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Zusammenfassung

Im Gegensatz zur traditionsreichen Theorie der speziellen Funktionen einer Veränderlichen
besteht erst seit jüngerer Zeit zunehmendes Interesse auch an speziellen Funktionen in mehreren
Variablen. Eine besonders intensive Entwicklung hat dabei in den letzten Jahren im Ge-
biet der speziellen Funktionen zu Wurzelsystemen stattgefunden, mit bedeutenden Beiträgen
durch Heckmann und Opdam, Dunkl, Macdonald und Cherednik. Wesentliche Motivation
bezieht dieses Gebiet aus der harmonischen Analyse Riemannscher symmetrischer Räume, deren
sphärische Funktionen sich als spezielle Funktionen mehrerer Variabler mit gewissen diskreten
Parametern schreiben lassen. Für einen Überblick über den aktuellen Stand der Forschung und
weitere Literaturangaben verweisen wir auf [He3], [M2], [H-Sc] und [Ki]. Ein zentrales Hilfs-
mittel in der Untersuchung spezieller Funktionen zu Wurzelsystemen sind Dunkl-Operatoren
und ihre Varianten, die trigonometrischen Dunkl-Operatoren von Heckman und Opdam sowie
die eng verwandten Cherednik-Operatoren ([D2], [H-Sc], [Che]). Dunkl-Operatoren sind mit
endlichen Spiegelungsgruppen assoziierte, durch Spiegelungsterme modifizierte Differentialope-
ratoren. Ihre Bedeutung für das Studium spezieller Funktionen mehrerer Variabler ist eng
gekoppelt mit ihrer Interpretation im Kontext gewisser Darstellungen (degenerierter) affiner
Hecke-Algebren (siehe [Che], [O2] und [Ki]). Dunkl-Operatoren – in ihrer ursprünglichen Ver-
sion – gehen zurück auf C. F. Dunkl, der sie gegen Ende der 80iger Jahre im Rahmen seiner
Untersuchungen zu verallgemeinerten sphärischen Harmonischen einführte ([D1-D5]); zur Ab-
grenzung von den weiteren Varianten werden diese Operatoren heute auch “rationale” Dunkl-
Operatoren genannt.

Eine ganz wesentliche Motivation für die Beschäftigung mit Dunkl-Operatoren liegt in
ihrer Bedeutung für die Analyse quantenmechanischer Mehrteilchenmodelle vom Calogero-
Moser-Sutherland-Typ. Dies sind exakt integrierbare eindimensionale Systeme, die erstmals
von Calogero und Sutherland ([Ca], [Su]) studiert wurden und in den letzten Jahren inner-
halb der Mathematischen Physik zunehmend an Bedeutung gewonnen haben. Calogero-Moser-
Sutherland-Modelle sind unter anderem in der konformen Feldtheorie von Interesse und werden
eingesetzt, um Modelle der fraktionalen Statistik zu testen ([Ha], [Hal]). Der Dunkl-Operator-
Formalismus liefert explizite Operatorlösungen für eine Vielzahl von Systemen dieses Typs
([L-V], [K1], [BHKV], [B-F3], [U-W]).

Die vorliegende Arbeit beschäftigt sich ausschließlich mit den klassischen, rationalen Dunkl-
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Operatoren; wir werden sie der Einfachheit halber stets “Dunkl-Operatoren” nennen.
Das erste Kapitel liefert eine Einführung in die Theorie der Dunkl-Operatoren und der

Dunkl-Tranformation. Dabei ist keine inhaltliche Vollständigkeit angestrebt; vielmehr ist Wert
darauf gelegt, einen Überblick über die für das Weitere grundlegenden Konzepte zu vermitteln.
Verschaffen wir uns nun einen Einstieg in den Gegenstand der Arbeit: Gegeben sei eine endliche
Spiegelungsgruppe G auf dem RN mit zugehörigem Wurzelsystem R . Die assoziierten Dunkl-
Operatoren sind dann definiert durch

Tξ(k)f(x) := ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− f(σαx)

〈α, x〉
, ξ ∈ RN .

Dabei ist R+ ein positives Teilsystem von R und 〈 . , . 〉 ist das euklidische Standard-Skalar-
produkt auf RN ; ferner bezeichnet σα die Spiegelung an der zu α orthogonalen Hyperebene
und k : R → C eine sogenannte Multiplizitätsfunktion auf R , d.h. eine unter der natürlichen
Operation von G invariante Funktion k : R→ C . Der Dunkl-Operator Tξ(k) kann insbesondere
als eine mittels k parameterisierte Störung des gewöhnlichen partiellen Ableitungsoperators in
Richtung ξ aufgefaßt werden. Ist die Multiplizitätsfunktion k identisch Null, so stimmt Tξ(k)

mit der gewöhnlichen Ableitung in Richtung ξ überein. Die Aktion der Dunkl-Operatoren
Tξ(k) auf dem Vektrorraum der Polynomfunktionen auf RN ist G-äquivariant und homogen
vom Grad −1 . Darüberhinaus haben die Dunkl-Operatoren (bei festem k ) die bemerkenswerte
Eigenschaft daß sie kommutieren:

Tξ(k)Tη(k) = Tη(k)Tξ(k) für alle ξ, η ∈ RN .

In [D4] wurde zunächst für nichtnegative Parameter k die Existenz eines homogenen linearen
Operators Vk auf dem Raum der Polynome bewiesen, welcher die Algebra der Dunkl-Operatoren
mit der Algebra der gewöhnlichen Differentialoperatoren vertauscht, d.h.

Tξ(k)Vk = Vk ∂ξ für alle ξ ∈ RN .

Unter der Forderung Vk(1) = 1 ist dieser auch eindeutig. Eine gründliche Analyse in [D-J-O]
ergab später, daß ein solcher Vertauschungsoperator tatsächlich für genau diejenigen Multi-
plizitätsfunktionen existiert, für welche der gemeinsame Kern der Tξ(k) , aufgefaßt als lineare
Operatoren auf dem Vektorraum der Polynome in N Variablen, keine “singulären” Polynome
außer den Konstanten enthält.

Ein zentraler Teil dieser Arbeit ist dem weiteren Studium des Vertauschungsoperators Vk
für nichtnegative Multiplizitätsfunktionen k gewidmet. Obwohl eine explizite Darstellung nur
in sehr wenigen speziellen Fällen bekannt ist, äußerte Dunkl in [D4] die Vermutung, daß der
Operator Vk im Fall k ≥ 0 stets positivitätserhaltend auf Polynomen ist und eine Integral-
darstellung vom Bochner-Typ auf gewissen Algebren analytischer Funktionen besitzt. Diese
Vermutung wird in Kapitel 2 bewiesen. Der Beweis erfordert mehrere Schritte; der zentrale
Teil ist dabei der Nachweis der Positivität von Vk auf Polynomen. Entscheidend hierfür ist eine
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Reduktion des N -dimensionalen auf ein eindimensionales Problem, welches dann explizit zu
lösen ist. Die erforderliche Reduktion wird mittels einer Charakterisierung vom Hille-Yosida-
Typ für die Erzeuger positiver Halbgruppen auf Räumen von Polynomen bewerkstelligt. Das
Hauptresultat von Kapitel 2 basiert dann auf einer Fortsetzung des Vertauschungsoperators Vk
auf gewisse Algebren analytischer Funktionen. Es besagt, daß für jedes x ∈ RN ein eindeutiges
Wahrscheinlichkeitsmaß µkx auf der Borel-σ -Algebra des RN existiert, so daß Vk für analytische
Funktionen f einer geeignet großen Klasse, und insbesondere für alle Polynome, die Darstellung

Vkf(x) =

∫
RN

f(ξ) dµkx(ξ)

besitzt. Dieses Resultat erlaubt allerdings nur sehr begrenzte Aussagen bezüglich spezifischer
Eigenschaften der darstellenden Maße, nämlich ihre Träger und gewisse Invarianz-Eigenschaften
betreffend. Es ist eine interessante und noch offene Frage, unter welchen Bedingungen an die
Multiplizitätsfunktion k die Maße µkx absolut stetig bezüglich des Lebesgue-Maßes sind oder
aber diskrete Anteile haben.

Eine wichtige Konsequenz unseres Hauptresultats betrifft den verallgemeinerten Exponen-
tialkern Ek(z, w) zu G und k , welcher im Rahmen der Dunkl-Theorie die übliche Expo-
nentialfunktion auf CN × CN ersetzt. Nach einem Resultat aus [O2] ist dieser Exponen-
tialkern als eindeutige Lösung eines simultanen Eigenwert-Problems für die Dunkl-Operatoren
{Tξ(k), ξ ∈ RN} charakterisiert; er läßt sich auch schreiben als

Ek(z, w) = Vk
(
e〈 . , w〉

)
(z).

Zu dem Kern Ek gibt es eine Integraltransformation im RN , die Dunkl-Transformation, welche
in [D5] eingeführt und in [dJ1] detailliert untersucht wurde. Sie besitzt viele Eigenschaften der
klassischen Fourier-Transformation im RN ; das gewöhnliche Lebesgue-Maß ist dabei allerdings
durch die G-invariante Gewichtsfunktion

wk(x) =
∏
α∈R+

|〈α, x〉|2k(α)

modifiziert. Obiges Positivitätsresultat impliziert für reelle x eine Bochner-Darstellung des
Dunkl-Kerns mittels der Maße µkx – was insbesondere zeigt, daß die Funktion y 7→ Ek(x, iy)

für festes x ∈ RN positiv-definit auf RN ist. Hieraus ergeben sich auch (weitgehend) schärfere
Schranken für den Dunkl-Kern als die in [dJ1] angegebenen.

An dieser Stelle scheint eine Bemerkung zum eindimensionalen Fall angebracht, der mit der
Spiegelungsgruppe Z2 auf R und einem Parameter k > 0 assoziiert ist. Hier ist der Dunkl-Kern
explizit bekannt; er läßt sich mittels einer konfluenten hypergeometrischen Funktion vom Typ

1F1 ausdrücken (oder auch als Kombination zweier normalisierter sphärischer Bessel-Funktionen
vom Index k − 1/2 und k + 1/2), und besitzt die positive Integraldarstellung

EZ2
k (z, w) = Ck

∫ 1

−1
etzw(1− t)k−1(1 + t)k dt (z, w ∈ C),
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mit einer Normierungskonstanten Ck > 0 . Die Dunkl-Transformation Z2 -invarianter Funktio-
nen stimmt überein mit der Hankel-Transformation zum Index k − 1/2 .

Das dritte Kapitel ist Verallgemeinerungen der klassischen Hermite-Polynome im Kontext
endlicher Spiegelungsgruppen gewidmet. Es handelt sich dabei um orthogonale und, allgemei-
ner, biorthogonale Polynomsysteme bezüglich einer Gewichtsfunktion der Form wk(x)e−ω|x|

2

auf dem RN . Wir beziehen die Motivation für das Studium solcher Polynome aus ihrer Bedeu-
tung im Zusammenhang mit exakt lösbaren quantenmechanischen Mehrteilchen-Systemen vom
Calogero-Moser-Sutherland (CMS)-Typ. CMS-Modelle beschreiben Systeme von N Teilchen
auf einem Kreis oder einer Geraden, die durch invers-quadratische Potentiale gekoppelt sind.
Während die Integrabilität solcher Modelle schon von Calogero und Sutherland ([Ca], [Su]) fest-
gestellt worden war, führten erst jüngere Beobachtungen von [Po] und [He2] zu einem wesentlich
tieferen Verständnis ihrer algebraischen Struktur. Polychronakos betrachtete den rationalen
Calogero-Operator mit externem quadratischen Potential in L2(RN ) ,

HC = −∆ + ω2|x|2 + 2k(k − 1)
∑

1≤i<j≤N

1

(xi − xj)2
.

Hierbei ist ω > 0 ein Frequenz-Parameter und k ≥ 0 eine Kopplungskonstante. Er erkannte,
daß sich dieser Operator, nach Modifikation durch zusätzliche Austausch-Terme, in entkop-
pelter Form mittels Dunkl-Operatoren vom Typ AN−1 schreiben läßt, und so als eine Vari-
ante des Schrödinger-Operators für den klassischen harmonischen Oszillator betrachtet werden
kann. Durch die Einführung entsprechender Erzeugungs- und Vernichtungsoperatoren erhielt er
dann eine explizite Operator-Lösung für das Ausgangsmodell. Diese beobachtungen waren Aus-
gangspunkt eines intensiven und anhaltenden Studiums expliziter Lösungen von CMS-Modellen
mittels geeigneter Differential-Spiegelungs-Formalismen ([L-V], [K1], [BHKV], [B-F3], [U-W]).
Um unsere weiteren Konstruktionen zu motivieren, beginnen wir das 3. Kapitel mit einer kurzen
Diskussion klassischer CMS-Operatoren. Wir wenden uns dann, auf der Grundlage beliebiger
Wurzelsysteme, abstrakten CMS-Operatoren mit quadratischem Potential zu. Diese sind von
der Form

Hk = −∆k + ω2|x|2 ,

mit dem Dunkl’schen Laplace-Operator

∆k =

N∑
i=1

Tei(k)2 .

Für ein Wurzelsystem vom Typ AN−1 stimmt der Operator Hk bis auf eine Eichtransformation
mit der durch Austausch-Operatoren modifizierten Version des Operators HC überein. Die
Spektraleigenschaften abstrakter CMS-Operatoren sind mittels Dunkl-Operator-Formalismus
leicht vollständig zu klären; sie sind denen des isotropen harmonischen Oszillators sehr ähn-
lich. Insbesondere sind die Spektren dieser Operatoren diskret und hochgradig entartet, und
es gibt eine Vielzahl möglicher Eigenfunktionsbasen. In Abschnitt 3.2 konstruieren wir natür-
liche Klassen von Eigenfunktionen im Rahmen eines einheitlichen Konzepts verallgemeinerter
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Hermite-Polynome und biorthogonaler Polynomsysteme. Die Hermite-Polynome sind dabei
gekennzeichnet durch Orthogonalität im entsprechend gewichteten L2 -Raum, während natür-
liche biorthogonale Systeme sich mittels Erzeugungs-Operatoren gewinnen lassen. Viele der
bekannten Eigenschaften klassischer Hermite-Polynome und Hermite-Funktionen erlauben eine
Ausdehnung auf diese allgemeineren Systeme, darunter die Erzeugenden-Funktion, Rodrigues-
Formeln, und eine Mehler-Formel. Im AN−1 -Fall schließen unsere Hermite-Systeme die verallge-
meinerten nicht-symmetrischen Hermite-Polynome von Baker und Forrester [B-F3] als spezielle
Klasse ein. Im eindimensionalen Fall erhalten wir die verallgemeinerten Hermite-Polynome auf
R, die bereits in [Ros] untersucht wurden. Die Ergebnisse von [B-F3] und [Ros] haben viele
unserer vorliegenden allgemeinen Konstruktionen angeregt. Das Kapitel schließt mit einer Ver-
sion des klassischen Weyl-Heisenberg’schen Unschärfeprinzips für die Dunkl-Transformation;
sein Beweis basiert auf Entwicklungen bezüglich verallgemeinerter Hermite-Funktionen.

In Kapitel 4 werden mit Spiegelungsgruppen assoziierte Wärmeleitungskerne sowie ver-
schiedene Familien von Operatorhalbgruppen untersucht, die alle in Verbindung mit dem Dunkl-
schen Laplace-Operator stehen. Für eine gegebene Spiegelungsgruppe G und eine Multi-
plizitätsfunktion k ≥ 0 wird der zugehörige Wärmeleitungskern durch eine verallgemeinerte
Translation gewonnen, und zwar aus der Gauß’schen Fundamentallösung des “Wärmeleitungs-
Operators” ∆k − ∂t . Der entsprechende Wärmeleitungskern ist gegeben durch

Γk(t, x, y) :=
Mk

tγ+N/2
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
, x, y ∈ RN , t > 0,

mit einer Normierungskonstanten Mk > 0 und dem Parameter γ =
∑

α∈R+
k(α) . Die Pos-

itivität des Dunkl-Kerns Ek für reelle Argumente (sie ergibt sich aus unserem Hauptresultat
in Kapitel 2) gewährleistet, daß auch Γk positiv ist. Die Situation ist in der Tat weitgehend
analog zur klassischen: Der Dunkl’sche Laplace-Operator ∆k erzeugt positive Kontraktions-
Halbgruppen auf einer ganzen Reihe von Funktionenräumen einschließlich L2(RN , wk) und
(C0(RN ), ‖.‖∞) , und Γk tritt als Integralkern dieser Wärmeleitungshalbgruppen auf. Weitere
verwandte Halbgruppen ergeben sich in der üblichen Weise; wir erhalten insbesondere verallge-
meinerte Cauchy-Kerne und Cauchy-Halbgruppen durch Subordination aus den Wärmeleitung-
shalbgruppen, und greifen die abstrakten Oszillator-Operatoren aus dem vorangehenden Kapi-
tel nochmals auf. Unsere Resultate für die Wärmeleitungs- und Cauchy-Halbgruppen vom
Dunkl-Typ schließen auch die explizite Lösung entsprechend (klassisch) gestellter Anfangswert-
Probleme mit Ortsgebiet RN und gewissen Wachstumsbedingungen im Unendlichen ein, so
etwa dasjenige für den Wärmeleitungsoperator ∆k − ∂t . Die Eindeutigkeit der Lösungen läßt
sich hier wie im klassischen Fall durch ein Maximumprinzip für den Wärmleitungsoperator
in unbschränkten Gebieten sicherstellen. Den Abschluß dieses Kapitels bilden Untersuchun-
gen zur Kurzzeit-Asymptotik des verallgemeinerten Wärmeleitungskerns Γk . Die Struktur des
Dunkl’schen Laplace-Operators läßt erwarten, daß der Kern Γk , nach Übergang von L2(RN , wk)
in den ungewichteten L2(RN ) , für sehr kurze Zeiten die Spiegelungshyperebenen “nicht spürt”
und sich wie der freie Gaußkern Γ0 verhält; wir vermuten, genauer ausgedrückt, daß für alle x, y



vii

innerhalb einer festen (offenen) Weyl-Kammer die folgende asymptotische Relation besteht:

lim
t↓0

√
wk(x)wk(y) Γk(t, x, y)

Γ0(t, x, y)
= 1 .

Wir geben zwei Teilresultate in Richtung dieser Vermutung an; beide basieren auf dem Ma-
ximumprinzip für den klassischen Wärmeleitungsoperator. Das erste Resultat liefert die be-
hauptete Asymptotik unter einer gewissen Einschränkung an die Argumente x, y (die auf den
Einfluß der Spiegelungshyperebenen zurückzuführen ist), das zweite beinhaltet eine scharfe un-
tere Schranke.
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Introduction

While the theory of special functions in one variable has a long and rich history, the growing
interest in special functions of several variables is comparably recent. In particular, there
has been a rapid development in the area of special functions related to root systems, with
important contributions during the last ten years by Heckman and Opdam, Dunkl, Macdonald,
and Cherednik. The motivation for this subject comes to some extent from the harmonic
analysis on Riemannian symmetric spaces, whose spherical functions can be written as multi-
variable special functions depending on certain discrete sets of parameters. For an overview
and further references we refer to the Bourbaki lecture of Heckman [He3], to [M2], [H-Sc], and
the survey of Kirillov [Ki]. A key tool in the analysis of special functions related with root
systems are Dunkl operators and their variants, the trigonometric Dunkl operators of Heckman
and Opdam as well as the closely related Cherednik operators ([D2], [H-Sc], [Che]). Dunkl
operators are differential-reflection operators, associated to a finite reflection group on some
finite-dimensional Euclidean space. Their relevance for the analysis of multivariable special
functions is closely connected with their interpretation in the context of (degenerate) affine
Hecke algebras (see [Che], [O2] and [Ki]). In their original version, Dunkl operators were
introduced and first studied by Dunkl in a series of papers ([D1-D5]) in the context of a theory
of generalized spherical harmonics. These operators are now sometimes called “rational” Dunkl
operators.

An equally important motivation to study Dunkl operators originates in their relevance for
the analysis of quantum many body systems of Calogero-Moser-Sutherland type. These are
exactly solvable models in one dimension, which were first studied by Calogero and Sutherland
([Ca], [Su]). During the last years, such models have gained considerable interest in mathemat-
ical physics. They are, for example, of interest in conformal field theory, and are being used
to test the ideas of fractional statistics ([Ha], [Hal]). The Dunkl operator formalism provides
explicit operator solutions for a variety of such systems ([L-V], [K1], [BHKV], [B-F3], [U-W]).

In this thesis, we present various contributions to the theory of the classical rational Dunkl
operators, which we always call “Dunkl operators” for short. The first chapter is intended to
provide an essentially self-contained introduction to the theory of Dunkl operators and the
Dunkl transform; it does not aim at completeness, but concentrates on those aspects which will
be important in our context. Let us briefly describe our setting: Given a finite reflection group
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G on RN with root system R , the associated Dunkl operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− f(σαx)

〈α, x〉
, ξ ∈ RN .

Here R+ is a positive subsystem of R , 〈 . , . 〉 is the standard Euclidean scalar product in RN ,
σα denotes the reflection in the hyperplane orthogonal to α , and k : R→ C is a function which
is invariant under the natural action of G on the root system, called a multiplicity function on
R . The Dunkl operator Tξ(k) can therefore be considered as a perturbation in the parameter k
of the usual partial derivative in direction ξ ∈ RN . If the multiplicity function k is identically
zero, then Tξ(k) coincides with the partial derivative ∂ξ (independently of the group G). The
action of the Dunkl operators Tξ(k) on the vector space of polynomial functions on RN is
G-equivariant and homogeneous of degree −1 . Moreover, they have the remarkable property
that they commute:

Tξ(k)Tη(k) = Tη(k)Tξ(k) for all ξ, η ∈ RN .

It was first shown in [D4] that for non-negative multiplicity functions, there exists a unique
linear and homogeneous isomorphism Vk on polynomials such that Vk(1) = 1 and

Tξ(k)Vk = Vk ∂ξ for all ξ ∈ RN ,

i.e. Vk intertwines the commutative algebra of Dunkl operators with the algebra of partial
differential operators. A thorough analysis in [D-J-O] subsequently revealed that such an in-
tertwining operator exists if and only if the common kernel of the Tξ(k) , considered as linear
operators on the vector space of polynomials, contains no “singular” polynomials besides the
constants.

A central part of this thesis is devoted to a further study of the intertwining operator Vk for
non-negative multiplicity functions. Although an explicit form for this operator is known only
in very special cases, it was conjectured by Dunkl in [D4] that Vk should always be positivity-
preserving on polynomials, and allow a Bochner-type integral representation on certain algebras
of analytic functions. This conjecture will be confirmed in Chapter 2. Its proof affords sev-
eral steps, the crucial part being a reduction from the N -dimensional to a one-dimensional
problem, which is then solved explicitly. This reduction is achieved by a Hille-Yosida type
characterization for the generators of positivity-preserving semigroups of linear operators on
spaces of polynomials. The main result of Chapter 2 is then obtained by an extension of Vk
to larger function algebras – essentially the same as introduced by Dunkl [D4]. More precisely,
we shall prove that for each x ∈ RN , there exists a unique probability measure µkx on the
Borel-σ -algebra of RN such that

Vkf(x) =

∫
RN

f(ξ) dµkx(ξ)

for all polynomials, and in fact for all functions from a certain algebra of analytic functions in
a Euclidean ball of sufficiently large radius. As to the nature of the representing measures, this
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result allows only limited conclusions, refering to invariance properties and the support. It is
an interesting and still open problem to find criteria on the multiplicities k under which the
measures µkx are absolutely continuous with respect to Lebesgue measure or do have discrete
parts.

An important consequence of our main theorem concerns the generalized exponential kernel
Ek(z, w) on CN ×CN associated to G and k , which generalizes the usual exponential function
e〈z,w〉 . This kernel is also called the Dunkl kernel; by a result of [O2], it is characterized as the
unique solution of a joint eigenfunction problem for the Dunkl operators {Tξ(k), ξ ∈ RN} , and
it can be written as

Ek(z, w) = Vk
(
e〈 . , w〉

)
(z).

The Dunkl kernel gives rise to an integral transform on RN , called the Dunkl-transform, which
was introduced in [D5] and studied in detail in [dJ3]. This transform shares many properties
of the classical Fourier transform on RN , with the Lebesgue measure being modified by the
G-invariant weight function

wk(x) :=
∏
α∈R+

|〈α, x〉|2k(α).

