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MARGIT RÖSLER

Abstract. We study Riesz distributions in the framework of rational Dunkl
theory associated with root systems of type A. As an important tool, we employ
a Laplace transform involving the associated Dunkl kernel, which essentially
goes back to Macdonald [M3], but was so far only established at a formal level.
We give a rigorous treatment of this transform based on suitable estimates of
the type A Dunkl kernel. Our main result is a precise analogue in the Dunkl
setting of a well-known result by Gindikin, stating that a Riesz distribution on
a symmetric cone is a positive measure if and only if its exponent is contained
in the Wallach set. For Riesz distributions in the Dunkl setting, we obtain an
analogous characterization in terms of a generalized Wallach set which depends
on the multiplicity parameter on the root system.

1. Introduction

Riesz distributions play a prominent role in the harmonic analysis on symmetric
cones and the study of the wave equation, but also in multivariate statistics due to
their close relation to Wishart distributions, see [FK] for some important aspects.
To motivate our results, let us describe a typical example: Consider the set Ωn of
positive definite n× n-matrices over R, which is an open (and actually symmetric)
cone in the space Symn = {x ∈ Mn(R) : x = xt}. The latter is a Euclidean space
(actually, a Euclidean Jordan algebra) with scalar product (x|y) = tr(xy). For
indices µ ∈ C with Reµ > µ0 := (n − 1)/2, the Riesz distributions Rµ associated
with Ωn are defined as the complex Radon measures on Symn which are defined by

Rµ(ϕ) =
1

ΓΩn
(µ)

!

Ωn

ϕ(x)(detx)µ−µ0−1dx

where ΓΩn is the Gindikin gamma function

ΓΩn(µ) =

!

Ωn

e−tr x(detx)µ−µ0−1dx.

Considered as tempered distributions on Symn, the Riesz measures Rµ satisfy the
recursion

det
" ∂

∂x

#
Rµ = Rµ−1,

see [FK]. Thus the mappping µ $→ Rµ uniquely extends to a holomorphic mapping
on C with values in the space of tempered distributions S ′(Symn). Note that for

Date: January 3, 2020.
2010 Mathematics Subject Classification. Primary 33C52; Secondary 43A85, 33C80, 44A10.
Key words and phrases. Dunkl theory, Riesz distributions, Laplace transform, hypergeometric

functions of several variables, Wallach set.

1



2 MARGIT RÖSLER

n = 1, the Riesz distributions are just the homogeneous distributions on R+ =]0,∞[
which are obtained by holomorphic extension from the Riemann-Liouville measures

Rµ(ϕ) =
1

Γ(µ)

! ∞

0

ϕ(x)xµ−1dx (Reµ > 0).

It is a famous result due to Gindikin [G] that a Riesz distribution associated with
a symmetric cone is actually a positive measure if and only if its index µ belongs to
the so-called Wallach set. The Wallach set plays an important role in the study of
Hilbert spaces of holomorphic functions on symmetric domains, see [FK, Chapter
XIII]. In the case of the symmetric cone Ωn, it is given by

$
0,

1

2
, . . . ,

n− 1

2

%
∪
&n− 1

2
,∞

'
.

In the present paper, we study Riesz distributions in the framework of Dunkl
operator theory associated with the root system

An−1 = {±(ei − ej) : 1 ≤ i < j ≤ n} ⊂ Rn. (1.1)

(Rational) Dunkl operators are commuting differential-reflection operators associ-
ated with a root system on some Euclidean space which were intoduced by C.F.
Dunkl in [D]. There is a well-developed harmonic analysis associated with these
operators which generalizes both the classical Euclidean Fourier analysis as well as
the radial harmonic analysis on Riemannian symmetric spaces of Euclidean type.
For a general background see e.g. [DX, dJ1, R3]. Among the more recent results
in harmonic analysis associated with Dunkl operators let us mention [ADH, Ve].

For An−1, the Dunkl operators in the directions of the standard basis (ei)1≤i≤n

of Rn are given by

Ti(k) =
∂

∂xi
+ k ·

(

j ∕=i

1

xi − xj
(1− σij) (1.2)

where σij is the reflection in Rn which acts on functions by exchanging the co-
ordinates xi and xj , and k ∈ C is a so-called multiplicity parameter. For some
values of k, Dunkl theory of type An−1 is closely related to the harmonic analysis
on symmetric cones, as will be explained in Sections 2 and 3. For example, analysis
on the cone Ωn for structures which depend only on the eigenvalues boils down to
Dunkl analysis of type An−1 for structures on Rn

+ which are invariant under the
symmetric group Sn; the multiplicity is hereby k = 1/2. In this paper we shall
consider the general, non-symmetric Dunkl setting associated with the root system
An−1 and arbitrary nonnegative multiplicities. For fixed multiplicity k ≥ 0, the
Riesz measures of type An−1 on Rn are defined by

Rµ(ϕ) :=
1

dn(k)Γn(µ; k)

!

Rn
+

ϕ(x)D(x)µ−µ0−1ωk(x)dx, Reµ > µ0 = k(n− 1)

where dn(k) > 0 is a certain normalization constant, Γn(µ; k) is a multivariate
version of the Gamma function (see Section 5),

ωk(x) =
)

1≤i<j≤n

|xi − xj |2k (1.3)
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is the Dunkl weight function associated with An−1 and multiplicity k, and

D(x) :=

n)

i=1

xi .

It turns out that the Riesz measures Rµ satisfy the distributional recursion

D
*
T (k)

+
Rµ = Rµ−1

with the Dunkl operator D(T (k)) :=
,n

i=1 Ti(k), and hence the mappping µ $→ Rµ

extends uniquely to a holomorphic mapping on C with values in S ′(Rn). This was
already observed in the recent thesis [L], where Dunkl-type Riesz distributions were
introduced to study questions related to Huygens’ principle. In this paper, we carry
out a more detailed study of these distributions. As in the case of symmetric cones,
an important tool will be a suitable version of the Laplace transform, given by

Lkf(z) =

!

Rn
+

f(x)EA
k (−x, z)ωk(x)dx (1.4)

where EA
k denotes the Dunkl kernel associated with An−1 and multiplicity k. This

is a non-symmetric variant of a Laplace transform which was first introduced on a
purely formal level by Macdonald in his manuscript [M3] and was further studied
for n = 2 by Yan [Y2]. The transform (1.4) was used by Baker and Forrester
[BF2] and by Sahi and Zhang [SZ], but due to a lack of knowledge about the decay
properties of the Dunkl kernel, convergence issues could not be properly settled.

We shall give in Section 3 a rigorous treatment of the Laplace transform (1.4),
based on suitable estimates for the Dunkl kernel which were conjectured in [BF2]
and are specific to root systems of type A. In particular, we provide a Cauchy-
type inversion theorem, which improves the injectivity statements for the Laplace
transform in [Y2] and [BF2]. Let us mention at this point that in connection with
the Laplace transform, specific properties of the type A Dunkl kernel are decisive.
In Section 4, we extend the type A Laplace transform to distributions. Section 5
is then devoted to the study of the Riesz distributions Rµ in the Dunkl setting.
We compute their Laplace transforms and study for which indices they are actually
measures. Our main result (Theorem 5.15) is a precise analogue of Gindikin’s result
for Riesz distributions on symmetric cones: The Dunkl type Riesz distribution Rµ

on Rn is a positive measure exactly if µ belongs to the generalized Wallach set

{0, k, . . . , k(n− 1)}∪ ]k(n− 1),∞[ . (1.5)

The Riesz distributions associated with the discrete Wallach points kr, 0 ≤ r ≤ n−1
can be determined explicitely; they are supported in the strata of the cone Rn

+, see
Theorem 5.11. The proofs of Theorems 5.11 and 5.15 are based on analysis for
multivariable hypergeometric functions which are given in terms of Jack polyno-
mial expansions in the sense of [Kan, M3], combined with methods of Sokal [So]
and a variant of the Shanbhag principle from [CL]. We finally mention that the
generalized Wallach set (1.5) also plays an interesting role in connection with in-
tegral representations of Sonine type between Bessel functions of type Bn and the
positivity of intertwining operators in the Bn-case, see [RV2].

