
Journal of Lie Theory
Volume ?? (??) ??–??
c© ?? Heldermann Verlag

Version of December 26, 2012

Olshanski spherical functions for infinite dimensional
motion groups of fixed rank

Margit Rösler and Michael Voit

Abstract. Consider the Gelfand pairs (Gp,Kp) := (Mp,qoUp, Up) associated
with motion groups over the fields F = R,C,H with p ≥ q and fixed q as well
as the inductive limit for p → ∞ , the Olshanski spherical pair (G∞,K∞).
We classify all Olshanski spherical functions of (G∞,K∞) as functions on the
cone Πq of positive semidefinite q × q -matrices and show that they appear as
(locally) uniform limits of spherical functions of (Gp,Kp) as p→∞ . The latter
are given by Bessel functions on Πq . Moreover, we determine all positive definite
Olshanski spherical functions and discuss related positive integral representations
for matrix Bessel functions.

We also extend the results to the pairs (Mp,q o (Up × Uq), (Up × Uq))
which are related to the Cartan motion groups of non-compact Grassmannians.
Here Dunkl-Bessel functions of type B (for finite p) and of type A (for p→∞)
appear as spherical functions.
Mathematics Subject Classification 2000: 43A90, 22E66, 33C80, 43A85.
Key Words and Phrases: Spherical functions, Olshanski spherical pairs, Bessel
functions on matrix cones, Dunkl theory, positive definite functions, multivariate
beta distributions.

1. Introduction

Let Mp,q := Mp,q(F) be the vector space of p × q -matrices over one of the fields
F = R,C,H and Up = Up(F) the group of unitary p × p-matrices over F .
Consider the Gelfand pairs (Gp, Kp) := (Mp,q o Up, Up) associated with motion
groups over F where q is fixed and p ≥ q is increasing. The inductive limit
(G∞, K∞) := (lim→Gp, lim→Kp) = (M∞,q o U∞, U∞) is an Olshanski spherical
pair; see [F], [Ol3] for the notion. The main purpose of this paper is to classify
all Olshanski spherical functions of this pair, i.e., the continuous K∞ -biinvariant
functions φ : G∞ → C which satisfy the product formula

φ(g)φ(h) = lim
p→∞

∫
Kp

φ(gkh) dk for g, h ∈ G∞ (1.1)

with respect to the normalized Haar measures dk on Kp . We shall obtain a
classification in terms of certain exponential functions which relies on the fact
that for integers p ≥ q as well for p =∞ , the double coset space Gp//Kp may be
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identified with the cone Πq of positive semidefinite q×q -matrices over F , and that
for finite p , formula (1.1) can be made explicit by the results of [R1]. It is known
(see e.g. [H], [FK], [R1] and references cited there) that for finite p , Bessel functions
Jµ of index µ = pd/2 on the cone Πq provide spherical functions of (Gp, Kp); here
d := dimRF = 1, 2, 4. Moreover, it is also known that under suitable rescaling, the
Bessel functions Jµ converge (locally) uniformly to exponential functions, see [Ol1]
and [RV2], and references therein. From this we obtain that all Olshanski spherical
functions appear as (locally) uniform limits of spherical functions on (Gp, Kp) for
p→∞ .

The classification of those Olshanski spherical functions which are positive
definite is also easily achieved. The connection between positive definite spherical
functions of (Gp, Kp) with different values of p leads to the existence of positive
integral representations for the involved matrix Bessel functions Jpd/2 as already
explained by Schoenberg [S] in a general setting. Following mainly [H] and [FK]
we shall derive explicit formulas for these integral representations of Jν in terms
of Jµ for ν ≥ µ in two different ways. A comparison of both appoaches will imply
an identity for projections of beta distributions on matrix cones.

Besides the Gelfand pairs (Mp,q o Up, Up) we also consider the Cartan
motion pairs (Mp,q o (Up × Uq), Up × Uq) and the associated Olshanski spherical
functions as p → ∞ . For finite p , the spherical functions are now Dunkl-
Bessel functions of type B which converge for p → ∞ to certain Dunkl-Bessel
functions of type A, and these in turn are just the Olshanski spherical functions of
(M∞,q o (U∞×Uq), U∞×Uq); see [BF], [Du], [O], [R1], [RV1] for the background.
The results and their proofs are very similar to the first case; only the classification
of the positive definite Olshanski spherical functions without using representation
theory needs more care.

The approach to Olshanski spherical functions taken in this paper is similar
to the one for noncompact infinite dimensional Grassmannian manifolds in [RKV]
where the finite dimensional spherical functions are Heckman-Opdam hypergeo-
metric functions of type B which converge to hypergeometric functions of type A.
In this case, the classification of the Olshanksi spherical functions is based on a
product formula in [R2]. The present paper as well as [RKV] were partly motivated
by related results in [DOW].

Our approach via special functions does not use explicit representation
theory for Olshanski spherical pairs in contrast to [Ol1], [Ol2], [Ol3], [OV], [P]
or further related references. This has the slight advantage that we can deal with
general spherical functions from the beginning. We point out that most of the
results on positive definite Olshanksi spherical functions are already contained in
the above mentioned papers of Olshanski.

This paper is organized as follows: In Sections 2 and 3 we collect some facts
about matrix Bessel functions and Dunkl-Bessel functions of type B and type
A. The Gelfand pairs (Mp,q o Up, Up) and the corresponding Olshanski spherical
functions will then be studied in Section 4, while Section 5 is devoted to the pairs
(Mp,qo (Up×Uq), Up×Uq). In Section 6 we return to matrix Bessel functions and
study their positive integral representations.

It is a great pleasure to thank Grigori Olshanski for useful comments con-
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cerning positive definite Olshanksi spherical functions as well as the proof of
Lemma 5.7 and Theorem 5.9.

2. Bessel functions on matrix cones

In this section we collect some facts about Bessel functions on matrix cones. The
material is mainly taken from [FK], [H], and [R1], and is in part slightly generalized.

Let F be one of the fields R,C or H with real dimension d = 1, 2 or 4
respectively. Denote the usual conjugation in F by t 7→ t , the real part of t ∈ F
by Rt = 1

2
(t+ t).

For p, q ∈ N we denote by Mp,q := Mp,q(F) the vector space of all p × q -
matrices over F and put Mq := Mq(F) := Mq,q(F) for abbreviation. Let further

Hq = Hq(F) = {x ∈Mq(F) : x = x∗}

be the space of Hermitian q × q -matrices over F , where x∗ = xt denotes the
usual involution on Mq . The space Hq is a real Euclidean vector space with scalar
product 〈x, y〉 := tr(xy) and norm ‖x‖ = 〈x, x〉1/2 , where tr is the trace. Notice
that tr(xy) is real for x, y ∈ Hq . Hq is a (Euclidean) Jordan algebra with the
usual Jordan product x ◦ y = 1

2
(xy + yx). The real dimension of Hq is given by

dimRHq = q +
d

2
q(q − 1).

