show that [g(¢)| < [|gllsupps, for all ¢ € S, and

g€ Co()? ), which means that
Su={p € X :l9(p)l < IMgll, for all g € Co(X)}.

But this is an immediate consequence of the fact that {f : f € C.(X)} is
dense in Co(X) with respect to ||.]leo: indeed, take any g € Co(X) and
€ > 0, and choose f € C.(X) with ||f — glleo < € and |||f]?> = |9|?|leo < €.
Then if ¢ € S, we have |g(p)| < |f(p)|+€ < ||M;:||¢,,, + €. On the other
hand,

L N Ay

for all h € C.(X), and hence Ilellgy < IMg|l3, + €. As e was arbitrary,
it follows that [g(¢)| < [|Mlls, forall ¢ € S, and g€ Co(X).

We now focus to the special case p = 8. € Mp(X). Clearly, 6. is positive
definite on (X, m,w). It also satisfies condition (B), which in this case reads

I1f *gllzm < M- ||fll1m - llgllzm
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for all f,g € C.(X), with some constant M > 0; this follows from the
norm-continuity of the left-regular representation A : L}(X) — B(L?(X,m)),
see Section 2.3. Of course, Ts, = A, and thus the above theorem yields
an analogue to the well-known classical Plancherel theorem for commutative

hypergroups:

3.7. Theorem. There ezists a unique measure ®™ € M +()? ), called the
Plancherel measure of (X, m,w), such that

/fgdm= ﬂﬁ?dw for all f, g € Ce(X).
X X

Furthermore, the Fourier transform on C.(X) uniquely extends to an isomet-
ric isomorphism F : L*(X,m) — L2(X,~), called the Plancherel transform
on (X,m,w). Finally,

supp = {p € X : |f(9)| S IIA(f)|| for all f € C(X)}.

3.8. Corollary. The Banach-algebra L'(X) is semi-simple.

Proof. From the proof of Theorem 3.6 it is seen that ”f"aumﬂr = [[A(f)|| for
all f € Cc(X). As C.(X) is dense in L'(X) with respect to ||.||;,m , the
same identity holds for all f € L}(X). Now if f: 0, then A(f) =0, and
thus finally f =0 by injectivity of A.

3.9. Examples. 1. If u € My(X) is positive definite, then o, = ﬁ:w. As
the corresponding result for hypergroups in Bloom, Heyer [3], this is obtained
from the Plancherel Theorem 3.7 by writing

[issrdu=wapasie) = [ um e f@F@dm) = [ |FPdn.
X X X

2. Let p = hm with h € Cp(X) being positive definite. Then according
to Bochner’s theorem (Theorem 4.11 in Roésler [16]), there exists a unique
measure a € M ()? ) such that h =a. A short calculation now yields

/ (f +¢%) hdm = /A(fA?)(@da(tp)
X X

for all f,g € Cc(X). Thus defining a~ € M:’()?) by da=(y) :=da(p™), we
have o, = a~ . In particular, if 4= pm with p € X, then o, =6z.

The following proposition is a generalization of the classical inversion theo-
rem:
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3.10. Proposition. Let p € My(X) and p € Mb()?). Then p=pm if
and only if p=pw.

Proof. For f € C.(X), u* f belongs to L'(X)N L2(X,m), and by Theorem
3.7 we obtain that for all g € C.(X),

/X (Frg)di— = jnfagle) = /x (s )T dm = /)?fﬁﬁdvr - /)?J‘Tgﬁdvr-

But the set {f*g: f,g € C.(X)} is dense in Co(X) according to Lemma
2.6, and the set { ng, f,9 € C.(X)} is obviously dense in Co()? ). Hence
Jxhdp~™ = f)?'l\u’idvr for all h € C.(X). On the other hand, a short calcu-

lation yields that |, xhp~dm = f )?Tzdp. Together, the assertion follows.

3.11. Corollary. If f € C(X)N L (X) satisfies f € L}(X, ), then

f(z) = /)?f(w)ao(z) dn(p) forallzeX.

This is obtained from the above theorem with p = fm and p= f1r.

At the end of this section we want to point out the exact relationship be-
tween condition (B) and shift-boundedness for positive definite measures; in
fact, both conditions are equivalent, and moreover, they are equivalent to the
existence of a Fourier transform. This is now quite easily seen as a conse-
quence of Theorem 3.6:

3.12. Proposition. For a Radon measure p € M(X) the following are
equivalent:

(1) p is positive definite and shift-bounded.

(2) p is positive definite and satisfies condition (B).