2. Dunkl theory for root system An−1

In this section, we provide a brief introduction to the relevant concepts from
rational Dunkl theory; for a background the reader is referred to [DX, dJ1, O, R3].
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We shall consider the root system An−1 in the Euclidean space Rn with the usual
scalar product 〈x, y〉 =

-n
i=1 xiyi , which we extend to Cn × Cn in a bilinear way.

The corresponding finite reflection group is the symmetric group Sn on n elements.
For fixed multiplicity parameter k, the associated Dunkl operators Ti(k) (as defined
in (1.2)) commute, c.f. [D]. Therefore the assignment xi $→ Ti(k) extends to a unital
algebra homomorphism

p $→ p(T (k)), C[Rn] → End(C[Rn]).

In this paper, we shall always assume that k ≥ 0. Then for each spectral pa-
rameter y = (y1, . . . , yn) ∈ Cn there exists a unique analytic function f = EA

k ( . , y)
satisfying

Ti(k)f = yif for i = 1, . . . n; f(0) = 1,

see [DX, O]. The function EA
k is called the Dunkl kernel of type An−1. It extends

to a holomorphic function on Cn × Cn with

EA
k (x, y) = EA

k (y, x), EA
k (λx, y) = EA

k (x,λy), EA
k (σx,σy) = EA

k (x, y)

for all λ ∈ C and σ ∈ Sn. According to [R2], EA
k has a positive integral represen-

tation. More precisely, for each x ∈ Rn there exists a unique probability measure
µk
x ∈ M1(Rn) such that

EA
k (x, z) =

!

Rn

e〈ξ,z〉dµk
x(ξ) for all z ∈ Cn. (2.1)

The support of µx is contained in C(x), the convex hull of the orbit of x under the
action of Sn. Notice that

EA
k (x, y) > 0 and |EA

k (ix, y)| ≤ 1 for all x, y ∈ Rn.

Lemma 2.1. For x ∈ Rn and y, z ∈ Cn,

|EA
k (x, y + z)| ≤ EA

k (x,Re z) · emaxσ∈Sn 〈σx,Re y〉.

In particular,
|EA

k (x, z)| ≤ EA
k (x,Re z).

Proof. According to (2.1),

|EA
k (x, y + z)| ≤

!

C(x)

e〈ξ,Re y+Re z〉dµk
x(ξ)

≤ emaxσ∈Sn 〈σx,Re y〉 ·
!

C(x)

e〈ξ,Re z〉dµk
x(ξ),

which implies the assertion. □
Remark 2.2. The statement of Lemma 2.1 holds in the context of arbitrary root
systems: Consider some (reduced, not necessarily crystallographic) root system R
in a Euclidean space (a, 〈 . , . 〉) with associated reflection groupW and a multiplicity
function k ≥ 0 on R (i.e. k : R → C is W -invariant). Denote by Ek the associated
Dunkl kernel. Then for each x ∈ a there exists a unique probability measure µk

x on
a, supported in the convex hull of the W -orbit of x, such that

Ek(x, z) =

!

a

e〈ξ,z〉dµk
x(ξ)

for all z ∈ aC (the complexification of a). Thus by the same argument as above,

|Ek(x, y + z)| ≤ Ek(x,Re z) · emaxw∈W 〈wx,Re y〉 ∀x ∈ a, y, z ∈ aC.
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We return to the root system An−1 with multiplicity k ≥ 0. Recall the weight
function ωk introduced in (1.3). The associated Dunkl transform on L1(Rn,ωk) is
defined by

.f k(y) =
1

ck

!

Rn

f(x)EA
k (x,−iy)ωk(x)dx

with the normalization constant

ck =

!

Rn

e−|x|2/2ωk(x)dx.

This is the classical Mehta integral, whose value is given by

ck = ck,n = (2π)n/2
n)

j=1

Γ(1 + jk)

Γ(1 + k)
, (2.2)

c.f. [M1]. The Dunkl transform is a homeomorphism of the Schwartz space S(Rn)

and there is an L1-inversion theorem, see [dJ1]: if f ∈ L1(Rn,ωk) with .f k ∈
L1(Rn,ωk), then f(x) = ( .f k)∧ k(−x) for almost all x ∈ Rn. The Dunkl operators
act continuously on S(Rn) and therefore also on the space S ′(Rn) of tempered
distributions on Rn, via

〈Tξ(k)u,ϕ〉 := −〈u, Tξ(k)ϕ〉, u ∈ S ′(Rn), ϕ ∈ S(Rn). (2.3)

Besides the Dunkl kernel EA
k , we shall also need the Bessel function of type An−1,

JA
k (x, y) :=

1

n!

(

σ∈Sn

EA
k (σx, y)

which is symmetric (i.e. Sn-invariant) in both arguments.

Remark 2.3. For certain values of k, the Bessel function JA
k has an interpretation

in the context of symmetric spaces. In fact, consider for one of the (skew) fields
F = R,C,H the set Hn(F) := {x ∈ Mn(F) : x = xt} of Hermitian n × n-matrices
over F. The unitary group Un(F) acts on Hn(F) by conjugation x $→ uxu−1, and
Xn := Un(F) ⋉ Hn(F)/Un(F) is a symmetric space of Euclidean type, which can
be identified with the tangent space of the symmetric cone Ωn(F) = {x ∈ Hn(F) :
x positive definite} in the point In (the identity matrix). It is well known that the
spherical functions of Xn, considered as functions of the spectra of matrices from
Hn(F), can be identified with the Bessel functions JA

k ( . , z), z ∈ Cn with multiplicity
k = d/2, where d = dimRF ∈ {1, 2, 4}. For details see [dJ2] and [RV1].

It will be important in this paper that for k > 0, the Bessel function JA
k has

a series expansion in terms of Jack polynomials. To describe this as well as some
related facts, we have to introduce further notation; references are [Sta], [Kan],
[BF1] and [FW].

Let Λ+
n denote the set of partitions λ = (λ1,λ2, . . .) with at most n parts. The

number of parts of λ is also called its length and denoted by l(λ). We consider

the Jack polynomials Cα
λ := C

(α)
λ in n variables with parameter α > 0, which are

indexed by partitions λ ∈ Λ+
n and are normalized such that

(z1 + · · ·+ zn)
m =

(

|λ|=m

Cα
λ (z) for all m ∈ N0, z ∈ Cn, (2.4)
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where |λ| = λ1+· · ·+λn denotes the weight of λ. The polynomials Cα
λ are symmetric

and homogeneous of degree |λ|. If k > 0, then according to the relations (3.22) and
(3.37) of [BF2], JA

k is a 0F0-hypergeometric function in two variables:

JA
k (z, w) =

(

λ∈Λ+
n

1

|λ|! ·
Cα

λ (z)C
α
λ (w)

Cα
λ (1)

=: 0F
α
0 (z, w) with α = 1/k (2.5)

where we use the notation 1 := (1, . . . , 1) ∈ Rn. It is known from [KS] that

Cα
λ (z) =

(

|µ|=|λ|

cαλ,µz
µ (2.6)

with nonnegative coefficients cαλ,µ ≥ 0. Denoting ‖z‖∞ = sup1≤i≤n |zi|, we therefore
have

|Cα
λ (z)| ≤ Cα

λ (1) · ‖z‖ |λ|
∞ (2.7)

and thus by (2.4)

(

|λ|=m

|Cα
λ (z)C

α
λ (w)|

Cα
λ (1)

≤ (n‖z‖∞‖w‖∞)m. (2.8)

This implies that the series (2.5) converges locally uniformly on Cn × Cn.