We also need the complexification HC
q of Hq which is a Jordan algebra over C in

the natural way. The extension of the scalar product 〈 . , . 〉 to a hermitian scalar
product on HC

q will again be denoted by 〈x, y〉 . For F = R or C , the space HC
q

may be written as

HC
q = {a+ ib : a, b ∈ Hq(F)} ⊂Mq(C).

More precisely, for F = R we have HC
q (R) = {a ∈ Mq(C) : at = a} , while for

F = C , HC
q (C) = Mq(C); c.f. Section VIII.5 of [FK]. The complexification of the

Jordan algebra Hq(H) can be desribed as follows, c.f. Sections V.2 and VIII.5 of
[FK]: One realizes matrices z ∈ Hq(H) as complex Hermitian matrices

z =

(
x y
−ȳ x̄

)
∈ H2q(C)

where x ∈ Hq(C) is Hermitian and y ∈ Skewq(C) is skew-symmetric. Then with

J :=

(
0 Iq
−Iq 0

)
∈M2q , the mapping

z 7→ −Jz =

(
ȳ −x̄
x y

)
∈ Skew2q(C)

defines a real Jordan algebra isomorphism from Hq(H) onto the Jordan algebra
Vq := {u ∈ Skew2q(C) : u∗ = JuJ} with Jordan product u ◦ v := 1

2
(uJv + vJu).

The complexification of this Jordan algebra is just Skew2q(C) (with the same
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Jordan-product). We thus identify HC
q (H) and Skew2q(C) as complex Jordan

algebras.

Let
Πq := {x2 : x ∈ Hq} = {x∗x : x ∈ Hq}

denote the set of all positive semidefinite matrices in Hq , and Ωq its interior
consisting of all strictly positive definite matrices. Ωq is a symmetric cone; see
[FK] for details. On Hq we use the standard partial ordering

x ≤ y :⇐⇒ y − x ∈ Πq .

To define Bessel functions, we need the spherical polynomials

Φλ(x) =

∫
Uq

∆λ(uxu
−1)du, x ∈ Hq

which are indexed by partitions λ = (λ1 ≥ λ2 ≥ . . . ≥ λq) ∈ Nq
0 (for short, λ ≥ 0).

Here du denotes the normalized Haar measure of Uq = Uq(F), and ∆λ is the power
function

∆λ(x) := ∆1(x)λ1−λ2∆2(x)λ2−λ3 · . . . ·∆q(x)λq (x ∈ Hq)

with the principal minors ∆i(x) of x ; see [FK]. There is a renormalization
Zλ = cλΦλ with suitable constants cλ > 0 depending on Πq such that

(tr x)k =
∑
|λ|=k

Zλ(x) for k ∈ N0 ; (2.1)

see Section XI.5. of [FK] where the Zλ are called zonal polynomials. By con-
struction, the Zλ are invariant under conjugation by Uq and thus depend only on
the eigenvalues of their argument. More precisely, for x ∈ Hq with eigenvalues
ξ = (ξ1, . . . , ξq) ∈ Rq ,

Zλ(x) = Cα
λ (ξ) with α =

2

d
(2.2)

where the Cα
λ are the Jack polynomials of index α (c.f. [FK], [M], [R1]). These

are homogeneous of degree |λ| and symmetric in their arguments. Notice that the
zonal polynomials Zλ naturally extend to HC

q .

The Bessel functions associated with the cone Ωq are defined as 0F1 -hyper-
geometric series

Jµ(z) =
∑
λ≥0

(−1)|λ|

(µ)λ|λ|!
Zλ(z), z ∈ HC

q (2.3)

where the generalized Pochhammer symbol (µ)λ is given by

(µ)λ = (µ)
2/d
λ with (µ)αλ :=

q∏
j=1

(
µ− 1

α
(j − 1)

)
λj

(α > 0).

The index µ ∈ C is required to satisfy (µ)αλ 6= 0 for all λ ≥ 0. In this case, Jµ is
holomorphic on HC

q .



Rösler and Voit 5

If q = 1, then Πq = R+ , and the Bessel function Jµ is independent of d
with

Jµ
(z2

4

)
= jµ−1(z)

where jκ(z) = 0F1(κ+ 1;−z2/4) is the modified Bessel function in one variable.

We need the following product formula for the Jµ from [R1]:

Proposition 2.1. For µ ∈ C with <µ > d(q − 1/2) and all r, s ∈ HC
q ,

Jµ(r2)Jµ(s2) =
1

κµ

∫
Bq

Jµ(r2 + s2 + rws+ sw∗r) ∆(Iq − w∗w)µ−γ dw

where ∆ denotes the determinant on Hq , dw the Lebesgue measure on the ball

Bq := {w ∈Mq : w∗w < Iq},

and

γ := d(q − 1/2) + 1; κµ :=

(∫
Bq

∆(Iq − w∗w)µ−γ dw

)−1

.

Proof. For r, s ∈ Hq we refer to Eq. (3.8) of [R1]. As both sides of the
equation are holomorphic in r, s ∈ HC

q , the result is true in general.

For the limit case µ = γ − 1 there exists a degenerated product formula;
see Section 3.5 of [R1].

For real µ ≥ γ − 1, product formula 2.1 leads to a positive (hypergroup)
convolution structure on the Banach space Mb(Πq) of all bounded signed Borel
measures on Πq , as follows: define first the convolution of point measures

(δr ∗µ δs)(f) :=
1

κµ

∫
Bq

f
(√

r2 + s2 + swr + rw∗s
)

∆(I − ww∗)µ−γ dw (r, s ∈ Πq)

(2.4)
for f ∈ Cb(Πq), and then extend this convolution in a weakly continuous, bilinear
way to Mb(Πq). This generates a probability preserving commutative Banach
algebra (Mb(Πq), ∗µ); see [R1] for details. For µ = pd/2 with integers p ≥ 2q , this
convolution is just the double coset convolution associated with the Gelfand pair
(Mp,q o Up, Up) (see [R1]) which we shall consider in more detail in Section 4.

For s ∈ HC
q we define the continuous function

fµs (r) := Jµ(
1

4
rsr) (r ∈ HC

q ). (2.5)

as well as the function

φµs (r) := fµs2(r) = Jµ(
1

4
rs2r), (2.6)

where the latter definition is in correspondence with the notion in [R1]. The
following facts slightly generalize results from [R1].
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Lemma 2.2. (1) For all r, s ∈ HC
q , φµs (r) = φµr (s).

(2) For all r, t ∈ Πq and s ∈ HC
q ,

fµs (r)fµs (t) =

∫
Πq

fµs (z) d(δr ∗µ δt)(z), (2.7)

i.e., the functions fµs with s ∈ HC
q are multiplicative with respect to ∗µ .

