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Positivity of Dunkl’s Intertwining Operator
via the Trigonometric Setting

Margit Rosler and Michael Voit

1 Introduction

In [15], it was proven that Dunkl's intertwining operator between the rational Dunkl op-
erators for a fixed finite reflection group and nonnegative multiplicity function is posi-
tive. As a consequence, we obtained an abstract Harish-Chandra-type integral represen-
tation for the Dunkl kernel, the image of the usual exponential kernel under the inter-
twiner. The proof was based on methods from the theory of operator semigroups and a
rank-one reduction.

In the present paper, we give a new, completely different proof of these results
under the only additional assumption that the underlying reflection group has to be crys-
tallographic. In contrast to the proof of [15], where precise information on the supports
of the representing measures could only be obtained by going back to estimates of the
kernel from [5], this information is now directly obtained. Our new approach relies first
on an asymptotic relationship between the Opdam-Cherednik kernel and the Dunkl ker-
nel as recently observed by de Jeu [6], and second on positivity results of Sahi [17] for the

Heckman-Opdam polynomials and their nonsymmetric counterparts.

2 Preliminaries
2.1 Basicnotation
Let a be a finite-dimensional Euclidean vector space with inner product (-, -). We use the

same notation for the bilinear extension of (-, -) to the complexification ac of a, and we
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identify a with its dual a* = Hom(a, R) via the given inner product. For « € a\{0}, we write
oV = 20/{a, ) and o (x) = x — (x, ") for the orthogonal reflection in the hyperplane
perpendicular to . We consider a crystallographic root system R in a, that is, Ris a finite
subset of a \ {0} which spans a and satisfies 04(R) = Rand («, ) € Z for all «, 3 € R. We
also assume that R is indecomposable and reduced, that is, R N Rx = {+«} for all « € R.
Let W be the finite reflection group generated by the o4, « € R. We will fix a positive
subsystem R, of R as well as a nonnegative multiplicity function k = (k4)«cr, satisfying

ko = kg if « and 3 are in the same W-orbit.

2.2 Rational Dunkl operators and Dunkl’s intertwiner

References for this section are [7, 8, 12, 15]. Let P = C[a] denote the vector space of com-
plex polynomial functions on a, and P,, C P the subspace of polynomials which are ho-
mogeneous of degree n € Z, . The rational Dunkl operators on a associated with R and

fixed multiplicity k > 0 are given by

Te = Te(k) =

< >(1—0(,(), Eea. (2.1)

x€ER

These operators commute and map P onto itself. Moreover, there exists a unique linear
isomorphism V = Vi on P with V(1) =1, V(P,) = P, and TV = VO, for all £ € a. Accord-
ing to [8], the intertwining operator V can be extended to larger classes of functions as

follows: forr > 0, let K, :={x € a: |x| < r} denote the ball of radius r and define

A= {f K, — C, f—Zf with f,, € Py, [[fl|a, = ZHf [ KT<O°} (2.2)

n=0

where [|f [/ k, = SUP,¢ck, Ifn(x)|. The space A, is a Banach space with norm | - ||a, (in
fact, a commutative Banach algebra). V extends to a continuous linear operator on A, by
V(Y o fn) =3 oy Vfn. The Dunkl kernel Exp,, is defined by

n=0
Expyy(,z) = V(e"), z€ac. (2.3)

It extends to a holomorphic function on a¢ x ac which is symmetric in its arguments. For

A € ac, Expyy, (A, ) is the unique holomorphic solution of the joint eigenvalue problem
Tef = (N E)F VE€a, f(0)=1. (2.4)

For x € a, we denote by C(x) the closure of the convex hull of the W-orbit Wx of x in a.
Moreover, for a locally compact Hausdorff space X, we write M (X) for the set of proba-

bility measures on the Borel o-algebra of X. In [15], the following is proven.

$T0Z ‘ST A2\ Uo ulogeped gn 1 /BI0'SeuInolpio o uiwi//:dny wo.j papeo lumod


http://imrn.oxfordjournals.org/

Positivity of Dunkl’s Intertwining Operator 3381

Theorem 2.1. For each x € a, there exists a unique probability measure u, € M'(a) such
that