(3) There ezists a measure o, € M*+(X) such that

/ fxg*du = /Aﬁida“ for all f, g € Co(X).
X X

Proof. It remains to verify (3) = (1). Thus suppose (3) is satisfied. Then
positive definiteness of u is obvious. Furthermore, for f, g € C.(X) we
obtain

(#) - rfrgla)= /X Fellbreg)du= /)?f(tp)w(w)ﬁ(w)dvy(w);

in particular, u~ * f * g is bounded. Now let f € C.(X) be arbitrary and
choose an approximate identity (gn)nen € Ce(X). Lemma 2.6 ensures that
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for each z € X, there is a compact subset K, C X with supp(f*6z) C K,
and U,cn supp (f * 6z * go) € K;. Moreover, there exists an index N, € IN
such that

|f %6z — f*x bz * gnlloc < for all n > N,.

_ 1
|ul(K<)

Hence for n > N, the estimation
W f@ = fron@ = | [ (Frodu = [ (rrozroma] <1

holds. On the other hand, the sequence (1~ *f*gn)nen is uniformly bounded
on X, which follows from (*) and the uniform boundedness of the sequence
(Gn)new on X . Thus p~ x f is bounded, and the proof is finished.

4. Subexponential growth

It has been proved by Vogel [24], that the L!-algebra of a commutative
hypergroup with so-called polynomial or subexponential growth is symmet-
ric. This leads to a useful characterization of the dual of a hypergroup with
subexponential growth in terms of the Plancherel measure, see Voit [25]. We
shall now carry over this criterion to commutative signed hypergroups; in the
following section it will then be applied to the Laguerre convolution structure.

Let (X, m,w) denote a commutative signed hypergroup. As for hypergroups,
we define the convolution of subsets A, B C X by

AxB:= U supp (6 * 6y).
z€EA,yEB

We shall need the following additional condition:
(©) For compact subsets A, B C X, A x B is compact.

This is for example the case if 6, * 6, has compact support for all z,y € X
and the mapping (z,y) — supp(6z * 6,) on X x X is continuous in the
Michael topology; the proof is the same as for hypergroup convolutions (see
Jewett [12], 3.2). It is important to note that in contrary to the hypergroup
case, the convolution of sets will in general not be associative; this is because
for measures p,v € M;H(X) with compact support the identity supp (u*v) =
supp p * suppv need not hold. However, the inclusion “C” is easily seen to
remain true. Thus setting

A*0:={e}, A™:= A"V 4 (ACX,n>1),

we particularly have the inclusion supp(f*") C (supp f)** for any f €
C.(X) and n € IN.
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4.1. Definition. (X,m,w) has subezponential growth, if for each compact
subset K C X and each constant a > 1,

m(K**) = O(a™) as n— oo.

4.2. Theorem. If (X,m,w) satisfies condition (C) and has subezponential

growth, then the following hold:

(1) LY(X) is symmetric, that is, A(LY(X)) = As(LY(X)). Consequently,
X(X)=X.

(2) The Plancherel measure 7 of (X, m,w) satisfies suppm = X.

Proof. (1) We follow the proof of Vogel [24] in a slightly simplified way.
According to Hulanicki [11] it is enough to show that for f € L(X) with
f = f*, the identity ||A(f)|]| = p(f) holds, where p(f) is the spectral ra-
dius of f. By the norm-continuity of A, a standard argument shows that
AN < p(f). For the converse, first suppose that f = f* belongs to
C.(X). Then the assumptions of the theorem assure that

m(supp (f**)) < m((supp f)**) = O(a")

for a > 1. Hence there exists a constant M (a) > 0 such that for n > 1

1FmI < Gl < Cm(supp (7)) RIF M < M@aR NI ISl
It follows that
p(f) = lim (IF1)% < va- IS

for all a > 1, and hence p(f) < ||A(f)l-
Now suppose f = f* € L}(X) is arbitrary. For € > 0, choose g € C.(X)
with g =g¢* and ||f —g|l1 < €. Then

p(f) < p(f—g)+p(g) < C-IIf =gl + 1M <

< Ce+ A -9l + AP € 20+ NP

Hence p(f) < |[|A(f)|l, and the proof is finished.

The proof of (2) is exactly the same as in the hypergroup case (Theorem 2.17
in Voit [25].)

