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Abstract

We study convolution algebras associated with Heckman–Opdam polynomials. For root systems of type
BC we derive three continuous classes of positive convolution algebras (hypergroups) by interpolating the
double coset convolution structures of compact Grassmannians U/K with fixed rank over the real, complex
or quaternionic numbers. These convolution algebras are linked to explicit positive product formulas for
Heckman–Opdam polynomials of type BC , which occur for certain discrete multiplicities as the spherical
functions of U/K . The results complement those of Rösler (2010) for the noncompact case.
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1. Introduction

In the theory of multivariable hypergeometric functions and polynomials of Heckman,
Cherednik and Opdam, the existence of product formulas and positive convolution algebras
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is in general unsolved. In [20], three continuous series of positive convolution algebras hav-
ing Heckman–Opdam hypergeometric functions as multiplicative functions were obtained by
interpolating geometric cases in an explicit way, namely the product formulas for the spheri-
cal functions of noncompact Grassmannians. In these cases, a full picture of harmonic analysis
for the hypergeometric transform could be obtained. The present paper extends these results to
the dual situation related to compact Grassmannians and convolution algebras for three con-
tinuous series of Heckman–Opdam polynomials of type BC , which are, in a slightly different
parametrization, also known as generalized Jacobi polynomials (see e.g. [24,13]). For special
parameters, Heckman–Opdam polynomials of type BC occur as spherical functions of compact
Grassmannians. This observation was first made by Koornwinder in rank two (see [12]), and the
corresponding two-variable analogues of Jacobi polynomials were introduced by Koornwinder
in [11]. There is a broad literature on multivariable Jacobi polynomials, in particular in the con-
text of multivariate statistics, see for instance [8]. However, explicit product formulas have not
been given so far.

In the present paper we start from the compact Grassmannians G p+q,q(F) of p-dimensional
subspaces of Fp+q where p > q and F is one of the (skew) fields F = R,C,H. The Grassmanni-
ans G p+q,q(F) are realized as a Riemannian symmetric spaces U/K with U = SU (p+q,F) and
K = S(U (p,F) × U (q,F)). They are dual to the noncompact Grassmannians studied in [20].
Similar as in loc.cit., we write down the product formula for their spherical functions in an ex-
plicit way which allows analytic continuation with respect to the dimension parameter p, the
rank q being fixed. The spherical functions in the geometric cases (corresponding to integral p)
are Heckman–Opdam polynomials of type BCq (for F = C, H) or Bq (for F = R), with certain
discrete multiplicities. In contrast to the noncompact case, the study of the geometric background
needs some care in the compact case, especially for F = R.

Our continuation gives an explicit product formula for an interpolated continuous range of
multiplicities. This formula in part generalizes Koornwinder’s product formula for Jacobi poly-
nomials [10] to higher rank. Naturally, it is similar to the noncompact case, but direct analytic
continuation from the noncompact to the compact case seems not feasible. We obtain three con-
tinuous classes of commutative hypergroup algebras on the fundamental alcove of the associated
affine reflection group, with the associated Heckman–Opdam polynomials as characters.

The organization of this paper is as follows: In Section 2 we recall some basics of trigonomet-
ric Dunkl theory. Section 3 is a summary of the necessary background from the theory of compact
symmetric spaces. After that, we start in Section 4 with the compact Grassmannians U/K , iden-
tify their spherical functions with Heckman–Opdam polynomials, and use a Cartan decomposi-
tion of U to make their product formula explicit. Following the idea of [20], this product formula
is then analytically continued. Section 5 contains a review of the rank one case. In Section 6, the
related hypergroup structures and their dual spaces on the fundamental alcove are studied.

2. Fundamentals of trigonometric Dunkl theory

This section is a short review of the fundamentals of trigonometric Dunkl theory which will
be needed in this article. For details, we refer to the work of Heckman and Opdam [4,16,17].

Let a be a q-dimensional Euclidean space with inner product ⟨·, ·⟩ which is extended to a
complex bilinear form on the complexification aC of a. We identify a with its dual space a∗ via
the given inner product. Let Σ ⊂ a be a (not necessarily reduced) root system. For α ∈ Σ we
write α∨

:= 2α/⟨α, α⟩ for the coroot of α and denote by sα(x) = x − ⟨α∨, x⟩α the reflection in
the hyperplane Hα perpendicular to α.
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The reflections {sα : α ∈ Σ } generate the Weyl group W = W (Σ ). We define the root lattice
Q := Z · Σ and the coroot lattice Q∨

= Z · Σ∨. We fix some positive subsystem Σ+ of Σ , and
write a+

:= {λ ∈ a : ⟨λ, α⟩ > 0 ∀α ∈ Σ+
} for the associated Weyl chamber. For α ∈ Σ and

λ ∈ aC let

λα :=
⟨λ, α⟩

⟨α, α⟩
.

The weight lattice associated with Σ is given by

P = P(Σ ) := {λ ∈ a : λα ∈ Z for all α ∈ Σ }

and the cone of dominant weights associated with Σ+ is

P+
= P+(Σ ) := {λ ∈ a : λα ∈ Z+ for all α ∈ Σ+

}.

Here Z+
:= {0, 1, 2, . . .}. Notice that 2Σ ⊂ P . The cone Q+

= Z+
·Σ+ defines a natural partial

ordering ≼ on P+:

µ ≼ λ ⇐⇒ λ− µ ∈ 2Q+.

A multiplicity function on Σ is a W -invariant map m : Σ → C, α → mα . We denote the
space of multiplicity functions on Σ by M and define

ρ = ρ(m) :=
1
2


α∈Σ+

mαα. (2.1)

Definition 2.1. Let ξ ∈ a and m ∈ M. The Dunkl–Cherednik operator associated with Σ and m
is given by

Tξ = T (ξ,m) := ∂ξ +


α∈Σ+

mα⟨α, ξ⟩
1

1 − e−2α (1 − sα)− ⟨ρ, ξ⟩,

where ∂ξ is the usual directional derivative and eλ(z) := e⟨λ,z⟩ for λ, z ∈ aC.