VA(x) :J F(E)dpy(E) VF € Ay (2.5)

a

The support of u, is contained in C(x). O

As a consequence,

Expyy (x,2) :J &2 du (E) Vz e ac. (2.6)

a

n [15], the proof of the inclusion supp n, € C(x) requires the exponential bounds on
Expyy, from [5], which are by far not straightforward. As is well known, the W-invariant
parts of the rational and trigonometric Dunkl theories are, for certain discrete sets of
multiplicities, realized within the classical Harish-Chandra theory for semisimple sym-

metric spaces. In particular, for such k, the generalized Bessel functions

Jw(:,z) = |1W| Z ExXpyy, (-,w’1z), Z € ag, (2.7)
wew
can be identified with the spherical functions of an underlying Cartan motion group;
for details see, for example, [6]. In this case, their integral representation according to
(2.6) is a special case of a (Euclidean type) Harish-Chandra integral, and the inclusion
supp px C C(x) follows from Kostant’s convexity theorem [11, Proposition IV.4.8 and The-
orem IV.10.2].

2.3 Cherednik operators and the Opdam-Cherednik kernel

The basic concepts of this as well as the following section are due to Opdam [13] (see also
[14, part I]), Heckman (see [10, part I]), and Cherednik [4]. Let

P={Aca: (A a")€ZVaxeR} (2.8)

denote the weight lattice associated with the root system R. For A € ac, we define the
exponential e* on ac by e*(z) := e»? and denote by T the C-span of {e*, A € P}. This is
the algebra of trigonometric polynomials on ac with respect to R. The Cherednik operator

in direction & € a is defined by

De =De(k) =d:+ Y kalot,&)

xER

(1-0a) = (p(k), &), (2.9)

1—e«
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where p(k) = (1/2) 3_ ,cg, ka. Each D¢ maps T onto itself and (for fixed k) the operators
D¢ commute. Notice that in contrast to the rational T¢, they depend on the particular
choice of R,. For each A € ac, there exists a unique holomorphic function G(A,-) in a

tubular neighborhood of a which satisfies
D:G(A,-) = (N EGA,) VEea, GA0)=1 (2.10)

(see [14, Corollary 1.7.6]). G is called the Opdam-Cherednik kernel. It is in fact (as a func-
tion of both arguments) holomorphic in a suitable tubular neighborhood of a¢ x a [13,
Theorem 3.15|. The rational Dunkl operators can be considered a scaling limit of the
Cherednik operators, and this implies limit relations between the kernels Exp,, and G.

We will need the following variant of [6, Theorem 4.12].

Proposition 2.2. Let 4 > 0 be a constant, K,L C ac compact sets,and h: (0,0) x L — ac a

continuous mapping such that lim._,, eh(e,A) = A uniformly on L. Then
lim G (h(e, M), ez) = Expyy (A, z) (2.11)
€e—0

uniformly for (A,z) € L x K. O

The proof is the same as for [6, Theorem 4.12], with A/e replaced by h(e,A). We
mention that for integral k, such a limit transition has first been carried out in [2] by use

of shift operator methods.

2.4 A scaling limit for nonsymmetric Heckman-Opdam polynomials

The definition of these polynomials involves a suitable partial order on P; we refer to the

one used in [14]. Let
Pri={AeP: (A a")>0VaeR,} (2.12)

denote the set of dominant weights associated with R,, and A, the unique dominant
weight in the orbit WA. One defines A < v if either A, < v, in dominance ordering (i.e.,
vy — Ay € Qu,theZ,-span of R ), orif A, = v, and v < A (in dominance ordering).
Further, A < v means A = v or A < v. The nonsymmetric Heckman-Opdam polynomials

{Ex : A € P} C T associated with R, and k are uniquely characterized by the conditions

E)\ = Z a;m,e*’ with aAx A = ], (213)
VA

DeEr = (A E)Ex VE€q, (2.14)
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with the shifted spectral variable A = A + (1/2) > wer, ka€((A, &) Here e : R — {£1}is
defined by e(x) = 1 forx > 0 and e(x) = —1 for x < 0. For details, see [13] and [14, Section
1.2.3].

On the other hand, we know (cf. (2.10)) that G(A, -) is the up-to-a-constant-factor

unique holomorphic solution of (2.14). Hence
Ex=cr- G, ), (2.15)

with a constant cy = E5(0) > 0. The precise value of c, is given in [14, Theorem 4.7].