The above positivity result implies, for real x , a Bochner-type representation of the Dunkl
kernel by means of the representing measures µkx above. This shows in particular that the
function y 7→ Ek(x, iy) is positive definite on RN for each fixed x ∈ RN . We also obtain
essentially sharper bounds on the kernel Ek than those in [dJ3].

We mention that in the one-dimensional case, associated to the reflection group G = Z2 on
R and a single multiplicity parameter k > 0 , the corresponding Dunkl kernel is known in terms
of a confluent hypergeometric function of type 1F1 (or equivalently, as a certain combination of
two normalized spherical Bessel functions of index k− 1/2 and k+ 1/2 respectively); it allows
the explicit integral representation

EZ2
k (z, w) = Ck

∫ 1

−1
etzw(1− t)k−1(1 + t)k dt (z, w ∈ C),

with some normalization constant Ck > 0 . In this case, the Dunkl transform of group-invariant
functions coincides with the Hankel transform of order k − 1/2 .

Chapter 3 is concerned with generalizations of the classical multivariable Hermite polyno-
mials to the Dunkl setting. For a finite reflection group G on RN , we consider polynomial
systems which are orthogonal or, more generally, biorthogonal with respect to weight functions
of the form wk(x)e−ω|x|

2 on RN . The motivation to study such polynomials originates in their
connection with exactly solvable quantum many particle systems of Calogero-Moser-Sutherland
(CMS) type. CMS models describe a system of N particles on a circle or line which interact
pairwise through potentials of inverse square type. While the quantum integrability of such
models was already observed by Calogero and Sutherland ([Ca], [Su]), a new aspect in the
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understanding of their algebraic structure was only recently initiated by [Po] and [He2]. Poly-
chronakos considered the so-called rational Calogero Hamiltonian with harmonic confinement

HC = −∆ + ω2|x|2 + 2k(k − 1)
∑

1≤i<j≤N

1

(xi − xj)2

in L2(RN ) ; here ω > 0 is a frequency parameter and k ≥ 0 a coupling constant. He observed
that after a modification of this operator by additional “exchange operators”, the resulting
abstract Hamiltonian can be written in a decoupled form involving Dunkl operators of type
AN−1 . It can in fact be considered as a Dunkl-type variant of the classical, N -dimensional
isotropic oscillator Hamiltonian. Introducing analogues of the classical lowering and raising
operators, Polychronakos obtained an explicit operator solution for his original model in an
elegant way. Since then, there has been an extensive and ongoing study of CMS models and
explicit operator solutions for them via differential-reflection operator formalisms ([L-V], [K1],
[BHV], [B-F3], [U-W]).

To motivate our further constructions, we start Chapter 3 with a discussion of classical CMS
Hamiltonians. We then turn to abstract CMS operators with harmonic confinement, based on
arbitrary root systems. They are of the form

Hk = −∆k + ω2|x|2 ,

where

∆k =
N∑
i=1

Tei(k)2

is the Dunkl Laplacian. If the root system is of type AN−1 , then the operator Hk coincides
– up to some gauge transform – with the exchange operator modification of HC considered
by Polychronakos. The spectral properties of abstract CMS operators are easily determined
within the Dunkl operator formalism. They are very similar to those of the isotropic oscillator
Hamiltonian. In particular, the spectra of these operators are discrete and highly degenerate,
and there are various possible choices of eigenfunction bases. In Section 3.2, we present natural
choices of eigenfunction bases within a unified concept of generalized Hermite polynomials and
biorthogonal polynomials. In particular, the generalized Hermite polynomials are characterized
by orthogonality in the underlying weighted L2 -space, while certain biorthogonal systems can
be obtained by a ladder formalism. Many of the well-known properties of classical Hermite
polynomials and Hermite functions allow extensions to generalized Hermite- and biorthogonal
systems, such as the Rodrigues formula, generating function, and a Mehler formula. In the
AN−1 -case, our Hermite systems include the generalized Hermite polynomials of Baker and
Forrester [B-F2], [B-F3] as a particular class. In the one-dimensional case, we obtain the
generalized Hermite polynomials on R which were studied in [Ros] in connection with a Bose-
type oscillator calculus. The results of [B-F3] and [Ros] have inspired many of our present, more
general considerations. Chapter 3 is concluded by an analogue of the classical Weyl-Heisenberg
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uncertainty principle for the Dunkl transform; its proof is based on expansions with respect to
generalized Hermite functions.

In Chapter 4, we study heat kernels for finite reflection groups as well as several families of
operator semigroups which are related to Dunkl’s Laplacian ∆k . For a given reflection group
G and a non-negative multiplicity function k , the associated heat kernel on RN is obtained,
by a generalized translation, from the Gaussian “fundamental solution” of the Dunkl-type heat
operator ∆k − ∂t . This heat kernel is given by

Γk(t, x, y) :=
Mk

tγ+N/2
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
, x, y ∈ RN , t > 0,

with a suitable normalization constant Mk > 0 and γ =
∑

α∈R+
k(α). The positivity of the

Dunkl kernel Ek for real arguments, due to our main theorem of Chapter 2, ensures that the
kernel Γk is positive as well. In fact, there is a complete analogy to the classical situation:
the Dunkl Laplacian ∆k generates positivity-preserving contraction semigroups on a variety of
Banach spaces including L2(RN , wk) and (C0(RN ), ‖.‖∞) , and Γk serves as the integral kernel
of these generalized heat semigroups. Interesting related semigroups can be obtained by the
usual methods; in particular, we consider generalized Cauchy kernels and Cauchy semigroups,
and take up the Dunkl-type oscillator Hamiltonians from the previous Chapter. Their spectral
properties being completely known, we are directly led to a generalization of the classical
oscillator semigroup. Our results for heat- and Cauchy semigroups lead also to explicit solutions
of the associated (classical) initial value problems with spatial domain RN and certain growth
conditions at infinity, such as for the generalized heat operator ∆k − ∂t . Uniqueness of the
solutions is guaranteed, just as in the classical case, by a maximum principle for the generalized
heat operator on unbounded domains. The last section of this Chapter is concerned with
the asymptotic behaviour of the generalized heat kernel Γk for short times. The structure of
the Dunkl Laplacian suggests that after being transfered from L2(RN , wk) to the unweighted
L2(RN ) , the Dunkl heat kernel should not feel the reflecting hyperplanes and behave like the
free Gaussian heat kernel Γ0 for short times; more precisely, it is conjectured that for all x, y
within a fixed open Weyl chamber,

lim
t↓0

√
wk(x)wk(y) Γk(t, x, y)

Γ0(t, x, y)
= 1 .

We present two partial results towards this conjecture; both are based on the maximum principle
for the classical heat operator. The first result gives the stated asymptotics under a certain
restriction on the arguments (due to the influence of the reflecting hyperplanes), the second one
provides a sharp lower bound.

Basic notations, in particular those for spaces of functions and measures, but also frequently
used specific notations, are collected in the appendix.

Major parts of this thesis are already published or accepted for publication. In their present
form, however, they differ from the original versions by revisions and extensions at many places.
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In particular, [R5] contains the essential parts of Chapter 2, except of the detailed discussion of
the algebras of homogeneous series in Section 2.3.. Proposition 1.4.8 as well as partial results
of Section 4.3 are published in [R-V2]. Chapter 3.2 is a seriously revised and unified treatment
of the material on generalized Hermite polynomials and biorthogonal systems which has been
published in [R4] and [R-V1], respectively. The result of Section 3.3 is contained in [R6]. Finally,
parts of Section 4.1 as well as Section 4.2 are published in [R4].

At this opportunity, I would like to acknowledge all of the help and encouragement which I have
received during the preparation of this thesis. The foundation of this work was laid during my
stay at the University of Virginia in Charlottesville, which was supported by a research grant
of the DFG. It is a great pleasure for me to thank Prof. Charles F. Dunkl for his invitation,
interesting discussions and valuable advice. I also profited from discussions with Profs. Tom
Koornwinder, Richard Askey, Peter Forrester and Marcel de Jeu. I am grateful to Profs. Lasser,
Königsberger and Heyer for their continuous support, and I wish to thank Prof. Scheurle for his
interest and encouragement. Among my colleagues, I am especially indebted to Thomas Honold
for all his help, in particular with computer-related questions. My very special thank goes to
Michael, who has influenced my approach to mathematics in many ways, and has accompanied
this work from its very beginning.



Chapter 1

Basic concepts

The aim of this chapter is to provide an introductory overview of the theory of (rational)
Dunkl operators and the Dunkl transform. General references are [D2-5], [D-J-O], [dJ1] and
[O1]; for a background on reflection groups and root systems we refer to [Hu] and [G-B]. The
material of this chapter is essentially well-known; there are, however, also a few new aspects
included which are at least not explicitly contained in the literature, such as the behaviour of
Dunkl operators and the Dunkl kernel under orthogonal transformations, the Dunkl transform
of radial functions in Section 1.4, and the discussion of generalized translations in the last
section. We do not intend to give a complete survey, but rather focus on those aspects which
will be important in our context. In particular, we do not talk about generalized spherical
harmonics (see [D4] and [X2-X3] for this interesting subject), and we restrict major parts of
our discussion to non-negative multiplicity functions, because this case will be the only relevant
one in the following chapters. The proofs are omitted in as much as they can be found in the
quoted literature.

1.1 Dunkl operators

Dunkl operators are differential-reflection operators associated with a finite reflection group,
acting on some Euclidean space (E, 〈 ., . 〉) of finite dimension N . We shall always assume that
E = RN with the standard Euclidean scalar product 〈x, y〉 =

∑N
j=1 xjyj . For α ∈ RN \ {0} ,

we denote by σα the reflection in the hyperplane Hα orthogonal to α , i.e.

σα(x) = x− 2
〈α, x〉
|α|2

α ,

where |x| :=
√
〈x, x〉 . We use the notation 〈. , .〉 also for the bilinear extension of the Euclidean

scalar product to CN ×CN , whereas z 7→ |z| stands for the standard Hermitean norm on CN ,

|z| =
(
|z1|2 + . . .+ |zN |2

)1/2 for z = (z1, . . . , zN ) ∈ CN .

7
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A finite, non-empty set R ⊂ RN \ {0} is called a (reduced) root system if

R ∩ Rα = {±α} and σαR = R for all α ∈ R.

There are no cristallographic conditions imposed on the roots, and we do not require that
R spans RN . For a given root system R the reflections σα (α ∈ R) generate a finite group
G ⊂ O(N,R) ; it is called the reflection group associated with R . All reflections in G correspond
to suitable pairs of roots, and the orbits in R under the natural action of G correspond to the
conjugacy classes of reflections in G . The connected components of RN \ H , where H =⋃
α∈RHα , are called the Weyl chambers of G . If W is an arbitrary fixed Weyl chamber of G ,

then its closure W in RN is a fundamental domain of G , i.e. W is naturally homeomorphic
to the space (RN )G of all G-orbits in RN , endowed with the quotient topology. For details,
we refer to Chapter 1 of [Hu]. We further fix a positive subsystem R+ = {α ∈ R : 〈α, β〉 > 0} ,
where β ∈ RN \ H . Then for each α ∈ R, either α ∈ R+ or −α ∈ R+ . From now on we
assume that the root system R is normalized in the sense that |α| =

√
2 for all α ∈ R ; this

simplifies formulas, but is no loss of generality for our purposes.
Let M be the vector space of C-valued functions on R which are invariant under the action

of the associated reflection group G . Its dimension is equal to the number of G-orbits in R .
An element k ∈ M is called a multiplicity function on R . We write Re k ≥ 0 if Re k(α) ≥ 0

for all α ∈ R and k ≥ 0 if k(α) ≥ 0 for all α ∈ R . For abbreviation, we introduce the index

γ := γ(k) :=
∑
α∈R+

k(α). (1.1)

Since k is G-invariant, and therefore in particular k(−α) = k(α) for all α ∈ R , this definition
is independent of the special choice of R+ . For k ≥ 0 , we denote by wk the weight function

wk(x) =
∏
α∈R+

|〈α, x〉|2k(α), (1.2)

which is G-invariant and homogeneous of degree 2γ , with γ = γ(k) as defined in (1.1). We
further fix (again for k ≥ 0) the Mehta-type constants

ck :=

∫
RN

e−|x|
2/2wk(x)dx . (1.3)

Macdonald [M1] conjectured a closed expression for these constants, which was confirmed for
arbitrary root systems in Corollary 9.10 of [O1].
Now fix some root system R on RN , corresponding to a reflection group G on RN . The
Dunkl operators attached to G are first-order differential-reflection operators on RN which are
parametrized by some multiplicity function k ∈M .

1.1.1 Definition. For ξ ∈ RN , the Dunkl operator Tξ(k) is defined by

Tξ(k)f(x) := ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− σα f(x)

〈α, x〉
, f ∈ C1(RN );

here ∂ξ denotes the directional derivative corresponding to ξ .
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For the i-th standard basis vector ξ = ei ∈ RN , we use the abbreviation Ti(k) = Tei(k).

Again, the above definition is independent of the choice of R+ . In case k = 0 , the Tξ(k) reduce
to the corresponding directional derivatives. The operators Tξ(k) were introduced and first
studied by Dunkl in a series of papers ([D2-5]) in connection with a generalization of the classical
theory of spherical harmonics; here the uniform surface measure on the (N − 1)-dimensional
unit sphere is modified by a weight function wk as defined above. The most important features
of Dunkl operators are visible already by their action on polynomials. Before going on, we have
to provide some additional notation.
Let ΠN := C[RN ] denote the C -algebra of polynomial functions on RN . ΠN has a natural
grading ΠN =

⊕
n≥0 PNn , where PNn (n ∈ Z+ = {0, 1, . . .}) is the subspace of homogeneous

polynomials of (total) degree n . Let further ΠN
n :=

⊕n
k=0 PNk , the space of polynomials of

degree at most n .
We use the standard multi-index notation; in particular, for ν = (ν1 , . . . , νN ) ∈ ZN+ we

write ν! := ν1! · . . . · νN ! and |ν| := ν1 + . . .+ νN , as well as

zν := zν11 · . . . · z
νN
N and Aν := Aν11 · · ·A

νN
N

for z ∈ CN and any family A = (A1, . . . , AN ) of commuting operators on ΠN . The natural
action of O(N,R) on C1(RN ) is given by

h · f(x) := f(h−1x), h ∈ O(N,R).

We continue with our discussion of the Dunkl operators Tξ(k) . First of all, they have the
following regularity properties:

1.1.2 Lemma. ([D2], [dJ1]) Let k ∈M and ξ ∈ RN . Then the following assertions hold:

(1) If f ∈ Cn(RN ) with n ≥ 1 , then Tξ(k)f ∈ Cn−1(RN ) .

(2) If f belongs to the Schwartz space S (RN ) of rapidly decreasing functions on RN , then
also Tξ(k)f ∈ S (RN ) .

(3) Tξ(k) is homogeneous of degree −1 on ΠN , that is, Tξ(k) p ∈ PNn−1 for p ∈ PNn .

Proof. All statements follow from the representation

f(x)− f(σαx)

〈α, x〉
=

∫ 1

0
∂αf

(
x− t〈α, x〉α

)
dt for f ∈ C1(RN ), α ∈ R.

(1) and (3) are immediate; for details concerning (2) we refer to [dJ1].

We note further that by the G-invariance of k ,

g ◦ Tξ(k) ◦ g−1 = Tgξ(k) (g ∈ G). (1.4)

Moreover, the Tξ(k) satisfy a product rule, which is easily verified by a short calculation: If
f, g ∈ C1(RN ) and at least one of them is G-invariant, then

Tξ(k)(fg) = Tξ(k)(f) · g + f · Tξ(k)(g). (1.5)
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The most striking property of the Dunkl operators, which was verified in [D2] by direct
computation, is the following

1.1.3 Proposition. For each k ∈M, the family {Tξ(k), ξ ∈ RN } generates a commutative
algebra of linear operators on ΠN .

Together with Lemma 1.1.2 (3), this fact implies that for any real-analytic function f :

RN → C with power series f(x) =
∑

ν∈ZN+
aνx

ν there is a unique linear operator f(T (k)) on
ΠN defined by the terminating series

f(T (k))(p) :=
∑
ν∈ZN+

aν T (k)ν(p) :=
∑
ν∈ZN+

aν T1(k)ν1 · . . . · TN (k)νN (p).

The classical case k = 0 will be distinguished by the notation f(∂) . Of particular importance
is the generalized Laplacian associated with G and k , which is defined by ∆k := p(T (k)) with
p(x) = |x|2. It is homogeneous of degree −2 and satisfies

∆k =
N∑
i=1

Tξi(k)2 (1.6)

for any orthonormal basis {ξ1, . . . , ξN} of RN , see [D2]. By our convention 〈α, α〉 = 2 for all
α ∈ R+ , the generalized Laplacian is given explicitly by

∆k = ∆ + 2
∑
α∈R+

k(α)δα with δαf(x) =
〈∇f(x), α〉
〈α, x〉

− f(x)− σαf(x)

〈α, x〉2
; (1.7)

here ∆ and ∇ denote the usual Laplacian and gradient respectively.

1.1.4 Remark. 1. It follows from (1.4) together with (1.6) that ∆k is equivariant under G , i.e.

g ◦∆k = ∆k ◦ g for all g ∈ G.

However, ∆k is not fully rotationally equivariant: For h ∈ O(N,R) , define the multiplicity
function kh on the transformed root system h(R) (which belongs to the conjugate reflection
group hGh−1 ) by

kh(hα) := k(α), α ∈ R. (1.8)

Then a short calculation yields

h ◦ TRξ (k) = T
h(R)
hξ (kh) ◦ h for h ∈ O(N,R), (1.9)

where the additional superscript stands for the underlying root system. It follows, again in view
of (1.6), that

h ◦∆R
k = ∆

h(R)
kh
◦ h for all h ∈ O(N,R). (1.10)

Let us consider some important special cases:
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1.1.5 Examples. (1) The one-dimensional case. In case N = 1 , the only choice of R is
R = {±

√
2} , corresponding to the reflection group G = {id, σ} ∼= Z2 on R , where σ(x) = −x .

The Dunkl operator T (k) := T√2(k) associated with the multiplicity parameter k ∈ C is given
by

T (k)f(x) = f ′(x) + k
f(x)− f(−x)

x
, f ∈ C1(R).

Its square T (k)2 , when restricted to the even subspace C1(R)e := {f ∈ C1(R) : f(x) =

f(−x)}, coincides with the Bessel differential operator of index k − 1/2 on R :

T (k)2|C1(R)ef(x) = f ′′(x) +
2k

x
· f ′(x) .

(2) Dunkl operators of type AN−1 . These belong to the symmetric group G = SN ,
which acts in a canonical way on RN by permuting the standard basis vectors e1, . . . , eN . Each
transposition (ij) acts as a reflection σij , sending ei−ej to its negative. On C1(RN ), σij acts
by transposing the coordinates xi and xj with respect to the standard basis. The attached root
system, of type AN−1 , is given by R = {ei − ej , 1 ≤ i, j ≤ N, i 6= j}. Since all transpositions
are conjugate in SN , the vector space of multiplicity functions on R is one-dimensional. The
Dunkl operators associated with the multiplicity parameter k ∈ C are given by

Ti(k)S = ∂i + k ·
∑
j 6=i

1− σij
xi − xj

(i = 1, . . . , N),

and the generalized Laplacian is

∆S
k = ∆ + 2k

∑
1≤i<j≤N

1

xi − xj

[
(∂i − ∂j)−

1− σij
xi − xj

]
.

(3) Dunkl operators of type BN . Let G be the Weyl group of type BN (N ≥ 2) ,
i.e. the reflection group on RN which is generated by the transpositions σij as above, as well
as the sign changes σi : ei → −ei , i = 1, . . . , N. The group of sign changes is isomorphic
to ZN2 , intersects SN trivially and is normalized by SN , so G ∼= SN n ZN2 . There are two
conjugacy classes of reflections in G , leading to multiplicity functions of the form k = (k0, k1)

with ki ∈ C . The associated Dunkl operators are given by

Ti(k)B = ∂i + k1
1− σi
xi

+ k0 ·
∑
j 6=i

[ 1− σij
xi − xj

+
1− τij
xi + xj

]
(i = 1, . . . , N),

where τij := σijσiσj .

1.2 Dunkl’s intertwining operator

It was first shown in [D4] that for non-negative multiplicity functions, the associated commu-
tative algebra of Dunkl operators is intertwined with the algebra of usual partial differential
operators by a unique linear and homogeneous isomorphism on polynomials. A thorough anal-
ysis in [D-J-O] subsequently revealed that such an intertwining operator exists if and only if
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the common kernel of the Tξ(k) , considered as linear operators on ΠN , contains no “singular”
polynomials besides the constants. More precisely, the following characterization holds:

1.2.1 Theorem. ([D-J-O]) Let M reg :=
{
k ∈ M :

⋂
ξ∈RN Ker

(
Tξ(k)

)
= C · 1

}
. Then the

following assertions are equivalent

(1) k ∈M reg;

(2) There exists a unique linear isomorphism (“intertwining operator”) Vk of ΠN such that

Vk(PNn ) = PNn , Vk |PN0 = id and Tξ(k)Vk = Vk ∂ξ for all ξ ∈ RN .

The singular parameter set M \M reg is explicitly determined in [D-J-O]. From [D-J-O]
together with the results of [O1] it follows in particular that M reg is an open subset of M
which is invariant under complex conjugation, and that

{k ∈M : Re k ≥ 0} ⊆M reg.

In most parts of this thesis, we will in fact restrict our attention to non-negative multiplicity
functions. The operator Vk plays an important role in Dunkl’s theory and its applications. In
[D4] it was used, for k ≥ 0 , to define a generalized exponential kernel (the Dunkl kernel) and
an associated integral transform (the Dunkl transform); these subjects will be introduced in
the subsequent sections. An explicit form of Vk , however, is known so far only in very special
cases:

1. The one-dimensional case 1.1.5 (1). It follows from the results of [D-J-O] that

M reg = C \
{
− 1

2
− n, n ∈ Z+

}
=: M∗.

The associated intertwining operator is given explicitly by

Vk
(
x2n
)

=

(
1
2

)
n(

k + 1
2

)
n

x2n ; Vk
(
x2n+1

)
=

(
1
2

)
n+1(

k + 1
2

)
n+1

x2n+1 ,

where (a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol. For Re k > 0 , this amounts to
the following integral representation (see [D4], Th. 5.1):

Vk p(x) =
Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ 1

−1
p(xt) (1− t)k−1(1 + t)k dt. (1.11)

2. The direct product case G = ZN2 on RN . Here M reg = (M∗)
N and for k = (k1, . . . , kN ) ∈

M reg , the operator Vk is defined by Vk(x
ν) =

∏N
j=1 Vkj

(
x
νj
j

)
. For Re k > 0 , an integral

representation is easily obtained by an N -fold iteration of (1.11), c.f. [X1].

3. The case G = S3 , which was studied in [D6]. Here

M reg = C \ {−1

2
− n,−1

3
− n,−2

3
− n, n ∈ Z+}.

For k ≥ 0 , an integral formula of Harish-Chandra on the unitary group U(3) (whose
Weyl group is S3 ) was used in [D6] to construct an integral representation for Vk over a
compact subset of R2×2 .
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The proof of Theorem 1.2.1 is based on a general inductive construction of operators that
intertwine the action of two sets of operators in a graded vector space (Theorem 2.1 of [D-J-O]).
When applied to the operators {∂i , i = 1, . . . , N} and {Ti(k) , i = 1, . . . , N} on ΠN , the quoted
theorem implies that for every k ∈ M there exists a unique linear map Wk : ΠN → ΠN such
that

Wk|PN0 = id, Wk(PNn ) ⊆ PNn and ∂ξWk = WkTξ(k) for all ξ ∈ RN .

In addition, Wk is bijective for k ∈M reg .
It is easily verified that the operator Wk , which of course coincides with V −1

k for every
k ∈M reg , is given explicitly by

(Wk p)(x) =
∑
ν∈ZN+

xν

ν!
T (k)νp (0) =

(
e〈x,T (k)〉p

)
(0). (1.12)

An immediate consequence of (1.12) is the following Taylor-type formula:

1.2.2 Corollary. Let k ∈ M reg , and suppose that f : B → C is holomorphic in an open ball
B ⊆ CN around 0. Then

f(z) =
∞∑
n=0

∑
|ν|=n

Vk(z
ν)

ν!
T (k)νf(0),

where the series
∑∞

n=0 converges normally in B .