Remark. Heckman and Opdam use a slightly different notation. They consider a root system R
with multiplicity k, which is connected to our notation via

R = 2Σ , k2α =
1
2

mα.

Note that this implies further differences. Our notation comes from the theory of symmetric
spaces.

For fixed multiplicity m, the operators Tξ , ξ ∈ aC, commute. Therefore the assignment
ξ → T (ξ,m) uniquely extends to a homomorphism on the symmetric algebra S(aC) over aC,
which may be identified with the algebra of complex polynomials on aC. Let T (p,m) be the op-
erator which corresponds in this way to p ∈ S(aC). If p ∈ S(aC)W , the subspace of W -invariant
polynomials on aC, then T (p,m) acts as a differential operator on the space of W -invariant
analytic functions on a. Consider the so-called hypergeometric system

T (p,m)ϕ = p(λ)ϕ for all p ∈ S(aC)
W

where λ ∈ aC is a fixed spectral parameter. According to fundamental results by Heck-
man and Opdam (see [4]), there exists an open set of regular multiplicities Mreg

⊂ M,
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containing all nonnegative multiplicities m ≥ 0, such that for each fixed spectral parameter λ
and each m ∈ Mreg, the associated hypergeometric system has a unique W -invariant solution
ϕ = Fλ(m; ·) = F(λ,m; ·) which is analytic on a and satisfies Fλ(m; 0) = 1. Moreover, there
is a W -invariant tubular neighborhood U of a in aC such that F extends to a (single-valued)
holomorphic function F : aC × Mreg

×U → C. The function F(λ,m; x) is W -invariant in both
λ and x . It is called the hypergeometric function associated with Σ . For certain spectral param-
eters λ, the functions Fλ are actually exponential polynomials, the so-called Heckman–Opdam
polynomials. In order to make this precise, we need some more notation.

Let T := lin{eiλ
: λ ∈ P} be the space of trigonometric polynomials associated with P .

Trigonometric polynomials are πQ∨-periodic. Let

Mλ :=


µ∈W.λ

eiµ, λ ∈ P+

denote the W -invariant orbit sums. They form a basis of the space of W -invariant trigonometric
polynomials T W .

For a nonnegative multiplicity m, consider the W -invariant weight function

wm(x) :=


α∈Σ+

ei⟨α,x⟩
− e−i⟨α,x⟩

mα

(2.2)

on the torus T := a/πQ∨. The Heckman–Opdam polynomials associated with Σ and m ≥ 0 are
defined by

Pλ(z) = Pλ(m; z) :=


µ∈P+, µ≼λ

cλµ(m)Mµ(z), λ ∈ P+, z ∈ aC,

where the coefficients cλµ(m) are uniquely determined by the conditions

(i) cλλ(m) = 1
(ii) Pλ is orthogonal to Mµ in L2(T ;wm) for all µ ∈ P+ with µ ≺ λ.

Remark. Notice that again our notation slightly differs from that of Heckman and Opdam [4,17].
We define the Heckman–Opdam polynomials as trigonometric polynomials, while Heckman and
Opdam define them as exponential polynomials which are orthogonal on the torus ia/2π i Q∨.
Our choice of notation will be more convenient for our purposes.

The polynomials Pλ form an orthogonal basis of L2(T, wm)
W , the subspace of W -invariant

elements from L2(T, wm). Their coefficients cλµ(m) are rational functions in the mα . Moreover,
their numerator and denominator polynomials have nonnegative integral coefficients. This was
observed in [14, Par. 11]. As a consequence,

Pλ(−z) = Pλ(z) for all z ∈ aC, (2.3)

cf. [18]. Moreover, the function (m, z) → Pλ(m; z) uniquely extends to a holomorphic function
on {m ∈ M : Re m > 0} × aC.

The connection between the Heckman–Opdam polynomials and the hypergeometric function
is as follows (see [4, Section 4.4]):

Lemma 2.2. For all λ ∈ P+ and m ≥ 0, the function Fλ+ρ(m; · ) extends holomorphically to
aC with

Fλ+ρ(m; i z) = c(λ+ ρ,m)Pλ(m; z).
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Here the c-function c(λ+ ρ,m) is given by

c(λ+ ρ,m) =


α∈Σ+

Γ

λα + ρα +

1
4 mα/2


Γ


ρα +

1
4 mα/2 +

1
2 mα


Γ


λα + ρα +

1
4 mα/2 +

1
2 mα


Γ


ρα +

1
4 mα/2


with the convention that mα/2 = 0 if α/2 ∉ Σ .

We shall work with a renormalized version of the Heckman–Opdam polynomials, defined by

Rλ(z) := Rλ(m; z) := c(λ+ ρ,m)Pλ(m; z) = Fλ+ρ(m; i z). (2.4)

Thus Rλ(0) = 1.
The periodicity and W -invariance of the Heckman–Opdam polynomials is described by the

affine Weyl group

Waff = πQ∨ o W.

This is the Coxeter group generated by the affine reflections in the hyperplanes

Hα,k := {x ∈ a : ⟨α, x⟩ = k} = Hα,0 +
k

2
α∨, k ∈ πZ, α ∈ Σ .

A fundamental domain for the action of Waff on a is given by the closed fundamental alcove

A0 = {x ∈ a : 0 ≤ ⟨α, x⟩ ≤ π for all α ∈ Σ+
}.

The trigonometric polynomials from T W are Waff-invariant, and can therefore be considered as
functions on the alcove A0. Note that the Heckman–Opdam polynomials Rλ, λ ∈ P+, form an
orthogonal basis of L2(A0, wm).

3. Compact symmetric spaces and their spherical functions

In this section we recall some general background from the theory of symmetric spaces. Stan-
dard references are the monographs [5,6,22].