Corollary 2.3. For A € Pand z € ac,

1 z
E Az)= lim —E . 2.16
Xpw(h 2) = lim ——FEn (n) (2.16)
The convergence is locally uniform with respect to z. O

Proof. Fix A € P and observe that nA = nA+ (1/2) 3 ka€((A, «V))aforalln € N. Thus
by Proposition 2.2 and identity (2.15), we have, locally uniformly for z € ac,

xER

1
Expy (A z) = hm G(n)\ ) = lim En)\<z). (2.17)
— 00 n—oo Cpi n
|
Remark 2.4. Similar results hold for the symmetric Heckman-Opdam polynomials
_ WA
E '2), AeP,. 2.18
& B0 e e
They are W-invariant and related with the multivariable hypergeometric function
F(A, z) 7\ wo z 2.19
" I, 1
via
Pr=cy -FA+p,-) VAeP, (2.20)

with ¢ =[WA|-cx and p = p(k) = (1/2) 3_ g, ka®, (cf. [10, equation (4.4.10)]). This also
follows from (2.15) because F is in fact W-invariant in both arguments and for A € P,
the shifted weight A is contained in the W-orbit of A + p (13, Proposition 2.10]. Further,
Corollary 2.3 implies that for A € P, and z € ac,

]W()\,Z) = lim F<Tl}\+ p,%) = lim E—Pn)\ (%) (221)

n—oo Cn?\
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For illustration, consider the rank-one case (type A;) with a = R and R, = {2a},

a = 1.Fix k = ka, > 0. Then according to the example in [13, page 89f],
1
F(A,z) =2F1 | a,b,c; 2(1 —coshz) |,
G(A,z) =2F (a,b,c; %(1 - coshz)> (2.22)

1
—I—%sinhbzﬁ (a+1,b+1,c+1;§(1 —coshz)),

witha =A+k,b=—-A+k,and c = k+ 1/2. The weight lattice is P = Z, and the associated

Heckman-Opdam polynomials are given by

Po(z) =ciF(n+%k,z) =ci -QX(coshz), n=0,1,...,

~ n+k .
En(z) =cnG(M,2) = cn [Qﬁl(cosh z) + ;;:_ T sinh ZQ‘kT:T11 (coshz)|, neZ,

(2.23)

withn =n+kforn > 0,n =n—kforn <0, and the renormalized Gegenbauer polyno-

mials

1
QE(X) =57k (Tl+2k, -n,k+ =;

5501 —x)). (2.24)

N —

Relation (2.21) reduces to the classical limit

lim QX <cos Tzl) =jx_1/2(2) (z€C) (2.25)

n—oo

for the modified Bessel functions

e (1 (?
0 =21 ) =D ey § O

nrm+aoa+1)’ (2.26)

n=0

see [1, Theorem 4.11.6]. It is clear from the explicit representation of the Gegenbauer
polynomials in terms of Tchebycheff polynomials [1, equation (6.4.11)] that for k > 0, the
expansion coefficients of P,, with respect to the exponentials z — e™* m € Z, are all non-
negative. A closer inspection shows that the same holds for the nonsymmetric E,,. This
is in fact a special case of a deep result for general Heckman-Opdam polynomials due to
Sahi [17]: if the multiplicity function k is nonnegative, then it follows from [17, Corollary
5.2 and Proposition 6.1] that the coefficients a, , of E, in (2.13) are all real and nonnega-

tive. More precisely, if TTy := Z, [k«] denotes the set of polynomials in the parameters k4
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with nonnegative integral coefficients, then for suitable d) € TTy, all coefficients of d)Ex
are contained in TTy as well. This positivity result is the key for our subsequent proof of
Theorem 2.1.

3 New proof of Theorem 2.1

In contrast to our approach in [15], we first derive a positive integral representation for
the Dunkl kernel. As before, R and k > 0 are fixed.

Proposition 3.1. For each x € a, there exists a unique probability measure u, € M'(a)
such that (2.6) holds. The support of p, is contained in C(x). O

Proof. It suffices to prove the existence of the representing measures as stated; their
uniqueness is immediate from the injectivity of the (usual) Fourier-Stieltjes transform

on M'(a). Let A € P. Then by Sahi's positivity result mentioned above,

G(X, = —E)\ = Z b)\ Ve (31)

v<A

with coefficients by - satisfying

0<byv<1, Y bay=1 (3.2)
v<IA

Now fix A € P and z € ac. Then by Corollary 2.3,

n—oo Cn?\ n~>oov<]n>\

1 z
Expy,(A,z) = lim —EM(J = lm Y bpyem. (3.3)
Introducing the discrete probability measures

= ) buavdym € M'(a), (3.4)

v<InA
(where 6, denotes the point measure in x € a), we may write the above relation in the

form

Expy (A, z) = lim J e&2 dul(g). (3.5)

n—oo a
The following lemma shows that the support of uY is contained in C(}).