Proof. Both statements are known for r, s, t ∈ Πq ; see the results for φs in
Section 3 of [R1] and notice for the second statement that each s ∈ Πq may be
written as s = s̃2 with some unique s̃ ∈ Πq . The general statements now follow
easily by analytic continuation from Πq to HC

q . For this, notice that HC
q \ Πq

is connected, and that the identity theorem can be applied because Πq has non-
empty interior in Hq .

3. Dunkl-Bessel functions on Weyl chambers of type B and type A

There is a close connection between the Bessel functions on the cone Πq and the
theory of Dunkl operators associated with the root system Bq , see [R1]. We briefly
review this connection. We do not go into details of Dunkl theory, but refer to
[BF], [Du], [O] and [R1]. For a reduced root system R ⊂ Rq and a multiplicity
function k : R→ [0,∞) (i.e. k is invariant under the action of the corresponding
reflection group), we denote by JRk the Dunkl-Bessel function associated with R
and k . It is obtained from the Dunkl kernel by symmetrization with respect to
the underlying reflection group. Dunkl-Bessel functions generalize the spherical
functions of Euclidean type symmetric spaces, which occur for crystallographic
root systems and specific discrete values of k , see [O]. For the root system
Aq−1 = {±(ei − ej) : i < j} ⊂ Rq , the multiplicity k is a single real parameter.
If k > 0, then according to formulas (3.22) and (3.37) of [BF] the associated
Dunkl-Bessel function is the generalized 0F0 -hypergeometric function

JAk (ξ, η) = 0F
α
0 (ξ, η) :=

∑
λ≥0

1

|λ|!
· C

α
λ (ξ)Cα

λ (η)

Cα
λ (1)

(ξ, η ∈ Cq),

with 1 = (1, . . . , 1), α = 1/k. For k = d
2

with d = dimRF, the Dunkl-Bessel
functions ξ 7→ JAd/2(ξ, η) are known to be the spherical functions of the flat

symmetric space Hq(F) o Uq(F)/Uq(F) and therefore have the Harish-Chandra
type integral representation

JAd/2(ξ, η) =

∫
Uq(F)

etr(ηuξu−1)du, (3.1)

with ξ = diag(ξ1, . . . , ξq). See also formula (7) of [RV1], where an alterantive proof
of (3.1) is given.

For the root system Bq = {±ei, ±ei ± ej : i < j} , we have k = (k1, k2)
where k1 and k2 correspond to the roots ±ei and ±ei ± ej respectively. The
associated Dunkl-Bessel function is

JBk (ξ, η) = 0F
α
1

(
µ;
ξ2

2
,
η2

2

)
with α = 1/k2, µ = k1 + (q − 1)k2 + 1/2



Rösler and Voit 7

where ξ2 = (ξ2
1 , . . . , ξ

2
q ) and

0F
α
1 (µ; ξ, η) :=

∑
λ≥0

1

(µ)αλ |λ|!
· C

α
λ (ξ)Cα

λ (η)

Cα
λ (1)

.

The Dunkl-Bessel function JBk is invariant in both arguments under the action of
the hyperoctahedral group which is generated by sign changes and permutations of
the coordinates. For suitable multiplicity k , it is related the matrix Bessel function
Jµ and to the functions φµs (r) = Jµ

(
1
4
sr2s

)
of Section 2, as follows: Consider the

Bq -Weyl chamber

CB
q := {ξ = (ξ1, . . . , ξq) ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0} (3.2)

For ξ ∈ CB
q we denote by ξ ∈ Πq the diagonal matrix with entries ξ1, . . . , ξq . Let

k(µ, d) :=
(
µ− (d(q − 1) + 1)/2, d/2

)
.

Then for ξ, η ∈ CB
q ,

JBk(µ,d)(ξ, iη) =

∫
Uq

Jµ
(1

4
ηuξ2u−1η

)
du; (3.3)

see Section 4 of [R1]. Dunkl-Bessel functions of type B will play an important role
in Section 5 of this paper, in connection with the study of the Olshanski spherical
pairs (M∞,q o (U∞ × Uq), U∞ × Uq).

4. Olshanski spherical functions related to M∞,q o U∞

In this section, we consider Olshanski spherical pairs associated with matrix cones.
For a general background on Olshanski spherical pairs and their spherical functions
we refer to Faraut [F] and Olshanski [Ol1], [Ol2], [Ol3].

We fix the field F ∈ {R,C,H} and the rank q ∈ N as in Section 2. Consider
the Gelfand pairs (Gp, Kp) with Gp = Mp,q o Up and Kp := Up where Up acts on
Mp,q by left multiplication. In all cases, Gp will be regarded as a closed subgroup
of Gp+1 with Kp = Gp ∩Kp+1 . Consider the inductive limits G∞ := lim→Gp and
K∞ := lim→Kp . Then (G∞, K∞) is an Olshanski spherical pair. A continuous
function φ : G∞ → C is called an Olshanski spherical function of (G∞, K∞) if φ
is K∞ -biinvariant and satisfies the product formula

φ(g)φ(h) = lim
p→∞

∫
Kp

φ(gkh) dk for all g, h ∈ G∞ (4.1)

with respect to the normalized Haar measure dk . Further, an Olshanski spherical
function φ of (G∞, K∞) is called positive definite if φ is positive definite on G∞
in the usual sense, i.e. if for all n ∈ N , g1, . . . , gn ∈ G∞ and c1, . . . , cn ∈ C ,

n∑
k,l=1

ckcl φ(gkg
−1
l ) ≥ 0.
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Positive definite continuous functions on G∞ are always bounded. Furthermore,
in our situation

K∞g
−1K∞ = K∞gK∞ for g ∈ G∞.

This implies that positive definite spherical functions on G∞ are automatically
R-valued.

We shall now classify the Olshanski spherical functions of (G∞, K∞) as well
as those which are positive definite in addition.

For this we recapitulate that for each p , the space of double cosets Gp//Kp

can be topologically identified with the cone Πq via the homeomorphism

Kp(x, k)Kp 7→
√
x∗x for x ∈Mp,q, k ∈ Kp .

In other words, if for a ∈ Πq we consider the matrix

(
a
0

)
∈Mp,q , then the inverse

of the above homeomorphism can be written as

Fp : Πq → Gp//Kp, r 7−→ KpgaKp with ga := (

(
a
0

)
, Ip).

By definition of the inductive limit topology, the mapping

F : Πq → G∞//K∞, a 7−→ K∞gaK∞ with ga := (

(
a

0∞

)
, I∞)

also provides a homeomorphism for p = ∞ . We will therefore use the agreement
that for all integers p ≥ q as well as for p = ∞ , continuous and Kp -biinvariant
functions on Gp are identified with continuous functions on Πq . When doing so,
our notations immediately imply the following

Lemma 4.1. Let p1 ≥ p2 ≥ q . If a continuous function on Πq corresponds
to a Kp1 -biinvariant, positive definite function on Gp1 , then it also corresponds
to a Kp2 -biinvariant, positive definite function on Gp2 . Moreover, a continuous
function on Πq corresponds to a K∞ -biinvariant, positive definite function on G∞
if and only if it corresponds to a Kp -biinvariant, positive definite function on Gp

for all integers p ≥ q.