Let U/K be a Riemannian symmetric space of the compact type, where U is a connected
compact Lie group and K is a closed subgroup such that there exists an involutive automorphism
θ : U → U with U θ

0 ⊆ K ⊆ U θ . Here U θ
= {u ∈ U : θ(u) = u} and U θ

0 denotes the identity
component of U θ . To avoid technicalities, we assume in the following that U is semisimple and
K is connected. Note that if U is simply connected, then U θ

0 is connected and K = U θ
0 .

The derivation of θ gives an involution of the Lie algebra u of U . We write the associated Car-
tan decomposition of u as u = k ⊕ q with k = {X ∈ u : θ(X) = X}, q = {X ∈ u : θ(X) = −X}.
Let b ⊂ q be a maximal abelian subspace, and put p = iq. Then a := ib is a maximal abelian
subspace of p. Denote by G the connected real Lie subgroup of the complexification UC of U
with Lie algebra g := k ⊕ p. G is a noncompact semisimple Lie group with K ⊆ G, and G/K
is a symmetric space of the noncompact type, called the noncompact dual of U/K . A Cartan
involution τ of G with K = Gτ is given by τ = θC|G , where θC is the analytic continuation of
θ to UC. The space a is a finite-dimensional Euclidean space with the Killing form B( . , . ) as
scalar product, and we shall identify a with its dual a∗ via B. Further, we denote by Σ := Σ (g, a)
the restricted root system of g with respect to a and by Σ+ a fixed subset of positive restricted
roots.
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Recall that for an arbitrary Lie group G with compact subgroup K , a spherical function of
(G, K ) is a nonzero, K -biinvariant function ϕ : G → C which satisfies the product formula

ϕ(g)ϕ(h) =


K
ϕ(gkh)dk for all g, h ∈ G (3.1)

where dk denotes the normalized Haar measure on K .
Assume now that (U, K ) and (G, K ) are as above. The spherical functions of (G, K ) are

given by the Harish-Chandra formula

ϕλ(g) =


K

eB(λ−ρ,H(gk))dk, λ ∈ aC.

Here ρ =
1
2


α∈Σ+

mαα where mα is the multiplicity (that is, the dimension) of the root space
associated with α, and for g ∈ G, H(g) ∈ A denotes the unique abelian part of g in the Iwasawa
decomposition G = K AN associated with Σ+. We have ϕλ = ϕµ if and only if the orbits of λ
and µ under the Weyl group W (Σ ) coincide.

The spherical functions of (U, K ) are all positive-definite and are obtained as matrix coeffi-
cients of the K -spherical irreducible representations of U [6, Chapter IV, Theorems 3.4 and 4.2].
Recall that an irreducible unitary representation π of U in a Hilbert space V is called K -spherical
if the space

V K
= {v ∈ V : π(k)v = v for all k ∈ K }

of K -fixed vectors is different from {0}; in this case, actually dim V K
= 1, because (U, K ) is a

Gelfand pair. The spherical functions of (U, K ) are parametrized by the set ΛK (U ) of (restric-
tions of) highest weights of K -spherical irreducible representations of U . If U is simply con-
nected, then by the Cartan–Helgason theorem [6, Theorem 4.1, Chapter V], ΛK (U ) coincides
with the set P+(Σ ). This remains true if not U , but U/K is simply connected, see [22, Theorem
8.2 and Corollary 1], or [15, Section 1.3]. The spherical function associated with λ ∈ ΛK (U ) is
given by

ψλ(u) = ⟨πλ(u)eλ, eλ⟩

where (πλ, Vλ) is the spherical representation associated with λ and eλ ∈ V K
λ is a K -fixed vector

with ∥eλ∥ = 1.
We assume again that U or U/K is simply connected, K is connected, and G/K is the non-

compact dual of U/K . Then there is the following close connection between the spherical func-
tions on G and those on U .

Proposition 3.1. Every spherical function ϕµ of (G, K ) (µ ∈ aC) is analytic on G. It extends
to a holomorphic function on the complexification GC = UC if and only if µ is contained in the
W (Σ )-orbit of λ+ρ for some λ ∈ P+(Σ ). In this case, we denote the analytic extension also by
ϕµ. The restriction of this extension to U is a spherical function on U. More precisely, we have
the identity

ϕλ+ρ |U = ψλ, λ ∈ P+(Σ ).

Conversely, each spherical function ψλ of (U, K ) extends to a holomorphic function ψλ on UC
and its restriction to G coincides with the spherical function ϕλ+ρ of (G, K ).

Proof ([6, Chapter V]). Proof of Theorem 4.4, and Lemma 2.5 in [2]. �
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The following important fact links the theory of Heckman and Opdam with the classical theory
of symmetric spaces.

Proposition 3.2 ([4, Theorem 5.2.2]). Let ϕµ, µ ∈ aC, be a spherical function of (G, K ), and
let Σ and m be the associated restricted root system and geometric multiplicity. Then for x ∈ a,

ϕµ(exp x) = Fµ(m; x).

Combining this with Proposition 3.1 and with (2.4), we obtain

Theorem 3.3. The spherical functions of (U, K )– restricted to exp(ia)– are Heckman–Opdam
polynomials of type Σ and with multiplicity m: For all x ∈ a and λ ∈ P+(Σ ),

ψλ(exp(i x)) = ϕλ+ρ(exp(i x)) = Fλ+ρ(m; i x) = Rλ(m; x).

The second equality in the theorem above follows from Proposition 3.2 since ϕλ+ρ and Fλ+ρ
are holomorphic on GC and aC, respectively.

4. A product formula for Heckman–Opdam polynomials of type BC

Let F be one of the (skew) fields R,C,H with the standard involution x → x and norm
|x | = (xx)1/2. By Mn(F) we denote the set of n × n matrices over F, also viewed as F-linear
transformations from Fn to Fn , which are considered as right F-vector spaces. The corresponding
unitary group over F is

U (n,F) = {X ∈ Mn(F) : X∗ X = In},

where X∗
= X

T
. We denote by ∆ the determinant on Mq(F), which is the usual one for F = R

or C and the Dieudonné determinant for F = H, i.e. ∆(X) = (detC(X))1/2 when X is regarded
as a complex matrix of double size.