5. The dual of the signed Laguerre hypergroup

Let L%, n € Ny denote the Laguerre polynomials with parameter a > —1
and L& the Laguerre functions on Ry = {z € R:z > 0},

£3(z) = e~/ ———-IL;Z;E:; .
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As shown by Goérlich and Markett [9], the Laguerre functions with parameter
a > 0 satisfy a product formula of the kind

£2@)630) = [ L2(Muz, () forall 2,y 2 0;
0

hereby the measures u2, belong to MF(R,), satisfying lug ll £ 1 and
supp ug,, = (V2 = ) (VZ + v7)?] for all 2,y > 0.

The above product formula gives rise to a commutative signed hypergroup on
R} , namely X, = (R4, Mq,wa) With dmy(z) = 2%dz and we(z,y) = He .y -
Its unit element is 0, and the involution is given by the identity mapping
on Ry;. For further details, see Rosler [16]. The Laguerre functions are
uniformly bounded according to

|[£3(x)] <1 forall z>0,a>0

(cf. Erdélyi et al. [5], 10.18(14)). So by definition of the convolution, the £&
belong to the dual X, of Xo. We are going to show that these are in fact
the only characters of X, . This is also stated in Theorem 2.4 of Stempak
[19], but a rigorous proof is missing there.

5.1. Theorem. Let X, be the signed Laguerre hypergroup with parameter
a>0. Then

Xo = X(Xa) = {£2, n € No},
and )/(:, is homeomorphic to INg with the discrete topology.

Proof. In order to apply Theorem 4.2, we have to assure condition (C) and
the subexponential growth of X,. (C) is clear by the continuity of the
mapping (z,y) — supp Kz, in the Michael topology. Furthermore, if K :=
[0,z] with = >0, then K*™ = [0,n%z] for all n € IN, and thus
n2: 1
ma(K-n) = /(; t*dt = P ma+1 n2cz+2,

from which the subexponential growth of X, follows. Now set

1 F'n+a+1)
INae+1) n!

Then the functions cno LS, n € INg, provide an orthonormal basis of
L?(R4,mq); see Szegd [20], Theorem 5.7.1. In particular, for f € C.(R4)
Parseval’s identity

[ @@ = St Fl = ey 3 (M1l

n=0

(n € Ny).

Cn,a =

~

holds with f(n) := [;° £L3(z)f(z) dma(z) = F(L2). Therefore by unique-
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ness of the Plancherel measure 7, of X, , it follows that

1 — [N+«
= D 2 (n) s

n=0

Set A:={L%, n € No}. Then Theorem 4.2 yields that

Xa = X(Xa) = supp(ma) = 4,

where the closure is taken with respect to the topology 7. of uniform conver-
gence on compact subsets of R, . We claim that A = A; otherwise, there
would exist some ¢ € X. and a sequence (fx) € A converging to ¢ in 7.
In particular, fx — ¢ € Cp(lR4+) uniformly on [0,1]. But this is impossible,
because fr(0) = 1 for all £ € IN, whereas at the same time, 0 is a limit
point of zeros of the fi, k € IN.

Finally, the discreteness of X, is obtained as usual from the orthogonality of
the £2 with respect to mq: As L& € L1(X4,ms), the Fourier transform
CA;’; is continuous on X, with

Baes) = [ Latadma(s) = 5 tum.
0

n,a

Hence £2 must be an isolated point of X..

5.2. Remarks. 1. The signed Laguerrre hypergroup provides an example of
the somewhat striking fact that the dual of a non-compact signed hypergroup
may be discrete. This situation cannot occur for hypergroups, which is clear
by a result of Voit [25]: if X is a commutative hypergroup, then the (unique)
positive character contained in the support of the Plancherel measure of X
is isolated in X if and only if X is compact.

2. It is well-known that for a compact hypergroup X with normalized Haar
measure m, L?(X,m) becomes a Hilbert- * -algebra in the natural way (see
Jewett [12], 7.2). The same is true for the signed Laguerre hypergroup after
a suitable renormalization of m,: Consider the renormalized signed hyper-
group (Xo,Mqe,wq) with mq = I'(a + 1)m,. The associated Plancherel
measure 7, = ['(a + 1)7, satisfies 7o(p) > 1 for all ¢ € )?:, Hence for
g € C¢(X), the inequality ||gllcc < |lg||]2 holds, where ||.||2 is taken with
respect to M, ; this is because E«,a e |3(0)|? d7a(p) = |lg|l3 according to
the Plancherel theorem. Thus for any f,g € C.(X), we obtain

IF*gllz = IF*gllz < Glleo - IF N2 < N£1l2- lglla-

The unique bilinear and |.||2 -continuous continuation of * (and as well of
the involution *) to L?(X,mMm,) now clearly makes L?(X,m,) into a H*-
algebra.
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