Proof. The first statement follows immediately from the definition of positive
definite functions and the fact that for p1 ≥ p2 ≥ q (where possibly p1 =∞), the
canonical projections

Pp : Gp → Gp//Kp ≡ Πq , Pp((x, k)) :=
√
x∗x

satisfy Pp1|Gp2 = Pp2 . The remaining part of the second statement follows also
easily by these arguments.

We next turn to the (not necessarily positive definite) spherical functions

of (Gp, Kp) for finite p ≥ q. We know from Lemma 2.2 that the functions f
pd/2
s
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of Section 2 with s ∈ HC
q are spherical. On the other hand, using results of Wolf

[W] in combination with an integral representation of the matrix Bessel functions

f
pd/2
s (see Eq. (3.4) of [R1] and Propos. XVI.2.3 of [FK]), we obtain the following

classification:

Theorem 4.2. Let p ≥ q be finite. Then {fpd/2s : s ∈ HC
q } is the set of all

spherical functions of (Gp, Kp). Moreover, the set of positive definite spherical

functions of (Gp, Kp) is given by {fpd/2s : s ∈ Πq}.

Proof. According to [W], the complete set of spherical functions of (Gp, Kp)
can be described as follows:

Consider Mp,q as a real vector space of dimension dpq with Euclidean scalar
product

(x|y) := <tr(x∗y)

and extend this form in a bilinear way to the complexification MC
p,q of Mp,q . Then

it is easily checked that for each y ∈MC
p,q , the function

φ̃y(x, v) :=

∫
Up

e−i(ux|y) du (x ∈Mp,q, v ∈ Up) (4.2)

defines a spherical function of (Gp, Kp). Moreover, by Theorem 4.4 of [W], all
spherical functions are given in this way, and by Theorem 5.4 of [W], the set of
positive-definite spherical functions is made up by those φ̃y with y ∈Mp,q .

We next show that all functions of the form (4.2) are in fact Bessel functions

f
pd/2
s for suitable s ∈ HC

q . For this we again regard Mp,q and Hq as vector spaces
over R , and denote the complex-bilinear extension of the R-bilinear mapping

Mp,q ×Mp,q →Mq, (x, y) 7−→ x∗y

(to a mapping MC
p,q ×MC

p,q → MC
q ) again by x∗y . For y ∈ MC

p,q we then obtain
easily that y∗y ∈ HC

q .

Now fix a matrix y ∈MC
p,q . Then y∗y ∈ HC

q , and for all r ∈ Πq ,

f
pd/2
y∗y (r) = Jpd/2(

1

4
ry∗yr) = Jpd/2(

1

4
(yr)∗yr).

We conclude from Eqs. (3.3) and (3.4) of [R1] (see also Propos. XVI.2.3 of [FK])
that for all x ∈Mp,q ,

Jpd/2(
1

4
x∗x) =

∫
Up

e−i(uσ0|x)du with σ0 =

(
Iq
0

)
∈Mp,q. (4.3)

Using the complex-bilinear and thus analytic extension above, we conclude that
(4.3) remains correct for all x ∈MC

p,q . Now let r ∈ Πq , y ∈MC
p,q . Then

Jpd/2(
1

4
(yr)∗yr) =

∫
Up

e−i(uσ0|yr)du.
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As
(uσ0|yr) = <tr((uσ0)∗yr) = <tr((uσ0r)

∗y) = (uσ0r|y),

we obtain

f
pd/2
y∗y (r) =

∫
Up

e−i(uσ0r|y)du = φ̃y(σ0r, v) (4.4)

with arbitrary v ∈ Up . As the functions on both sides are biinvariant, and the
r ∈ Πq form a set of representatives of all double cosets as descibed in the
beginning of this section, the proof of the first statement of the theorem is complete.
Moreover, equation (4.4) in combination with Theorem 5.4 of [W] leads to the
stated classification of the positive definite spherical functions.

We mention that the statement about the positive definite spherical func-
tions above can be also obtained by hypergroup methods from Theorem 3.12 of
[R1] in combination with results of [J].

We now turn to the case p = ∞ . The Olshanski spherical functions of
(G∞, K∞) can be characterized as follows:

Lemma 4.3. A continuous K∞ -biinvariant function φ : G∞ → C is Olshanski
spherical if and only if the continuous function φ̃(b) := φ(gb) on Πq satisfies the
product formula

φ̃(a) · φ̃(b) = φ̃(
√
a2 + b2), a, b ∈ Πq. (4.5)

Proof. Let φ be a continuous K∞ -biinvariant function on G∞ and φ̃ ∈ C(Πq)
as described in the lemma. Then, by (4.1) and the product formula (2.4), φ is
Olshanski spherical iff φ̃ satisfies

φ̃(a)·φ̃(b) = lim
p→∞

1

κpd/2

∫
Bq

φ̃(
√
a2 + b2 + awb+ bw∗a)·∆(I−w∗w)pd/2−γdw (4.6)

for a, b ∈ Πq with γ = d(q − 1/2) + 1. The probability measures

κ−1
pd/2 ·∆(I − w∗w)pd/2−γ dw

are compactly supported in Bq and tend weakly to the point measure δ0 for
p→∞ . Therefore (4.6) is equivalent to

φ̃(a) · φ̃(b) = φ̃(
√
a2 + b2)

as claimed.

We remark that precise estimates for the order of convergence of the prob-
ability measures κ−1

pd/2 ·∆(I − w∗w)pd/2−γ dw are given in [V2].

We now solve the functional equation (4.5):

Lemma 4.4. A continuous function φ̃ ∈ C(Πq) with φ̃(0) = 1 satisfies (4.5) if
and only if there exists some b ∈ HC

q such that

φ̃(a) = exp
(
−〈a2, b〉

)
=: ψb(a), a ∈ Πq .



Rösler and Voit 11

Proof. Clearly, all ψb satisfy (4.5). Conversely, if a function φ̃ ∈ C(Πq)
satisfies (4.5), then ψ(a) := φ̃(

√
a) satisfies ψ(a)ψ(b) = ψ(a + b) for a, b ∈ Πq

and thus, because of ψ(0) = 1 and continuity, ψ(a) 6= 0 for all a ∈ Πq . Each
a ∈ Hq can be written as a = d − cIq for some d ∈ Πq and some c ∈ [0,∞[ ,
and it is easily checked that ψ(a) := ψ(d)/ψ(cIq) defines a well-defined function
ψ ∈ C(Hq) with ψ(a)ψ(b) = ψ(a+ b) for a, b ∈ HC

q . The assertion now follows by
the well-known characterization of the exponential function on a Euclidean space
by its functional equation.