We finally mention the behaviour of Vk under orthogonal transformations: Let h ∈ O(N,R) ,
and use the notations from Remark 1.1.4. The transformation property (1.9) for the Dunkl
operators, together with the intertwining property of Vkh , implies that

TRξ (k)h−1Vkhh = h−1 T
h(R)
hξ (kh)Vkhh = h−1Vkh∂hξ h = h−1Vkhh ∂ξ.

In view of the characterizing properties of Vk it follows that

h−1Vkhh = Vk for all h ∈ O(N,R). (1.13)

In particular,
g−1Vk g = Vk for all g ∈ G. (1.14)

In [D4], the intertwining operator Vk is, for k ≥ 0 , extended to a bounded linear operator
on a suitably normed algebra of homogeneous series on the unit ball of RN , as follows: Let
K := {x ∈ RN : |x| ≤ 1} denote the unit ball in RN , and define

A :=
{
f : K → C, f =

∞∑
n=0

fn with fn ∈ PNn and ‖f‖A :=
∞∑
n=0

‖fn‖∞,K <∞
}
. (1.15)

It is easily checked that for f ∈ A the homogeneous expansion f =
∑∞

n=0 fn is unique, and
that A is a commutative Banach-*-algebra (with complex conjugation as involution); moreover,
each f ∈ A is real-analytic in the open ball K◦ and continuous on K . For more information
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we refer to Section 2.3, where this algebra will be studied in some detail. We have to point
out, however, that A as defined above is a complex algebra, whereas in [D4] only series of real-
valued polynomials are considered. In [D4] it is shown that ‖Vk p ‖∞,K ≤ ‖p||∞,K for every
homogeneous polynomial p with real coefficients; as a consequence, Vk extends to a continuous
linear operator on A by

Vkf :=
∞∑
n=0

Vkfn for f =
∞∑
n=0

fn ∈ A . (1.16)

Up to now, it has been an open question whether for k ≥ 0 the intertwining operator Vk is
always positive, i.e. Vk p ≥ 0 on RN for each nonnegative polynomial p ∈ ΠN . More generally,
Dunkl stated the following conjecture:

1.2.3 Conjecture. ([D4]) Let k ≥ 0 . Then for every x ∈ RN with |x| ≤ 1 , the functional
f 7→ Vkf(x) is positive on A.

This statement can be derived from the explicit representation of Vk in the above listed
special cases 1 and 2; in the S3 -case however, the integral representations derived in [D6] failed
to infer this result - at least for a large range of k . The above conjecture will be proved in
Section 2.4 for general reflection groups and nonnegative multiplicity functions. One of the
tools in our proof is the following bilinear form on ΠN , associated with G and k ≥ 0 , which
was introduced in [D4] in the context of generalized spherical harmonics:

[p, q]k :=
(
p(T (k)) q

)
(0) for p, q ∈ ΠN .

We collect some fundamental properties of this bilinear form.

1.2.4 Lemma. (1) If p ∈ PNn and q ∈ PNm with n 6= m , then [p, q]k = 0.

(2) [xi p , q]k = [p, Ti(k)q]k (p, q ∈ ΠN , i = 1, . . . , N).

(3) [ ., .]k is symmetric and non-degenerate.

(4) [g · p , g · q]k = [p, q]k (p, q ∈ ΠN , g ∈ G).

(5) [Vk p, q]k = [p, q]0 (p, q ∈ ΠN ).

Proof. (1) follows from the homogenity of the Dunkl operators, (2) is clear from the definition,
(3) is shown in [D4] and [D-J-O] respectively, while (4) follows from (1.4). It remains to prove
(5). In view of (1), it is enough to consider p, q ∈ PNn with n ∈ Z+ . Then

[Vk p, q]k = [q, Vk p]k = q(T (k))(Vk p) = Vk(q(∂)p) = q(∂)(p) = [p, q]0 ;

here the characterizing properties of Vk and the fact that q(∂)p is a constant have been used.

The pairing [ . , . ]k is closely related to the scalar product in L2(RN , e−|x|2/2wk) ; in fact,
we have the following identity due to Dunkl [D4], which generalizes a result of Macdonald [M1]
for the classical case:



THE GENERALIZED EXPONENTIAL KERNEL 15

1.2.5 Proposition. For all p, q ∈ ΠN ,

[p, q]k = c−1
k

∫
RN

e−∆k/2p(x) e−∆k/2q(x) e−|x|
2/2wk(x)dx. (1.17)

This identity implies in particular that [ ., . ]k is in fact a scalar product on the vector space
ΠN

R = R[RN ] of real valued polynomials on RN . Later on, it will be of some importance in
several contexts; we therefore include an elegant and instructive proof which is taken from an
unpublished part of de Jeu’s thesis ([dJ3], Chap. 3.3). It involves the following commutator
results in EndC(ΠN ) , where as usual, [A,B] = AB −BA for A,B ∈ EndC(ΠN ) .

1.2.6 Lemma. For i = 1, . . . , N,

(1)
[
xi , ∆k/2

]
= −Ti(k);

(2)
[
xi , e

−∆k/2
]

= Ti(k) e−∆k/2 .

Proof. (1) follows by a short calculation (c.f. [D2], Prop. 2.2). Induction then yields that[
xi , (∆k/2)n

]
= −nTi(k)

(
∆k/2

)n−1 for n ≥ 1,

and this implies (2).

Proof of Proposition 1.2.5. Let i ∈ {1, . . . , N}, and denote the right-hand side of (1.17) by(
p, q
)
k
. Then by the anti-symmetry of Ti(k) in L2(RN , wk) and the above Lemma,(

p, Ti(k) q
)
k

= c−1
k

∫
RN

e−∆k/2p ·
(
Ti(k) e−∆k/2q

)
e−|x|

2/2wk dx

= − c−1
k

∫
RN

Ti(k)
(
e−|x|

2/2e−∆k/2p
)
·
(
e−∆k/2q

)
wk dx

= c−1
k

∫
RN

e−∆k/2(xi p) ·
(
e−∆k/2q

)
e−|x|

2/2wk dx =
(
xi p, q

)
k
.

But the form [ ., . ]k has the same property by Lemma 1.2.4(3). Since the Ti(k) are homoge-
neous of degree −1 , an easy induction argument with respect to max(deg p, deg q) now finishes
the proof.

1.3 The generalized exponential kernel

For regular multiplicity parameters, there exists a generalization of the usual exponential kernel
e〈x,y〉 , which can be characterized as a solution of the joint eigenfunction problem for the Dunkl
operators {Tξ(k), ξ ∈ RN} . The following theorem is a weakened version of [O1], Prop. 6.7.
(c.f. Theorem 2.6 of [dJ1]).

1.3.1 Theorem. For each k ∈M reg and w ∈ CN , the system

Tξ(k)f = 〈ξ, w〉f (ξ ∈ RN )

has a unique solution x 7→ Ek(x,w) which is real-analytic on RN and satisfies f(0) = 1.

Moreover, the mapping (x, k, w) 7→ Ek(x,w) extends to a meromorphic function on
CN ×M × CN with pole set CN × (M \M reg)× RN .
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The function Ek is called the Dunkl kernel, or generalized exponential kernel, attached to
the reflection group G and the multiplicity function k . The group-invariant counterpart of this
kernel, the “generalized Bessel function”

Jk(z, w) :=
1

|G|
∑
g∈G

Ek(gz, w) (z, w ∈ CN ), (1.18)

is also of some importance.

1.3.2 Remarks. (1) If k = 0 , then Ek(z, w) = e〈z,w〉 for all z, w ∈ CN . (Recall that 〈 . , .〉
was defined to be bilinear on CN × CN .)

(2) The kernel Jk was introduced in [O1], where in particular the pole set of the map-
ping (z, k, w) 7→ Jk(z, w) was determined explicitly (Prop. 9.6 of [O1]); it coincides
with the pole set of Ek (Cor. 6.10 of [O1]). The intimate connection of this pole set
with the singular parameter set of the intertwining operator and its identification with
CN × (M \M reg)× RN were observed in [D-J-O] (c.f. the remark after Theorem 4.8).

(3) For nonnegative multiplicity functions, the kernel Ek was originally constructed in [D4] by
means of the intertwining operator Vk . In fact, the exponential function x 7→ e〈x,w〉 , with
w ∈ CN fixed, obviously belongs to the algebra A . Hence one can define Ẽk( ., w) ∈ A
by

Ẽk(x,w) := Vk
(
e〈. ,w〉

)
(x), |x| ≤ 1.

The homogeneity of Vk implies that for λ ∈ R with |λx| ≤ 1 ,

Ẽk(λx,w) =
∞∑
n=0

Vk

(〈 ., w〉n
n!

)
(λx) =

∞∑
n=0

Vk

(〈 ., λw〉n
n!

)
(x) = Ẽk(x, λw).

We therefore have a unique extension of Ẽk(., w) to a real-analytic function on RN sat-
isfying Ẽk(λx,w) = Ẽk(x, λw) for all λ ∈ R . Moreover, using the intertwining property
of Vk as well as its normalization Vk(1) = 1 , it is easily checked that Ẽk fulfills the
characterization of Ek according to the above proposition; hence

Ek(x,w) = Vk
(
e〈. ,w〉

)
(x) for |x| ≤ 1. (1.19)

(4) It is usually not required in the theory of Dunkl operators that the reflection group G

is essential relative to RN , i.e. acts on RN with no nonzero fixed points. (Notice that
this condition is equivalent to 〈R〉 = RN , i.e. the associated root system spans RN .)
Such an additional requirement would however impose no serious restrictions. In fact, if
G is not essential relative to RN , then V := {x ∈ RN : gx = x for all g ∈ G} is a
nontrivial subspace of RN , and G is essential on the orthogonal complement V ⊥ of V in
RN . Moreover, we have R ⊂ V ⊥ , and therefore Tξ(k) = ∂ξ for all ξ ∈ V and arbitrary
multiplicity functions k . Thus the relevant action of the Dunkl operators takes place in
V ⊥ , which is also reflected by the form of the associated Dunkl kernel. For z ∈ CN write



THE GENERALIZED EXPONENTIAL KERNEL 17

z = z′ + z′′ , with z′ ∈ V + iV and z′′ ∈ V ⊥ + iV ⊥. Then it is immediately seen from
the characterization of Ek according to Theorem 1.3.1 that

Ek(z, w) = e〈z
′,w′〉 · Ek(z′′, w′′) for all z, w ∈ CN . (1.20)

Just as for the intertwining operator, the kernels Ek and Jk are known explicitly for some
particular cases only. An important example is the one-dimensional situation:

1.3.3 Example. For the reflection group G = Z2 on R and multiplicity parameter k with
Re k > 0, the integral representation (1.11) for Vk implies that for all z, w ∈ C ,

EZ2
k (z, w) =

Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ 1

−1
etzw(1− t)k−1(1 + t)k dt = ezw · 1F1(k, 2k + 1,−2zw).

We therefore have

EZ2
k (z, w) = jk−1/2(izw) +

zw

2k + 1
jk+1/2(izw), and JZ2

k (z, w) = jk−1/2(izw),

where for α ≥ −1/2 , jα is the normalized spherical Bessel function

jα(z) = 2αΓ(α+ 1) · Jα(z)

zα
= Γ(α+ 1) ·

∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ α+ 1)
. (1.21)

We list some general and basic properties of the Dunkl kernel.

1.3.4 Proposition. Let k ∈M reg, g ∈ G, h ∈ O(N,R), z, w ∈ CN and λ ∈ C . Then

(1) Ek(z, 0) = 1.

(2) Ek(z, w) = Ek(w, z).

(3) Ek(gz, gw) = Ek(z, w) and Ek(λz,w) = Ek(z, λw).

(4) Ekh(hz, hw) = Ek(z, w).

(5) Ek(z, w) = Ek (z, w).

The same properties hold for the generalized Bessel function Jk ; moreover, Jk(gz, w) = Jk(z, w)

for all g ∈ G, z, w ∈ CN .

Proof. (1) is clear from the definition and (2) was shown in [D5]. The remaining properties
follow from corresponding homogeneity properties of the Dunkl kernel; for (3) and (5) we refer
to [dJ1], while (4) can be seen as follows: The transformation property (1.9) implies that for
fixed w ∈ CN , the function F (x) := h−1 · Ekh(x, hw) on RN satisfies Tξ(k)F = 〈ξ, w〉F as
well as F (0) = 1 . The assertion now follows from Theorem 1.3.1 and analytic continuation.

1.3.5 Remark. For fixed z ∈ CN , the generalized Bessel function fz(x) := Jk(x, z) solves the
eigenvalue problem

Lkf = 〈z, z〉f on RN ,
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with the differential operator

Lkf(x) := ∆f(x) + 2
∑
α∈R+

k(α)
〈∇f(x), α〉
〈α, x〉

.

In fact, the G-equivariance of the Dunkl Laplacian ∆k implies that

∆kfz = 〈z, z〉fz ,

and ∆k coincides with Lk for G-invariant functions from C2(RN ) . The operator Lk can also
be written in divergence form,

Lkf(x) =
1

wk(x)

N∑
i=1

∂i
(
wk(x)∂if(x)

)
.

This is a canonical multivariable generalization of the Sturm-Liouville operator for the classical
spherical Bessel function jk−1/2 , which is obtained in the one-dimensional case, c.f. Example
1.1.5 (1).

We conclude this section by a closer look at the homogeneous expansion of the Dunkl kernel.
Since Ek is holomorphic on CN ×CN , it admits a unique normally convergent expansion into a
series of homogeneous polynomials. In fact, Corollary 1.2.2 with f = Ek( ., w), w ∈ CN fixed,
shows that

Ek(z, w) =
∞∑
n=0

Ek,n(z, w) (z, w ∈ CN ) (1.22)

with
Ek,n(z, w) =

∑
|ν|=n

Vk(z
ν)

ν!
wν = Vk

(〈 ., w〉n
n!

)
(z). (1.23)

Here Ek,n is a homogeneous polynomial of degree n in each of its arguments; so the expansion
(1.22) coincides with the homogeneous expansion of Ek and converges normally on CN ×CN .
Comparison of the homogeneous parts shows that the properties listed in Proposition 1.3.4 hold
for each of the Ek,n instead of Ek as well. Moreover,

Tξ(k)Ek,n( ., w) = 〈ξ, w〉Ek, n−1( ., w) for all n ≥ 1, ξ ∈ RN . (1.24)

We shall also need the following estimates, valid for k ≥ 0 ([D4], [D5]):

|Ek,n(z, w)| ≤ |z|
n|w|n

n!
(z, w ∈ CN , n ∈ Z+). (1.25)

1.4 The Dunkl transform

The generalized exponential function Ek gives rise to an integral transform on RN , called the
Dunkl transform. It was introduced in [D5] for non-negative multiplicity functions and further
studied in [dJ1] for the more general case Re k ≥ 0 . Since several results are known for non-
negative multiplicity functions only, we shall throughout this section restrict to the case k ≥ 0 .
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On suitable function spaces, the Dunkl transform establishes a natural correspondence between
the action of multiplication operators on the one hand and the associated Dunkl operators on
the other. Definition and essential properties of the Dunkl transform rely on suitable growth
estimates for the kernel Ek . Such estimates were first derived in [D4]; the following sharper
ones were proven in [dJ1] (in fact, for the larger range Re k ≥ 0).

1.4.1 Proposition. For all z, w ∈ CN ,

|Ek(z, w)| ≤
√
|G| · emaxg∈GRe〈gz,w〉.

In particular, |Ek(−ix, y)| ≤
√
|G| for all x, y ∈ RN .

1.4.2 Remark. We shall prove in Section 2.4 that for fixed w ∈ CN , the function x 7→ Ek(x,w)

has a positive, Bochner-type integral representation (Corollary 2.4.3). This in particular implies
that the factor

√
|G| can be omitted, see Corollary 2.4.5.

At this point, we include two important reproducing properties of the Dunkl kernel; notice
that the above estimates on Ek assure the convergence of the integrals involved.

1.4.3 Proposition. ([D5]) Let k ≥ 0. Then

(1)
∫
RN

e−∆k/2p (x)Ek(x, z) e
−|x|2/2wk(x)dx = ck e

〈z,z〉/2p(z) (p ∈ ΠN , z ∈ CN ).

(2)
∫
RN

Ek(x, z)Ek(x,w) e−|x|
2/2wk(x)dx = ck e

(〈z,z〉+〈w,w〉)/2Ek(z, w) (z, w ∈ CN ).

The Dunkl operators Tξ(k) can be considered as linear operators on L2(RN , wk) with
domain S (RN ) or C∞c (RN ) ; both spaces are dense in L2(RN , wk) according to Lemma 4.5
of [dJ1]. It is of basic importance in context with the Dunkl transform that the Tξ(k) are
anti-symmetric in L2(RN , wk) :

1.4.4 Proposition. ([D5]) Let k ≥ 0 . Then for every f ∈ S (RN ) and g ∈ Cb(RN ),∫
RN

Tξ(k)f(x) g(x)wk(x)dx = −
∫
RN

f(x)Tξ(k)g(x)wk(x)dx .

1.4.5 Definition. The Dunkl transform associated with G and k ≥ 0 is given by

.̂ k : L1(RN , wk) → Cb(RN ); f̂ k(ξ) := c−1
k

∫
RN

f(x)Ek(−iξ, x)wk(x)dx (ξ ∈ RN ).

The inverse transform is defined by f∨k(y) = f̂ k(−y) .

The Dunkl transform has many properties analogous to the classical Fourier transform. The
results listed in the following proposition are proven in [D5], [dJ1].

1.4.6 Proposition. (1) The Dunkl transform f 7→ f̂ k is a homeomorphism of S (RN ) .

(2) (Tj(k)f)∧k(ξ) = iξj f̂
k(ξ) for all f ∈ S (RN ) and j = 1, . . . , N.

(3) (Lemma of Riemann-Lebesgue) (L1(RN , wk)∧k is a ‖.‖∞ -dense subspace of C0(RN ).
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(4) (L1 -inversion) For all f ∈ L1(RN , wk) with f̂ k ∈ L1(RN , wk),

f = (f̂ k )∨k a.e..

(5) (Plancherel theorem) The Dunkl transform has a unique extension to an isometric iso-
morphism of L2(RN , wk) , which is again denoted by f 7→ f̂ k .

The following fact is also completely analogous to the classical setting.

1.4.7 Proposition. The linear operator ∆k in L2(RN , wk) , with domain D(∆k) = S (RN ) ,
is essentially self-adjoint. Its closure is given by

∆kf := −
(
|ξ|2f̂ k

)∨k
,

with the Sobolev-type domain

D(∆k) = {f ∈ L2(RN , wk) : |ξ|2f̂ k(ξ) ∈ L2(RN , wk)} .

Proof. By Proposition 1.4.4, ∆k is symmetric in L2(RN , wk) . The rest is straightforward as in
the classical case.

We conclude this section by a special feature concerning the Dunkl transform of radial (i.e.
O(N,R)-invariant) functions: if f ∈ L1(RN , wk) is radial, then its Dunkl transform f̂ k is
again radial and given by a classical Hankel transform. This result is not obvious, as the weight
wk is usually invariant under the reflection group G only. Our proof is based on the explicit
integration of the operator Vk over spheres in [X2]. We first have to provide some notation and
facts concerning Hankel transforms: For α ≥ −1/2 , define the measure ωα on [0,∞) by

dωα(r) = (2αΓ(α+ 1))−1r2α+1 dr.

The Hankel transform Hα of order α on L1([0,∞), ωα) is then defined by

(Hαf)(λ) =

∫ ∞
0

f(r) jα(λr) dωα(r);

Here jα is the normalized spherical Bessel function as defined in (1.21). The transform Hα can
be uniquely extended to an isometric isomorphism on L2([0,∞), ωα) .

1.4.8 Proposition. There is a one-to-one correspondence between the space of all radial func-
tions f in L1(RN , wk) and the space of all functions F ∈ L1([0,∞), ωγ+N/2−1) , via

f(x) = F (|x|) for x ∈ RN .

Moreover, the Dunkl transform of f is related to the Hankel transform Hγ+N/2−1F of F by

f̂ k(y) = (Hγ+N/2−1F )(|y|) for y ∈ RN .
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Proof. The result is obvious in case N = 1, γ = 0 ; we may therefore assume that γ+N/2−1 >

−1/2. Let SN−1 = {x ∈ RN : |x| = 1} be the unit sphere in RN with normalized surface
measure dσ . Put

dk :=

∫
SN−1

wk(x) dσ(x) =
ck

2γ+N/2−1Γ(γ +N/2)
.

Let f and F be related as in the proposition. Then the homogenity of wk leads to∫
RN
|f(x)| wk(x) dx =

∫ ∞
0

(∫
SN−1

wk(ry) dσ(y)
)
|F (r)| rN−1 dr = dk

∫ ∞
0
|F (r)| r2γ+N−1 dr.

This yields the first statement. We now turn to the second assertion. Corollary 2.2 of [X2]
states that for each polynomial p in one variable and x ∈ RN ,∫

SN−1

Vkp (〈x, . 〉)(y) wk(y) dσ(y) = d′k

∫ 1

−1
p(t|x|)(1− t2)γ+(N−3)/2 dt

with some constant d′k > 0 depending on k only. The homogeneous expansion (1.22) of Ek
and Mehler’s integral representation for Bessel functions ([Sz], (1.71.6)) lead to∫

SN−1

Ek(ix, y) wk(y) dσ(y) = d′k

∫ 1

−1
eit|x|(1− t2)γ+(N−3)/2 dt = dk · jγ+N/2−1(|x|). (1.26)

Moreover, by Prop. 1.11 and the homogeneity of wk ,

f̂ k(y) = c−1
k ·

∫
RN

F (|x|)Ek(−ix, y) wk(x) dx

= c−1
k ·

∫ ∞
0

(∫
SN−1

Ek(−iry, z)wk(z) dσ(z)
)
F (r) r2γ+N−1 dr.

It follows from (1.26) that

f̂ k(y) =
dk
ck
·
∫ ∞

0
jγ+N/2−1(r|y|)F (r)r2γ+N−1 dr = (Hγ+N/2−1F )(|y|),

which completes the proof.

1.5 Generalized translations

If the multiplicity parameter is zero, the Dunkl transform coincides with the usual Fourier
transform on the group (RN ,+) , and the functions{

x 7→ E0(−iξ, x) = e〈−iξ,x〉 ; ξ ∈ RN
}

constitute the dual space of this group. It is an interesting question whether the Dunkl transform
and the Dunkl kernels admit a similar interpretation for arbitrary parameters k ≥ 0 . At least
in the one-dimensional case, there exists an algebraic structure on R which replaces the usual
group addition. To describe this structure, we recall from Example 1.3.3 that for the reflection
group G = Z2 on R and a multiplicity parameter k ≥ 0 , the Dunkl kernel is given by

EZ2
k (z, w) = ezw · 1F1(k, 2k + 1,−2zw) = jk−1/2(izw) +

zw

2k + 1
jk+1/2(izw) (z, w ∈ C).
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Moreover, the generalized Bessel function is

JZ2
k (z, w) = jk−1/2(izw).

It is well-known that the normalized spherical Bessel functions jk−1/2 with k > 0 satisfy the
product formula

jk−1/2(x)jk−1/2(y) =
Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ π

0
jk−1/2(

√
x2 + y2 − 2xy cos θ) sin2k−1 θ dθ

for all x, y ≥ 0 , see e.g. Section 11.4 of [W]. This induces a commutative hypergroup structure
(in the sense of Dunkl, Spector and Jewett) on [0,∞) , with the convolution of point measures
being defined by

δx ∗ δy :=
Γ(k + 1/2)

Γ(1/2) Γ(k)

∫ π

0
δ√

x2+y2−2xy cos θ
sin2k−1 θ dθ .

For an introduction to hypergroups, we refer to [B-H] and [Je]. The functions

{x 7→ jk−1/2(λx), λ ≥ 0}

form the dual space of this hypergroup, i.e. the space of bounded, multiplicative and symmetric
functions on it.