In this section, we consider the compact Grassmannians G p+q,q(F) = U/K with U =

SU (p +q,F) and K = S(U (p,F)×U (q,F)). Thus U = SO(p +q), SU (p +q) or Sp(p +q)
and K = S(O(p) × O(q)), S(U (p) × U (q)) or Sp(p) × Sp(q), respectively. We exclude the
case p = q and assume that p > q ≥ 1.

Note that SU (p + q) and Sp(p + q) are simply connected, but SO(p + q) is not, nor is
the Grassmannian G p+q,q(R). So the general theory of Section 3 cannot be directly applied in
the real case. However, G p+q,q(R) has a simply connected double cover, namely SO(p + q)/
SO(p) × SO(q). This is just the Grassmannian of oriented p-dimensional subspaces of Rp+q .
Note also that SO(p)× SO(q) is connected. Put

K ′
:=


K if F = C,H
SO(p)× SO(q) if F = R.

Then K ′ is connected and the Grassmannian U/K ′ is known to be simply connected (cf.
[5, Chapter X, Par. 2]).

We may therefore apply the theory of Section 3 to (U, K ′). For this, choose for the maximal
abelian subspace b ⊂ u the set of all matrices Hx ∈ Mp+q(F) of the form

Hx =

 0p×p
−x

0(p−q)×q
x 0q×(p−q) 0q×q

 ,
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where x := diag(x1, . . . , xq) is the q × q diagonal matrix corresponding to x = (x1, . . . , xq) ∈

Rq . See e.g. [5, p. 452 ff].
To keep the notation convenient and consistent with [20], we shall identify the space a = ib

(as well as its dual a∗) with Rq , via i H−x → x . In case F = R, this amounts to an implicit use
of the following isomorphism from g = k ⊕ p onto so(p, q) which is described in [5, p. 453]:

A i X
−i X T B


→


A X

X T B


.

The corresponding root system Σ is of type BCq for F ∈ {C,H} and of type Bq for F = R. With
our identification of a and a∗ with Rq , the canonical choice of positive roots is Σ+(BCq) =

{ei , 2ei : 1 ≤ i ≤ q} ∪ {ei ± e j : 1 ≤ i < j ≤ q} in the complex and quaternionic case, and
Σ+(Bq) = {ei : 1 ≤ i ≤ q} ∪ {ei ± e j : 1 ≤ i < j ≤ q} in the real case. Here the ei are the
standard basis vectors of Rq . The Weyl group W = W (Σ ) is the hyperoctahedral group in all
cases, and the Weyl chamber associated to Σ+ is given by

a+
= {x = (x1, . . . , xq) ∈ Rq

: x1 > x2 > · · · > xq > 0}.

The roots with their multiplicities mα are given in the following table; the multiplicities depend
on p, q and the real dimension d = 1, 2, 4 of F = R,C,H.

Root α Multiplicity mα

±ei , 1 ≤ i ≤ q d(p − q)
±2ei , 1 ≤ i ≤ q d − 1
±ei ±e j , 1 ≤ i < j ≤ q d

We will use the notation m = (m1,m2,m3) where mi denotes the multiplicity on ±ei , ±2ei
or ±ei ± e j , respectively. The Heckman–Opdam hypergeometric function of type Bq coincides
with a hypergeometric function of type BCq having m2 = 0. For BCq , the weight lattice is 2Zq

and the set of dominant weights is given by

P+(BCq) = {λ = (λ1, . . . , λq) ∈ 2(Z+)q : λ1 ≥ λ2 ≥ · · · ≥ λq}.

The closed fundamental alcove A0 is given by

A0(BCq) =


x ∈ Rq

:
π

2
≥ x1 ≥ x2 ≥ · · · ≥ xq ≥ 0


.

For the root system Bq , the set of dominant weights is

P+(Bq) = {λ ∈ (Z+)q : λ1 ≥ λ2 ≥ · · · ≥ λq , and all λi have same parity if q = 1}.

The alcove A0(Bq) is bigger than in the BCq -case. It will however not be needed in the sequel.
The next theorem gives a Cartan decomposition of U . It involves K instead of K ′ and the

BCq -alcove also in the real case.

Theorem 4.1. Let U = SU (p+q,F) and K = S(U (p,F)×U (q,F)). The group U decomposes
as U = K SK , where

S =

bx =

 cos x 0q×(p−q) − sin x
0(p−q)×q Ip−q 0(p−q)×q

sin x 0q×(p−q) cos x

 : x ∈ A0





38 H. Remling, M. Rösler / Journal of Approximation Theory 197 (2015) 30–48

with A0 = A0(BCq). Every u ∈ U can be written as u = kbx k′ with k, k′
∈ K and a unique

bx ∈ S.

Proof. In the cases F = C,H the group U is simply connected and the result follows from
Theorem 8.6 in Chapter VII of [5]: Put Q0 := {Hx : x ∈ A0}. Then a short calculation shows
that S = exp Q0.

In the case of SO(p + q) this decomposition is explicitly given in [23, Section 15.1.9]. �

As a consequence of this theorem, the double coset space U//K = {K x K : x ∈ U } is
homeomorphic to the BCq -alcove A0 via K bx K → x .

Now we turn our attention to the spherical functions of (U, K ). Our first aim is to make the
product formula

ψ(g)ψ(h) =


K
ψ(gkh)dk (4.1)

explicit. For this, we may follow the argumentation of [20, Section 2] in the noncompact dual
cases. Since spherical functions on U = K SK are K -biinvariant they are determined by their
values on S. We consider

g :=


u 0
0 v


bx

u 0
0 v


∈ K SK

and write g in p × q block notation as

g =


A(g) B(g)
C(g) D(g)


.