The preceding lemmata immediately lead to the following characterization
of the Olshanski spherical functions of (G∞, K∞).

Theorem 4.5. A continuous K∞ -biinvariant function φ : G∞ → C is Olshan-
ski spherical if and only if

φ(ga) = ψb(a) = exp
(
−〈a2, b〉

)
(a ∈ Πq)

for some b ∈ HC
q .

We next investigate which Olshanski spherical functions of (G∞, K∞) ap-
pear as limits of spherical functions on (Gp, Kp) for p → ∞ . For this we employ
the known convergence of Jµ(µy) to e−tr(y) for µ→∞ :

Lemma 4.6. For y ∈ HC
q ,

lim
µ→∞

Jµ(µy) = e−tr(y) locally uniformly.

On the cone Πq , this convergence is even uniform. More precisely, there exists a
constant C = C(q,F) such that

|Jµ(µy)− e−tr(y)| ≤ C/µ for all y ∈ Πq, µ ≥ 2q.

Proof. For the second statement we refer to Proposition 3.2 of [RV2]; see also
Lemma 4.8 of [Ol1] or references cited there for the uniform convergence.

The first statement can be obtained either from the integral representation
(3.12) of [R1] for Jµ , or by power series expansion as in the proof of Proposition
3.5 in [RV2]. We outline the second approach: Using the expansions (2.3) and
(2.1), we have

Jµ(µy)− e−tr(y) =
∑
λ≥0

1

|λ|!

( µ|λ|
(µ)λ

− 1
)
· Zλ(−y)

where by Lemma 3.4 of [RV2]∣∣∣1− µ|λ|

(µ)λ

∣∣∣ ≤ dq · 2dq(q−1)/2 · |λ|
2

µ
.

It is easily checked that the series∑
λ≥0

|λ|2

|λ|!
· Zλ(−y)
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converges absolutely and locally uniformly for y ∈ HC
q (c.f. Section XV.1 of [FK]

and our normalization of the Zλ instead of the Φλ there). This immediately leads
to the locally uniform convergence of order 1/µ .

We conclude from Lemma 4.6 that for all y ∈ Πq , b ∈ HC
q and for

µ = pd/2→∞ , the functions fµs of Section 2 satisfy

fµµb(y) = Jµ(
µ

4
yby)→ exp(−tr(yby)/4) = ψb/4(y)

uniformly or locally uniformly depending on b . According to Theorem 4.2, the
functions fµµb with b ∈ HC

q form the spherical functions of (Gp, Kp). Considering
biinvariant functions on Gp and G∞ as functions on Πq as above, we obtain

Corollary 4.7. All Olshanski spherical functions ψb of (G∞, K∞) with b ∈ HC
q

appear as locally uniform limits of spherical functions of (Gp, Kp).

Moreover, those Olshanski spherical functions ψb with b ∈ Πq even appear
as uniform limits of positive definite spherical functions of (Gp, Kp) as p→∞.

We finally determine the Olshanski spherical functions ψb which are positive
definite.

Theorem 4.8. The positive definite Olshanski spherical functions of (G∞, K∞)
are precisely given by the functions ψb with b ∈ Πq .

Proof. Assume that ψb is a positive definite Olshanski spherical function.
Then ψb must be R-valued. From ψb(a) = exp (−〈a2, b〉) for a ∈ Πq we infer
that b ∈ Hq . Moreover, as ψb is in addition bounded on Πq , it follows easily
that b ∈ Πq . In fact, if b would have a negative eigenvalue with eigenvector
u , we could choose a matrix a ∈ Πq with the same eigenvector u associated to
the eigenvalue 1, and with all other eigenvalues equal to 0. It is then clear that
ψb(ca) = exp (−c2〈a2, b〉) tends to ∞ for c→∞ .

For the converse statement consider b ∈ Πq . Let p ≥ q be a fixed integer.

Then for each integer p̃ ≥ p , the spherical function f
p̃d/2
b ∈ C(Πq) corresponds

to a Kp̃ -biinvariant positive definite function on Gp̃ , and thus by Lemma 4.1,
to a Kp -biinvariant positive definite function on Gp . As positive definiteness is
preserved under limits, it follows from Corollary 4.7 that ψb ∈ C(Πq) is a Kp -
biinvariant positive definite function on Gp . This holds for all p , and therefore
Lemma 4.1 ensures that ψb is a positive definite function on G∞ as claimed.

In summary, the Olshanski spherical functions of (G∞, K∞) admit a clas-
sification which is in complete accordance with that for finite p in Theorem 4.2.

5. Olshanski spherical functions related to M∞,q o (U∞ × Uq)

In this section we consider the Gelfand pairs (Gp, Kp) with Gp = Mp,qo (Up×Uq)
and Kp := Up × Uq for fixed q ≥ 1, where the groups Up and Uq act on Mp,q

by multiplication from the left and right, respectively. Consider the Olshanski
spherical pairs (G∞, K∞) with G∞ := lim→Gp and K∞ := lim→Kp .
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Again, we investigate the Olshanski spherical functions of (G∞, K∞). We
recapitulate first that for each p, the double coset space Gp//Kp can be topologi-
cally identified with the Weyl chamber

CB
q := {ξ = (ξ1, . . . , ξq) ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0}

of type B via

Kp(x, k)Kp 7→ σ(
√
x∗x ) for x ∈Mp,q, k ∈ Kp

independently of p where σ stands for the ordered spectrum of a positive semidef-
inite matrix. In other words, if for ξ ∈ CB

q we consider the diagonal matrix

ξ = diag(ξ1, . . . , ξq) ∈ Mq as well as

(
ξ
0

)
∈ Mp,q , then the inverse of this homeo-

morphism can be written as

Fp : CB
q → Gp//Kp, b 7−→ KpgξKp with gξ :=

((ξ
0

)
, Ip × Iq

)
.

By definition of the inductive limit topology, the Fp induce a homeomorphism
F : CB

q → G∞//K∞. Again we use the agreement that for all integers p and
for p = ∞ , Kp -biinvariant continuous functions on Gp will be identified with
continuous functions on Πq . When doing so, the statement of Lemma 4.1 transfers
to the present setting without changes.

We now turn to the classification of spherical functions:

Proposition 5.1. The spherical functions of (Gp, Kp), considered as functions
on the chamber CB

q , are precisely given by the Dunkl-Bessel functions

φpd/2η (ξ) := JBk(pd/2,d)(ξ, iη), η ∈ Cq.

Moreover, the positive definite spherical functions of (Gp, Kp) are given by those

φ
pd/2
η with η ∈ Rq.

Proof. The first statement is known from Dunkl theory, see [O]. The second
then again follows from Theorem 5.4 of [W].