It can be shown that the Dunkl kernels EZ2
k satisfy a similar product linearization which

leads to a convolution structure on the whole real line, providing a natural extension of the usual
group structure. This convolution was found and studied independently in [R3] and [Ros]. In
contrast to a hypergroup convolution, it is not positivity-preserving for k > 0 , but endows R
with the structure of a so-called signed hypergroup as introduced in [R1] (see also [R2]). More
precisely, the following was proven in [R3]:

1.5.1 Theorem. Let k ≥ 0. Then there is a unique bilinear and separately σ(Mb(R), C0(R))-
continuous convolution ∗k on Mb(R) such that the product of point measures satisfies

EZ2
k (λ, x)EZ2

k (λ, y) =

∫
R
EZ2
k (λ, z) d(δx ∗k δy)(z) for x, y ∈ R, λ ∈ C.

This convolution has the following properties:

(1) It is associative, commutative, and norm-continuous with

(µ ∗k ν)(R) = µ(R) · ν(R) and ‖µ ∗k ν‖ ≤ 4 · ‖µ‖ · ‖ν‖ for µ, ν ∈Mb(R).

Moreover, if k > 0 , then

supp(δx ∗k δy) =
[
−|x| − |y|,−

∣∣|x| − |y|∣∣] ∪ [∣∣|x| − |y|∣∣, |x|+ |y|] for x, y 6= 0.

(2) (Mb(R), ∗k) is a commutative Banach-∗-algebra with unit δ0 , involution µ 7→ µ∗ (where
µ∗(A) := µ(−A) for Borel sets A ⊆ R), and with the norm ‖µ‖′ := ‖Lµ‖ , the operator
Lµ on Mb(R) being defined by Lµ(ν) := µ ∗k ν .
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The convolution ∗k is given explicitly in [R3]. In case k = 0 , it coincides with the usual group
convolution of (R,+) . The measure wk(x)dx = |x|2kdx ∈ M+(R) is ∗k -invariant, i.e. for
each f ∈ Cc(R) ,∫

R
Lykf(x)wk(x)dx =

∫
R
f(x)wk(x)dx , where Lykf(x) :=

∫
R
f d (δy ∗k δx).

The dual space of this signed hypergroup is given by

{x 7→ EZ2
k (−iξ, x); ξ ∈ R},

and the Fourier transform on it coincides with the Dunkl transform associated with Z2 on R
and the parameter k .
In the higher dimensional Dunkl setting it is an open question whether there exists an analogous
convolution structure on RN which substitutes the standard group convolution and matches
the action of the corresponding Dunkl transform as above. In some particular cases, namely for
Weyl groups G and certain discrete sets of non-negative multiplicity functions, the generalized
Bessel functions Jk(., y) allow an interpretation as the spherical functions of a Cartan motion
group; for details we refer to [O1] and [dJ3]. In these cases, they satisfy a positive product
formula, which leads to a commutative hypergroup structure on (RN )G ∼= W , where W is one
of the Weyl chambers of G . We conjecture that for all reflection groups and arbitrary non-
negative multiplicity functions, the associated generalized Bessel functions satisfy a product
formula which leads to a commutative hypergroup structure on (RN )G , and that the dual
space of this hypergroup consists of the functions

{ϕk,λ : W → C, x 7→ Jk(−iλ, x), λ ∈W }.

We further conjecture that for all reflection groups and all multiplicities k ≥ 0 there exists an
associated signed hypergroup structure on RN such that the functions

{ψk,ξ : RN → C, x 7→ Ek(−iξ, x), ξ ∈ RN }

constitute its dual space. Although not having a signed hypergroup structure at our disposal,
we may introduce the notion of a generalized translation in the N -dimensional Dunkl case at
least for certain function spaces as the Schwartz space S (RN ) and L2(RN , wk) . The definition
is natural:

Lykf(x) := c−1
k

∫
RN

f̂ k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ (x, y ∈ RN ). (1.27)

Notice that that for k = 0 , we just have Ly0f(x) = f(x+y). In the one-dimensional case, (1.27)
coincides with the translation in the signed hypergroup (R, ∗k) , i.e. Lykf(x) = (δy ∗k δx)(f).

We collect some properties of the generalized translation (1.27):

1.5.2 Lemma. For all f ∈ S (RN ) and ξ, y ∈ RN ,
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(1) Lyk f(x) = Lxkf(y) ;

(2) L0
k f = f ;

(3) Lyk f ∈ S (RN ), and (Lyk f)∧k(ξ) = Ek(iy, ξ) f̂
k(ξ);

(4)
∫
RN

Lyk f(x)wk(x)dx =

∫
RN

f(x)wk(x)dx ;

(5) Tξ(k)Lyk f = Lyk Tξ(k)f .

Moreover, if f ∈ L2(RN , wk), then

(6) L0
kf = f ;

(7) Lykf ∈ L
2(RN , wk) for all y ∈ RN , and (Lykf)∧k = Ek(iy, . ) f̂

k ;

(8) Lyk f(x) = Lxkf(y) for almost all x, y ∈ RN .

Proof. (1) is obvious, while (2) follows from the inversion theorem for the Dunkl transform.
The first part of (3) results from the invariance of S (RN ) under the Dunkl transform, together
with the bounds of Proposition 1.4.1, the second one follows from the inversion theorem for the
Dunkl transform. (4) is an immediate consequence of (3). Property (5) is obtained by applying
the Dunkl transform and using (3) as well as Proposition 1.4.6(2):

(Tξ(k)Lyk f)∧k(η) = i 〈ξ, η〉 (Lykf)∧k(η) = i 〈ξ, η〉Ek(iy, η)f̂ k(η)

=Ek(iy, η) (Tξ(k)f)∧k(η) = (Lyk Tξ(k)f)∧k(η).

Finally, properties (6) and (7) are clear from the Plancherel theorem for the Dunkl transform,
and (8) follows from the definition.



Chapter 2

Positivity of Dunkl’s intertwining
operator

This chapter is devoted to a further study of the intertwining operator Vk , where k is a non-
negative multiplicity function attached to a finite reflection group on RN . We prove that Vk
is positivity-preserving on polynomials and allows a positive, Bochner-type integral represen-
tation on certain algebras of analytic functions. This confirms Conjecture 1.2.3 and implies in
particular that the generalized exponential kernel of the Dunkl transform is positive definite.
The proof of our central result, positivity of Vk on polynomials, affords several steps, the cru-
cial one being a reduction from the N -dimensional to a one-dimensional problem. For this, we
invoke semigroup techniques for linear operators on spaces of polynomials. The generators of
the semigroups under consideration are certain differential-reflection operators whose common
decisive property is that they are “degree-lowering”. This setting is introduced in Section 2.1,
together with a Hille-Yosida type theorem which characterizes positivity of such semigroups by
means of their generator. In Section 2.2 we then prove positivity of Vk on polynomials. Section
2.3 contains a discussion of certain algebras of homogeneous series and their spectral properties;
parts of these results are the basis for the main theorem in Section 2.4, which establishes the
announced positive integral representation of Vk .

2.1 Semigroups generated by degree-lowering operators on poly-

nomials

In the following, ΠN
+ := {p ∈ ΠN : p(x) ≥ 0 for all x ∈ RN } denotes the cone of non-negative

polynomials on RN .

2.1.1 Definition. A linear operator A on ΠN is called

(i) positive, if Ap ∈ ΠN
+ for each p ∈ ΠN

+ .

(ii) degree-lowering, if A
(
ΠN
n

)
⊆ ΠN

n−1 for all n ∈ Z+ ; here ΠN
−1 := {0} .

25
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Important examples of degree-lowering operators are linear operators on ΠN which are
homogeneous of some degree −n with n ≥ 1 . This includes in particular usual partial
derivatives and Dunkl operators, as well as products and linear combinations of those. If
A is degree-lowering on ΠN , then for every analytic function f : R → C with power series
f(x) =

∑∞
k=0 ckx

k , there is a linear operator f(A) on ΠN defined by the terminating series

f(A)p (x) :=
∞∑
k=0

ckA
kp (x).

Notice that f(A)(ΠN
n ) ⊆ ΠN

n for each n ∈ Z+ . This yields a natural restriction of f(A) to
a linear operator on the finite-dimensional vector space ΠN

n . In particular, the well-known
product and exponential formulas for linear operators on finite-dimensional vector spaces (see,
e.g. §4.7 of [Ka2]) imply corresponding exponential formulas for degree-lowering operators on
ΠN , where the topology may be chosen to be the one of pointwise convergence. We note two
results of this type, which will be used later on:

2.1.2 Lemma. Suppose that A and B are degree-lowering linear operators on ΠN . Then for
all p ∈ ΠN and x ∈ RN ,

(i) eA p (x) = lim
n→∞

(
I − A

n

)−n
p (x).

(ii) eA+Bp (x) = lim
n→∞

(
eA/neB/n

)n
p (x) (Trotter product formula).

Each degree-lowering operator A on ΠN generates a semigroup (etA)t≥0 of linear operators
on ΠN and, in fact, on each of the ΠN

n . Conversely, it follows from general semigroup theory
that any semigroup (T (t))t≥0 of linear operators on ΠN with T (t)

(
ΠN
n

)
⊆ ΠN

n for all t ≥ 0, is
of the form T (t) = etA, the generator A ∈ EndC(ΠN ) being uniquely determined by

Ap (x) = lim
t↓0

1

t
(T (t)− 1)p (x) for all p ∈ ΠN .

The following key-result characterizes positive semigroups generated by degree-lowering op-
erators; it is an adaption of a well-known Hille-Yosida type characterization theorem for Feller-
Markov semigroups on C(K), K a compact Hausdorff space (see, e.g. §II.4 of [G-S]):

2.1.3 Theorem. Let A be a degree-lowering linear operator on ΠN . Then the following asser-
tions are equivalent:

(1) etA is positive on ΠN for all t ≥ 0 .

(2) A satisfies the “positive minimum principle”

(M) For every p ∈ ΠN
+ and x0 ∈ RN , p(x0) = 0 implies Ap (x0) ≥ 0.

Proof. (1) ⇒ (2): Let p ∈ ΠN
+ with p(x0) = 0. Then

Ap (x0) = lim
t↓0

etAp (x0)− p(x0)

t
= lim

t↓0

1

t
etAp (x0) ≥ 0.
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(2) ⇒ (1): Notice first that for each λ 6= 0 , the operator λI − A is bijective on ΠN . In fact,
λI − A is injective on ΠN , because otherwise there would exist some p ∈ ΠN , p 6= 0 , with
Ap = λp, in contradiction to the degree-lowering character of A . Since (λI − A)(ΠN

n ) ⊆ ΠN
n ,

this already proves bijectivity of λI−A on each ΠN
n , hence on ΠN as well. We next claim that

for every λ > 0 the resolvent operator R(λ;A) := (λI −A)−1 is positive on ΠN . For this, let
p ∈ ΠN

+ and q := R(λ;A) p. If p is constant, then q = 1
λp ≥ 0 . We may therefore assume that

the total degree n of p (which must be even) is greater than 0 . Suppose first that p(x) ≥ c|x|n

for all x ∈ RN , with some constant c > 0 . Since A lowers the degree, we may write q = 1
λp+r

with a polynomial r of total degree less than n . Hence lim|x|→∞ q(x) =∞ , which shows that
q attains an absolute minimum, let us say at x0 ∈ RN . Put q̃(x) := q(x)−q(x0). Then q̃ ∈ ΠN

+

with q̃(x0) = 0, and property (M) assure that Aq(x0) = Aq̃(x0) ≥ 0. For λ > 0 and x ∈ RN

we therefore obtain

λq(x) ≥ λq(x0) = (λI −A)q(x0) +Aq(x0) ≥ p(x0) ≥ 0.

If p ∈ ΠN
+ is arbitrary, then consider the polynomials pε(x) := p(x) + ε |x|n for ε > 0 , where

n is the degree of p . As A is degree-lowering, and by the above result, we obtain

R(λ;A) p (x) = lim
ε→0

R(λ;A) pε(x) ≥ 0 for all x ∈ RN .

This proves the stated positivity of R(λ;A) for λ > 0. Now let p ∈ ΠN
+ and t > 0 . Then

according to Lemma 2.2.(i),

etAp (x) = lim
n→∞

(
I − tA

n

)−n
p (x) = lim

n→∞

(n
t
R
(n
t

;A
))n

p (x) ≥ 0

for all x ∈ RN . This finishes the proof.

2.2 Positivity of Vk on polynomials

Throughout this section, G is a finite reflection group on RN and k ≥ 0 is a non-negative
multiplicity function on its root system R . We have

2.2.1 Theorem. The intertwining operator Vk is positive on ΠN .

As the proof of this result affords several reductions, we start with a general outline: In a
first step, the statement will be reduced to an equivalent one, which involves exponentials of
Laplacians:

2.2.2 Proposition. The following statements are equivalent:

(i) Vk is positive on ΠN .

(ii) The operator e−∆/2e∆k/2 is positive on ΠN .
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We are thus led to prove positivity of e−∆/2e∆k/2 on polynomials. For this, we first consider
the (one-dimensional) operators

Λs := e−sD
2
δ esD

2
, s ≥ 0

on Π1. Here D denotes the usual first derivative, i.e. Dp(x) = p′(x) for x ∈ R , and δ is the
linear operator on Π1 given by

δp(x) :=
p′(x)

x
− p(x)− p(−x)

2x2
=

1

2

∫ 1

−1

(
D2p

)
(tx)(1 + t) dt. (2.1)

This operator is related to the Dunkl operator T (k) attached to the reflection group Z2 on R
and the multiplicity parameter k ≥ 0 by

T (k)2 = D2 + 2kδ.

Since both D2 and δ are homogeneous of degree −2 on Π1 , the operators Λs are well-defined
and degree-lowering on Π1 . We shall prove that they have the following decisive property:

2.2.3 Proposition. The operators Λs , s ≥ 0 , satisfy the positive minimum principle (M) on
Π1.

We next turn to the general N -dimensional setting: Here G is an arbitrary finite reflection
group on RN with multiplicity function k ≥ 0 . We consider the generalized Laplacian ∆k

associated with G and k , which is homogeneous of degree −2 on ΠN . With the notation
introduced in (1.7), it can be written as

∆k = ∆ + Lk, where Lk = 2
∑
α∈R+

k(α)δα . (2.2)

We shall derive the following multivariable extension of the previous result:

2.2.4 Proposition. The operators e−s∆Lke
s∆ (s ≥ 0), satisfy the positive minimum principle

(M) on ΠN .

The characterization of Theorem 2.1.3 is now the key to the following corollary, whose
second part finally implies the assertion of Theorem 2.2.1:

2.2.5 Corollary. (i) The operators e−s∆et Lkes∆ (s, t ≥ 0) are positive on ΠN .

(ii) The operator e−∆/2e∆k/2 is positive on ΠN .

Proof. For fixed s ≥ 0, the operators
(
e−s∆et Lkes∆

)
t≥0

form a semigroup on ΠN with gener-
ator e−s∆Lk e

s∆. Hence (i) follows from the above proposition, together with Theorem 2.1.3.
In order to prove (ii), we apply Trotter’s product formula of Lemma 2.1.2. We can write

e−∆/2e∆k/2 p (x) = e−∆/2e∆/2+Lk/2 p (x) = lim
n→∞

e−∆/2
(
e∆/2n eLk/2n

)n
p (x)

= lim
n→∞

n∏
j=1

(
e−(1−j/n)·∆/2 eLk/2n e(1−j/n)·∆/2

)
p (x) (p ∈ ΠN , x ∈ RN ).

By Part (i), each of the n factors in the above product is a positive operator on ΠN . Hence
e−∆/2e∆k/2 is also positive on ΠN .
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We now turn to the proof of Proposition 2.2.2. We need the following positivity criterion
for polynomials:

2.2.6 Lemma. Let α > 0 and suppose that h ∈ Cb(RN ) satisfies∫
RN

h(x) p(x) e−α|x|
2
wk(x)dx ≥ 0 for all p ∈ ΠN

+ . (2.3)

Then h(x) ≥ 0 for all x ∈ RN .

Proof. For abbreviation, put

dmk(x) := e−α|x|
2
wk(x)dx ∈M+

b (RN ).

Step 1. We shall use the fact that ΠN is dense in L2(RN , dmk) . This is proved (for α = 1/2)
in Theorem 2.5 of [D5] by refering to a well-known theorem of Hamburger for one-dimensional
distributions, but it can also be seen directly as follows: Suppose on the contrary that ΠN is not
dense in L2(RN , dmk). Then there exists some f ∈ L2(RN , dmk), f 6= 0 , with

∫
RN fp dmk = 0

for all p ∈ ΠN . Now consider the measure ν := fmk ∈ Mb(RN ) and its (classical) Fourier-
Stieltjes transform

ν̂(λ) =

∫
RN

e−i 〈λ,x〉 dν(x) =

∫
RN

f(x) e−i 〈λ,x〉 dmk(x).

Since x 7→ e|λ||x| belongs to L2(RN , dmk) for all λ ∈ RN , the dominated convergence theorem
yields

ν̂(λ) =
∞∑
n=0

(−i)n

n!

∫
RN

f(x) 〈λ, x〉n dmk(x) = 0.

By injectivity of the Fourier-Stieltjes transform on Mb(RN ) , it follows that ν = 0 and hence
f = 0 a.e., a contradiction.
Step 2. Now assume that h ∈ Cb(RN ) satisfies (2.3). In order to prove h ≥ 0 , it suffices to
check that ∫

RN
fh dmk ≥ 0 for all f ∈ C+

c (RN ). (2.4)

For this, let f ∈ C+
c (RN ) and ε > 0 . By density of ΠN in L2(RN , dmk) there exists some

p = pε ∈ ΠN with ‖
√
f − p ‖2,mk < ε . With M := ‖h‖∞,RN it follows that

∣∣∣ ∫
RN

fh dmk−
∫
RN

p2h dmk

∣∣∣ ≤ M

∫
RN
|f − p2| dmk

≤ M · ‖
√
f − p ‖2,mk ‖

√
f + p ‖2,mk ≤ Mε ·

(
2 ‖
√
f ‖2,mk + ε

)
,

which tends to 0 as ε→ 0 . This proves (2.4) and yields the assertion.

The proof of Proposition 2.2.2 is now easily accomplished:
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Proof of Proposition 2.2.2. Combining the Macdonald-type identity (1.17) with part (5) of
Lemma 1.2.4, we obtain for all p, q ∈ ΠN the identity

c−1
k

∫
RN

e−∆k/2(Vk p)(x) e−∆k/2q(x) e−|x|
2/2wk(x)dx = c−1

0

∫
RN

e−∆/2p(x) e−∆/2q(x) e−|x|
2/2dx.

Since e−∆k/2(Vk p) = Vk
(
e−∆/2p

)
, and since we may also replace p by e∆/2p and q by e∆k/2q

in the above identity, it follows that for all p, q ∈ ΠN

c−1
k

∫
RN

Vkp (x) q(x) e−|x|
2/2wk(x)dx = c−1

0

∫
RN

p(x) e−∆/2e∆k/2q (x) e−|x|
2/2dx. (2.5)

Now suppose that (i) is satisfied, i.e. Vk is positive on ΠN . Then the left-hand side of (2.5)
is non-negative for all p, q ∈ ΠN

+ . Now fix p ∈ ΠN
+ and apply Lemma 2.2.6 with, let us say,

α = 1/4 , to the function h(x) := e−|x|
2/4 e−∆/2e∆k/2q(x) ∈ Cb(RN ) . This yields (ii). The

converse direction is obtained by the same argument.

We next turn to the proof of Proposition 2.2.3. We start with two elementary auxiliary
results:

2.2.7 Lemma. For each p ∈ Π1 and c ∈ R ,

ecD
2
(xp(x)) = x ecD

2
p (x) + 2c ecD

2
p′(x).

Proof. Power series expansion of ecD2 yields

ecD
2
(xp(x)) =

∞∑
n=0

cn

n!
D2n(xp(x)) = xp(x) +

∞∑
n=1

cn

n!

(
xD2np (x) + 2nD2n−1p(x)

)
=x ecD

2
p (x) + 2c

∞∑
n=1

cn−1

(n− 1)!
D2n−1p (x) = x ecD

2
p (x) + 2c ecD

2
p′(x).

2.2.8 Lemma. Let p ∈ Π1
2n+1 , n ∈ Z+ , be an odd polynomial. Then the differential equation

c y′ − xy = p (c > 0) (2.6)

has exactly one polynomial solution (which belongs to Π1
2n ), namely

yp(x) =
1

c
ex

2/2c

∫ x

−∞
e−t

2/2c p(t) dt.

Proof. The general solution of (2.6) is

y(x) = a ex
2/2c +

1

c
ex

2/2c

∫ x

−∞
e−t

2/2c p(t) dt, a ∈ R.

It therefore remains to prove that

x 7→ ex
2/2c

∫ x

−∞
e−t

2/2c p(t) dt
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is a polynomial. We use induction by n : For n = 0 , the statement is obvious. For n ≥ 1, write
p(x) = −c−1xr(x) with r ∈ Π1

2n. Partial integration then yields∫ x

−∞
e−t

2/2c p(t) dt = −1

c

∫ x

−∞
te−t

2/2c r(t) dt = e−x
2/2c r(x) −

∫ x

−∞
e−t

2/2c r′(t) dt.

By our induction hypothesis, this equals e−x2/2c(r(x)− r̃(x)) with some polynomial r̃ ∈ ΠN
2n−2.

This finishes the proof.

Proof of Proposition 2.2.3. The proof will be divided into several steps.
Step 1. The case s = 0 is easy and may be treated separately: Let p ∈ Π1

+ with p(x0) = 0.

Then p′(x0) = 0 and p′′(x0) ≥ 0. Thus if x0 6= 0 , then δp (x0) = p(−x0)/(2x2
0) ≥ 0. In case

x0 = 0 , it is seen from the integral representation (2.1) that δp (0) = p′′(0) ≥ 0.

From now on, we may therefore assume that s > 0 .
Step 2. We first derive an explicit representation of the operator Λs (s > 0), which allows to
check property (M) easily: We claim that

Λsp (x) = − 1

2s
p(x) − 1

8s2
ex

2/4s
(∫ x

−∞
gp, x(t) dt −

∫ ∞
−x

gp, x(t) dt
)

for p ∈ Π1,

with gp, x(t) = e−t
2/4s (t+ x) p(t). (2.7)

This may of course be verified by a (tedious) direct computation of Λs(x
k), k ∈ Z+ , and an

explicit evaluation of the corresponding integrals on the right side by series expansions of the
involved exponentials. We prefer, however, to give a more instructive proof:

Note first that the operators D2 and δ map even polynomials to even ones and odd poly-
nomials to odd ones, and that

δp (x) =


1

x
p′(x) if p is even,(1

x
p(x)

)′
if p is odd.

Now fix s > 0 and suppose that p ∈ Π1 is even. Then the polynomials esD
2
p and q := Λsp

are also even, and we obtain the following equivalences:

q = Λsp ⇐⇒ δ
(
esD

2
p
)

= esD
2
q ⇐⇒ p′(x) = e−sD

2(
x esD

2
q
)
(x).

By use of Lemma 2.2.7, this becomes

p′(x) = xq(x) − 2sq′(x),

which is a differential equation of type (2.6) for q . Lemma 2.2.8, together with a further partial
integration, now implies that

Λsp (x) = − 1

2s
ex

2/4s

∫ x

−∞
e−t

2/4s p′(t) dt

= − 1

2s
p(x) − 1

4s2
ex

2/4s

∫ x

−∞
e−t

2/4s t p(t) dt (p even). (2.8)
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In a similar way, we calculate q = Λsp for odd p ∈ Π1 : In this case, esD2
p and q = Λsp are

odd as well, and we have the equivalence

q = Λsp ⇐⇒
d

dx

(1

x
esD

2
p (x)

)
= esD

2
q (x).

Hence there exists a constant c1 ∈ R such that

esD
2
p (x) = x(c1 + h(x)), with h(x) =

∫ x

0
esD

2
q (t) dt.

Applying Lemma 3.4 again, we obtain

p(x) = c1e
−sD2

(x) + xe−sD
2
h (x)− 2s e−sD

2
h′(x) = c1x+ x e−sD

2
h (x)− 2sq(x). (2.9)

In order to determine e−sD
2
h , note that

d

dx

(
e−sD

2
h (x)

)
= e−sD

2
h′(x) = q(x).