A short calculation then gives

D(g) = v cos x v (4.2)

where cos x = diag(cos x1, . . . , cos xq). Note that cos xi ∈ [0, 1] since x ∈ A0. We denote by
specs(X) the singular spectrum of X ∈ Mq(F), that is

specs(X) =


spec(X∗ X) = (σ1, . . . , σq) ∈ Rq ,

with the singular values σi of X ordered by size: σ1 ≥ · · · ≥ σq ≥ 0. Eq. (4.2) implies that the
singular spectrum of D(g) is given by

specs(D(g)) = (cos x1, . . . , cos xq) =: cos x .

By our choice of the fundamental alcove A0, we therefore have

x = arccos(specs(D(g))) ∀g ∈ K bx K , x ∈ A0, (4.3)

where arccos is also taken componentwise. In order to evaluate formula (4.1) explicitly, we write
bx ∈ S in p × q block notation:

bx =


Ax Bx
Cx Dx


.

Then for k =


u 0
0 v


∈ K we obtain by a short calculation that

D(bx kby) = − sin x σ ∗

0 uσ0 sin y + cos x v cos y
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with the p × q block matrix

σ0 :=


Iq
0


.

Now let ψ be a spherical function on U and put ψ(x) := ψ(bx ) for x ∈ A0. From (4.3) it
follows that ψ satisfies

ψ(x)ψ(y) =


K

ψ 
arccos


specs(D(bx kby))


dk. (4.4)

For our later extension of this product formula beyond the geometric cases, it is important to
rewrite it in a way where the parameter p is no longer contained in the domain of integration.
Under the technical assumption p ≥ 2q, this can be done in the same way as in [20], which leads
to the following.

Theorem 4.2. Suppose that p ≥ 2q. Define

Dq := {w ∈ Mq(F) : w∗w < I }, γ := d


q −

1
2


+ 1,

and for µ ∈ C with Re µ > γ − 1, put

κµ :=


Dq

∆(I − w∗w)µ−γ dw

where ∆ is the determinant on Mq(F). Then the spherical functions ψ(x) = ψ(bx ) of the
Grassmannian U/K = G p+q,q(F) satisfy the following product formula: For all x, y ∈ A0,

ψ(x)ψ(y) =
1

κpd/2


Dq


U0(q,F)

ψ 
d(x, y, v, w)


∆(I − w∗w)pd/2−γ dvdw.

Here U0(q,F) stands for the connected component of U (q,F) and

d(x, y, v, w) = arccos


specs(− sin x w sin y + cos x v cos y)

. (4.5)

We are now going to identify the spherical functions of G p+q,q(F) = U/K as Heckman–
Opdam polynomials of type BCq .

First, we determine the highest weight spaces ΛK (U ) for the spherical representations of U ,
cf. Section 3. The case F = R, where neither U nor U/K is simply connected, needs special
care.

Case 1: F = C or H. In this case U is simply connected, and by the Cartan–Helgason theorem
we have

Λ+

K (U ) = P+(BCq).

Case 2: F = R. Besides U/K = SO(p + q)/S(O(p) × O(q)) consider its simply connected
double cover U/K ′

= SO(p + q)/SO(p)× SO(q). For the latter, we obtain

ΛK ′(U ) = P+(Bq).

In Section 6 of [21], the spherical representations for each highest weight are constructed ex-
plicitly. Here also the Grassmannians SO(p + q)/S(O(p)× O(q)) are considered. The fact that
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K is larger than K ′ implies a further invariance: all λi have to be even and therefore

Λ+

K (U ) = {λ ∈ 2(Z+)q : λ1 ≥ λ2 ≥ · · · ≥ λq}.

So over all fields (R, C and H), the spherical functions of (U, K ) are indexed by the dominant
weights of the root system BCq . We will use the notations

P+
:= P+(BCq) = {λ ∈ 2(Z+)q : λ1 ≥ λ2 ≥ · · · ≥ λq} (4.6)

as well as A0 := A0(BCq) in the following. From Theorem 3.3 and the above considerations,
we conclude

Theorem 4.3. The spherical functions of the compact Grassmannian G p+q,q(F) = U/K , with
F ∈ {R,C,H}, are indexed by P+ and given by (renormalized) Heckman–Opdam polynomials
of type BCq ,

ψλ(x) = ψλ(bx ) = FBCq (λ+ ρ,m; i x) = Rλ(x) (λ ∈ P+), (4.7)

with the (geometric) multiplicity m = (d(p − q), d − 1, d).

Under the assumption p ≥ 2q Theorem 4.2 implies that

Rλ(x)Rλ(y) =
1

κpd/2
·


Bq


U0(q,F)

Rλ


d(x, y, v, w)

∆(I − w∗w)pd/2−γ dvdw

for all x, y ∈ A0. The next step is analytic continuation. Fix q and d = dimR F. For µ ∈ C with
Reµ > γ − 1 and λ ∈ P+ consider the Heckman–Opdam polynomials

Rµλ (x) := FBCq (λ+ ρµ,mµ; i x),

with the multiplicity

mµ = (2µ− dq, d − 1, d). (4.8)

Note that µ → Rµλ (x) is (by analytic extension) holomorphic on {Reµ > γ −1}. For µ = pd/2
with p ∈ N this gives the geometric cases of Theorem 4.3.

Theorem 4.4. For µ ∈ C with Re µ > γ −1 and λ ∈ Λ+ the polynomials Rµλ satisfy the product
formula

Rµλ (x)R
µ
λ (y) =

1
κµ


Dq


U0(q,F)

Rµλ


d(x, y, v, w)


∆(I − w∗w)µ−γ dvdw.

Proof. The proof is a copy of the first part of the proof of Theorem 4.1 in [20]. Replace the
(R, k)-notation by our (Σ ,m)-notation and the product formula by our product formula. Then
rewrite the claimed formula in terms of Pµλ := c(λ + ρ,mµ)

−1
· Rµλ (the standard Heckman–

Opdam normalization):

Pµλ (x)P
µ
λ (y) =

c(λ+ ρ,mµ)
−1

κµ


Dq


U0(q,F)

Pµλ


d(x, y, v, w)


×∆(I − w∗w)µ−γ dvdw.