Remark 2.4. An alternative proof of the expansion (2.5) is obtained by symmetriza-
tion from an analogous expansion of the Dunkl kernel in terms of non-symmetric
Jack polynomials, see [R1], Lemma 3.1 and Example 3.6.

3. The type A Laplace transform

We again consider the root system An−1 with some fixed multiplicity k ≥ 0. For
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn we write x ≤ y (and y ≥ x) if xi ≤ yi for all
i = 1, . . . n. This defines a partial order on Rn. For s ∈ C, we use the abbreviation

s := (s, . . . , s) ∈ Cn.

We further write R+ :=]0,∞[ and put

‖z‖1 :=

n(

i=1

|zi| for z ∈ Cn.

The rigorous foundation of the Laplace transform in the Dunkl setting associated
with An−1 will be based on the following factorization and exponential decay of the
Dunkl kernel EA

k .

Lemma 3.1. (1) For all x, z ∈ Cn and s ∈ C,

EA
k (x, z + s) = e〈x,s 〉 · EA

k (x, z).

(2) Let x ∈ Rn
+ and a ∈ Rn. Then for all z ∈ Cn with Re z ≥ a,

|EA
k (−x, z)| ≤ EA

k (−x, a) ≤ exp
*
−‖x‖1 · min

1≤i≤n
ai
+
.

In particular, if Re z ≥ s for some s > 0, then

|EA
k (−x, z)| ≤ e−s‖x‖1 ∀x ∈ Rn

+.

Properties (1) and (2) are also valid for the Bessel function JA
k .
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Proof. (1) By analyticity, it suffices to consider x ∈ Rn. Then the assertion follows
easily from Proposition 3.19 of [BF2], where s = 1. It can also be deduced from
formula (2.1), as follows: We have 〈ξ, 1〉 = 〈x, 1〉 for all ξ in the Sn-orbit of x, which
implies that 〈ξ, s〉 = 〈x, s〉 for all ξ ∈ C(x) and all s ∈ C. The statement is then
immediate from formula (2.1).

(2) In view of Lemma (2.1) it suffices to consider z ∈ Rn with z ≥ a. Our
assumption x ≥ 0 implies that ξ ≥ 0 for all ξ ∈ C(x) and therefore also 〈ξ, z−a〉 ≥ 0.
Thus by (2.1),

|EA
k (−x, z)| =

!

C(x)

e−〈ξ,z−a〉e−〈ξ,a〉dµk
x(ξ) ≤

!

C(x)

e−〈ξ,a〉dµk
x(ξ) = EA

k (−x, a).

For the second inequality, we start with the last identity in the above formula and
write ξ ∈ C(x) as

ξ =
(

σ∈Sn

λσσx with λσ ≥ 0,
(

σ∈Sn

λσ = 1.

Using the estimate

〈σx, a〉 ≥ ‖x‖1 · min
1≤i≤n

ai (σ ∈ Sn)

we obtain that 〈ξ, a〉 ≥ ‖x‖1 ·min ai . This implies that EA
k (−x, a) ≤ e−‖x‖1·min ai .

The same assertions for JA
k are immediate. □

Following [BF2, Section 3.4], we define the type A Laplace transform of a function
f ∈ L1

loc(Rn
+,ωk) as

Lkf(z) :=

!

Rn
+

f(x)EA
k (−x, z)ωk(x)dx (z ∈ Cn), (3.1)

provided the integral exists.

Remarks 3.2. 1. In [M3, formula (2) on p. 38], Macdonald defines the Laplace
transform with the Sn-invariant kernel

e(−x, z) = JA
k (−x, z)

instead of EA
k (−x, z) (see [M3, p.26] for the definition of e). If f is Sn-invariant,

then in (3.1) the Dunkl kernel EA
k (−x, z) may be replaced by JA

k (−x, z) without
affecting the value of the integral. So in the symmetric case, our definition coincides
with that of Macdonald up to a constant factor.

2. Macdonald’s definition of the Laplace transform in [M3] is closely related to
the well-known Laplace transform on symmetric cones. To explain this relation,
suppose that V is a simple Euclidean Jordan algebra with Jordan multiplication
(x, y) $→ xy and scalar product (x|y) = tr(xy) where tr denotes the Jordan trace on
V , i.e. tr(x) is the sum of eigenvalus of x. Let Ω ⊂ V be the associated symmetric
cone. It can be written as a Riemannian symmetric space Ω = G/K where G is
the identity component of the automorphism group of Ω and K = G ∩ O(V ). We
refer to [FK] for these facts and a general introduction to the analysis on symmetric
cones. The Laplace transform of a function F ∈ L1

loc(Ω) is defined by

LF (y) =

!

Ω

F (x)e−(x|y)dx (y ∈ V ),
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provided the integral exists. Suppose the rank of V is n. Then the possible ordered
spectra of elements from Ω are given by the set

C+ = {ξ = (ξ1, . . . , ξn) ∈ Rn : ξ1 ≥ · · · ≥ ξn > 0}.

If F is K-invariant, it can be uniquely written as F (x) = f(spec(x)), where
spec(x) ∈ C+ denotes the set of eigenvalues of x ordered by size and f : C+ → C
is measurable. Fix some Jordan frame (c1, . . . , cn) of V (that is, the cj form
a complete system of orthogonal primitive idempotents in V ). For ξ ∈ C+ let
ξ :=

-n
j=1 ξjcj ∈ Ω. Then according to Theorem VI.2.3 of [FK],

LF (y) = c0

!

C+

f(ξ)

/!

K

e−(kξ|y)dk

0 )

1≤i<j≤n

(ξi − ξj)
d dξ

where d ∈ N denotes the Peirce constant of V and c0 > 0 is some normalization
constant depending on V. In order to identify the integral over K, we recall the
spherical (or zonal) polynomials Zλ on V which are indexed by partitions λ ∈ Nn

0

and normalized such that for each m ∈ N0,

(trx)m =
(

|λ|=m

Zλ(x) (x ∈ V ), (3.2)

see Section XI.5 of [FK]. The Zλ are K-invariant and thus depend only on the
eigenvalues of their argument. As such, they are given by Jack polynomials:

Zλ(x) = Cα
λ

*
spec(x)

+
with α =

2

d
, (3.3)

see the notes to Chap. XI in [FK]. Further, the Zλ satisfy the product formula

Zλ(x)Zλ(y)

Zλ(e)
=

!

K

Zλ

*
P (

√
x )ky

+
dk (x ∈ Ω, y ∈ V )

where P denotes the quadratic representation of V . This is immediate from [FK,
Corollary XI.3.2] and the fact that P (

√
x)e = x.

Now consider the type A Bessel function JA
k with multiplicity k = d/2. Let

x ∈ Ω, y ∈ V and ξ = spec(x), η = spec(y). Then by relations (3.2) and (3.3),

JA
d/2(ξ, η) =

(

λ≥0

1

|λ|!
Zλ(x)Zλ(y)

Zλ(e)

=

!

K

etr(P (
√
x)ky)dk =

!

K

e(x|ky)dk.

Therefore LF (y) depends only on η = spec(y) and is given by

LF (y) = c0

!