Consequently, there exists a constant c2 ∈ R such that

e−sD
2
h (x) = c2 +

∫ x

0
q(t) dt. (2.10)

Now write p(x) = xP (x) and q(x) = xQ(x) with even P, Q ∈ Π1 . Then by (2.9) and (2.10),

P (x) = c1 + c2 +

∫ x

0
tQ(t) dt − 2sQ(x),

and therefore
P ′(x) = xQ(x)− 2sQ′(x).

This is exactly the same differential equation as we had in the even case before, and the transfer
of (2.8) gives

Λsp (x) = − 1

2s
p(x) − 1

4s2
ex

2/4s x

∫ x

−∞
e−t

2/4sp(t) dt (p odd). (2.11)

If finally p ∈ Π1 is arbitrary, then write p = pe + po with even part pe(x) = (p(x) + p(−x))/2

and odd part po(x) = (p(x) − p(−x))/2 . The combination of (2.8) for pe with (2.11) for po
then leads to

Λsp (x) = − 1

2s
p(x) − 1

4s2
ex

2/4s

∫ x

−∞
e−t

2/4s
( t+ x

2
p(t) +

t− x
2

p(−t)
)
dt,

and an easy reformulation yields the stated representation (2.7).
Step 3. In order to prove that Λs satisfies the positive minimum principle (M), define

Fp(x) :=

∫ x

−∞
gp, x(t) dt −

∫ ∞
−x

gp, x(t) dt, for p ∈ Π1 and x ∈ R .

Now let p ∈ Π1
+ with p(x0) = 0. Then in view of (2.7),

Λsp (x0) = − 1

8s2
ex

2
0/4s Fp(x0),
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and it remains to check that Fp(x0) ≤ 0. For this, we rewrite Fp as

Fp(x) =

∫ −|x|
−∞

gp, x(t) dt −
∫ ∞
|x|

gp, x(t) dt.

Since p is non-negative, the sign of gp, x(t) coincides with the sign of x + t for all x, t ∈ R.
This shows that in fact, Fp(x) ≤ 0 for all x ∈ R , which completes the proof.

We come to the final step in the proof of Theorem 2.2.1.

Proof of Proposition 2.2.4. Since Lk = 2
∑

α∈R+
k(α)δα with k(α) ≥ 0 for all α , it is

enough to make sure that each of the operators

ρsα := e−s∆ δα e
s∆ (α ∈ R+)

satisfies the positive minimum principle (M). (Here the assumption k ≥ 0 is crucial!) Now fix
α ∈ R+ . A short calculation shows that δα and hence also ρsα is equivariant under orthogonal
transformations, i.e.

g ◦ ρsα ◦ g−1 = ρsgα for g ∈ O(N,R).

Moreover, it is easily checked that ρsα satisfies (M) if and only if g ◦ ρsα ◦ g−1 does so for some
(and hence all) g ∈ O(N,R) . We may therefore assume that α =

√
2e1 = (

√
2, 0, . . . , 0). As

δ√2e1
obviously commutes with each of the partial derivatives ∂2 , . . . , ∂N on RN , we obtain

ρs√
2e1

= e−s∂
2
1 δ√2e1

es∂
2
1 .

But this operator acts in the first variable only, namely via Λs :

ρs√
2e1

p (x1 , . . . , xN ) = Λs px2 ..., xN (x1), where px2 ,..., xN (x1) := p(x1, x2, . . . , xN ), p ∈ ΠN .

Proposition 2.2.3 now yields the assertion.

We conclude this section by an immediate application of Theorem 2.2.1.

2.2.9 Summability of orthogonal series in generalized harmonics. The study of gener-
alized spherical harmonics associated with a finite reflection group and a multiplicity function
k ≥ 0 was one of the starting points of Dunkl’s theory in [D4] and has been extended in
[X2] and [X3]. Many results for classical spherical harmonics carry over to these spherical k -
harmonics, where harmonicity is now meant with respect to ∆k . In particular, there is a natural
decomposition of PNn |SN−1 into subspaces of k -spherical harmonics, which are orthogonal in
L2(SN−1, wk). In [X2], Cesàro summability of generalized Fourier expansions with respect to
an orthonormal basis of spherical k -harmonics is studied. Recall that a sequence {sn}n∈Z+ is
called Cesàro summable of order δ to s , for short, Cδ -summable to s , if

1(
n+δ
n

) n∑
k=0

(
n− k + δ − 1

n− k

)
sk −→ s with n→∞.

The following result is proven in [X2] under the requirement that the intertwining operator Vk
is positive on ΠN ; Theorem 2.2.1 now assures its validity for all k ≥ 0 :
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2.2.10 Theorem. Let f : SN−1 → C be continuous, and let {sn} denote the sequence of
partial sums in the expansion of f as a Fourier series with respect to a fixed orthonormal basis
of spherical k -harmonics. Then {sn} is uniformly Cδ -summable over SN−1 to f , provided
that δ > γ +N/2− 1 with γ =

∑
α∈R+

k(α).

2.3 An algebra of homogeneous series

More information about Vk will be obtained by its extension to Dunkl’s algebra

A =
{
f : K → C, f =

∞∑
n=0

fn with fn ∈ PNn and ‖f‖A :=
∞∑
n=0

‖fn‖∞,K <∞
}
,

as introduced in Section 1.2. In the present section, we will discuss this algebra in some detail.
First of all, we note that for f ∈ A , the homogeneous expansion f =

∑∞
n=0 fn is unique. For

this, suppose that f ∈ A vanishes identically on the ball K = {x ∈ RN : |x| ≤ 1} . For any
fixed x ∈ K and −1 < λ < 1 we then have 0 =

∑∞
n=0 fn(x)λn , which is a power series in

λ . Hence fn(x) = 0 for all n , which implies the stated uniqueness. Notice further that the
topology of A is stronger than the topology induced by the uniform norm on K , and that A
is not closed with respect to ‖.‖∞,K , in view of the Stone-Weierstraß theorem. In particular,
A is not a uniform algebra on K . The following result is straightforward:

2.3.1 Lemma. (A, ‖.‖A) is a commutative Banach-∗-algebra with the pointwise multiplication
of functions, complex conjugation as involution, and with unit 1 .

Proof. To show completeness, let (fm)m∈Z+ be a Cauchy sequence in A . Then for ε > 0 there
exists an index m(ε) ∈ Z+ such that

∞∑
n=0

‖fmn − fm
′

n ‖∞,K < ε for m,m′ > m(ε). (2.12)

In particular, for each degree n the homogeneous parts (fmn )m∈Z+ converge uniformly on K ,
and hence within PNn to some gn ∈ PNn . It further follows from (2.12) that

∞∑
n=0

‖gn − fmn ‖∞,K < ε for m > m(ε).

Therefore g :=
∑∞

n=0 gn belongs to A with ‖g − fm‖A → 0 for m → ∞. It is also easily
checked by a Cauchy-product argument that A is an algebra with ‖fg‖A ≤ ‖f‖A · ‖g‖A for
all f, g ∈ A . The rest is obvious.

It is now in particular clear that the extension of Vk according to (1.16) is a well-defined,
continuous linear operator on (A, ‖.‖A) . Our main theorem in the following section will be
based on a Bochner-theorem for positive functionals on commutative Banach-*-algebras; for
this, we need the symmetric spectrum of A, i.e. the subspace of the spectrum ∆(A) given by

∆S(A) := {ϕ ∈ ∆(A) : ϕ(f) = ϕ(f) for all f ∈ A}.
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As usual, ∆(A) and ∆S(A) are equipped with the Gelfand-topology. While the determination
of the complete spectrum requires some further knowledge about A and will be carried out later,
its symmetric part is obtained quite easily: For x ∈ K , define the evaluation homomorphism
at x by ϕx : A→ C, ϕx(f) := f(x).

2.3.2 Lemma. ∆S(A) = {ϕx : x ∈ K } , and the mapping x 7→ ϕx is a homeomorphism from
K onto ∆S(A) .

Proof. It is obvious that ϕx belongs to ∆S(A) for each x ∈ K , and that the mapping x 7→ ϕx

is injective and continuous on K . As K and ∆S(A) are compact Hausdorff spaces, it remains
to show that x 7→ ϕx is surjective, i.e. each ϕ ∈ ∆S(A) is of the form ϕx with some x ∈ K . To
this end, put λi := ϕ(xi) for i = 1, . . . , N . By symmetry of ϕ we have λ := (λ1, . . . , λN ) ∈ RN .
Moreover,

|λ|2 = ϕ(|x|2) ≤ ‖ |x|2‖A = 1 .

This shows that λ ∈ K . By definition of λ , the identity p(λ) = ϕ(p) holds for all polynomials
p ∈ ΠN . The assertion now follows from the density of ΠN in (A , ‖.‖A).

To achieve a more comprehensive knowledge of A and its spectrum, we have to extend
functions from A to complex arguments. Besides the real unit ball K ⊂ RN , we introduce the
complex unit ball

U := {z ∈ CN : |z| ≤ 1}.

We shall see that each function f ∈ A has a unique continuation to the well-known ball algebra

B := {g : U → C , g is continuous on U and holomorphic in its interior U◦}.

The following observation will be crucial:

2.3.3 Lemma. For each homogeneous polynomial p ∈ C[CN ] ,

‖p‖∞,K = ‖p‖∞,U .

Proof. As p is homogeneous, there exists some z0 ∈ U with |z0| = 1 such that ‖p‖∞,U =

|p(z0)| . Write z0 = x0 + iy0 with x0, y0 ∈ RN , and choose matrices M1, M2 ∈ O(N,R) such
that

M1 x0 =
|x0|√
N
· (1, . . . , 1), M2 y0 =

|y0|√
N
· (1, . . . , 1).

Then L(x+ iy) := M1x+ iM2y is bijective and R-linear on CN with |L(z)| = |z| for all z ∈
CN . Moreover, L maps K onto itself and satisfies L(z0) = λ√

N
(1, . . . , 1) with λ = |x0|+ i|y0| .

Notice that |λ| = 1 , because |z0| = 1 . Now define pL ∈ C[CN ] by pL(z) := p(L−1z). Then pL

is again homogeneous, and

‖p‖∞,U = ‖pL‖∞,U =
∣∣pL( λ√

N
, . . . ,

λ√
N

)∣∣ =
∣∣pL( 1√

N
, . . . ,

1√
N

)∣∣ ≤ ‖pL‖∞,K = ‖p‖∞,K .

This yields the assertion.
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2.3.4 Proposition. Each f ∈ A has a unique extension f̃ ∈ B. For f =
∑∞

n=0 fn ∈ A, this
extension is given by f̃(z) :=

∑∞
n=0 fn(z).

2.3.5 Remark. The inclusion A ↪→ B , f 7→ f̃ , is not surjective. To see this, consider first the
case N = 1 . Let F be a continuous function on the torus T = {z ∈ C : |z| = 1} , whose Fourier
series does not converge absolutely. Consider the Poisson modification of F, i.e. the unique
function f ∈ B with f |T = F . For |z| < 1 , it can be written as

f(z) =
∞∑
n=0

F̂ (n)zn with F̂ (n) =
1

2π

∫ π

−π
F (eit)e−intdt .

It follows that f |K does not belong to A . This counterexample for N = 1 gives also coun-
terexamples in higher dimensions: We distinguish dimension 1 from dimensions N > 1 by an
additional subscript. For F ∈ C(T) and f ∈ B(1) as above, the function g(z) := f(z1), with
z = (z1, . . . , zN ) ∈ CN , obviously belongs to B(N) . The expansion of g as a power series in the
complex unit ball U◦ is given by g(z) =

∑∞
n=0 F̂ (n)zn1 , which shows that the restriction of g

to K(N) does not belong to A(N) .

Proof of Proposition 2.3.4. As a consequence of the above lemma, the series
∑∞

n=0 fn con-
verges uniformly on the complex ball U . This shows that f̃ is well defined with f̃ ∈ B . An
easy induction argument, based on the identity theorem for holomorphic functions in one di-
mension, shows that the extension f 7→ f̃ is unique: For this, put Mi := {z ∈ U◦ : zj ∈ R for
j ≥ i}, i = 1, . . . , N. We have to show that for functions f, g holomorphic in U◦ , the equality
f = g on K◦ = M1 implies that f = g on U◦ = MN+1. But if f = g on Mi (1 ≤ i ≤ N) ,
then the identity theorem in one dimension implies that f = g on Mi+1 as well.

We are now able to determine the complete spectrum of A . Notice first that for each z ∈ U ,
a well-defined evaluation homomorphism on the algebra A is given by

ϕz : A→ C , ϕz(f) := f̃(z).

2.3.6 Lemma. The spectrum of A is given by ∆(A) = {ϕz : z ∈ U}. Moreover, the mapping
z 7→ ϕz is a homeomorphism from U onto ∆(A) .

Proof. It is again obvious that each ϕz , z ∈ U, belongs to ∆(A) , that z 7→ ϕz is injective and
that the mapping z 7→ ϕz is continuous on U . Again, it remains to show that each ϕ ∈ ∆(A)

is of the stated form. For this, put λi := ϕ(xi) for i = 1, . . . , N and define pλ ∈ PN2 by
pλ(z) :=

∑N
i=1

λi
λi
z2
i . Then p(λ) = ϕ(p) for all polynomials p ∈ ΠN , and thus in particular,

|λ|2 = |pλ(λ)| = |ϕ(pλ)| ≤ ‖pλ‖A = ‖pλ‖∞,K ≤ 1 .

This proves λ ∈ U , and the same density argument as in Lemma 2.3.2 implies that ϕ = ϕλ .
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2.4 The main theorem

As before, G is a finite reflection group on RN and k ≥ 0 is a non-negative multiplicity function
on its root system R . It will be convenient to have a slightly extended notion of Dunkl’s algebra
of homogeneous series: For r > 0 let Kr := {x ∈ RN : |x| ≤ r} denote the ball of radius r and
define

Ar :=
{
f : Kr → C, x 7→ fr(x) := f(rx) ∈ A}, (2.13)

as well as ‖f‖Ar := ‖fr‖A . Notice that Ar ⊂ As with ‖.‖Ar ≥ ‖.‖As for s ≥ r . The dilated
algebra (Ar , ‖.‖Ar) is again a commutative Banach-*-algebra, and Vk extends uniquely to a
continuous linear operator on Ar , by Vkf := (Vkfr)1/r. Moreover, the results of Section 2.3 for
A transfer to Ar in the obvious way; in particular, ∆S(Ar) can be naturally identified with
Kr . Of particular interest in the following is the exponential function x 7→ e〈x,z〉 (z ∈ CN ) ,
which belongs to Ar for each r > 0 . Notice that by (1.19),

Ek(x, z) = Vk(e
〈 .,z〉)(x) for all x ∈ RN . (2.14)

Here is the main result of this chapter.

2.4.1 Theorem. For each x ∈ RN there exists a unique probability measure µkx ∈ M1(RN )

such that

Vkf(x) =

∫
RN

f(ξ) dµkx(ξ) for all f ∈ A|x|. (2.15)

The representing measures µkx are compactly supported with suppµkx ⊆ {ξ ∈ RN : |ξ| ≤ |x|},
and the mapping RN → M1(RN ), x 7→ µkx is weakly continuous. Moreover, the measures µkx
satisfy

µkrx(B) = µkx(r−1B), µkgx(B) = µkx(g−1B), and µkhhx(B) = µkx(h−1B) (2.16)

for each r > 0, g ∈ G, h ∈ O(N,R) and each Borel set B ∈ B(RN ).

Proof. Fix x ∈ RN and put r = |x|. Then the mapping

Φx : f 7→ Vkf(x)

is a bounded linear functional on Ar , and Theorem 2.2.1 implies that it is positive on the
dense subalgebra ΠN of Ar , i.e. Φx(|p|2) ≥ 0 for all p ∈ ΠN . Consequently, Φx is a
positive functional on the whole Banach-∗-algebra Ar . Now, by a well-known Bochner-type
representation theorem for positive functionals on commutative Banach-∗-algebras (see e.g.
Theorem 21.2 of [F-D]), there exists a unique measure νkx ∈M+

b (∆S(Ar)) such that

Φx(f) =

∫
∆S(Ar)

f̂(ϕ) dνkx(ϕ) for all f ∈ Ar, (2.17)
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with f̂ the Gelfand transform of f . Denote by µkx the image measure of νkx under the homeo-
morphism ∆S(Ar)→ Kr , ϕξ → ξ . Equation (2.17) then becomes

Vkf(x) =

∫
{|ξ|≤|x|}

f(ξ) dµkx(ξ) for all f ∈ A|x|.

The normalization Vk1 = 1 implies that µkx is a probability measure on {ξ ∈ RN : |ξ| ≤ |x|}.
To see the uniqueness of the representing measures µkx , we use representation (2.15) with
f(x) = e〈x,−iy〉, y ∈ RN . Together with (2.14), this implies that the classical Fourier-Stieltjes
transform of µkx, x ∈ RN , is just given by

(µkx)∧(y) =

∫
RN

e−i〈 ξ, y〉 dµkx(ξ) = Ek(x,−iy). (2.18)

Thus the uniqueness of µkx follows from the injectivity of the Fourier-Stieltjes transform on
M1(RN ) . In order to check that x 7→ µkx is weakly continuous, take a sequence (xn)n∈N ⊂ RN

with limn→∞ xn = x0 ∈ RN . Then (2.18) and the continuity of the kernel Ek yield that
(µkxn)∧ → (µkx0)∧ pointwise on RN . By Lévy’s continuity theorem (Satz 23.8 of [Ba]), this
implies that the µkxn converge weakly to µkx0 . Finally, the transformation properties (2.16)
follow immediately from the homogenity-preserving character of Vk on ΠN and the invariance
property (1.13).

2.4.2 Remark. In the one-dimensional case, associated with the reflection group G = Z2 on R
and multiplicity parameter k > 0 , the representing measures µkx ∈M1(R), x > 0, are given by

dµkx(t) =
Γ(k + 1/2)

Γ(1/2) Γ(k)
·

1[−x,x](t)

x2k
(x− t)k−1(x+ t)k dt.

This is immediate from the explicit representation (1.11) for Vk .

As an important consequence of Theorem 2.4.1 we obtain that for fixed y ∈ RN , the function
x 7→ Ek(x, iy) is positive definite on RN , and the same holds for the generalized Bessel function
x 7→ Jk(x, iy) .

2.4.3 Corollary. For each z ∈ CN , the function x 7→ Ek(x, z) has the Bochner-type repre-
sentation

Ek(x, z) =

∫
RN

e〈ξ, z〉dµkx(ξ), (2.19)

where the µkx are the representing measures from Theorem 2.4.1. In particular, Ek(x, y) > 0

for all x, y ∈ RN , and for each x ∈ RN the function y 7→ Ek(x, iy) is positive definite on
RN . Moreover, for each fixed x ∈ RN the generalized Bessel function y 7→ Jk(x, iy) is positive
definite on RN .

Proof. This is immediate from Theorem 2.4.1 and representation (2.14), together with Bochner’s
theorem.
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In those cases where the generalized Bessel functions Jk(., y) allow an interpretation as
the spherical functions of a Cartan motion group, the positive definiteness of these functions
is an immediate consequence. Moreover, for the group G = S3 and non-negative multiplicity
functions, it results from the integral representations in [D6]. There are, however, no group-
theoretical interpretations known for the kernel Ek . Nevertheless, the conjecture that it should
be positive definite has been confirmed by several of its properties (see [dJ1]); moreover, it
can be shown by classical methods characterizing positive semigroups, namely a variant of
the Lumer-Phillips theorem, that Ek(x, y) > 0 for all x, y ∈ RN . This was carried out in
[R4] in connection with the study of generalized heat semigroups for Dunkl operators. These
semigroups will be studied in Chapter 4 of this thesis – now however on the basis of the already
known positivity of the Dunkl kernel.

From (2.19) we obtain further knowledge about the support of the representing measures
µkx :

2.4.4 Corollary. The measures µkx , x ∈ RN , satisfy

(i) suppµkx is contained in co {gx, g ∈ G}, the convex hull of the orbit of x under G .

(ii) suppµkx ∩ {gx, g ∈ G} 6= ∅.

Proof. (i) follows from Corollary 3.3 of [dJ1]. For the proof of (ii) it is therefore enough to show
that

suppµkx ∩ {ξ ∈ RN : |ξ| = |x|} 6= ∅.

Suppose on the contrary that suppµkx ∩ {ξ ∈ RN : |ξ| = |x|} = ∅ for some x ∈ RN . Then
there exists a constant σ ∈]0, 1[ such that suppµkx ⊆ {ξ ∈ RN : |ξ| ≤ σ|x|}. This leads to the
estimate

Ek(x, y) =

∫
|ξ|≤σ|x|

e〈ξ,y〉 dµkx(ξ) ≤ eσ|x||y|

for all y ∈ RN . On the other hand, Proposition 1.4.3 with w = 0 says that

c−1
k

∫
RN

Ek(x, y) e−(|x|2+|y|2)/2wk(y)dy = 1.

Now let r > 0 . As both formulas above remain valid if x is replaced by rx , it follows that

1 ≤ c−1
k

∫
RN

e−(|rx|2+|y|2)/2 eσ|rx||y|wk(y)dy ≤ c−1
k

∫
RN

e(σ−1)(r2|x|2+|y|2)/2wk(y)dy,

which tends to 0 as r →∞ , a contradiction.

This result implies useful estimates for Ek and its derivatives, which partially sharpen those
of [dJ1], Lemma 3.5.

2.4.5 Corollary. For all x, y ∈ RN and z ∈ CN , the kernel Ek satisfies

(1) | ∂ νz Ek(x, z)| ≤ |x||ν| ·max
g∈G

e〈gx,Re z〉 (ν ∈ ZN+ , |ν| = ν1 + . . .+ νN ).
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(2) |Ek(x, iy)| ≤ 1 .

(3) Ek(x, y) ≥ min
g∈G

e〈gx, y〉 .

Proof. Each ξ ∈ co {gx, g ∈ G} is of the form ξ =
∑

g∈G λg ·gx with λg > 0 and
∑

g∈G λg = 1.

This leads for all z ∈ CN to the estimates

min
g∈G
〈gx,Re z〉 ≤ Re 〈ξ, z〉 ≤ max

g∈G
〈gx,Re z〉 . (2.20)

Part (1) is now obtained by differentiating the expression under the integral in (2.19), and using
then (2.20). Part (2) is a special case of part (1), and part (3) is also immediate from (2.20).

2.4.6 Corollary. The Dunkl transform on L1(RN , wk) satisfies

‖f̂ k‖∞ ≤ ‖f‖1,wk .

A further consequence of Theorem 2.4.1 is the possibility to extend Vk to larger function
spaces:

2.4.7 Remark. The integral representation (2.15) for Vk allows an extension to L∞
loc(RN ), the

space of locally bounded, Borel measurable functions on RN , via

Ṽkf(x) =

∫
RN

f(y) dµkx(y).

On the subspace W := {f ∈ C(RN ) ∩ L1(RN ) : f̂ ∈ L1(RN )} ⊂ L∞
loc(RN ) an equivalent

representation of Ṽk is obtained by the inversion theorem for the classical Fourier transform:
Let f ∈W . Then

Ṽkf(x) = c−1
0

∫
RN

(∫
RN

f̂(ξ) ei〈ξ,y〉dξ
)
dµkx(y) = c−1

0

∫
RN

f̂(ξ)Ek(iξ, x) dξ . (2.21)

In particular, Ṽk also satisfies the intertwining property Tξ(k)Ṽk = Ṽk ∂ξ (ξ ∈ RN ). We
mention that on W ∩C∞(RN ) , the operator Ṽk coincides with the extension of Vk to C∞(RN )

which was already obtained in [dJ3], Chap. 3.4 as a consequence of a Paley-Wiener theorem
for the Dunkl transform.

At the end of this chapter we would like to indicate an application of Theorem 2.4.1 to the
study of probabilistic aspects of Dunkl’s theory.

2.4.8 Generalized moment functions. The classical moments of probability measures on
RN have many applications to sums of independent random variables. The definition of these
moments is based on the monomial “moment functions” xν = xν11 x

ν2
2 . . . xνNN , x ∈ RN , ν ∈ ZN+ .