H. Remling, M. Rösler / Journal of Approximation Theory 197 (2015) 30–48 41

For fixed λ ∈ P+, the function c(λ+ ρ,mµ) is bounded away from zero as µ → ∞ in the half
plane H = {µ ∈ C : Re µ > γ − 1} (see [20]). Then one uses the fact that the coefficients of the
Pµλ with respect to the exponential basis {eiν

: ν ∈ P} are rational, and that the integral

1
κµ


Dq

|∆(I − w∗w)µ−γ
|dw

converges for Re µ > γ − 1 and is of polynomial growth as µ → ∞ in H . This allows to apply
Carlson’s theorem. For details we refer to [20]. �

5. The rank one case

At this point it is worthwhile to see how our product formula for Heckman–Opdam polyno-
mials of type BC generalizes the product formula of classical one-variable Jacobi polynomials
for certain indices.

The classical Jacobi polynomials with indices α, β > −1 are given by

P(α,β)n (x) =
(α + 1)n

n!
2 F1


α + β + n + 1,−n, α + 1;

1 − x

2


(5.1)

where 2 F1 is the Gaussian hypergeometric function and (a)n = Γ (a+n)/Γ (a). We renormalize:

R(α,β)n (x) :=
n!

(α + 1)n
P(α,β)n (x).

Let us consider the Heckman–Opdam theory in the rank one case. The root system is BC1 =

{±e1,±2e1} in a ∼= R and we denote the multiplicity by m = (m1,m2). According to the
example in [16, p. 89f], the hypergeometric function FBC1 is given by

FBC1(λ,m; x) = 2 F1


a, b, c;

1
2
(1 − cosh 2x)


(5.2)

with

a =
1
2


λ+

1
2

m1 + m2


, b =

1
2


−λ+

1
2

m1 + m2


and

c =
1
2


1 + m1 + m2


.

(5.3)

The dominant weights and the fundamental alcove are

P+
= 2Z+, A0 =


0,
π

2


.

According to Lemma 2.2 we have Fλ+ρ(i x) = Rλ(x) where λ = 2n ∈ 2Z+ and ρ =
1
2 m1 + m2.

Eq. (5.2) becomes

FBC1(λ,m; i x) = 2 F1


n +

1
2

m1 + m2,−n,
1
2
(1 + m1 + m2);

1
2
(1 − cos 2x)


.

In view of (5.1), we conclude

Rλ(x) = R(α,β)n (cos 2x) (5.4)
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with

α =
1
2
(m1 + m2 − 1), β =

1
2
(m2 − 1).

In particular, we obtain the well-known fact that the spherical functions of the rank one sym-
metric space U/K = G p+1,1(F) – which is just the p-dimensional projective space Pp(F) – are

given in terms of classical Jacobi polynomials R(α,β)n with α = (dp − 2)/2, β = (d − 2)/2.
In the real case F = R, the spherical functions of Pp(R) are Gegenbauer polynomials of even

degree. In fact, (5.4) becomes

Rλ(x) = R


α,− 1

2


n (cos 2x) = R(α,α)2n (cos x) with α =

1
2
(p − 2).

In the 1970s, Koornwinder devoted a series of papers to the product formula for one-variable
Jacobi polynomials, see e.g. [10]. For arbitrary α > β > −

1
2 , it is given by

R(α,β)n (t)R(α,β)n (s) =

 1

0

 π

0
R(α,β)n


1
2
(1 + t)(1 + s)+

1
2
(1 − t)(1 − s)r2

+


1 − t2


1 − s2 r cos θ − 1


dmα,β(r, θ)

with

dmα,β(r, θ) = cα,β(1 − r2)α−β−1(r sin θ)2βr drdθ

and

1
cα,β

=

 1

0

 π

0
(1 − r2)α−β−1(r sin θ)2βr drdθ.

Now consider the product formula from Theorem 4.4 for rank q = 1. Here γ =
d
2 + 1, and

we restrict to real parameters µ > d
2 . Recall again the identification (5.4). As m1 = 2µ− d and

m2 = d − 1, we have α = µ − 1 and β = (d − 2)/2. The domains of integration reduce to
D1 = {w ∈ F : |w| < 1} and U0(1) = {v ∈ F : |v| = 1}0. Furthermore,

d(x, y, v, w) = arccos | − w sin x sin y + v cos x cos y|.

The U0(1)-integral cancels under the coordinate transformw′
:= v−1w. By cos 2x = 2 cos2 x−1

we obtain for α > β =
d
2 − 1 the product formula

R(α,β)n (cos 2x)R(α,β)n (cos 2y) =
1

κα+1


D1

R(α,β)n (2 | − z sin x sin y + cos x cos y|
2
− 1)

· (1 − |z|2)α−d/2dz. (5.5)

Let us sketch the further calculations only in the case F = C, where d = 2. We introduce polar
coordinates z = reiθ and put t := cos 2x , s := cos 2y. Then use the identities sin2 x =

1
2 (1 − t),

sin x cos x =
1
2

√
1 − t2 and cos2 x =

1
2 (1 + t). The constant κα+1 is given by

κα+1 = 2π
 1

0
(1 − r2)α−1r dr =

π

α
.
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We conclude from (5.5) exactly the product formula for the Jacobi polynomials R(α,β)n with
α > 0, β = 0:

R(α,0)n (t)R(α,0)n (s) =
2α
π

 1

0

 π

0
R(α,0)n

1
2
(1 + t)(1 + s)+

1
2
(1 − t)(1 − s)r2

+


1 − t2


1 − s2 r cos θ − 1


(1 − r2)α−1r drdθ.