C+

f(ξ)JA
d/2(−η, ξ)ωd/2(ξ)dξ.

Extending f to a symmetric function on Rn
+, this becomes

LF (y) =
c0
n!

!

Rn
+

f(ξ)JA
d/2(−ξ, η)ωd/2(ξ)dξ,

which coincides, up to a constant, with Macdonald’s Laplace transform for k = d/2.

Let us now continue the study of the type A Laplace transform Lk .
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Lemma 3.3. Let f ∈ L1
loc(Rn

+) and suppose that Lkf(a) exists for some a ∈ Rn,
that is !

Rn
+

|f(x)|EA
k (−x, a)ωk(x)dx < ∞.

Then the following hold.

(1) Lkf(z) exists for all z ∈ Cn with Re z ≥ a, and Lkf is holomorphic on the
half space

Hn(a) := {z ∈ Cn : Re z > a}.
(2) If p ∈ C[Rn] is a polynomial, then Lk(fp)(z) exists for all z ∈ Hn(a), and

p(−T (k))(Lkf) = Lk(fp) on Hn(a).

Proof. Part (1) is immediate from Lemma 3.1(2) and standard theorems for holo-
morphic parameter integrals. For part (2), let z ∈ Hn(a) and choose ε > 0 such
that Re z > a + ε. Then for x ∈ Rn

+ we have |EA
k (−x, z)| ≤ e−ε‖x‖1EA

k (−x, a),
due to Lemma 3.1. This implies that Lk(fp)(z) exists for each polynomial p, and
differentiation under the integral gives

−Tei(k)Lkf(z) =

!

Rn
+

xif(x)E
A
k (−x, z)ωk(x)dx, 1 ≤ i ≤ n.

The statement now follows by induction. □
Example 3.4. Suppose that f is measurable on Rn

+ and exponentially bounded
according to

|f(x)| ≤ Ces‖x‖1

with constants C > 0 and s ∈ R. Then by Lemma 3.1(2), Lkf(z) exists for all
z ∈ Hn(s).

We continue with some further elementary properties of the Laplace transform:

Lemma 3.5. Suppose that f is measurable on Rn
+ with |f(x)| ≤ C ·es‖x‖1 for some

s ∈ R. Then

(1) For z ∈ Hn(0), Lk

*
e−〈x,s〉f

+
(z) = Lk(f)(z + s).

(2) Let y ∈ Rn. Then Lkf(x+ iy) −→ 0 as minxi → ∞.

(3) Let x > s. Then Lkf(x+ iy) −→ 0 as min yi → ∞.

Proof. (1) This is obvious from Lemma 3.1(1) (c.f. also [BF2]).
(2) Write x = x′ + ξ with ξ = minxi and x′ ≥ 0. Then

Lkf(x+ iy) =

!

Rn
+

e−〈u,ξ〉EA
k (−u, x′ + iy)f(u)ωk(u)du

where
11e−〈u,ξ〉EA

k (−u, x′ + iy)f(u)
11 ≤ C · e(s−ξ)‖u‖1EA

k (−u, x′) ≤ C · e(s−ξ)‖u‖1 .

As ξ → ∞, the dominated convergence theorem yields the assertion.
(3) As above, write y = y′ + η with η = min yi and y′ ≥ 0. Then

Lkf(x+ iy) =

!

Rn
+

f(u)EA
k (−u, x+ iy′)e−i〈u,η〉ωk(u)du.

The statement now follows from Lemma 3.1 together with the Riemann-Lebesgue
Lemma for the classical Fourier transform.

□
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Our next result is a Cauchy-type inversion theorem for the Laplace transform.
We extend the weight function ωk to Cn by

ωk(z) :=
)

1≤i<j≤n

|zi − zj |2k.

Theorem 3.6. Suppose that Lkf(s) exists for some s ∈ R, and that

y $→ Lkf(s+ iy) ∈ L1(Rn,ωk).

Then f has a continuous representative f0, and

(−i)n

c2k

!

Re z=s

Lkf(z)E
A
k (x, z)ωk(z)dz =

2
f0(x) if x > 0

0 otherwise.
(3.4)

Here dz is understood as an n-fold line integral.

Proof. Lemma 3.3 assures that Lkf(s+ iy) indeed exists for all y ∈ Rn. By Lemma
3.1, the left-hand side of (3.4) can also be written as

1

c2k
e〈x,s〉

!

Rn

Lkf(s+ iy)EA
k (x, iy)ωk(y)dy.

This integral is absolutely convergent by our assumption. Extend f to Rn by

3f(x) :=
2
f(x) if x > 0

0 otherwise

and put F (x) = e−〈x,s〉 3f(x). As e−〈x,s〉 = EA
k (−x, s), we have F ∈ L1(Rn,ωk). In

view of Lemma 3.1, the Dunkl transform of F is given by

.F k(y) =
1

ck

!

Rn
+

e−〈x,s〉f(x)EA
k (−ix, y)ωk(x)dx =

1

ck
Lkf(s+ iy), y ∈ Rn.

From this relation, our assumption and the L1-inversion theorem for the Dunkl
transform it follows that F has a continuous representative with

c2kF (x) = ck

!

Rn

.F k(y)EA
k (ix, y)ωk(y)dy =

!

Rn

Lkf(s+ iy)EA
k (iy, x)ωk(y)dy.

Hence 3f has a continuous representative as well, satisfying

3f(x) = 1

c2k

!

Rn

Lkf(s+ iy)EA
k (x, s+ iy)ωk(s+ iy)dy

=
(−i)n

c2k

!

Re z=s

Lkf(z)E
A
k (x, z)ωk(z)dz.

This implies the assertion. □

As an immediate consequence of this theorem, we obtain

Corollary 3.7 (Injectivity of the Laplace transform). Let f ∈ L1
loc(Rn

+,ωk) and
s ∈ R such that Lkf(s) exists and Lkf(s+ iy) = 0 for all y ∈ Rn. Then f = 0 a.e.

Remark 3.8. Following a method of Yan [Y2], Baker and Forrester [BF2] proved
a weaker injectivity result for the Laplace transform Lk on a certain weighted L2-
space by applying suitable Dunkl operators to the Laplace integral.
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4. The type A Laplace transform of tempered distributions

In this section, we define the Laplace transform of tempered distributions in the
Dunkl setting. We follow the classical approach, see e.g. [V]. Denote by S(Rn) the
classical Schwartz space of rapidly decreasing functions on Rn and by S ′(Rn) the
space of tempered distributions on Rn. Let further

S ′
+(Rn) = {u ∈ S ′(Rn) : suppu ⊆ Rn

+ }

denote the set of tempered distributions supported in Rn
+ . In order to define the

Laplace transform of u ∈ S ′
+(Rn), choose a cutoff function χ ∈ C∞(Rn) with

suppχ ⊆]− ε,∞[n for some ε > 0 and χ(x) = 1 in a neighborhood of Rn
+.

Lemma 4.1. For each z ∈ Hn(0) the function x $→ χ(x)EA
k (x,−z) belongs to

S(Rn).

Proof. We use the following estimates from [dJ1] for the partial derivatives of the
Dunkl kernel: There are constants Cν > 0, ν ∈ Nn

0 , such that for all x ∈ Rn and
z ∈ Cn,

|∂ν
xE

A
k (x, z)| ≤ Cν · ‖z‖ |ν|

∞ emaxσ∈Sn 〈σx,Re z〉. (4.1)

A short computation shows that for x ∈ Rn with x > −ε, z ∈ Cn with Re z ≥ s > 0
and σ ∈ Sn,

〈σx ,Re z〉 ≥ s ·
n(

i=1

xi − ε · ‖Re z − s‖1 .