For the case p =∞ , we start with the following

Lemma 5.2. A continuous K∞ -biinvariant function φ : G∞ → C is Olshanski
spherical if and only if the continuous function φ̃(ξ) := φ(gξ) on CB

q satisfies

φ̃(ξ) · φ̃(η) =

∫
Uq

φ̃
(
σ(
√
ξ2 + uη2u−1)

)
du, ξ, η ∈ CB

q . (5.1)

Proof. Let φ be a continuous K∞ -biinvariant function on G∞ and φ̃ defined
as above. Then, by (4.1) and the product formula for the spherical functions of
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(Gp, Kp) (see e.g., p. 771 of [R1]), φ is Olshanski spherical iff φ̃ satisfies

φ̃(ξ) · φ̃(η) = lim
p→∞

1

κpd/2

∫
Uq

∫
Bq

φ̃
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ)

)
·∆(I − w∗w)pd/2−γ dw du, ξ, η ∈ CB

q . (5.2)

As the probability measure

κ−1
pd/2 ·∆(I − w∗w)pd/2−γ dw

on Bq tends weakly to the point measure δ0 for p→∞ , (5.2) is equivalent to the
condition of the lemma.

We now solve the functional equation (5.1) by using the Dunkl-Bessel
functions JAk of type A on the Weyl chamber

CA
q := {ξ ∈ Rq : ξ1 ≥ . . . ≥ ξq} ⊃ CB

q .

For this we identify the space of double cosets of the Gelfand pairs (Hq o Uq, Uq)
(where Uq acts on Hq by conjugation) with CA

q and recall from Section 3 that the
spherical functions of (HqoUq, Uq) are given by the functions x 7→ JAd/2(ξ, η) with

η ∈ Cq by [O].

Lemma 5.3. A continuous function φ̃ on CB
q with φ̃(0) = 1 satisfies (5.1) if

and only if there exists some η ∈ Cq such that φ̃(ξ) = JAd/2(ξ2, η) for all ξ ∈ CB
q .

Here ξ2 ∈ CB
q means the vector which is obtained from ξ by taking squares in each

component.

Proof. Let φ̃ ∈ C(CB
q ) with φ̃(0) = 1. Then φ̃ satisfies (5.1) if and only if the

function ψ(ξ) := φ̃(
√
ξ) on CB

q satisfies

ψ(ξ) · ψ(η) =

∫
Uq

ψ(σ(ξ + uηu−1)) du, ξ, η ∈ CB
q . (5.3)

In particular, for a, b ∈ [0,∞[ we have

ψ((a, . . . , a))ψ((b, . . . , b)) = ψ((a+ b, . . . , a+ b)).

As ψ is continuous with ψ(0) = 1, this implies that there exists some c ∈ C such
that

ψ((a, . . . , a)) = eca for all a ∈ [0,∞[.

Precisely as in the proof or Lemma 4.4, it is now seen that ψ can be uniquely
extended from CB

q to a continuous function on CA
q which satisfies (5.3) for all

ξ, η ∈ CA
q , namely by putting

ψ(ξ1, . . . , ξq) := ψ(ξ1 − ξq, . . . , ξq−1 − ξq, 0) · ecξq for (ξ1, . . . , ξq) ∈ CA
q .

Thus the extension ψ ∈ C(CA
q ) is a spherical function of the Gelfand pair (Hq o

Uq, Uq). On the other hand, we know that the spherical functions of this Gelfand
pair are precisely the Dunkl-Bessel functions ξ 7→ JAd/2(ξ, η) with η ∈ Cq . This
proves the claim.
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The preceding lemmata yield the following characterization of the Olshanski
spherical functions.

Theorem 5.4. A continuous K∞ -biinvariant function φ : G∞ → C is Olshan-
ski spherical if and only if for some η ∈ Cq ,

φ(gξ) = JAd/2(ξ2,−η) =: ψη(ξ)

for all ξ ∈ CB
q .

We next study which Olshanski spherical functions of (G∞, K∞) appear
as limits of spherical functions on (Gp, Kp) for p → ∞ . For this we employ the
following lemma:

Lemma 5.5. The Dunkl Bessel functions satisfy

lim
µ→∞

JBk(µ,d)(2
√
µξ, iη) = JAd/2(ξ2,−η2)

locally uniformly in (ξ, η) ∈ CB
q × Cq . On CB

q × CB
q , the convergence is even

uniform.

Proof. This follows from the integral representations (3.1) and (3.3), together
with the locally uniform limit for the matrix Bessel functions according to Lemma
4.6.

Notice that the squared entries ξ2,−η2 in the limit on the right hand side
above reflect the fact that the limit admits B -symmetry while the Bessel function
JAd/2 only admits A-symmetry.

Lemma 5.5 in combination with Proposition 5.1 and Theorem 5.4 implies
the following result (again, we consider biinvariant functions on Gp and G∞ as
functions on CB

q ):

Theorem 5.6. All Olshanski spherical functions ψη , η ∈ Cq of (G∞, K∞)
appear as locally uniform limits of spherical functions of (Gp, Kp) for p→∞.

Moreover, those Olshanski spherical functions ψη with η ∈ CB
q appear even

as uniform limits of the spherical functions of (Gp, Kp) for p→∞.

We discuss the locally uniform convergence of the spherical functions of
(Gp, Kp) in this theorem more explicitly:

Lemma 5.7. Consider the spherical functions φ
pd/2
η of (Gp, Kp) as introduced

in Proposition 5.1 as well as the spherical functions ψη of (G∞, K∞). Let η ∈ Cq

and consider a sequence (ηp)p≥q ⊂ Cq with

lim
p→∞

ηp = η.

Then
lim
p→∞

φ
pd/2√

2pd·ηp
= ψη2 locally uniformly on CB

q .
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Moreover, if the sequence (ηp)p≥q is real-valued with limp→∞ |ηp| = ∞, then the

spherical functions φ
pd/2√

2pd·ηp
do not converge locally uniformly on CB

q .

Proof. The first statement follows from Lemma 5.5. For the second statement
consider a sequence (ηp = (ηp,1, . . . , ηp,q))p ⊂ Rq which tends to ∞ such that the

φ
pd/2√

2pd·ηp
converge locally uniformly on CB

q . Note that the limit is continuous on

CB
q . By the Bq -symmetry of the φ

pd/2
η in the parameter η , we may assume in

addition that ηp,1 ≥ ηp,2 ≥ . . . ≥ ηp,q ≥ 0 for all p , and in particular ηp,1 → ∞
for p → ∞ . Moreover, after passing to a subsequence, we may assume that
(ηp/ηp,1)p ⊂ Rq converges to some η̃ = (1, η̃2, . . . , η̃q) ∈ Rq . Then ψη̃ is not the
constant function 1 i.e., we can find ξ ∈ CB

q with ψη̃(ξ) 6= 1. Therefore, by the
first part of the lemma,

φ
pd/2√

2pd·ηp
(ξ/ηp,1) = φ

pd/2
√
2pd
ηp,1
·ηp

(ξ) −→ ψη̃(ξ) 6= 1.