6. Hypergroup structures on the alcove

In this section we shall see that the product formula of Theorem 4.4 leads to three continuous
series (for d = 1, 2, 4) of positivity-preserving convolution algebras on the fundamental alcove
A0 = {x ∈ Rq

:
π
2 ≥ x1 ≥ · · · ≥ xq ≥ 0}, which are compact commutative hypergroups with

normalized Heckman–Opdam polynomials as characters. In the geometric cases (µ = pd/2),
these hypergroup convolutions are just given by the double coset convolutions on a double coset
space U//K which may be identified with A0 according to Theorem 4.1.

To start with, let us briefly recall some basics from hypergroup theory. For a detailed treatment,
the reader is referred to [9]. Hypergroups generalize the convolution algebras of locally compact
groups, with the convolution product of two point measures δx and δy being in general not a point
measure again but a probability measure with compact support depending on x and y.

Definition 6.1. A hypergroup is a locally compact Hausdorff space X with a weakly continuous,
associative convolution ∗ on the space Mb(X) of regular bounded Borel measures on X ,
satisfying the following properties:

1. The convolution product δx ∗ δy of two point measures is a compactly supported probability
measure on X , and supp(δx ∗ δy) depends continuously on x and y with respect to the so-
called Michael topology (also known as Vietoris topology) on the space of compact subsets
of X (see [9, Section 2.5]).

2. There exists a (necessarily unique) neutral element e ∈ X satisfying δe ∗ δx = δx ∗ δe = δx
for all x ∈ X .

3. There exists a (necessarily unique) continuous involution x → x on X such that δx ∗ δy =

(δy ∗ δx )
− and x = y ⇐⇒ e ∈ supp(δx ∗ δy). Here the measure µ− is given by µ−(A) =

µ(A).

The hypergroup is called commutative if the convolution is commutative.

Note that due to weak continuity, the convolution of measures on a hypergroup is uniquely
determined by the convolution of point measures.

Every commutative hypergroup X has a unique (up to a multiplicative factor) Haar measure
ω, that is a positive Radon measure with the property

X
f (x ∗ y)dω(y) =


X

f (y)dω(y) (∀x ∈ X, f ∈ Cc(X)),

where we use the notation f (x ∗ y) := (δx ∗ δy)( f ).
The dual space of a commutative hypergroup X is defined byX := {ϕ ∈ Cb(X) : ϕ ≠ 0, ϕ(x) = ϕ(x) and ϕ(x ∗ y) = ϕ(x)ϕ(y)}.

The elements of X are called characters of X . The dual of a commutative hypergroup is a locally
compact Hausdorff space with the topology of locally uniform convergence. In the case of a
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compact hypergroup X the dual X is discrete. The Fourier transform on L1(X, ω) is defined by

f (ϕ) :=


X

f (x)ϕ(x)dω(x), ϕ ∈ X .
It is injective and there exists a unique positive Radon measure π on X , called the Plancherel
measure of X , such that f → f establishes an isometric isomorphism from L2(X, ω) onto
L2(X , π).
Example 6.2 (Double Coset Hypergroups). Let G be a locally compact group with compact
subgroup K and denote by dk the normalized Haar measure on K . Then there is a natural
hypergroup structure on the set of double cosets G//K = {K x K : x ∈ G} which is given by

δK x K ∗ δK yK =


K
δK xkyK dk, x, y ∈ G.

The neutral element is K = K eK and the involution is given by (K x K )− = K x−1 K (see The-
orem 8.2B in [9]). The double coset hypergroup (G//K , ∗) is commutative if and only if (G, K )
is a Gelfand pair.

We now return to the setting of Theorem 4.4.

Theorem 6.3. Let µ ∈ R with µ > γ − 1. Then the probability measures

δx ∗µ δy( f ) :=
1
κµ


Dq


U0(q,F)

f


d(x, y, v, w)

∆(I − w∗w)µ−γ dvdw

with

d(x, y, v, w) = arccos


specs(− sin x w sin y + cos x v cos y)


for x, y ∈ A0 define a commutative hypergroup structure on the compact alcove A0. The neutral
element is 0 and the involution is the identity mapping.

Note that in the geometric cases µ = pd/2, the convolution ∗µ on A0 is just the convolution
of the corresponding double coset hypergroup U//K .

Proof. We use standard arguments. First, the integral defining the convolution is invariant under
v → v∗, w → w∗ and d(x, y, v, w) = d(y, x, v∗, w∗). Therefore ∗µ is commutative. For
associativity let x, y, z ∈ A0. Then for f ∈ C(A0),

δx ∗µ(δy ∗µ δz)( f ) =
1

κ2
µ


Bq×U0(q)


Bq×U0(q)

f (D(x, y, z, v, w, v′, w′))

·∆(I − w∗w)µ−γ∆(I − (w′)∗w′)µ−γ dvdwdv′dw′
=: I (µ)

with a certain A0-valued argument D, which is independent of µ. The same is true for

(δx ∗µ δy) ∗µ δz( f ) =: I ′(µ)

with a µ-independent argument D′ instead of D. The integrals I (µ) and I ′(µ) are well defined
and holomorphic in {µ ∈ C : Re µ > γ − 1}. The convolution is associative in the geometric
cases µ = pd/2. Analytic continuation then yields associativity for all µ with Re µ > γ − 1
as in [19]. Weak continuity of the convolution follows from the continuity of the mapping
(x, y, v, w) → f (d(x, y, v, w)) on A2

0 × Bq × U0(q). It is also obvious that 0 is neutral. So
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only the support continuity and the fact that the identity mapping is a hypergroup involution
remain. As the support of δx ∗µ δy is independent of µ, it suffices to verify both statements in the
geometric cases U//K . But these are known to correspond to double coset hypergroups, which
immediately implies the support continuity. In the geometric cases, the involution is induced by
the group inversion on U , and hence by the mapping x → −x on Rq ∼= a. A short calculation
shows that b−x ∈ K bx K and therefore the involution on U//K is the identity. In fact, cos x sin x

Ip−q
− sin x cos x

 =

−Iq
Ip−2q,q

Iq

 cos x − sin x
Ip−q

sin x cos x


×

−Iq
Ip−2q,q

Iq


where In,m = diag(1, . . . , 1,−1, . . . ,−1) denotes the diagonal matrix with the first n entries
equal to 1 and the last m entries equal to −1. Then

det


−Iq
Ip−2q,q


= 1. �

Proposition 6.4. The support of δx ∗µ δy satisfies

supp(δx ∗µ δy) ⊆ {z ∈ A0 : ∥z∥∞ ≤ ∥x∥∞ + ∥y∥∞}

where ∥ · ∥∞ is the maximum norm in Rq .