Therefore

|∂ν
xEk(x,−z)| ≤ Cν‖z‖ |ν|

∞ e ε‖Re z−s‖1 · e−s
!n

i=1 xi . (4.2)

This easily implies the assertion. □

Definition 4.2. The Laplace transform of u ∈ S ′
+(Rn) is defined by

Lku : Hn(0) → C, Lku(z) := 〈ux,χ(x)E
A
k (x,−z)〉,

where the notation ux indicates that u acts on functions of the variable x, and the
cutoff function χ is as above. As u is supported in Rn

+, this definition is independent
of the choice of χ.

Remark 4.3. If m ∈ S ′
+(Rn) is of order zero, i.e. a complex tempered Radon

measure supported in Rn
+, then its Laplace transform is given by

Lkm(z) =

!

Rn
+

EA
k (x,−z)dm(x), z ∈ Hn(0).

The exponential decay properties of EA
k in Lemma 3.1 together with Morera’s

theorem imply that Lkm is holomorphic on Hn(0) and may be differentiated under
the integral.

Example 4.4. Denote by δx the Dirac distribution in the point x ∈ Rn. Then
Lk(δ0) = 1.

Theorem 4.5 (Injectivity of the Laplace transform of tempered distributions). Let
u ∈ S ′

+(Rn) and suppose that there is some s ∈ ]0,∞[ such that Lku(s + iy) = 0
for all y ∈ Rn. Then u = 0.
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Proof. Fix a cutoff function χ as above, and let ϕ ∈ D(Rn). By Lemma 4.1, the
function ξ $→ χ(ξ)Ek(−s− iy, ξ) belongs to S(Rn) for each y ∈ Rn, and it is easily
checked that

ψ(ξ, y) := χ(ξ)EA
k (−s− iy, ξ)ϕ(y) ∈ S(Rn × Rn).

Consider the weight function ωk as a regular tempered distribution on Rn in the
usual way. Then by Fubini’s theorem for tensor products of tempered distributions
(see e.g. [V, Section 5.5]),

0 =

!

Rn

Lku(s+ iy)ϕ(y)ωk(y)dy

=

!

Rn

4
uξ,χ(ξ)E

A
k (−s− iy, ξ)

5
ϕ(y)ωk(y)dy

=

!

Rn

〈uξ,ψ(ξ, y)〉ωk(y)dy = 〈u⊗ ωk,ψ〉 =
4
uξ,

!

Rn

ψ(ξ, y)ωk(y)dy
5

=
4
uξ,χ(ξ)e

−〈s,ξ〉
!

Rn

EA
k (−iy, ξ)ϕ(y)ωk(y)dy

5

=
4
e−〈s, · 〉u , .ϕ k

5
.

Since D(Rn) is dense in S(Rn) and the Dunkl transform is a homeomorphism of
S(Rn), it follows that u = 0. □

5. Riesz distributions in the type A Dunkl setting

In this section we assume that k > 0. We put µ0 := k(n− 1) and introduce the
normalization constant

dn(k) :=

n)

j=1

Γ(1 + jk)

Γ(1 + k)
= (2π)−n/2ck,n

with the Mehta constant ck,n from (2.2), as well as the multivariable Gamma func-
tion and generalized Pochhammer symbol

Γn(µ; k) :=

n)

j=1

Γ
*
µ− k(j − 1)

+
, [µ]kλ :=

l(λ))

j=1

*
µ− k(j − 1)

+
λj

for µ ∈ C and partitions λ ∈ Λ+
n . Here (a)n = a(a+ 1) · · · (a+ n− 1). Notice that

the pole set of Γn( . ; k) is given by {0, k, . . . , k(n− 1)}− N0 .

Before turning to Riesz distributions, we provide some Laplace transform formu-
las which will be useful in the sequel. Recall the Jack polynomials Cα

λ in n variables
with α > 0. It will be convenient to work with the renormalized polynomials

3Cα
λ (z) :=

Cα
λ (z)

Cα
λ (1)

, 1 = (1, . . . , 1) ∈ Rn.

Recall our notation D(x) =
,n

i=1 xi for x ∈ Rn. We need the following integral
formula which is due to Macdonald.

Lemma 5.1 ([M3], formula (6.18)). For µ ∈ C with Reµ > µ0 and λ ∈ Λ+
n ,!

Rn
+

3C 1/k
λ (x)e−〈x,1〉D(x)µ−µ0−1ωk(x)dx = dn(k)Γn(µ; k) · [µ]kλ . (5.1)
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For λ = 0 this becomes!

Rn
+

e−〈x,1〉D(x)µ−µ0−1ωk(x)dx = dn(k)Γn(µ; k).

Formula (5.1) was deduced in [M3] from the Kadell integral ([K], see also [FW,
(2.46)]),
!

[0,1]n

3C 1/k
λ (y)D(y)µ−µ0−1D(1−y)ν−µ0−1ωk(y)dy = dn(k)·

Γn(µ; k)Γn(ν; k)

Γn(µ+ ν; k)
· [µ]kλ
[µ+ ν]kλ

by putting yj =
xj

ν−µ0−1 and taking the limit ν → ∞. We mention that in a similar

way, the classical Mehta integral ck,n had been evaluated by Bombieri, c.f. [M1].

Theorem 5.2. Let µ ∈ C with Reµ > µ0 and z ∈ Hn(0). Then!

Rn
+

EA
k (−x, z)D(x)µ−µ0−1ωk(x)dx = dn(k)Γn(µ; k) ·D(z)−µ, (5.2)

where

D(z)a :=

n)

j=1

zaj for a ∈ C

and ζ $→ ζa denotes the principal branch of the power function on C\] − ∞, 0],
satisfying 1a = 1.

Note that the Laplace integral in (5.2) indeed converges and defines a holomor-
phic function on Hn(0), as a consequence of the decay properties of EA

k .

Proof of Theorem 5.2. As D and ωk are Sn-invariant, it suffices to prove (5.2) with
EA

k replaced by JA
k . Consider first z ∈ Cn with ‖z‖∞ < ε

n , 0 < ε < 1, and put

α := 1/k. By the factorization of JA
k according to Lemma 3.1(1), its hypergeometric

expansion (2.5) as well as Lemma 5.1, we obtain
!

Rn
+

JA
k (−x, z + 1)D(x)µ−µ0−1ωk(x)dx

=

!

Rn
+

" (

λ∈Λ+
n

Cα
λ (−z)

|λ|!
3C α
λ (x)

#
e−〈x,1〉D(x)µ−µ0−1ωk(x)dx

=
(

λ

Cα
λ (−z)

|λ|!

!

Rn
+

3C α
λ (x) e−〈x,1〉D(x)µ−µ0−1ωk(x)dx

= dn(k)Γn(µ; k) ·
(

λ

[µ]kλ
Cα

λ (−z)

|λ|! .

Here the interchange of the summation with the integral is justified by the domi-
nated convergence theorem, since

(

λ

1

|λ|! |C
α
λ (−z) 3C α

λ (x)| ≤
∞(

m=0

1

m!
(n‖z‖∞‖x‖∞)m = en‖z‖∞‖x‖∞ ≤ eε〈x,1〉

where estimate (2.8) has been used. It is known from [Kan] that for each a ∈ C,
the hypergeometric series

(

λ∈Λ+
n

[a]kλ
Cα

λ (z)

|λ|! =: 1F
α
0 (a; z)
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converges absolutely for ‖z‖∞ < ρ, provided ρ ∈]0, 1[ is small enough. Moreover,
in this case Yan’s [Y2, Prop. 3.1] binomial formula states that

1F
α
0 (a; z) = D(1− z)−a. (5.3)

Thus for ‖z‖∞ small enough, we obtain that
!