As φ
pd/2
η (0) = 1 for all η , this shows that φ

pd/2√
2pd·ηp

cannot converge locally uni-

formly.

We finally turn to the question which of the Olshanski spherical functions
ψη are positive definite. The same argument as in the second part of the proof of
Theorem 4.8 immediately implies that the functions ψη with η ∈ CB

q are positive
definite Olshanski spherical functions of (G∞, K∞). The converse statement is
more complicated than in the situation of Theorem 4.8, because now there exist
spherical functions ψη with η ∈ Cq \ Rq which are R-valued and bounded. To
overcome this problem, we use Lemma 5.7 in combination with the following result
from Section 22 of [Ol3]:

Proposition 5.8. Let (G∞, K∞) = limp→∞(Gp, Kp) be an Olshanski spherical
pair. Then each positive definite spherical function of (G∞, K∞) is a locally
uniform limit of a sequence of positive definite spherical functions of (Gp, Kp)
for p→∞.

Theorem 5.9. An Olshanski spherical function ψη of (G∞, K∞) is positive
definite if and only if η ∈ Rq .

Proof. The if-part follows by the same arguments as in the proof of Theorem
4.8.

For the converse direction consider a positive definite Olshanski spherical
function ψb of (G∞, K∞) with b ∈ Cq . Then, by Proposition 5.8 and the classifica-
tion of the positive definite spherical functions of (Gp, Kp) in Proposition 5.1, there
exists a sequence (ηp)p≥q ⊂ Rq of indices such that the positive definite spherical

functions φ
pd/2
ηp of (Gp, Kp) converge to ψb locally uniformly on CB

q . Therefore, by
the second part of Lemma 5.7, the sequence ( ηp√

2pd
)p≥q ⊂ Rq does not converge to

infinity, i.e., this sequence contains a bounded subsequence and hence a convergent
subsequence with a limit η ∈ Rq , i.e., limpk

ηpk√
2pkd

= η . Therefore, by the first part

of Lemma 5.7, φ
pkd/2
ηpk

→ ψη . This implies that ψb = ψη on CB
q and, by analyticity,
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also on Cq . As two Dunkl-Bessel functions of type A with parameters b ∈ Cq

and η ∈ Rq are equal precisely if b and η are in the same Weyl group orbit, we
conclude that b ∈ Rq as claimed.

We finally point out that Theorem 5.9 can also be obtained from Theorem
4.10 of Olshanski [Ol1] by using admissible representations.

6. Positive integral representations of matrix Bessel functions

Consider integers p2 ≥ p1 ≥ q and the associated indices µk := pkd/2 (k = 1, 2)
of the matrix Bessel functions. Then the functions φµ2s with s ∈ Πq as introduced
in (2.6) represent positive definite biinvariant functions on Gp1 , and thus by
Lemma 4.1, positive definite biinvariant functions on Gp2 . Therefore, by Bochner’s
theorem for hypergroups (see [J]), which may be applied to the associated matrix
Bessel hypergroup on Πq of index µ1 , the function φµ2s has a representation

φµ2s (x) =

∫
Πq

φµ1t (x) dνp1,p2;s(t) (x ∈ Πq) (6.1)

with some unique probability measure νp1,p2;s ∈M1(Πq).

In this section we shall determine these measures explicitely in two different
ways. Comparison of these results will then lead to a projection result for multi-
variate beta distributions. Our first approach was already carried out in [H] for
F = R ; it relies on the following Laplace transform identity for the Bessel func-
tions Jµ which holds for general F ; see Proposition XV.2.1 and Corollary VII.1.3
of [FK]:

Proposition 6.1. For all µ ∈ C with <µ > d(q − 1)/2 and y ∈ Ωq ,∫
Πq

Jµ(x)e−〈x,y〉∆(x)µ−n/q dx = ΓqΩ(µ) ·∆(y)−µ · e−tr(y−1)

with the Gamma function

ΓqΩ(µ) =

∫
Πq

e−tr(x)∆(x)µ−n/q dx = (2π)(n−q)/2Γ(µ)Γ(µ−d/2) · · ·Γ(µ− (q−1)d/2).

By the transformation formula for linear maps, we have for m ∈ Πq∫
Πq

f(mxm) dx = ∆(m)2n/q

∫
Πq

f(x) dx.

We thus obtain for µ ∈ C with <µ > d(q − 1)/2, m ∈ Πq and y ∈ Ωq , that∫
Πq

Jµ(xm)e−〈x,y〉∆(x)µ−n/q dx = ΓqΩ(µ) ·∆(y)−µ · e−tr(my−1); (6.2)

c.f. equation (2.5) of [H] for F = R , where a minus sign in the exponential is
missing. We notice that (6.2) may be also interpreted as a well-known formula for
the Hankel transforms of Wishart distributions; see for instance [FK] or Section 5
of [V1]. Using injectivity and the convolution theorem for the Laplace transform,
we deduce from (6.2) the following addition theorem:
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Proposition 6.2. For all µ, ν ∈ C with <µ > d(q− 1)/2 and <ν > d(q− 1)/2
and all m1,m2 ∈ Πq ,

Jµ+ν(x(m1 +m2)) ·∆(x)µ+ν−n/q = (6.3)

=
ΓqΩ(µ+ ν)

ΓqΩ(µ)ΓqΩ(ν)

∫
{y∈Πq : y≤x}

Jµ(ym1)∆(y)µ−n/qJν((x− y)m2)∆(x− y)ν−n/q dy.

Taking m1 = m , m2 = 0, x = Iq (the identity matrix), and defining

ΠI
q := {y ∈ Πq : y ≤ Iq},

we obtain the following Sonine-type integral representation of Jµ+ν in terms of Jµ,
which was for F = R already proven in [H]:

Corollary 6.3. For all µ, ν ∈ C with <µ,<ν > d(q − 1)/2 and m ∈ Πq ,

Jµ+ν(m) =
ΓqΩ(µ+ ν)

ΓqΩ(µ)ΓqΩ(ν)

∫
ΠIq

Jµ(ym)∆(y)µ−n/q∆(Iq − y)ν−n/q dy.

Notice that for m = 0 this formula implies the known beta integral∫
ΠIq

∆(y)µ−n/q∆(Iq − y)ν−n/q dy =
ΓqΩ(µ)ΓqΩ(ν)

ΓqΩ(µ+ ν)
=: Bq

Ω(µ, ν). (6.4)

Using these notions, we define the beta distributions dβq;µ,ν ∈ M1(ΠI
q) on ΠI

q for
real parameters µ, ν > d(q − 1)/2 by

dβq;µ,ν(y) :=
1

Bq
Ω(µ, ν)

∆(y)µ−n/q∆(Iq − y)ν−n/q dy

with n = n(q,F) as in Section 2. Using Lemma 2.2(1), we obtain the following
explicit form of relation (6.1):

Corollary 6.4. For all µ, ν ∈ C with <µ,<ν > d(q − 1)/2 and s, x ∈ Πq ,

φµ+ν
s (x) =

∫
ΠIq

φµ√sys(x) dβq;µ,ν(y).