Proof. This is more involved than the corresponding statement in the noncompact case [20]. For
a matrix A ∈ Mq(F) we denote again by

specs(A) = (σ1(A), . . . , σq(A)) ∈ Rq

the singular values of A, decreasingly ordered by size. Write

∥A∥ = ∥specs(A)∥∞ = σ1(A)

for the spectral norm of A. We need the following estimates from Theorem 3.3.16 in [7]:

|σq(A + B)− σq(A)| ≤ σ1(B) (6.1)

σq(AB) ≤ σq(A)σ1(B). (6.2)

These estimates are only stated for F = R,C but in the case of a quaternionic matrix A ∈ Mq(H)
we simply consider the corresponding complex matrix χA ∈ M2q(C), namely

χA =


A1 A2

−A2 A1


where A1, A2 are complex q×q-matrices such that A = A1+ A2 j . The map Mq(H) → M2q(C),
A → χA is a homomorphism and χA∗ = (χA)

∗. Moreover, specs(A) = specs(χA) where in the
second set each singular value appears twice (see [25] for a survey about quaternionic matrices).

Let ξ := cos x v cos y − sin x w sin y. By (6.1),

σq(ξ) ≥ σq(cos x v cos y)− σ1(sin x w sin y).
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Since sin x is increasing on [0, π/2] we get (using submultiplicativity)

σ1(sin x w sin y) = ∥ sin xw sin y∥ ≤ ∥ sin x∥ ∥ sin y∥ = sin ∥x∥∞ sin ∥y∥∞.

On the other hand, if cos yi ≠ 0 for all i , then by (6.2)

σq(cos x v cos y) ≥
σq(cos x v)

σ1


(cos y)−1

 ≥ cos ∥x∥∞ cos ∥y∥∞.

Therefore

σq(ξ) ≥ cos ∥x∥∞ cos ∥y∥∞ − sin ∥x∥∞ sin ∥y∥∞ = cos(∥x∥∞ + ∥y∥∞).

This implies the claim, because arccos is decreasing. If cos yi = 0 for some i , the estimate
extends by continuity since the eigenvalues of a matrix depend continuously upon its entries; see
e.g. [7, p. 396]. �

Because of Theorem 4.4 the normalized Heckman–Opdam polynomials Rλ := Rµλ are
multiplicative,

Rλ(x)Rλ(y) = Rλ(x ∗µ y). (6.3)

Lemma 6.5. Assume that the Weyl group W = W (Σ ) contains the reflection σ : x → −x.
Then for nonnegative multiplicities, the associated Heckman–Opdam polynomials Pλ, Rλ are
real-valued on Rq . In particular, this holds for the root systems Σ = Bq , Cq and BCq .

Proof. This is immediate from identity (2.3). �

In our situation, the polynomials Rλ = Rµλ , λ ∈ P+, are therefore indeed characters of the
hypergroup (A0, ∗µ). It is part of the following theorem that they make up the complete dual.

Theorem 6.6. (a) The Haar measure of the hypergroup (A0, ∗µ) is

dω(x) = wm(x)dx =


α∈Σ+

ei⟨α,x⟩
− e−i⟨α,x⟩

mα

dx

where m = mµ as defined in (4.8).
(b) The dual space is (A0, ∗µ)

∧
= {Rλ : λ ∈ P+

}.

Proof. (a) For Rλ with λ ≠ 0 we have


A0
Rλdω = 0 since Rλ is orthogonal to R0 = 1. In view

of (6.3), we obtain
A0

Rλ(x ∗µ y)dω(y) = Rλ(x)


A0

Rλ(y)dω(y) = 0.

By linearity, the above equation holds for all W -invariant trigonometric polynomials. By the
Stone–Weierstrass theorem, T W is ∥ · ∥∞-dense in C(A0). Now the assertion follows from the
∥ · ∥∞-continuity of the hypergroup translation (see Lemma 3.3B in [9]).

(b) We already know that the Rλ are characters of our hypergroup. In general, the characters
of a compact commutative hypergroup X form an orthogonal basis of L2(X, dω). The proof is
the same as in the case of a compact group and uses the Plancherel Theorem, see Theorem 3.5
in [3]. The Heckman–Opdam polynomials form already an orthogonal basis of L2(A0, ω). So
there are no additional characters. �
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Remark. For a general commutative hypergroup X the set of bounded semi-characters

χb(X) := {ϕ ∈ Cb(X) : ϕ ≠ 0 and ϕ(x ∗ y) = ϕ(x)ϕ(y)}

may not coincide with the dual X . However, if X is compact (more general: of subexponential
growth), then it can be shown by Banach algebraic methods that X = χb(X); see Theorem 2.5.12
in [1]. But Lemma 6.5, which leads to this identity in our present case, is also of some interest in
its own.

We identify the dual of the hypergroup (A0, ∗µ) with the set of dominant weights via the
mapping (A0)

∧
→ P+, Rλ → λ.

Proposition 6.7. The Plancherel measure of the hypergroup (A0, ∗µ) is the following measure
on P+:

π =


λ∈P+

rλδλ

with

rλ :=


A0

|Rλ|
2dω

−1

.

Proof. The set {
√

rλRλ : λ ∈ P+
} is an orthonormal basis of L2(A0, ω). Thus for f ∈

L2(A0, ω),
A0

| f |
2dω =


λ∈P+

rλ|⟨ f, Rλ⟩|
2

=


λ∈P+

rλ| f (λ)|2 =


P+

| f |
2dπ. �
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