Recently, in [R-V2] a concept of Markov kernels and Markov processes which are homogeneous
with respect to a given Dunkl transform has been developed. In this context, generalized
moment functions on RN provide a useful tool. They generalize the classical moment functions
and are defined as the unique coefficients mk,ν in the expansion

Ek(x, y) =
∑
ν∈ZN+

mk, ν(x)

ν!
yν (x ∈ RN , y ∈ CN ).
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Comparison with the homogeneous expansion of Ek , (1.22) and (1.23), shows that

mk, ν(x) = Vk(x
ν) ∈ PN|ν| for ν ∈ ZN+ .

Theorem 2.4.1 in particular implies the following useful relations for the generalized moment
functions, which are obvious only in the classical case (again, we assume k ≥ 0) :

|mk, ν(x)| ≤ |x||ν| and 0 ≤ mk, ν(x)2 ≤ mk, 2ν(x) for all x ∈ RN , ν ∈ ZN+ .

The first inequality is clear from the support properties of the measures µx while the second
one follows from Jensen’s inequality. Among the applications of these moments, we mention the
construction of martingales from Dunkl-type Markov processes; for details, we refer to [R-V2].



Chapter 3

Generalized Hermite polynomials and
biorthogonal systems

This chapter presents a general concept of multivariable biorthogonal polynomials with respect
to weight functions of the form wk(x)e−ω|x|

2 on RN , where k is a non-negative multiplicity
function on the root system of a given finite reflection group and ω > 0 a frequency parame-
ter. This concept includes, as a particular case, orthogonal polynomial systems with respect to
such weight functions, which are called generalized Hermite polynomials. The definition and
properties of these polynomials extend naturally those of the classical multivariable Hermite
polynomials; partial derivatives and the usual exponential kernel are replaced by Dunkl oper-
ators and the Dunkl kernel here. In particular, for root systems of type A and B there is
some physical relevance of the associated biorthogonal systems: They arise as the eigenfunc-
tions of Hamiltonians which describe certain exactly solvable quantum many body systems of
Calogero-Moser-Sutherland type.

In Section 3.1 we give a short explanation of linear Calogero-Moser-Sutherland models and
the relevance of Dunkl operators in their algebraic description; we also solve the spectral prob-
lem for abstract Calogero-Moser-Sutherland operators with harmonic confinement. The spectra
of these operators are highly degenerate, and there are several favourable choices of eigenfunc-
tion bases, having in common that they fit into the above mentioned concept of biorthogonality.
This concept is developed in Section 3.3, and several classes of examples are studied. Some em-
phasis is put on the particular class of generalized Hermite polynomials. In the one-dimensional
case, associated with the reflection group G = Z2 on R , these generalized Hermite polynomials
coincide with those introduced in [Chi] and studied in [Ros]. Our setting also includes, for the
symmetric group G = SN , the so-called non-symmetric generalized Hermite polynomials which
were recently introduced by Baker and Forrester in [B-F2], [B-F3]. These are non-symmetric
analogues of the symmetric (i.e. permutation-invariant) generalized Hermite polynomials asso-
ciated with the group SN , which were first introduced by Lassalle [La2]. Moreover, the “gen-
eralized Laguerre polynomials” of [B-F2], [B-F3], which are non-symmetric analogues of those
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in [La1], can be considered as a subsystem of Hermite polynomials associated with a reflection
group of type BN . For a thorough study of the symmetric multivariable Hermite- and Laguerre
systems we refer to [B-F1], [vD] and [K2]. Besides of the second order differential equations,
many of the well-known properties of classical Hermite polynomials and Hermite functions al-
low extensions to our biorthogonal systems, such as the Rodrigues formula, generating function
and the Mehler formula. We conclude this chapter by an application of generalized Hermite
expansions: They are used to derive an analogue of the classical Heisenberg-Weyl uncertainty
principle for the Dunkl transform.

In order to make notations more transparent, we shall frequently omit the explicit reference
to the underlying multiplicity function k in the Dunkl operators, and therefore e.g. write Tξ
instead of Tξ(k) .

3.1 Linear Calogero-Moser-Sutherland models

The Calogero-Moser-Sutherland (CMS) models are quantum many-body models in one dimen-
sion; they describe a system of N particles on a circle or line which interact pairwise through
long range potentials of inverse square type. These models are exactly solvable and therefore
of great interest for the understanding of quantum many-body physics. They have in particu-
lar attracted some attention in conformal field theory and are being used to test the ideas of
fractional statistics ([Hal], [Ha]). The study of CMS models was initiated by Calogero ([Ca]).
He considered a translation invariant N -particle system with a potential of the form

V (x) =
∑

1≤i<j≤N

[ g0

(xi − xj)2
+ g1(xi − xj)2

]
,

for which he computed the spectrum and determined the structure of the eigenfunctions and
scattering states. Up to a center of mass motion

(∑
1≤j<k≤N (xj − xk)2 = N |x|2 −

(∑
j xj
)2 )

this system is equivalent to the so-called rational Calogero model with harmonic confinement,
whose quantum Hamiltonian on L2(RN ) is

HC = −∆ + ω2|x|2 + 2k(k − 1)
∑

1≤i<j≤N

1

(xi − xj)2
, (3.1)

with frequency parameter ω > 0 and a coupling parameter k ≥ 0 . HC is symmetric and
bounded from below with the ground state

f0(x) = e−ω|x|
2/2
√
wk(x);

here wk is the SN -type weight function

wk(x) =
∏

1≤i<j≤N
|xi − xj |2k .
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The standard circle model, whose study was initiated by Sutherland ([Su]), is characterized by
the Hamiltonian

HS = −∆ + g
∑
i<j

1

d(xi, xj)2
(3.2)

on L2([0, 1]N ) ; here g ≥ −1/2 is again a coupling constant and

d(xi, xj) =
1

π
sin
(
π(xi − xj)

)
is the chord length between the positions of the particles i and j on a circle of circumference 1.
It was first observed by Perelomov [Pe] that (3.1) is completely quantum integrable, i.e. there
exist N algebraically independent symmetric linear operators in L2(RN ) which commute with
each other and with HC . The quantum integrability of (3.2) was proven in [CRM], while the
complete integrability of the classical Hamiltonian systems associated with (3.1) and (3.2) goes
back to Moser [Mo].

There are natural extensions of these systems in the context of abstract root systems, see
e.g. [O-P2], [H-Sc]. In particular, if R is an arbitrary root system on RN (not necessarily
cristallographic), and k is a nonnegative multiplicity function on it, then the corresponding
abstract linear CMS operator with harmonic confinement is given by

H̃k = −F̃k + ω2|x|2

with the formal expression

F̃k = ∆− 2
∑
α∈R+

k(α)(k(α)− 1)
1

〈α, x〉2
.

If R is of type AN−1 , then H̃k just coincides with HC . For both the classical and the quantum
case, partial results on the integrability of this model, as well as periodic variants, are due to
Olshanetsky and Perelomov [O-P1], [O-P2]. A new aspect in the understanding of the algebraic
structure and the quantum integrability of CMS systems was later initiated by Polychronakos
[Po] and Heckman [He2]. The underlying idea is to construct quantum integrals for (linear)
CMS models from differential-reflection operators. Polychronakos introduced them in terms
of an “exchange-operator formalism” for the linear CMS model (3.1). He thus obtained a
complete set of commuting observables for (3.1) in an elegant way. In [He2] it was observed
in general that the complete algebra of quantum integrals for abstract linear CMS models - in
case of an arbitrary root system, but without harmonic confinement - is intimately connected
with the corresponding algebra of Dunkl operators. Since then, there has been an extensive
and ongoing study of CMS models and explicit operator solutions for them via differential-
difference operator formalisms; among the broad literature, we refer to [L-V], [K1], [BHV],
[BHKV], [B-F3], [U-W]. We briefly describe the connection of (abstract) linear CMS models to
Dunkl operators: Consider the following modification of F̃k , involving reflection terms:

Fk = ∆− 2
∑
α∈R+

k(α)

〈α, x〉2
(k(α)− σα) . (3.3)
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In order to avoid singularities in the reflecting hyperplanes, it is suitable to carry out a gauge
transform by

√
wk. This leads to the following

3.1.1 Lemma. The operator Fk , with domain

D(Fk) := {w1/2
k f : f ∈ S (RN )} ⊂ L2(RN ),

is essentially self-adjoint in L2(RN ) . D(Fk) is invariant under Fk , and

Fk = w
1/2
k ∆k w

−1/2
k .

Proof. A short calculation yields that for f ∈ C2(RN ) and x /∈
⋃
α∈R+

Hα ,

w
−1/2
k (x)∆(w

1/2
k f)(x) = ∆f(x) + 2

∑
α∈R+

k(α)
(〈∇f(x), α〉
〈α, x〉

− f(x)

〈α, x〉2
)

+ f(x)
∑

α,β∈R+

k(α)k(β)
〈α, β〉

〈α, x〉〈β, x〉
. (3.4)

Applying Proposition 1.7.(i) of [D2] to the bilinear form B(x, y) := 〈x, y〉 on RN , we obtain
that for every plane rotation g ∈ G with g 6= e ,

∑
α,β∈R+:σασβ=g

k(α)k(β)
〈α, β〉

〈α, x〉〈β, x〉
= 0.

Therefore the last sum in (3.4) reduces to

2f(x) ·
∑
α∈R+

k(α)2

〈α, x〉2

(recall our normalization |α|2 = 2 for all α ∈ R+ ). As wk is G-invariant, this implies

w
−1/2
k Fk w

1/2
k f(x) =w

−1/2
k (x)∆(w

1/2
k f)(x) − 2

∑
α∈R+

k(α)
k(α)f(x)− f(σαx)

〈α, x〉2

= ∆f(x) + 2
∑
α∈R+

k(α)
(〈∇f(x), α〉
〈α, x〉

− f(x)− f(σαx)

〈α, x〉2
)

= ∆kf(x), (3.5)

where the last identity follows from the explicit representation (1.7) for ∆k . The assertion now
follows from the facts that ∆k , with domain S (RN ) , is essentially self-adjoint in L2(RN , wk)
(c.f. Chapter 1), and that the mapping

Φ : L2(RN ) → L2(RN , wk), f 7→ w
−1/2
k f

is an isometric isomorphism.
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Consider now the algebra of G-invariant polynomials on RN ,

(ΠN )G = {p ∈ ΠN : g · p = p for all g ∈ G}.

If p ∈ (ΠN )G , then the Dunkl operator p(T ) leaves (ΠN )G invariant (by (1.4)). For such p ,
denote the restriction of p(T ) to (ΠN )G by Res (p(T )) . Then, as observed in [He2], the family{

Res (p(T )) : p ∈ (ΠN )G}

is a commutative algebra of differential operators, containing the operator

Res (∆k) = w
−1/2
k F̃kw

1/2
k .

This implies the integrability of the CMS operator F̃k . For the special case of the symmetric
group, this is essentially also contained in [Po] (where, however, the above gauge transform is
omitted). As already mentioned, Polychronakos also succeeded to determine a complete set of
quantum integrals for the SN -type Hamiltonian HC with harmonic confinement - at least in the
physically relevant bosonic and fermionic subspaces of L2(RN ) . He constructed the integrals
by a Lax formalism involving the lowering and raising operators

aj = w
1/2
k (ωxj + TSj )w

−1/2
k and a+

j = w
1/2
k (ωxj − TSj )w

−1/2
k .

Then a+
j is the adjoint of aj in L2(RN ) , and the families {aj , j = 1, . . . , N} as well as

{a+
j , j = 1, . . . , N} commute (c.f. the more general treatment in Lemma 3.1.6.) It was further

shown in [Po] that the operators

Im =
N∑
j=1

(a+
j aj)

m , m ∈ N

commute in L2(RN ) . Moreover, the restriction of I1 to the bosonic subspace

L2(RN )SN := {f ∈ L2(RN ) : g · f = f for all g ∈ SN}

coincides, up to an additive constant, with the Hamiltonian HC . In a similar way, the restriction
of I1 to the fermionic subspace of completely anti-symmetric functions coincides up to a constant
with HC , the coupling constant 2k(k−1) being replaced by 2k(k+1) . Concerning more general
root systems, there are only particular results of this kind for systems of type BN and G2 , see
[B-F2] and [Hi-K]. For the abstract CMS operator H̃k with harmonic confinement, the general
question of how to obtain an algebra of quantum integrals is, to the author’s knowledge, still
open. We shall however see from the results below that the spectral properties of H̃k in the
“bosonic” subspace

L2(RN )G = {f ∈ L2(RN ) : g · f = f for all g ∈ G}
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are rather easy to describe, and that it is possible to obtain complete bases of eigenfunctions by
a suitable ladder formalism. We again work with the gauge-transformed version with reflection
terms,

Hk := w
−1/2
k (−Fk + ω2|x|2)w

1/2
k = −∆k + ω2|x|2.

This operator is symmetric and densely defined in L2(RN , wk) with domain D(Hk) := S (RN ) .
Notice that in case k = 0 , Hk is just the Hamiltonian of the N -dimensional isotropic harmonic
oscillator. We further consider the Hilbert space L2(RN , dmω

k ) , where mω
k is the probability

measure
dmω

k (x) := c−1
k (2ω)γ+N/2 e−ω|x|

2
wk(x)dx ∈M1(RN ) (ω > 0), (3.6)

and the operator

Jk := −∆k + 2ω
N∑
j=1

xj∂j

in L2(RN , dmω
k ) , with the dense domain D(Jk) := ΠN . The subsequent theorem gives a

complete description of the spectral properties of Hk and Jk and generalizes well-known facts
for the corresponding classical operators. Its proof relies on the sl(2)-commutation relations of
the operators

E :=
1

2
|x|2, F := −1

2
∆k and H :=

N∑
i=1

xi∂i + (γ +N/2)

on ΠN (with the index γ = γ(k) as defined in (1.1)), which can be found in [He2]. They are[
H,E

]
= 2E,

[
H,F

]
= −2F,

[
E,F

]
= H. (3.7)

Notice that the first two relations are immediate consequences of the fact that the Euler operator

ρ :=

N∑
i=1

xi∂i (3.8)

satisfies ρ(p) = np for each homogeneous p ∈ Pn . We start with the following

3.1.2 Lemma. On D(Jk) = ΠN ,

Jk = eω|x|
2/2
(
Hk − (2γ +N)ω

)
e−ω|x|

2/2.

In particular, Jk is symmetric in L2(RN , dmω
k ) .

Proof. From (3.7) it is easily verified by induction that[
∆k, E

n
]

= 2nEn−1H + 2n(n− 1)En−1 for all n ∈ N,

and therefore
[
∆k, e

−ωE ] = −2ωe−ωEH + 2ω2Ee−ωE . Thus on ΠN ,

Hk e−ωE = −∆ke
−ωE + 2ω2Ee−ωE = −e−ωE∆k + 2ωe−ωEH = e−ωE

(
Jk + (2γ +N)ω

)
.
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3.1.3 Theorem. For ω > 0 and n ∈ Z+ define

V ω
n := {e−∆k/4ω p : p ∈ PNn } ⊂ ΠN

n and Wω
n := {e−ω|x|2/2 q(x), q ∈ V ω

n } ⊂ S (RN ).

Then the following assertions hold:

(1) The spaces L2(RN , dmω
k ) and L2(RN , wk) admit the orthogonal Hilbert space decomposi-

tions

L2(RN , dmω
k ) =

⊕
n∈Z+

V ω
n and L2(RN , wk) =

⊕
n∈Z+

Wω
n ;

here V ω
n is the eigenspace of Jk corresponding to the eigenvalue 2nω , and Wω

n is the
eigenspace of Hk corresponding to the eigenvalue (2n+ 2γ +N)ω.

(2) The operators Hk and Jk are essentially self-adjoint; the spectra of their closures are
discrete and given by σ(Hk) = {(2n+ 2γ +N)ω, n ∈ Z+} and σ(Jk) = { 2nω, n ∈ Z+}
respectively.

Proof. (1) Equation (3.7) and an induction argument yield the commuting relations
[
ρ,∆n

k

]
=

−2n∆n
k for all n ∈ Z+ , and hence

[
2ωρ, e−∆k/4ω

]
= ∆k e

−∆k/4ω.

If q ∈ ΠN is arbitrary and p := e∆k/4ωq , it follows that

ρ(q) = (ρe−∆k/4ω)(p) = e−∆k/4ωρ(p) +
1

2ω
∆ke

−∆k/4ω p = e−∆k/4ωρ(p) +
1

2ω
∆kq.

Hence for a ∈ C the following relations are equivalent:

(−∆k + 2ωρ)(q) = 2aωq ⇐⇒ ρ(p) = ap ⇐⇒ a = n ∈ Z+ and p ∈ PNn .

Thus each function from V ω
n is an eigenfunction of Jk corresponding to the eigenvalue 2nω ,

and V ω
n ⊥ V ω

m for n 6= m by the symmetry of Jk . This proves the statements for Jk , because
ΠN =

⊕
V ω
n is dense in L2(RN , dmω

k ) . The statements for Hk are then immediate by the
previous Lemma.
(2) follows from (1) by a well-known criterion for self-adjointness of symmetric operators on
a Hilbert space which have a complete set of orthogonal eigenfunctions within their domain
(Lemma 1.2.2 of [Da3]).

3.1.4 Remark. Part (1) of the above theorem implies in particular that the operator Jk has
for each given p ∈ PNn a unique polynomial eigenfunction q of the form q = p+ r , where the
degree of r is strictly less than n ; it is given by q = e−∆k/4ωp .

By the G-equivariance of ∆k , the spectral resolution of the CMS operator H̃k in the bosonic
subspace L2(RN )G is now an easy consequence of Theorem 3.1.3.
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3.1.5 Corollary. For n ∈ Z+ , put Wω,G
n = {e−ω|x|2/2e−∆k/4ω p : p ∈ PNn ∩ (ΠN )G }. Then

L2(RN )G =
⊕
n∈Z+

Wω,G
n ,

and Wω,G
n is the eigenspace of H̃k in L2(RN )G corresponding to the eigenvalue (2n+2γ+N)ω.

We next prove Rodrigues formulas for the eigenfunctions of Jk and Hk ; they generalize
results from [BHV] and [BHKV] for the SN - case, where explicit bases of bosonic and fermionic
eigenfunctions for the Calogero Hamiltonian HC were constructed from its vacuum state. We
first introduce an obvious analogue of the SN -type ladder operators: We define “lowering” and
“raising” operators in L2(RN , wk) by

Aj :=
1√
2

(ωxj + Tj) and A+
j :=

1√
2

(ωxj − Tj) (j = 1, . . . , N).

Then, by the anti-symmetry of the Tj in L2(RN , wk) (Prop. 1.4.4), A+
j is the adjoint of Aj in

this Hilbert space, and

Hk =
N∑
j=1

(
AjA

+
j +A+

j Aj
)
.

Moreover, the following commutation relations are verified by short calculations:

3.1.6 Lemma. For i, j = 1, . . . , N ,

(1) [Ai , A
+
j ] = ω · [Ti , xj ] = ω

(
δi,j · id +

∑
α∈R+

k(α)αiαj σα

)
;

(2) [Ai , Aj ] = [A+
i , A

+
j ] = 0.

In particular, each p ∈ ΠN defines unique linear operators p(A), p(A+) in L2(RN , wk) with
domain S (RN ). We shall further use the following rescaling formula:

3.1.7 Lemma. Let p ∈ Pn . Then for c ∈ C and a ∈ C \ {0},(
ec∆kp

)
(ax) = an

(
ea
−2c∆k

)
p(x) (x ∈ RN ).

Proof. For m ∈ Z+ with 2m ≤ n, the polynomial ∆m
k p is homogeneous of degree n − 2m.

Hence

(
ec∆kp

)
(ax) =

bn/2c∑
m=0

cm

m!
(∆m

k p)(ax) =

bn/2c∑
m=0

cm

m!
an−2m(∆m

k p)(x) = an
(
ea
−2c∆kp

)
(x).

3.1.8 Theorem. (Rodrigues formulas for the eigenfunctions of Jk and Hk .)

(1) Let f = e−∆k/4ωp ∈ V ω
n , with p ∈ PNn . Then

f(x) =
(−1

2ω

)n
eω|x|

2
p(T ) e−ω|x|

2
. (3.9)
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(2) Let f(x) = e−ω|x|
2/2 e−∆k/4ωp(x) ∈Wω

n , with p ∈ PNn . Then

f(x) =
( 1√

2ω

)n
p(A+) e−ω|x|

2/2 . (3.10)

Proof. For the proof of (1), it suffices to consider the case ω = 1/2 ; in fact, Lemma 3.1.7 with
c = −1/2 and a =

√
2ω then implies that

e−∆k/4ωp(x) = (2ω)−n/2 e−∆k/2 p(
√

2ω x) = (2ω)−n/2(−1)n eω|x|
2(
p(T ) e−|ξ|

2/2
)
(
√

2ω x)

= (−2ω)−n eω|x|
2
p(T ) e−ω|x|

2
.

Hence let ω = 1/2 , and consider the Dunkl operator Tj , j = 1, . . . , N, as a linear operator on
L2(RN , e−|x|2/2wk(x)dx) , with domain ΠN . Its adjoint is given by

T ∗j = −e|x|2/2 ◦ Tj ◦ e−|x|
2/2 = xj − Tj ; (3.11)

here the first identity follows again from the anti-symmetry of Tj in L2(RN , wk) , and the second
one is obtained by the product rule (1.5). Our assertion is therefore equivalent to

e−∆k/2p = p(T ∗)(1) (3.12)

This identity is now easily checked by induction with respect to the degree n of p : The case
n = 0 is clear. Moreover, if (3.12) holds for p ∈ PNn , then by (3.11) and Lemma 1.2.6(2),

T ∗j p(T
∗)(1) = T ∗j e

−∆k/2p = xj e
−∆k/2p − Tj e

−∆k/2 p = e−∆k/2(xjp),

which finishes the proof of (1). To obtain (2) from (1), write

f(x) = (2ω)−n
(
eω|x|

2/2 ◦ p(−T ) ◦ e−ω|x|2/2
)(
e−ω|x|

2/2
)
.

Again by the product rule (1.5), we have

eω|x|
2/2 ◦ p(−T ) ◦ e−ω|x|2/2 = p (ωxj − Tj) =

√
2
n
p(A+). (3.13)

This yields the assertion.

We finish this section by the spectral resolution for the Dunkl transform, which is also in
analogy to the classical case k = 0 . Recall that by the Plancherel theorem 1.4.6, the Dunkl
transform Dk : f 7→ f̂ k is unitary on L2(RN , wk) .

3.1.9 Proposition. The Dunkl transform Dk on L2(RN , wk) has the spectrum
{(−i)j , j = 0, . . . , 3}. The eigenspace belonging to the eigenvalue (−i)j is

Ej :=
⋃

n≡ jmod 4

W 1
n .
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Proof. Take f(x) = e−|x|
2/2q(x) ∈ W 1

n with q = e−∆k/4p, p ∈ PNn . Let further p̃ := e∆k/2q .

Employing Proposition 1.4.3(1), we obtain

f̂ k(ξ) =
1

ck

∫
RN

Ek(−iξ, x) e−∆k/2p̃(x) e−|x|
2/2wk(x)dx

= e−|ξ|
2/2p̃(−iξ) = e−|ξ|

2/2
(
e∆k/4p

)
(−iξ).

Application of Lemma 3.1.7 with a = i and c = −1/4 now shows that the last expression
equals

e−|ξ|
2/2(−i)ne−∆k/4p(ξ) = (−i)nf(ξ).

Since L2(RN , wk) =
⊕

n∈Z+
W 1
n , this finishes the proof.

3.2 Biorthogonal polynomials associated with reflection groups

Up to now, there are ambiguities in the possible choices for the bases of eigenfunctions of
the Hamiltonians Jk and Hk , caused by the high degeneracy of their spectra. One natural
requirement is orthogonality in the underlying Hilbert space, which leads to the concept of
generalized Hermite polynomials and Hermite functions. Another criterion is the possibility
to generate the basis within a suitable operator formalism; this is not conveniently met by
generalized Hermite systems, but can be achieved by weakening the orthogonality requirement
and considering, more generally, biorthogonal systems. Such systems also admit interpretations
and applications in probability theory (see [R-V1] and [R-V2]).