Rn
+

JA
k (−x, z + 1)D(x)µ−µ0−1ωk(x)dx = dn(k)Γn(µ; k)D(z + 1)−µ,

and the general statement follows by analytic continuation with respect to z. □

We now proceed to the definition of Riesz distributions associated with root
systems of type A. For a parameter µ ∈ C, define gµ ∈ L1

loc(Rn
+,ωk) by

gµ(x) :=
1

dn(k)Γn(µ; k)
·D(x)µ−µ0−1, x ∈ Rn

+.

Theorem 5.2 says that for Reµ > µ0, the Laplace transform Lkgµ exists on Hn(0)
and is given by

Lkgµ(z) = D(z)−µ. (5.4)

Definition 5.3. For µ ∈ C with Reµ > µ0 define the (type A) Riesz measure
Rµ ∈ M(Rn) by

〈Rµ,ϕ〉 :=
!

Rn
+

ϕ(x)gµ(x)ωk(x)dx

=
1

dn(k)Γn(µ; k)

!

Rn
+

ϕ(x)D(x)µ−µ0−1ωk(x)dx, ϕ ∈ Cc(Rn).

We shall regard the complex Radon measure Rµ also as a tempered distribution

on Rn with support Rn
+. Notice that the mapping µ → Rµ is holomorphic on

{µ ∈ C : Reµ > µ0} with values in S ′(Rn), i.e. µ $→ 〈Rµ,ϕ〉 is holomorphic for
each ϕ ∈ S(Rn).

The Riesz measures Rµ have already been introduced in the (unpublished) thesis
[L]. There also the subsequent Bernstein identity as well as Corollary 5.6 concerning
the distributional extension of the Riesz measures with respect to µ were proven.
For the reader’s convenience, we shall nevertheless include proofs of these results,
where our proof of the Bernstein identity is slightly different from that in [L]. The
Bernstein identity is based on the operator

D
*
T (k)

+
:=

n)

i=1

Ti(k)

with Ti(k) the An−1 Dunkl operators. Notice that D
*
T (k)

+
acts as a linear dif-

ferential operator of order n on Cr(Rn)rad, the subspace of Sn-invariant functions
from Cr(Rn) with r ≥ n.

Lemma 5.4 (Bernstein identity). For x ∈ Rn
+ and a ∈ C,

D
*
T (k)

+
D(x)a = bk(a)D(x)a−1,

with

bk(a) =

n)

i=1

(a+ k(i− 1)).
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Proof. We claim that for a ∈ C and i = 1, . . . , n,

Ti(k)
*
D(x)a−1 · xi · · ·xn

+
=

*
a+ k(i− 1)

+
D(x)a−1 · xi+1 · · ·xn . (5.5)

For the proof of this identity, note that for f, g ∈ C1(Rn
+) with f or g Sn-invariant,

the Dunkl operators satisfy the product rule

Ti(k)(fg) = Ti(k)f · g + f · Ti(k)g.

Therefore

Ti(k)
*
D(x)a−1 · xi · · ·xn

+
= Ti(k)(xi · · ·xn) ·D(x)a−1 + xi · · ·xn · ∂i

*
D(x)a−1

+
.

Further,

Ti(k)(xi · · ·xn) = ∂i(xi · · ·xn) + k
(

j ∕=i

(xi · · ·xn)− σij(xi · · ·xn)

xi − xj

=
*
1 + k(i− 1)

+
· xi+1 · · ·xn.

This gives formula (5.5), from which the statement of the Lemma follows by recur-
sion. □

Remark 5.5. An alternative, less direct proof of the Bernstein identity can be ob-
tained from the Laplace transform identity (5.4), similar as in [FK], Propos. VII.1.4
for symmetric cones: For a ∈ C with Re a < −µ0 we have

D(x)a = Lkg−a(x) for x ∈ Rn
+

and thus by Lemma 3.3,

D(T (k))D(x)a = (−1)nLk(Dg−a)(x) = (−1)n
Γn(1− a; k)

Γn(−a; k)
Lk(g−a+1)(x)

= bk(a)D(x)a−1.

For general a ∈ C, the Bernstein identity then follows by analytic extension.

Corollary 5.6. The mapping µ $→ Rµ , {Reµ > µ0} → S ′(Rn) extends uniquely
to an S ′(Rn)-valued holomorphic mapping on C satisfying the recursion

D
*
T (k)

+
Rµ = Rµ−1 (µ ∈ C).

Proof. The proof is analogous to the case of symmetric cones, c.f. Chapter VII of
[FK]. First notice that

Γn(µ; k)

Γn(µ− 1; k)
= bk(µ− µ0 − 1).

For Reµ > µ0 we extend gµ to a locally integrable, tempered function on Rn by
putting gµ := 0 on Rn \ Rn

+. If Reµ > µ0 + n+ 1, then gµ ∈ Cn(Rn), and Lemma
5.4 implies that

D
*
T (k)

+
gµ = gµ−1 on Rn.

From (2.3) and the skew-symmetry of the Dunkl operators Ti(k) in L2(Rn,ωk) it
now follows that

D
*
T (k)

+
Rµ = Rµ−1. (5.6)

This formula recursively defines tempered distributions Rµ for all µ ∈ C in such a
way that the mapping µ $→ Rµ is holomorphic on C. The uniqueness is clear. □
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Definition 5.7. For a distribution u ∈ S ′(Rn) and σ ∈ Sn define uσ ∈ S ′(Rn) by

〈uσ,ϕ〉 :=
4
u,ϕσ−15

,

where ϕσ := ϕ ◦ σ−1 for functions ϕ : Rn → C.

Lemma 5.8. The Riesz distributions Rµ , µ ∈ C have the following properties:

(1) Rµ is Sn-invariant, i.e. Rσ
µ = Rµ for all σ ∈ Sn.

(2) The support of Rµ is contained in Rn
+, i.e. Rµ ∈ S ′

+(Rn).

(3) D(x)Rµ =

n)

j=1

(µ− k(j − 1)) ·Rµ+1.

All three properties are obvious for Reµ > µ0 and follow for general µ by analytic
continuation.

Theorem 5.9. For all µ ∈ C and z ∈ Hn(0),

LkRµ(z) = D(z)−µ. (5.7)

Proof. Let z ∈ Hn(0). We have

LkRµ(z) = 〈Rµ,χE
A
k ( . ,−z)〉,

where χEA
k ( . ,−z) ∈ S(Rn). Thus by the previous corollary, the mapping µ $→

LkRµ(z) extends analytically to C. On the other hand, we already know that for
Reµ > µ0 and z ∈ Hn(0), LkRµ(z) = Lkgµ(z) = D(z)−µ. Analytic continuation
implies the assertion. □

Corollary 5.10. R0 = δ0.

Proof. Theorem 5.9 shows that LkR0 = 1 on Hn(0), and the statement follows by
Example 4.4 and the injectivity of the Dunkl-type Laplace transform of tempered
distributions (Theorem 4.5). □

In the analysis on symmetric cones, there is a famous result by Gindikin char-
acterizing those Riesz distributions which are actually positive measures. Their
indices are exactly those belonging to the so-called Wallach set, which plays for
example an important role in the study of Hilbert spaces of holomorphic functions
on symmetric domains.

Motivated by these facts, we are now going to investigate for which indices the
Dunkl type Riesz distributions Rµ are actually (positive) measures. We expect that
in analogy to the case of symmetric cones, the distribution Rµ is a positive measure
if and only if µ belongs to the generalized Wallach set

Wk = {0, k, . . . , k(n− 1) = µ0}∪ ]µ0,∞[ .