Remark 6.5. (1) We conjecture that for all real parameters ν ≥ 0, µ >
d(q − 1)/2 and all s ∈ Πq there is a probability measure mµ,ν,s ∈ M1(Πq)
with compact support such that

φµ+ν
s (x) =

∫
Πq

φµy (x) dmµ,ν,s(y) for all x ∈ Πq

(2) One can easily combine Corollary 6.4 with Lemma 4.6 for ν → ∞ . This
yields an explicit integral representation of the Olshanski spherical functions
ψb of Section 4 for b ∈ Πq in terms of the φµs . This formula describes ψb as
the Hankel transform of order µ of some Wishart distribution and is well-
known, see Proposition XV.2.1 of [FK] and Lemma 5.4. of [V1], which is
adapted to our notation.
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Next, we derive Corollaries 6.3 and 6.4 in a different, more geometric way
as follows: Consider integers 1 ≤ q ≤ p̃ and p ≥ 2p̃ . For p, p̃ define the associated
parameters µ := pd/2 and µ̃ := p̃d/2 of the Bessel functions on Πq . From the
fact that the φµλ are spherical functions we conclude that for λ, x ∈ Πq

φµλ(x) =

∫
Up

exp
(
i · <tr

(
(x, 0)u

(
λ
0

)))
du

with (x, 0) ∈Mq,p and

(
λ
0

)
∈Mp,q (see also [R1]). Now let w ∈ Bp̃ be the upper

left p̃× p̃-block of u , i.e. u =

(
w ∗
∗ ∗

)
. In the following, C1, C2, C3 are constants

depending on q, p̃, p, d . We first conclude from Lemma 2.1 of [R2] that for p ≥ 2p̃,

φµλ(x) = C1

∫
Bp̃

exp
(
i · <tr

(
(x, 0)w

(
λ
0

)))
·∆(I − w∗w)pd/2−d(p̃−1/2)−1dw

where now (x, 0) ∈ Mq,p̃ and

(
λ
0

)
∈ Mp̃,q . Further, integration with respect to

polar coordinates on Mp̃ according to [FT] (see also p.759 of [R1]) gives∫
Mp̃

f(w)dw = C2

∫
Ωp̃

∫
Up̃

f(u
√
r) ·∆(r)d/2−1du dr.

Therefore

φµλ(x) = C3

∫
ΠIp̃

(∫
Up̃

exp
(
i·<tr

(
(x, 0)u

√
r

(
λ
0

)))
du
)
·

·∆(r)d/2−1∆(I − r)pd/2−d(p̃−1/2)−1dr.

By the definition of φµ̃λ , we obtain

φµλ(x) = C3

∫
ΠIp̃

φµ̃λ(r)(x)∆(r)d/2−1∆(I − r)pd/2−d(p̃−1/2)−1dr

with λ(r) :=

√
(λ, 0)r

(
λ
0

)
∈ Πq .

Putting x = 0 and using (6.4) for p̃ instead of q , we finally obtain from
the definition of n that

φµλ(x) =

∫
ΠIp̃

φµ̃λ(r)(x) dβp̃;p̃d/2,d(p−p̃)/2(r). (6.5)

We now compare equation (6.5) with Corollary 6.4 for µ = p̃d/2, ν = (p − p̃)d/2
and arbitrary x ∈ Πq . By the injectivity of the Hankel transform of index p̃ on
Πq and by analytic continuation with respect to µ and ν , we shall obtain the
following projection result for multivariate beta distributions:
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Proposition 6.6. For integers p̃ ≥ q ≥ 1, consider the projection

Pp̃,q : ΠI
p̃ → ΠI

q , r =

(
y ∗
∗ ∗

)
7−→ y.

Then for all real-valued parameters µ, ν > d(p̃ − 1)/2, the measure βq;µ,ν is the
push-forward of the measure βp̃;µ,ν under Pp̃,q,

Pp̃,q(βp̃;µ,ν) = βq;µ,ν .

Proof. Assume first that µ = dp̃/2 and ν = d(p−p̃)/2 for some integer p ≥ 2p̃ .
In this case, the statement follows from the preceding arguments.

Now consider integers r ≥ p̃ ≥ q and p ≥ 2r . We obtain

βq;dr/2,d(p−r)/2 = Pr,q(βr;dr/2,d(p−r)/2) = Pp̃,q ◦ Pr,p̃(βr;dr/2,d(p−r)/2)

= Pp̃,q(βp̃;dr/2,d(p−r)/2).

This equality means that for the parameters µ = dr/2 and ν = d(p − r)/2 with
integers p, r with r ≥ p̃ and p ≥ 2r , we have for all bounded continuous functions
f ∈ Cb(ΠI

q) the identity∫
ΠIp̃

f(P (x)) dβp̃;µ,ν(x) =

∫
ΠIq

f(y) dβq;µ,ν(y). (6.6)

By definition of the beta distributions, both sides of this identity are, for fixed f ,
analytic in the variables µ, ν ∈ C with <µ,<ν > d(p̃− 1)/2. Precisely as in [R1],
it is easily checked that both sides also satisfy the exponential growth conditions
of Carlson’s Theorem (p. 186 of [T]). This yields that (6.6) holds for general µ
and ν , which finishes the proof.

We mention that Proposition 6.6 can also be derived, at least for F = R
and µ = p/2 and ν = r/2 with suitable integers p, r, from the construction of the
multivariate beta distributions in statistics; see Section 10.2 of [Fa] and references
cited there. Let us sketch this approach: we consider Mp,p̃ - and Mr,p̃ -valued
independent random variables X and Y respectively such that all entries of X
and Y are i.i.d. standard-normal distributed. Then S := X tX , T := Y tY ,
and S + T are Πp̃ -valued and Wishart-distributed. Now form the unique lower
triangular matrix C with nonnegative entries satisfying CCt = S + T . It is well-
known (Section 10.2 of [Fa] and references cited there) that L := C−1S(Ct)−1 is a
ΠI
p̃ -valued variable with distribution βp̃;p/2,r/2 .

Now consider some integer 1 ≤ q ≤ p̃ . For any matrix A ∈ Mp̃ we denote
by Ã its upper left q×q -block. It is now easily checked from the triagular structure
of C and C−1 that

L̃ = C̃−1S̃ (̃Ct)−1 = (C̃)−1S̃((C̃)t)−1

with C̃C̃t = S̃+T̃ . This observation readily leads to a further proof of Proposition
6.6 for µ = p/2 and ν = r/2. Again, application of Carlson’s theorem implies the
general result.
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