The definition and essential properties of biorthogonal systems will be based on the Macdo-
nald relation (1.17) for Dunkl’s scalar product [ . , . ]k . We start from a rescaled version, which
is easily obtained from Lemma 3.1.7: For all p ∈ PNn , q ∈ PNm and all ω > 0 ,

[p, q]k =
√

2ω
n+m

∫
RN

e−∆k/4ωp(x) e−∆k/4ωq(x) dmω
k (x) (3.14)

with the measure mω
k as defined in (3.6). Notice that both sides of (3.14) are zero for

n 6= m . Identity (3.14) suggests to construct orthogonal polynomial systems in L2(RN , dmω
k )

from orthogonal homogeneous polynomial systems with respect to [ . , . ]k via p 7→ e−∆k/4ω p ,

and, more generally, biorthogonal systems in L2(RN , dmω
k ) from bidual homogeneous polyno-

mial systems with respect to [ . , . ]k . In the following, we denote by PNn (R) := ΠN
R ∩ PNn the

vector space of real-valued homogeneous polynomials of degree n ∈ Z+ on RN .

3.2.1 Definition. A family {ϕν , ψν , ν ∈ ZN+} ⊂ ΠN
R is called a homogeneous dual sys-

tem with respect to [ . , . ]k , if for every n ∈ Z+ , the sets {ϕν , ν ∈ ZN+ , |ν| = n} and
{ψν , ν ∈ ZN+ , |ν| = n} are dual R-bases of PNn (R) with respect to the scalar product [ . , . ]k

on ΠN
R .

Notice that a homogeneous dual system {ϕν ψν , ν ∈ ZN+} always satisfies

ϕ0 = ψ0 = 1 .
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Moreover, as PNn ⊥ PNm for n 6= m by Lemma 1.2.4, the complete sets {ϕν , ν ∈ ZN+ } and
{ψν , ν ∈ ZN+ } constitute dual bases of ΠN

R with respect to [ . , . ]k , i.e.

[ϕν , ψµ ]k = δν,µ for all ν, µ ∈ ZN+ ,

where δ is the Kronecker-symbol. Of particular importance is the special case that the sets
{ϕν} and {ψν} coincide; {ϕν} is then called a homogeneous orthonormal system with respect
to [ . , . ]k . Such a system can for example be constructed by Gram-Schmidt orthogonalization
within each PNn (R) from an arbitrary ordered R-basis.

3.2.2 Examples. (1) If k = 0 , then the natural choice of a homogeneous orthonormal system
with respect to [ . , . ]k is ϕν(x) = (ν!)−1/2xν .

(2) A simple case is the one-dimensional situation (G = Z2 acting on R , with multiplicity
k ≥ 0). Here every homogeneous dual system with respect to [ . , . ]k is of the form
{cnxn, dnxn} with suitable normalization constants cn, dn ∈ R \ {0} . In particular there
exists, up to sign changes, only one orthonormal system {ϕn} with respect to [ . , . ]k .

(3) Suppose that {ρν , ψν} is a homogeneous dual system with respect to [ . , . ]0 (i.e. k = 0).
Since for k ≥ 0 the intertwining operator Vk is an isomorphism of PNn (R) , the family
{ϕν := Vk(ρν), |ν| = n} is a basis of PNn (R) , and Lemma 1.2.4(5) implies that {ϕν , ψν}
constitutes a homogeneous dual system with respect to [ . , . ]k . The most important
special case of this construction is obtained for the natural choice ρν = ψν = (ν!)−1/2xν .

(4) The AN−1 -case: Non-symmetric Jack polynomials. For the definition of these polynomi-
als, we need a partial order <P on ZN+ , which was introduced in [O2] in a more general
context; see also [K-S]. For this we need the usual dominance order on the set of partitions
with at most N nonzero parts, ΛN = {λ = (λ1, . . . , λN ) ⊂ ZN+ : λ1 ≥ . . . ≥ λN}; it is
given by

λ ≤D µ :⇐⇒ |λ| = |µ| and
j∑
i=1

λi ≤
j∑
i=1

µi for 1 ≤ j ≤ N.

This partial order is extended to all compositions as follows: For each ν ∈ ZN+ there
exists a unique permutation wν ∈ SN of minimal length and a unique partition ν+ ∈ ΛN

such that ν = wν ν
+ . For µ, ν ∈ ZN+ one then defines µ ≤P ν , if either µ+ <D ν+

or µ+ = ν+ and wµ ≤ wν in the Bruhat order of SN (see Chapter 5 of [Hu] for its
definition). Moreover, one defines µ <P ν if and only if µ ≤P ν and µ 6= ν .

Now consider G = SN and fix a multiplicity parameter k > 0 . Then the associated
non-symmetric Jack polynomials Eν , ν ∈ ZN+ , as introduced in [O2] (see also [K-S]), are
uniquely defined by the following conditions:

(i) Eν(x) = xν +
∑
µ<P ν

cν, µx
µ with cν,µ ∈ R ;

(ii) For all µ <P ν ,
(
Eν(x), xµ

)
k

= 0;
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here the inner product (., .)k on ΠN is given by

(f, g)k :=

∫
TN

f(z)g(z)
∏
i<j

|zi − zj |2kdz,

with T = {z ∈ C : |z| = 1} and dz being the Haar measure on TN . Notice that by
definition, the set {Eν , |ν| = n} forms a vector space basis of PNn (R) . We claim that the
Eν , which are orthogonal with respect to (., .)k by construction, also form a homogeneous
orthogonal basis with respect to the Dunkl inner product [., .]k (for SN ). This is easily
seen as follows: According to [O2], Prop. 2.10, the Eν are simultaneous eigenfunctions of
the Cherednik operators ξi for SN , which were introduced in [Che] and can be written as

ξi =
1

k
xiT

S
i + 1−N +

∑
j>i

σij (i = 1, . . . , N), (3.15)

where the TSi are the Dunkl operators of type AN−1 , c.f. Example 1.1.5 (2). In fact, the
Eν satisfy ξiEν = νiEν , where the eigenvalues ν = (ν1, . . . , νN ) are given explicitly in
[O2]. They are distinct, i.e. if ν 6= µ , then ν 6= µ . On the other hand, it follows from
(3.15), together with the properties of [. , .]k (Lemma 1.2.4), that the Cherednik operators
ξi are symmetric with respect to [. , .]k . This proves that the Eν are orthogonal with
respect to [. , .]k .

3.2.3 Definition. Let {ϕν , ψν} be a homogeneous dual system with respect to [. , . ]k . Then
for fixed ω > 0 , the associated biorthogonal polynomial systems {Rν(ω; .), ν ∈ ZN+} and
{Sν(ω; .), ν ∈ ZN+} in L2(RN , dmω

k ) are given by

Rν(ω;x) :=
√

2ω
|ν|
e−∆k/4ωϕν(x) , Sν(ω;x) :=

√
2ω
|ν|
e−∆k/4ωψν(x) .

Moreover, we define the associated biorthonormal functions

rν(ω;x) := dωk e
−ω|x|2/2Rν(ω;x), sν(ω;x) := dωk e

−ω|x|2/2Sν(ω;x), (ν ∈ ZN+ )

in L2(RN , wk) , with the normalization constant

dωk :=

√
2ω

γ+N/2

√
ck

.

We list elementary properties of these systems, which also justify our terminology.

3.2.4 Lemma. For all ω > 0 , the following assertions hold:

(1) The Rν(ω;x) and Sν(ω;x) are real-valued polynomials of degree |ν|. They satisfy

Rν(ω;−x) = (−1)|ν|Rν(ω;x); Rν(ω;x) = Rν(1;
√
ωx),

and the same relations hold for the Sν(ω; .).
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(2) The systems {Rν(ω; .)} and {Sν(ω; .)} constitute biorthogonal bases of L2(RN , dmω
k ) with∫

RN
Rν(ω; .)Sµ(ω; .) dmω

k = δν,µ.

Moreover, the systems {rν(ω; .)} and {sν(ω; .)} form biorthogonal bases of
L2(RN , wk) with ∫

RN
rν(ω; .) sµ(ω; .)wk(x)dx = δν,µ.

(3) For each n ∈ Z+ , the family {Rν(ω; .), |ν| = n} constitutes a basis of V ω
n , while the

family {rν(ω; .), |ν| = n} is a basis of Wω
n . The same statements hold for the systems

{Sν} and {sν} .

Proof. Part (1) follows from Lemma 3.1.7 with c = −1/4 and a =
√
ω . Part (2) is an immediate

consequence of formula (3.14), together with the density of ΠN in L2(RN , dmω
k ) . Part (3) is

obvious.

The orthonormal case gives rise to a separate notation:

3.2.5 Definition. If {ϕν} is a homogeneous orthonormal system with respect to [ . , . ]k , then
the associated generalized Hermite polynomials and Hermite functions are defined by

Hν(ω;x) :=
√

2ω
|ν|
e−∆k/4ωϕν(x) and hν(ω;x) := dωk e

−ω|x|2/2Hν(ω;x), ν ∈ ZN+ .

By construction, the Hermite polynomials {Hν(ω; .), ν ∈ ZN+} and the Hermite functions
{hν(ω; .), ν ∈ ZN+} form orthonormal bases of L2(RN , dmω

k ) and of L2(RN , wk) respectively.
As a consequence of Lemma 3.2.4 (3), biorthogonal and generalized Hermite systems satisfy

second order differential-difference equations according to Theorem 3.1.3 as well as Rodrigues
formulas according to Theorem 3.1.8. Moreover, they constitute bases of eigenfunctions for the
Dunkl transform. We recapitulate these properties here only for the special case of generalized
Hermite systems; for biorthogonal systems they are completely analogous.

3.2.6 Proposition. The generalized Hermite polynomials {Hν(ω; .)} and Hermite functions
{hν(ω; .)} associated with the basis {ϕν} have the following properties:

(1) The Hν(ω; .), ν ∈ ZN+ are a basis of eigenfunctions of −∆k + 2ωρ in L2(RN , dmω
k ) , with

(−∆k + 2ωρ)Hν(ω; .) = 2|ν|ω ·Hν(ω; .).

(2) The hν(ω; .), ν ∈ ZN+ are a basis of eigenfunctions of −∆k +ω2|x|2 in L2(RN , wk) , with

(−∆k + ω2|x|2)hν(ω; .) = (2|ν|+ 2γ +N)ω · hν(ω; .).

Moreover, the functions hν(1; .) are a basis of eigenfunctions for the Dunkl transform in
L2(RN , wk), satisfying hν(1; .)∧k = (−i)|ν|hν(1; .) .
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(3) (Rodrigues formulas)

Hν(ω;x) =
( −1√

2ω

)|ν|
eω|x|

2
ϕν(T ) e−ω|x|

2
; hν(ω;x) =

dωk√
ω
|ν| ϕν(A+) e−ω|x|

2/2.

Notice that in view of (3.13), the Rodrigues formula for the generalized Hermite polynomials
can also be written as

Hν(ω;x) = (2ω)−|ν|/2 ϕν(2ωx− T )(1). (3.16)

We continue with some examples:

3.2.7 Examples. (1) Classical multivariable Hermite polynomials. Let k = 0 , and choose the
standard orthonormal system ϕν(x) = (ν!)−1/2xν , with respect to [ . , . ]0 . The associated
Hermite polynomials are given by

Hν(ω;x) =

√
2ω
|ν|

√
ν!

N∏
i=1

e−∂
2
i /4ω(xνii ) =

2−|ν|/2√
ν!

N∏
i=1

Ĥνi(
√
ω xi), (3.17)

where the Ĥn, n ∈ Z+ are the classical Hermite polynomials on R defined by

Ĥn(x) = (−1)n ex
2 dn

dxn
e−x

2
.

(2) The natural biorthogonal systems associated with G and k . These are the systems
{R0

ν(ω; .)} and {S0
ν(ω; .)} which are obtained for the special choice

ϕ0
ν(x) := (ν!)−1/2Vk(x

ν), ψ0
ν(x) := (ν!)−1/2xν .

The systems {R0
ν(ω; .)} and {S0

ν(ω; .)} have been studied in [R-V1], [R-V2], where they
have been called generalized Appell systems. Notice that

R0
ν(ω; .) = Vk(Hν(ω; .))

with the classical Hermite polynomials Hν(ω; .) from (3.17). The intertwining property
of Vk now implies that

TjR
0
ν+ej (ω;x) =

√
2ω(νj + 1) ·R0

ν(ω;x); (j = 1, . . . , N).

Finally, the A+
j are creation operators in the literal sense for the natural eigenstates s0

ν

of Hk :

s0
ν(ω;x) = dωk ω

−|ν|/2 · (A+)ν√
ν!

e−ω|x|
2/2 = ω−|ν|/2 · (A+)ν√

ν!
s0

0(ω;x).

In case G = SN , complete symmetrization and anti-symmetrization of these states gives
the bosonic and fermionic eigenstates for the N -body Calogero Hamiltonian which were
constructed in [BHV].
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(3) The one-dimensional case (G = Z2 on R , multiplicity parameter k ≥ 0). Recall that up
to sign changes, there exists only one homogeneous orthonormal system with respect to
[ ., . ]k . The associated Hermite polynomials are given, up to multiplicative constants, by
the generalized Hermite polynomials Hk

n(
√
ωx) on R . These polynomials can be found

e.g. in [Chi] and were further studied in [Ros] in connection with a Bose-like oscillator
calculus. The Hk

n are orthogonal with respect to |x|2ke−|x|2 and can be written asHk
2n(x) = (−1)n22nn!L

k−1/2
n (x2),

Hk
2n+1(x) = (−1)n22n+1n!xL

k+1/2
n (x2);

here the Lαn are the Laguerre polynomials of index α ≥ −1/2 , given by

Lαn(x) =
1

n!
x−αex

dn

dxn

(
xn+αe−x

)
.

All biorthogonal systems coincide, up to multiplicative constants, with the Hermite sys-
tems Hk

n(
√
ωx) .

The following further examples concern generalized Hermite polynomials of type AN−1 and
BN . They show that our concept of generalized Hermite polynomials includes in particular the
generalized Hermite and Laguerre systems of Baker and Forrester [B-F2], [B-F3].

3.2.8 Examples. (1) The AN−1 -case. We again assume that the multiplicity parameter k is
positive. To stress the dependence on the symmetric group, we use the notation TSi and
∆S (for the generalized Laplacian), as well as [ . , . ]S for Dunkl’s bilinear form. In [B-F2],
Baker and Forrester study “non-symmetric generalized Hermite polynomials” E(H)

ν , which
they define as the unique eigenfunctions of ∆S − 2ρ of the form

E(H)
ν = Eν +

∑
|µ|<|ν|

cµ, νEµ (cµ,ν ∈ R).

Here the Eν , ν ∈ ZN+ are the non-symmetric Jack polynomials (associated with SN and
k ) as defined in Example 3.2.2 (3). Remark 3.1.4 now implies that E

(H)
ν = e−∆S/4Eν .

Therefore the E(H)
ν , up to some normalization factors, make up a system of generalized

Hermite polynomials for SN in our sense, with parameter ω = 1 .

(2) A remark on the BN -case. Suppose that R is a root system of type BN , and k = (k0, k1)

a nonnegative multiplicity function on it. The associated Dunkl operators and Dunkl
Laplacian are denoted by TBi and ∆B , cf. Examples 1.1.5 (3). We consider the space

W := {f ∈ C1(RN ) : f(x) = F (x2) for some F ∈ C1(RN )}

of “completely even” C1 -functions; here x2 = (x2
1, . . . , x

2
N ). The restriction of ∆B to W
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is given by

∆B|W = ∆ + 2k1

N∑
i=1

1

xi
∂i + 2k0

∑
i<j

( 1

xi − xj
(
∂i − ∂j

)
+

1

xi + xj

(
∂i + ∂j

))
− 2k0

∑
i<j

( 1

(xi − xj)2
+

1

(xi + xj)2

)(
1− sσij

)
.

It is easily checked that for completely even f , ∆Bf is also completely even. The operator
(∆B − 2ρ)|W is also of CMS-type. Its completely even polynomial eigenfunctions are
discussed in [B-F2] and [B-F3] separately from the Hermite-case; they are called “non-
symmetric Laguerre polynomials” and denoted by E

(L)
ν (x2). It is easy to see that they

make up the completely even subsystem of a suitably chosen generalized Hermite system
{Hν(1; .)} for BN associated with (k0, k1), where we assume k0 > 0 .

To this end, let again Eν denote the SN -type non-symmetric Jack polynomials, corre-
sponding to the multiplicity parameter k0 . For ν ∈ ZN+ set Êν(x) := Eν(x2). These
modified Jack polynomials form a homogeneous basis of ΠN ∩W . The non-symmetric
Laguerre polynomials of Baker and Forrester can be written as

E(L)
ν (x2) = e−∆B/4Êν(x) .

(Notice that the polynomials on the right-hand side are in fact completely even and
eigenfunctions of ∆B − 2ρ , according to Theorem 3.1.3). Involving again the SN -type
Cherednik operators (3.15), it is easily checked that the Êν are orthogonal with respect
to Dunkl’s pairing [. , .]B . In fact, the ξi induce operators ξ̂i (i = 1, . . . , N) on W by

ξ̂i f(x) := (ξiF )(x2) if f(x) = F (x2),

c.f. [B-F3]. Thus ξ̂i Êν = νi Êν , with the same eigenvalues νi as in Example 3.2.2 (3).
A short calculation gives

ξ̂i f(x) =
1

k0
x2
i (T

S
i F )(x2) +

(
1−N +

∑
j>i

σij
)
F (x2)

=
( 1

2k0
xiT

B
i + 1−N +

∑
j>i

σij

)
f(x).

Employing Lemma 1.2.4 again, we obtain that the ξ̂i are symmetric with respect to [. , .]B

on ΠN ∩W. This yields our assertion by the same argument as in the previous example.
We therefore obtain a homogeneous orthonormal system {ϕν} with respect to [. , .]B

by setting ϕν := dνÊη for ν = (2η1, . . . , 2ηN ) (with suitable normalization constants
dν > 0), and completing the set {ϕν , ν ∈ (2Z+)N} by a Gram-Schmidt procedure.

We continue by a simple but useful representation of the Dunkl kernel Ek and its homo-
geneous parts Ek,n in terms of a given dual system {ϕν , ψν} . It is the foundation for several
further properties of our (bi-)orthogonal systems, which generalize results from [B-F2], [B-F3]
and [Ros] obtained for special cases.



58 CHAPTER 3. GENERALIZED HERMITE POLYNOMIALS

3.2.9 Lemma. (i) If {ϕν , ψν} is a homogeneous dual system with respect to [. , .]k , then

Ek,n(x, y) =
∑
|ν|=n

ϕν(x)ψν(y) for all n ∈ Z+ , x, y ∈ CN .

(ii) If {ϕν} is orthonormal with respect to [ . , . ]k , then

Ek(x, y) =
∑
ν∈ZN+

ϕν(x)ϕν(y) for all x, y ∈ CN ,

where the convergence is normal on CN × CN .

Proof. For (i), it suffices to consider the case x, y ∈ RN . As a function of x , the polynomial
Ek,n(x, y) is homogeneous of degree n . Hence we have

Ek,n(x, y) =
∑
|ν|=n

cν, y ϕν(x) with cν,y = [Ek,n(. , y), ψν ]k .

Repeated application of formula (1.24) for Ek,n gives

cν,y = ψν(T )Ek,n( ., y) = ψν(y)Ek,0( ., y) = ψν(y).

This shows (i). To prove (ii), note first that ϕν(x) = ϕν(x) for all ν . We can therefore estimate

∑
|ν|=n

|ϕν(x)ϕν(y)| ≤
(∑
|ν|=n

|ϕν(x)|2
)1/2

·
(∑
|ν|=n

|ϕν(y)|2
)1/2

= Ek,n(x, x)1/2 · Ek,n(y, y)1/2 ≤ |x|
n|y|n

n!
,

where for the last step, inequality (1.25) was used. This implies the assertion.

We mention the following interesting consequence for the Dunkl kernel:

3.2.10 Corollary. The Dunkl kernel associated with G and k ≥ 0 satisfies

Ek(x, y) ≤
√
Ek(x, x)Ek(y, y) for all x, y ∈ RN .

In particular, Ek(x, x) ≥ 1 for all x ∈ RN .

Proof. Let {ϕν} be an arbitrary homogeneous orthonormal system with respect to [ . , .]k , and
recall that the polynomials ϕν are real-valued on RN . The first statement is therefore obtained
by applying the Cauchy-Schwarz inequality in representation (ii) of Lemma 3.2.9; the second
one then follows by setting y = 0.

As a further consequence of Lemma 3.2.9, biorthogonal systems on RN can be obtained
from a common generating function, which generalizes the well-known generating function of
the classical multivariate Hermite polynomials in a canonical way.
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3.2.11 Proposition. Suppose that {Rν(ω; .)} and {Sν(ω; .)} are biorthogonal systems on RN

corresponding to the homogeneous dual system {ϕν , ψν} with respect to [. , . ]k . Then for all
x, y ∈ CN ,

e−〈y,y〉/2Ek(
√

2ω x, y) =
∞∑
n=0

∑
|ν|=n

Rν(ω;x)ψν(y) =
∞∑
n=0

∑
|ν|=n

Sν(ω;x)ϕν(y).

Both series
∑∞

n=0 converge normally on CN × CN .

Proof. It suffices to prove the first identity; moreover, by Lemma 3.2.4 (1), we may restrict
ourselves to the case ω = 1/2 . For this, put Ln(x, y) :=

∑
|ν|=nRν(1/2;x)ψν(y) , and suppose

first that x, y ∈ RN . By definition of the Rν and in view of formula (1.24) for Ek,n we may
write

Ln(x, y) = e−∆x
k/2Ek,n(x, y) =

bn/2c∑
j=0

(−1)j

2jj!
〈y, y〉j Ek,n−2j(x, y).

By analytic continuation, this holds for all x, y ∈ CN as well. Using (1.25), one further obtains

Sn(x, y) :=

bn/2c∑
j=0

1

2j j!
|y|2j |Ek, n−2j(x, y)| ≤

bn/2c∑
j=0

|y|2j

2j j!
· |x|

n−2j |y|n−2j

(n− 2j)!
.

If n is even, set m := n/2 and estimate further as follows:

Sn(x, y) ≤ |y|
2m

2mm!

m∑
j=0

(
m

j

)
|x|2(m−j) =

1

m!

( |y|2
2

(1 + |x|2)
)m

.

A similar estimate holds if n is odd. This entails the normal convergence of the series
∑∞

n=0 Ln(x, y)

on CN × CN , and also that
∞∑
n=0

Ln(x, y) =

∞∑
n=0

∞∑
j=0

(−1)j

2j j!
〈y, y〉jEk, n−2j(x, y) (with Ek,l := 0 for l < 0)

=
∞∑
j=0

(−1)j

2j j!
〈y, y〉j

∞∑
n=0

Ek, n−2j(x, y) = e−〈y,y〉/2Ek(x, y)

for all x, y ∈ CN .

We conclude this section by a Mehler formula for biorthogonal systems. For this, we need the
following integral representation.

3.2.12 Lemma. Let p ∈ PNn . Then for all x, y ∈ RN ,

e−|x|
2/2 e−∆k/2p(x) =

∫
RN

Ek(x,−iy) p(iy) dm
1/2
k (y).

Proof. Put q := e−∆k/2p . Lemma 3.1.7 with a = −i and c = −1/2 shows that e∆k/2p(x) =

inq(−ix), hence p = (−i)n e−∆k/2q∗ with q∗(x) = q(ix). Employing Proposition 1.4.3(2), we
thus obtain∫

RN
Ek(x,−iy) p(iy) dm

1/2
k (y) =

∫
RN

Ek(y,−ix)
(
e−∆k/2q∗

)
(y) dm

1/2
k (y) = e−|x|

2/2 q∗(−ix),

which yields the stated identity.
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3.2.13 Theorem. (Mehler-formula for biorthogonal systems). Suppose that {Rν(ω; .)} and
{Sν(ω; .)} are biorthogonal polynomial systems associated with G and k . Then for r ∈ C with
|r| < 1 and all x, y ∈ RN ,

∞∑
n=0

∑
|ν|=n

Rν(ω;x)Sν(ω; y) r|ν| =
1

(1− r2) γ+N/2
exp

{
−ωr

2(|x|2 + |y|2)

1− r2

}
Ek

( 2ωrx

1− r2
, y
)
.