We know already that Rµ is a positive measure if µ = 0 or if µ ∈ R with µ > µ0. In
the following theorem, we consider the Wallach points rk with r ∈ {1, 2, . . . , n−1}.
We start with some notation. For an integer r with 0 ≤ r ≤ n − 1, we denote by
∂r(Rn

+) the rank r part of the (stratified) boundary ∂(Rn
+), which is given by

∂r(Rn
+) =

6

σ∈Sn

7
x ∈ Rn

+ : xσ(r+1) = · · · = xσ(n) = 0
8
.
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Now fix r ∈ {1, . . . , n − 1} and consider the factorization Rn = Rr × Rn−r. We
write x ∈ Rn as

x = (x′, x′′) with x′ = (x1, . . . , xr), x
′′ = (xr+1, . . . , xn).

We further introduce the notations

D(x′) := x1 · · ·xr , ωk(x
′) :=

)

1≤i<j≤r

|xi − xj |2k.

Note that ωk(x
′) = 1 if r = 1.

We denote by R′
µ the Dunkl-type Riesz distribution on Rr associated with root

system Ar−1 and the same multiplicity k > 0. Notice that here k0 = k(r − 1). If
r = 1, then the Dunkl setting degenerates, and R′

µ coincides with the classical Riesz
distribution (also called Riemann-Liouville distribution) on R, which is defined by

〈R′
µ,ϕ〉 =

1

Γ(µ)

!

R+

ϕ(x)xµ−1dx for Reµ > 0.

This distribution extends holomorphically to all µ ∈ C such that d
dx (R

′
µ) = R′

µ−1

for all µ ∈ C, c.f. [FJ, Section 2.3].

Theorem 5.11. For r ∈ {1, . . . , n − 1}, the Riesz distribution Rkr is a positive
Radon measure, namely

Rkr =
1

n!
·
(

σ∈Sn

(R′
kn ⊗ δ′′0 )

σ, (5.8)

where δ′′0 denotes the point measure in 0 ∈ Rn−r. The support of Rkr is given by
∂r(Rn

+).

Proof. Notice first that the Riesz distribution R′
kn on Rr is a positive measure, as

kn > k(r − 1). Its support is Rr
+, and therefore the distribution on the right side

of (5.8) is an Sn-invariant positive tempered Radon measure which we denote by
mkr. It is clear that mkr ∈ S ′

+(Rn) with supp(mkr) = ∂r(Rn
+). By the injectivity

of the Laplace transform Lk on S ′
+(Rn) (Theorem 4.5) and in view of Theorem 5.9,

it suffices to prove that

Lk(mkr)(z) = D(z)−kr ∀z ∈ Hn(0). (5.9)

Consider first an arbitrary Sn-invariant test function ϕ ∈ S(Rn). Then

〈mkr,ϕ〉 =
1

n!

(

σ∈Sn

4
(R′

kn ⊗ δ′′0 )
σ,ϕ

5
= 〈R′

kn ⊗ δ′′0 ,ϕ〉 =

=
1

dr(k)Γr(kn; k)

!

Rr
+

ϕ(x′, 0) ·D(x′)k(n−r+1)−1ωk(x
′)dx′. (5.10)

Now let z ∈ Hn(0). As mkr is Sn-invariant, we have

Lk(mkr)(z) = 〈mkr ,χE
A
k ( . ,−z)〉 = 〈mkr ,χJ

A
k ( . ,−z)〉

with some Sn-invariant cutoff function χ ∈ C∞(Rn) as in the definition of the
type-A Laplace transform of distributions. Identity (5.10) therefore implies that

Lk(mkr)(z) =
1

dr(k)Γr(kn; k)

!

Rr
+

JA
k

*
(x′, 0),−z

+
D(x′)k(n−r+1)−1ωk(x

′)dx′.

The proof of Eq. (5.9) will now be finished by the following Lemma. □
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Lemma 5.12. Fix r ∈ {1, . . . , n− 1}. Then for all z ∈ Hn(0),

1

dr(k)Γr(kn, k)

!

Rr
+

JA
k

*
(x′, 0),−z

+
D(x′)k(n−r+1)−1ωk(x

′)dx′ = D(z)−kr.

Proof. As the number of variables is relevant in this proof, we shall write 1n for
the element 1 ∈ Rn. Both sides of the stated identity are holomorphic as functions
of z ∈ Hn(0), and therefore it suffices to verify the identity for all arguments of the
form z + 1n, z ∈ Cn with ‖z‖∞ < ε for some ε ∈ ]0, 1[. As in the proof of Theorem
5.2, we shall use the identity JA

k (x,−z − 1n) = JA
k (x,−z)e−〈x,1n〉 as well as the

hypergeometric expansion (2.5) of JA
k . The Jack polynomials in n variables have

the stability property (cf. [Sta, Poposition 2.5] together with [Kan, formula (16)]):

Cα
λ (z1, . . . , zr, 0, . . . , 0) =

2
Cα

λ (z1, . . . , zr) if l(λ) ≤ r

0 otherwise.

Hence with α = 1/k,

JA
k

*
(x′, 0),−z

+
=

(

λ∈λ+
n

Cα
λ (x

′, 0)Cα
λ (−z)

|λ|!Cα
λ (1n)

=
(

λ∈Λ+
r

1

|λ|!C
α
λ (x

′)
Cα

λ (−z)

Cα
λ (1n)

.

We therefore obtain

I(z) :=

!

Rr
+

JA
k

*
(x′, 0),−(z + 1n)

+
D(x′)k(n−r+1)−1ωk(x

′)dx′

=

!

Rr
+

" (

λ∈Λ+
r

1

|λ|!
Cα

λ (−z)

Cα
λ (1n)

Cα
λ (x

′)
#
e−〈x′,1r〉D(x′)k(n−r+1)−1ωk(x

′)dx′

=
(

λ∈Λ+
r

Cα
λ (−z)

|λ|! · C
α
λ (1r)

Cα
λ (1n)

!

Rr
+

3Cα
λ (x

′)e−〈x′,1r〉D(x′)k(n−r+1)−1ωk(x
′)dx′.

(5.11)

Here the interchange of the summation and integral is justified by the dominated
convergence theorem for ‖z‖∞ < ε with ε < 1

r , because by estimate (2.7),

(

λ∈Λ+
r

1

|λ|!
11 3Cα

λ (−z)Cα
λ (x

′)
11 ≤

∞(

m=0

1

m!
(r‖z‖∞‖x′‖∞)m ≤ er‖z‖∞‖x′‖1 .

For λ ∈ Λ+
n we further have

Cα
λ (1r)

Cα
λ (1n)

=
[kr]kλ
[kn]kλ

,

see e.g. [Kan, formula (17)]. Inserting this in (5.11) and evaluating the integral by
means of formula (5.1), we obtain (for ‖z‖∞ small enough) that

I(z) = dr(k)Γr(kn; k)
(

λ∈Λ+
r

[kr]kλ · C
α
λ (−z)

|λ|! . (5.12)

On the other hand, Yan’s binomial formula (5.3) gives, for small ‖z‖∞,

D(z + 1n)
−kr = 1F

α
0 (kr;−z) =

(

λ∈Λ+
n

[kr]kλ · C
α
λ (−z)

|λ|! .
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If l(λ) > r, then

[kr]kλ =

l(λ))

j=1

*
k(r − j + 1)

+
λj

= 0.