Lemma 3.2. Let A, v € Pwithv <A. Thenv € C(A). O
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Proof. Let C:={x € a: {(x,x) > 0V € R, } be the closed Weyl chamber associated with R,

and
C:={y€a:{yx) >0vxeC} (3.6)

its closed dual cone. Notice that Q; C C*. Therefore, v < A implies that A, —v, € C*. We
employ the following characterization of C(x) forx € C[11, Lemma IV.8.3]:

Cx) = |J w(Cn(x—C)). (3.7)
wew
This shows thatv € C(A) if and only if v, € A, — C*, which yields the statement. [ |

We now continue with the proof of Proposition 3.1. Fix A € P. By the preceding re-
sult, we may consider the u} as probability measures on the compact set C(A). According
to Prohorov’s theorem (see, e.g., [3]), the set {u}, n € Z.} is relatively compact. Pass-
ing to a subsequence if necessary, we may therefore assume that there exists a measure
iy € M (a) which is supported in C(A) and such that u — p, weakly as n — co. Thus in
view of (3.5),

Expy (A, 2) :J el&2dun (&) Vz € ac. (3.8)
a

In order to extend this representation to arbitrary arguments x € a instead of A € P,

observe first that forr € Q,

Expyy (1A, 2) — Expyy (A, 12) — J er 5Dy (8). (3.9)
a
Defining p,» € M!'(a) as the image measure of p, under the dilation & ~— v& on a, we
therefore obtain (2.6) forall x € Q.P = {rA : r € Q, A € P}. The set Q.P is obviously
dense in a. For arbitrary x € a, choose an approximating sequence {x,, n € Z,.} C Q.P
with lim,, ,,, x4 = x. Using Prohorov’s theorem once more, we obtain, after passing to
a subsequence, that p,, — p, weakly for some p, € M!(a). The support of u, can be
confined to an arbitrarily small neighbourhood of C(x), and must therefore coincide with
C(x). We thus have

Expyy(x,z) = lim Expyy (xn,z) :J e&2du, (&) Vzeac, (3.10)

n—oo

which finishes the proof of the proposition. |
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Proof of Theorem 2.1. By Proposition 3.1 and the definition of V,

i %vx(@, 2)") = Vi (e?) = J el dyu(E)

n=0 e

. (3.11)
= Z EJ (& 2)"dux (&) (Z € Clc);
n=0 ¢

here the subscript x means that V is taken with respect to x. Comparison of the homoge-

neous parts in z of degree n yields that

Vi ((x,2)") = J (£, 2)"duy () Vn € Z,. (3.12)

As the C-span of {x — (x,z)™, z € ac}is Py, it follows by linearity that

Vp(x) :J p(&)dus (&) Vpe?P, x€a. (3.13)
Finally, as P is dense in each (A, | - ||a,) and || - |l . x. < | - |lA,, an easy approximation
argument implies that this integral representation remains valid for all f € A, with r >
|x|. This finishes the proof. [ |

We conclude this paper with a remark concerning positive product formulas. It
is conjectured that (again in case k > 0) the multivariable hypergeometric function F has
a positive product formula. More precisely, we conjecture that for all x,y € a, there exists
a probability measure oy, € M (a) whose support is contained in the ball K, ,(0) and

which satisfies

F(A, x)F(A\,v) :J F(A, &)doy (&) VA€ ac. (3.14)
a

In the rank-one case, that is, for Jacobi functions, this is well known and goes back to [9].

Equation (3.14) would immediately imply a positive product formula for the generalized

Bessel function Jy (associated with the same multiplicity k). In fact, suppose there exist

measures oy y as conjectured above, and denote for r > 0 the image measure of oy ,, under

the dilation & — r& on a by o}, ,,. Then by relation (2.21),

I 0hwhw) = lim P+ o, % JF(wn 0, 2 )
(3.15)

~ lim J F(n)x—i— p%) a0 wlE)

n— oo
a
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forall A € ac. Assupp oy, . € Kixj4y/(0) foralln € N, we may assume that there exists

a probability measure 7y ,, € M (a) with supp tx y € Kjxj 41y (0) such that o,

weakly as n — oco. As further lim,_,, F(mA + p,&/n) = Jw (A, &) locally uniformly with

— Tx,y

respect to &, (3.15) implies the product formula

JwA x)Jw (A, y) =J Jw(A, £)dTyy(E) VA€ ac. (3.16)

a

The uniqueness of T, ,, is immediate from the injectivity of the Dunkl transform on M' (a)
(cf. [16, Theorem 2.6]).
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