Therefore

D(z + 1n)
−kr =

(

λ∈Λ+
r

[kr]kλ · C
α
λ (−z)

|λ|! .

This shows that for ‖z‖∞ sufficiently small,

I(z) = dr(k)Γr(kn; k) ·D(z + 1n)
−kr,

which finishes the proof of the lemma. □

We mention that some partial results on the distributions Rkr are sketched in
[L].

We are now aiming at necessary conditions under which the Riesz distribution
Rµ is a complex or even a positive measure. We know already that Rµ is a positive
measure if µ belongs to the generalized Wallach set Wk, and that it is a complex
(non-positive) measure if µ ∈ C \ R with Reµ > µ0 = k(n − 1). We shall use
methods of Sokal [So] for Riesz distributions on symmetric cones, as well as the
following variant of a principle due to Shanbhag, Casalis and Letac (see [CL] as
well as [So]):

Lemma 5.13 (Shanbhag-Casalis-Letac prinicple in the Dunkl setting). Suppose
that m ∈ S ′

+(Rn) is a positive tempered Radon measure and p ∈ C[Rn] is a polyno-
mial which is real-valued and non-negative on suppm, then

p
*
− T (k)

+
Lkm ≥ 0 on Rn

+.

Proof. In view of Remark 4.3 we have Lkm ∈ C∞(Rn
+) and may differentiate under

the integral. Thus for x ∈ Rn
+,

p
*
− T (k)

+
Lkm(x) =

!

Rn
+

p(y)EA
k (y,−x)dm(y) ≥ 0.

□

Recall from Theorem 5.9 that for each µ ∈ C,

LkRµ(x) = D(x)−µ on Rn
+.

The following evalutation formula involving Dunkl operators associated with the
(renormalized) Jack polynomials will be crucial; it is an analogue of the formula on
top of p. 245 in [FK] for the spherical functions on symmetric cones.

Lemma 5.14. Let α = 1/k. Then for µ ∈ C and each partition λ of length l(λ) ≤ n,

3Cα
λ (T (k))D(1− x)−µ

11
x=0

= [µ]kλ . (5.13)

Proof. Suppose first that Reµ > µ0. Then according to Theorem 5.2,

D(1− x)−µ =
1

dn(k)Γn(µ; k)

!

Rn
+

EA
k (−y, 1− x)D(y)µ−µ0−1ωk(y)dy

=
1

dn(k)Γn(µ; k)

!

Rn
+

EA
k (y, x)e

−〈y,1 〉D(y)µ−µ0−1ωk(y)dy.
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Differentiating under the integral gives

3Cα
λ (T (k))D(1−x)−µ =

1

dn(k)Γn(µ; k)

!

Rn
+

3Cα
λ (y)E

A
k (y, x)e

−〈y,1〉D(y)µ−µ0−1ωk(y)dy.

Thus by Lemma 5.1,

3Cα
λ (T (k))D(1− x)−µ

11
x=0

=
1

dn(k)Γn(µ; k)

!

Rn
+

3Cα
λ (y) e

−〈y,1〉D(y)µ−µ0−1ωk(y)dy

= [µ]kλ.

Both sides of formula (5.13) are holomorphic in µ ∈ C (for the left side note that
3Cα
λ (T (k)) acts as a differential operator on Sn-invariant functions), and therefore

the stated identity extends to all µ ∈ C. □
Theorem 5.15. Consider the Riesz distributions Rµ , µ ∈ C.

(1) If Rµ is a complex measure, then either Reµ > µ0 = k(n − 1), or µ is
contained in the finite set

[0,∞[∩
*
{0, k, . . . k(n− 1)}− N0

+
.

(2) Rµ is a positive measure if and only if µ is contained in the generalized
Wallach set Wk = {0, k, . . . , k(n− 1)}∪ ]k(n− 1),∞[.

Proof. (1) We shall apply Proposition 2.3 of [So]. For this, consider the regular
distributions uµ ∈ D′(Rn

+), µ ∈ C, which are defined by the densities

fµ(x) =
1

dn(k)Γn(µ; k)
·D(x)µ−µ0−1ωk(x) ∈ L1

loc(Rn
+), (5.14)

that is

〈uµ,ϕ〉 =
!

Rn
+

ϕ(x)fµ(x)dx, ϕ ∈ D(Rn
+).

Notice that µ $→ fµ(x) is holomorphic on C for each x ∈ Rn
+ and that µ $→ uµ is

holomorphic on C with values in D′(Rn
+). If Reµ > µ0, then the Riesz distribution

Rµ provides an extension of the distribution uµ to a distribution on Rn in the
sense that the restriction of Rµ to Rn

+ coincides with uµ . Moreover, in this case
Rµ is also a complex measure, i.e. of order zero. In addition we know that the
mapping µ $→ Rµ is holomorphic on all of C. We are therefore in the situation of
[So, Proposition 2.3], which yields the following conclusions: First, Rµ extends uµ

for each µ ∈ C, and second, if Rµ is a complex measure on Rn, then the density
fµ (extended by zero to all of Rn) must belong to L1

loc(Rn). But this implies that
either Reµ > µ0 or µ is a pole of Γn( . ; k), i.e. µ ∈ {0, k, . . . k(n− 1)}−N0 . (Note
that in the latter case, fµ is identical zero.) If µ ∈] − ∞, 0[, then it follows from
the Laplace transform formula (5.7) that Rµ cannot be a measure. Indeed, suppose
that Rµ is a (tempered) measure. Then for x ∈ R with x > 0 we have

LkRµ(x) =

!

Rn
+

EA
k (y,−x)dRµ(y) =

!

Rn
+

e−〈y,x〉dRµ(y),

which is a usual Laplace transform. Thus by Lemma 3.6. of [So], x $→ LkRµ(a+x) is
bounded on [0,∞[ for each a > 0. But on the other hand, LkRµ(a+x) = (a+x)−nµ,
which is unbounded as x → ∞.

(2) In view of Corollary 5.10 and Theorem 5.11 it remains to prove the “only if”
part. Suppose that Rµ is a positive measure. We have to exclude the possibility
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that µ belongs to one of the open intervalls ]k(r−1), kr[ with r ∈ {1, . . . , n−1}. For
this, we apply the Shanbhag-Casalis-Letac principle to Rµ and the Jack polynomials
3Cα
λ , which are non-negative on Rn

+ as a consequence of their non-negative monomial
expansion (2.6). Thus by Lemma 5.13,

3Cα
λ (−T (k))(LkRµ) ≥ 0 on Rn

+.

Employing Lemma 5.14 we therefore obtain that for all λ ∈ Λ+
n ,

[µ]kλ = 3Cα
λ (T (k))D(1− x)−µ|x=0 =

* 3Cα
λ (−T (k))LkRµ

+
(1) ≥ 0. (5.15)

Here for the second equality, it was used that for f ∈ C1(Rn) and g(x) := f(1−x),
the Dunkl operators satisfy (Ti(k)f)(1 − x) = −Ti(k)g(x). Now suppose that µ ∈
]k(r − 1), kr[ , r ∈ {1, . . . , n − 1}. Choose λ := (1, . . . , 1, 0, . . .) ∈ Λ+

n with exactly
r + 1 parts equal to 1. Then

[µ]kλ =

r+1)

j=1

(µ− k(j − 1)) < 0,

in contradiction to (5.15). □

Remark 5.16. We mention that part (2) can be proven directly without referring to
part (1) and Proposition 2.3 of [So]. Indeed, if Rµ is a positive measure, then LkRµ

is non-negative on Rn
+ and thus by Theorem 5.9, µ must be real-valued. Then it

remains to exclude the intervals ]k(r − 1), kr[ as above.
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