Proof. We may again assume that ω = 1/2. Consider the integral

Mk(x, y, r) :=

∫
RN×RN

Ek(−rz, v)Ek(−iz, x)Ek(−iv, y) d(m
1/2
k ⊗m1/2

k )(z, v).

The bounds of Corollary 2.4.5 on Ek assure that it converges for all r ∈ C with |r| < 1 and all
x, y ∈ RN . Now write Ek(−rz, v) =

∑∞
n=0 r

nEk,n(iz, iv) for the above integral, and remember
the representation of the Ek,n in terms of the underlying homogeneous system {ϕν , ψν} . Since

∞∑
n=0

rn|Ek,n(iz, iv)| ≤ e|r||z||v|

(by (1.25)), the dominated convergence theorem yields that

Mk(x, y, r) =

∞∑
n=0

rn
∫
RN

∫
RN

Ek,n(iz, iv)Ek(−iz, x)Ek(−iv, y) dm
1/2
k (z) dm

1/2
k (v)

=
∞∑
n=0

rn
∑
|ν|=n

(∫
RN

Ek(−iz, x)ϕν(iz) dm
1/2
k (z)

)(∫
RN

Ek(−iv, y)ψν(iv) dm
1/2
k (v)

)
;

From the above lemma we thus obtain

Mk(x, y, r) = e−(|x|2+|y|2)/2
∞∑
n=0

rn
∑
|ν|=n

Rν(1/2;x)Sν(1/2; y). (3.18)

On the other hand, iterated integration and repeated application of Theorem 1.3.4(3) and the
reproducing formula Prop. 1.4.3(2) show that for real r with |r| < 1 ,

Mk(x, y, r) = c−1
k

∫
RN

(∫
RN

Ek(−rz, v)Ek(−iy, v) dm
1/2
k (v)

)
Ek(−iz, x)e−|z|

2/2wk(z)dz

= c−1
k e−|y|

2/2

∫
RN

e(r2−1)|z|2/2Ek(iry, z)Ek(−ix, z)wk(z) dz

= c−1
k (1− r2)−(γ+N/2)e−|y|

2/2

∫
RN

e−|u|
2/2Ek

(
u ,

iry√
1− r2

)
Ek

(
u ,

−ix√
1− r2

)
wk(u) du

= (1− r2)−(γ+N/2) exp

{
−|x|

2 + |y|2

2(1− r2)

}
Ek

( rx

1− r2
, y
)
.

By analytic continuation, this holds for {r ∈ C : |r| < 1} as well. Together with (3.18), this
finishes the proof.

3.2.14 Corollary. Let {Hν(ω; .)} be a generalized Hermite system associated with G and k .
Then∑
ν∈ZN+

Hν(ω;x)Hν(ω; y) r|ν| =
1

(1− r2) γ+N/2
exp

{
−ωr

2(|x|2 + |y|2)

1− r2

}
Ek

( 2ωrx

1− r2
, y
)
, (3.19)

the sum on the left hand side being absolutely convergent for all x, y ∈ RN and 0 < r < 1.
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3.3 An uncertainty principle for the Dunkl transform

In his paper [dJ2], de Jeu proved a quite general uncertainty principle for integral operators
with bounded kernel which applies to the Dunkl transform; this result has the form of an ε− δ -
concentration principle as first stated in [D-S] for the Fourier transform. However, analogues of
the classical variance-based Weyl-Heisenberg uncertainty principle for the Dunkl transform have
up to now only been given in the one-dimensional case ([R-V3] and [Roo]). Here we present an
extension to general Dunkl transforms in arbitrary dimensions. Our main result is the following
generalization of the classical Heisenberg-Weyl uncertainty principle:

3.3.1 Theorem. Let f ∈ L2(RN , wk). Then

‖ |x|f‖2,wk · ‖ |ξ|f̂
k‖2,wk ≥ (γ +N/2) · ‖f‖2,wk . (3.20)

Moreover, equality holds if and only if f(x) = c e−d|x|
2 for some constants c ∈ C and d > 0.

If the multiplicity function k is identically 0 , then the above result reduces to the classical
Weyl-Heisenberg inequality on L2(RN ) .

Our proof of Theorem 3.3.1 is based on expansions in terms of generalized Hermite functions.
This generalizes a well-known method for the (one-dimensional) classical situation, see e.g. [dBr].
Essentially the same method was used in [Roo], where the result of Theorem 3.3.1 was proven for
the one-dimensional case. The additional effort in the general Dunkl setting is only of technical
nature, but it requires a zero-centered situation. This is a certain restriction, which cannot
easily be removed in the general case. In the one-dimensional case, an uncentered version was
proven in [R-V3]. It is based on commutator methods which become difficult to handle in
higher dimensions, as a consequence of the involved reflection terms, c.f. Lemma (3.1.6). For
comparison with Theorem 3.3.1, we briefly recapitulate the result from [R-V3]:

Let G = Z2 on R and k a nonnegative multiplicity parameter on its root system. Let further
Q be the multiplication operator on L2(R, wk) defined by Qf(x) := xf(x) , with domain

D(Q) = {f ∈ L2(R, wk) : xf ∈ L2(R, wk)}.

For f ∈ D(Q) with ‖f‖2,wk = 1 the k -variance of f is defined by

vark(f) := ‖(x− 〈xf, f〉k)f‖22,wk ,

with 〈 ., .〉k denoting the scalar product in L2(R, wk) . Put further

fe(x) =
1

2

(
f(x) + f(−x)

)
, fo(x) =

1

2

(
f(x)− f(−x)

)
.

Then we have

3.3.2 Theorem. ([R-V3]) Let f ∈ D(Q) with f̂k ∈ D(Q) and ‖f‖2,wk = 1. Then

vark(f) · vark(f̂ k) ≥
(
k
(
‖fe‖22,wk − ‖fo‖

2
2,wk

)
+

1

2

)2
. (3.21)

Moreover, equality holds if and only if f has the form f(x) = de−cx
2 ·EZ2

k (ib, x) , where c > 0,

b ∈ C and d > 0 is a suitable normalization constant.
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Notice that this result coincides with the one of Theorem 3.3.1 only for even functions, and
that the lower bound in (3.21) is not uniform.

For the proof of Theorem 3.3.1, we fix an arbitrary system {Hν , ν ∈ ZN+} of generalized
Hermite polynomials associated with G and k ≥ 0 according to Definition 3.2.5, with frequency
parameter ω = 1 . Let further {hν , ν ∈ ZN+} be the associated system of generalized Hermite
functions. Recall from Proposition 3.2.6 that the hν , ν ∈ ZN+ , form an orthonormal basis of
eigenfunctions for the Dunkl transform in L2(RN , wk) , with

ĥ kν = (−i)|ν|hν . (3.22)

Moreover, they satisfy the differential-reflection equation

(
−∆k + |x|2

)
hν = (2|ν|+ 2γ +N)hν . (3.23)

Since Hν is a polynomial of degree |ν| with real coefficients, we have (3N-term) recurrencies of
the following form: For ν ∈ ZN+ , let Iν = {µ ∈ ZN+ : ||µ| − |ν|| ≤ 1}. Then

xjHν =
∑
µ∈Iν

c jν, µHµ and xjhν =
∑
µ∈Iν

c jν, µhµ for j = 1, . . . , N, (3.24)

with coefficients c jν, µ ∈ R . We shall also need the dual counterparts of these recurrences:

3.3.3 Lemma.

Tjhν =
∑
µ∈Iν

i1−|ν|+|µ| c jν, µ hµ (j = 1, . . . , N, ν ∈ ZN+ .) (3.25)

Proof. By (3.22) and Prop. 1.4.6 (2), we have

xjhν = i|ν|xj ĥ
k
ν = i|ν|−1(Tjhν)∧k .

On the other hand, it follows from (3.24) that

xjhν =
∑
µ∈Iν

c jν, µhµ =
∑
µ∈Iν

c jν, µi
|µ| ĥkµ.

The assertion now follows form the injectivity of the Dunkl transform.

We write 〈 ., .〉k for the scalar product in L2(RN , wk) . The main part in the proof of
Theorem 3.3.1 is the following Parseval-type identity.

3.3.4 Lemma. Let f ∈ L2(RN , wk). Then∫
RN
|x|2
(
|f(x)|2 + |f̂ k(x)|2

)
wk(x) dx =

∑
ν∈ZN+

(2|ν|+ 2γ +N) ·
∣∣〈f, hν〉k∣∣2 .
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Proof. Fix j ∈ {1, . . . , N}. Since the hν form an orthonormal basis of L2(RN , wk) , we can
write ∫

RN
|xj |2|f(x)|2wk(x)dx =

∑
ν∈ZN+

∣∣〈xjf, hν〉k∣∣2 =
∑
ν∈ZN+

∣∣〈f, xjhν〉k∣∣2 .
By use of (3.24), this becomes∑

ν∈ZN+

∑
µ, ρ∈Iν

c jν, µc
j
ν, ρ ·

〈
f, hµ〉k 〈f, hρ

〉
k

=
∑

µ, ρ∈ZN+

( ∑
ν∈Iµ∩Iρ

c jν, µc
j
ν, ρ

)〈
f, hµ

〉
k

〈
f, hρ

〉
k
.

Here the last equality is justified by the facts that the involved index sets Iν are finite, and
that µ ∈ Iν ⇐⇒ ν ∈ Iµ holds for all ν, µ ∈ ZN+ . Exploiting (3.24), Prop. 1.4.6(2) and the
Parseval identity for the Dunkl transform, one further obtains∫
RN
|xj |2|f̂ k(x)|2wk(x)dx =

∑
ν∈ZN+

∣∣〈xj f̂ k, hν〉k∣∣2 =
∑
ν∈ZN+

∣∣〈f̂ k, xj ĥ kν 〉k∣∣2 =
∑
ν∈ZN+

∣∣〈f, Tjhν〉k∣∣2 .
With the recurrency (3.25), this becomes∑

ν∈ZN+

∑
µ, ρ∈Iν

i|ν|−|µ|−1c jν, µ · i1−|ν|+|ρ| c jν, ρ ·
〈
f, hµ〉k 〈f, hρ

〉
k

=
∑

µ, ρ∈ZN+

( ∑
ν∈Iµ∩Iρ

c jν, µc
j
ν, ρ

)
i|ρ|−|µ| ·

〈
f, hµ

〉
k

〈
f, hρ

〉
k
.

Thus we arrive at∫
RN
|x|2
(∣∣f(x)

∣∣2 +
∣∣f̂ k(x)

∣∣2)wk(x) dx =
∑

µ, ρ∈ZN+

Aµ, ρ
〈
f, hµ

〉〈
f, hρ

〉
, (3.26)

where

Aµ, ρ =
(
1 + i|ρ|−|µ|

)
·
N∑
j=1

∑
ν∈Iµ∩Iρ

c jν, µc
j
ν, ρ .

On the other hand, a short calculation, using (3.24) and (3.25), shows that

(
|x|2 −∆k

)
hν =

N∑
j=1

∑
µ∈Iν

∑
ρ∈Iµ

c jν, µc
j
µ, ρ

(
1 + i|ρ|−|ν|

)
hρ =

∑
ρ∈ZN+

Aν, ρ hρ , (3.27)

where for the last identity, the fact was used that the coefficients c jν, µ are symmetric in their
subscripts:

c jν, µ =

∫
RN

xjhν(x)hµ(x)wk(x)dx = c jµ,ν .

But by equation (3.23), the left-hand side of (3.27) is equal to (2|ν|+ 2γ +N)hν . The linear
independence of the hν now implies that

Aν, ρ =

 0 if ρ 6= ν,

2|ν|+ 2γ +N if ρ = ν.

Together with (3.26), this yields the assertion.
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Since h0 is a constant multiple of e−|x|2/2 , we obtain as an immediate consequence the
following

3.3.5 Corollary. For f ∈ L2(RN , wk) ,∫
RN
|x|2
(
|f(x)|2 + |f̂ k(x)|2

)
wk(x) dx ≥ (2γ +N) · ‖f‖22,wk .

Moreover, equality holds if and only if f(x) = c e−|x|
2/2 with some constant c ∈ C .

Proof of Theorem 3.3.1. We may assume that ‖f‖2,wk = 1 . For s > 0 define fs(x) :=

s−γ−N/2f
(
x
s

)
. Short calculations, having in mind that wk is homogeneous of degree 2γ , show

that
‖fs‖2,wk = 1 and f̂ ks (ξ) = sγ+N/2 · f̂ k(sξ) for all s > 0 and ξ ∈ RN .

The above corollary implies that

Φf (s) :=

∫
RN
|x|2
(
|fs(x)|2 + |f̂ ks (x)|2

)
wk(x) dx ≥ 2γ +N .

On the other hand, we can write

Φf (s) = s2 · ‖ |x|f‖22,wk +
1

s2
· ‖ |x|f̂ k ‖22,wk .

It is easily checked that s 7→ Φf (s) attains a minimum on ]0,∞[ , namely

2 · ‖ |x|f‖2,wk · ‖ |x|f̂
k‖2,wk .

This implies (3.20). Further, equality in (3.20) holds if and only if mins∈ (0,∞) Φf (s) = 2γ+N .

By the second part of the corollary, this condition is satisfied if and only if f(x) = c e−s
2|x|2/2

with some constants c ∈ C and s > 0 . This finishes the proof.



Chapter 4

Heat kernels for finite reflection groups

The positivity of the Dunkl kernel Ek(x, y) for real arguments, due to our main theorem in
Chapter 2, is the cornerstone for the investigations of this final Chapter. In its first section,
we introduce generalized heat kernels for Dunkl operators and construct various classes of
semigroups by them, following well-known classical concepts. The most important semigroup in
this context will be the generalized heat semigroup, which in particular leads to a solution of the
Cauchy problem for the Dunkl-type heat operator ∆k−∂t on (0,∞)×RN , with initial data in
Cb(RN ). To obtain uniqueness results, Section 4.2 provides analogues of the maximum principles
for the classical heat operator in bounded and unbounded domains; of course, if unbounded,
the underlying domain has to be group-invariant in our setting. In Section 4.3, several related
semigroups are constructed, such as a variant of the classical Cauchy semigroup, which can be
constructed from the heat semigroup via subordination, generalized oscillator semigroups, and
the unitary semigroup of the time-dependent, Dunkl-type Schrödinger equation in L2(RN , wk) .
The last section is devoted to a study of the short-time asymptotic behaviour of the generalized
heat kernel.

As before, G is a finite reflection group on RN , with root system R and a non-negative
multiplicity function k on R . Moreover, γ :=

∑
α∈R+

k(α).

4.1 Heat semigroups

This section deals with strongly continuous one-parameter semigroups related to Dunkl’s Lapla-
cian ∆k and with associated Cauchy problems. The basic semigroups under consideration are
those which are generated by ∆k (more precisely, by its closure) on several function spaces,
including L2(RN , wk) and (C0(RN ), ‖ . ‖∞). These semigroups are positivity-preserving con-
traction semigroups; in fact, they are governed by an integral kernel which can be considered as
a natural generalization of the classical Gaussian heat kernel; it is nonnegative as a consequence
of our positivity result for Dunkl’s intertwining operator. We start with an explicit construction
of this generalized heat kernel.

65
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4.1.1 Lemma. For parameters a ≥ 0 and b ∈ R \ {0} , the function

u(t, x) =
1

(a− bt)γ+N/2
exp

{
b|x|2

4(a− bt)

}
solves the generalized heat equation ∆ku = ∂tu on (−∞, a/b) × RN in case b > 0 , and on
(a/b,∞)× RN in case b < 0 .

Proof. It is easily checked that
∑N

i=1 Tixi = N +2γ . Together with the product rule (1.5), this
shows that for each λ ∈ C ,

∆k

(
eλ|x|

2)
=

N∑
i=1

Ti
(
2λxi e

λ|x|2) = 2λ (N + 2γ + 2λ|x|2) eλ|x|
2
. (4.1)

From this the assertion is obtained by a short calculation.

In particular, the function

Fk(t, x) =
Mk

t γ+N/2
e−|x|

2/4t , with Mk :=
1

2γ+N/2 ck
,

is a solution of the heat equation ∆ku−∂tu = 0 on (0,∞)×RN . It generalizes the fundamental
solution for the classical heat equation ∆u− ∂tu = 0 , which is given by

F0(t, x) = (4πt)−N/2e−|x|
2/4t .

The normalization constant Mk is chosen such that∫
RN

Fk(t, x)wk(x)dx = 1 for all t > 0. (4.2)

In the classical case, the free heat kernel on RN is obtained from F0 simply by translations.
This corresponds to the fact that the solution of “Cauchy problems” for the classical heat
operator, with suitable decay of the given initial data, is obtained from the initial data by
convolution with the fundamental solution. In the Dunkl setting, we may replace the classical
convolution on RN by the weak generalized translation on the Schwartz space S (RN ) as
introduced in (1.27). For this, we use the reproducing formula of Proposition 1.4.3(2) and
conclude that

F̂ k
k (t, ξ) =

1

ck
e−t|ξ|

2
. (4.3)

Applying the quoted reproducing formula again, we obtain from the generalized translation
(1.27) the representation

L−yk Fk(t, x) =
Mk

tγ+N/2
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
. (4.4)

This motivates the following

4.1.2 Definition. The generalized heat kernel Γk is given by

Γk(t, x, y) :=
Mk

tγ+N/2
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
, x, y ∈ RN , t > 0.
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Notice in particular that y 7→ Γk(t, x, y) belongs to S (RN ) for fixed t > 0, x ∈ RN . We collect
a series of further fundamental properties of this kernel.

4.1.3 Lemma. The heat kernel Γk has the following properties on (0,∞)× RN × RN :

(1) Γk(t, x, y) = c−2
k

∫
RN

e−t|ξ|
2
Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ .

(2)
∫
RN

Γk(t, x, y)wk(y)dy = 1.

(3)
Mk

tγ+N/2
min
g∈G

e−|gx−y|
2/4t ≤ Γk(t, x, y) ≤ Mk

tγ+N/2
max
g∈G

e−|gx−y|
2/4t .

(4) Γk(t+ s, x, y) =

∫
RN

Γk(t, x, z) Γk(s, y, z)wk(z)dz.

(5) For fixed y ∈ RN , the function u(t, x) := Γk(t, x, y) solves the generalized heat equation
∆ku = ∂tu on (0,∞)× RN .

Proof. (1) is clear from (4.3) and the definition of Γk , and (2) follows from (4.2) together with
Proposition 1.5.2 (4). The estimates (3) are an immediate consequence of Corollary 2.4.5. For
the proof of (4), use (1) and Fubini’s theorem to obtain∫

RN
Γk(t, x, z) Γk(s, y, z)wk(z)dz

= c−2
k

∫
RN

∫
RN

e−t|ξ|
2
Ek(ix, ξ)Ek(−iz, ξ) Γk(s, y, z)wk(z)wk(ξ)dz dξ

= c−1
k

∫
RN

e−t|ξ|
2
Ek(ix, ξ)Γk(s, y, .)

∧k(ξ)wk(ξ)dξ

= c−2
k

∫
RN

e−(s+t)|ξ|2Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ = Γk(t+ s, x, y).

Finally, for (5) remember that ∆x
k Ek(ix, ξ) = −|ξ|2Ek(ix, ξ). Hence the assertion follows at

once from representation (1) by interchanging differentiation and integration. This is justified
by the decay properties of the integrand and its derivatives in question (see Corollary 2.4.5).

4.1.4 Remark. In the one-dimensional case, the generalized heat kernel was already introduced
in [Ros]. In the general case, but only for integer-valued multiplicities, Berest and Molchanov
[B-M] constructed the heat kernel for the G-invariant part of ∆k (in a conjugated version) by
shift-operator techniques.

4.1.5 Definition. For f ∈ Lp(RN , wk) (1 ≤ p ≤ ∞) and t ≥ 0 set

Hk(t)f(x) :=


∫
RN

Γk(t, x, y)f(y)wk(y)dy if t > 0,

f(x) if t = 0

(4.5)

Notice that the decay properties of Γk assure that the integral defining Hk(t)f(x) converges
for all t > 0, x ∈ RN . The properties of the operators Hk(t) are most easily described on the
Schwartz space S (RN ) :
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4.1.6 Theorem. Let f ∈ S (RN ) . Then u(t, x) := Hk(t)f(x) belongs to Cb([0,∞)× RN ) ∩
C2((0,∞)× RN ) and solves the Cauchy problem(∆k − ∂t)u = 0 on (0,∞)× RN ,

u(0, .) = f.
(4.6)

Moreover, Hk(t)f has the following properties:

(1) Hk(t)f ∈ S (RN ) for all t > 0.

(2) Hk(t+ s) f = Hk(t)Hk(s)f for all s, t ≥ 0 .

(3) ‖Hk(t)f − f‖∞,RN → 0 with t→ 0 .

Proof. By use of Lemma 4.1.3 (1) and Fubini’s theorem, we write

u(t, x) =Hk(t)f(x)

= c−2
k

∫
RN

∫
RN

Ek(ix, ξ)Ek(−iy, ξ) e−t|ξ|
2
f(y)wk(ξ)wk(y) dξdy

= c−1
k

∫
RN

e−t|ξ|
2
f̂ k(ξ)Ek(ix, ξ)wk(ξ)dξ (t > 0). (4.7)

The invariance of S (RN ) under the Dunkl transform makes clear that (1) is satisfied. Moreover,
part (2) is an immediate consequence of the reproducing formula for Γk (Lemma 4.1.3 (4)). As
before, it is seen that differentiation may be interchanged with integration in (4.7), and that
∆ku = ∂tu on (0,∞) × RN . In view of the inversion theorem for the Dunkl transform, (4.7)
holds for t = 0 as well. Using the bound of Corollary 2.4.5 on Ek , we thus obtain the inequality

‖Hk(t)f − f‖∞,RN ≤ c−1
k

∫
RN
|f̂ k(ξ)|

(
1− e−t|ξ|2

)
wk(ξ)dξ,

and this integral tends to 0 as t → 0. This yields (3). In particular, it follows that u is
continuous and bounded on RN × [0,∞) .

4.1.7 Remark. The integral operators Hk(t), t ≥ 0, are well-defined also on ΠN . In fact,

Hk(t)p(x) = et∆kp(x) for all t ≥ 0, p ∈ ΠN . (4.8)

This follows from Proposition 1.4.3(1) in case t = 1/2 , and by use of the rescaling formula 3.1.7
in the general case. Thus for each p ∈ ΠN , the function u(t, x) = Hk(t)p(x) is a polynomial
solution of the heat equation ∆ku = ∂tu on (0,∞)× RN with u(0, .) = p .

4.1.8 Lemma. For every t > 0, Hk(t) defines a continuous linear operator on each of the
Banach spaces Lp(RN , wk) (1 ≤ p ≤ ∞), (Cb(RN ), ‖.‖∞) and (C0(RN ), ‖.‖∞) , with norm
‖Hk(t)‖ ≤ 1 .
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Proof. The estimates for the kernel Γk in Lemma 4.1.3(3) and its normalization ensure that
for every f ∈ L∞(RN , wk), we have H(t)f ∈ Cb(RN ) with ‖Hk(t)f‖∞ ≤ ‖f‖∞ . Moreover, if
f ∈ Lp(RN , wk), then Jensen’s inequality implies that

|Hk(t)f(x)|p ≤
∫
RN

Γk(t, x, y) |f(y)|pwk(y)dy,

and therefore ‖Hk(t)f‖p,wk ≤ ‖f‖p,wk . Finally, the invariance of C0(RN ) under Hk(t) follows
from part (1) of the previous theorem, together with the density of S (RN ) in C0(RN ) .

In the following, X is one of the Banach spaces Lp(RN , wk)(1 ≤ p <∞) or (C0(RN ), ‖.‖∞) .
We consider the Dunkl Laplacian ∆k as a linear operator in X with dense domain D(∆k) :=

S (RN ) .

4.1.9 Theorem. (1) (Hk(t))t≥0 is a strongly continuous, positivity-preserving contraction
semigroup on X .

(2) ∆k is closable, and its closure ∆k is the generator of the semigroup (Hk(t))t≥0 on X .

In view of this result, we call (Hk(t))t≥0 the generalized Gaussian or heat semigroup on X .

Proof. (1) Theorem 4.1.6(2), together with Lemma 4.1.8 and the density of S (RN ) in X,

ensures that (Hk(t))t≥0 forms a semigroup of continuous linear operators on X . Its positivity
is clear by the positivity of Γk . Moreover, in case of X = (C0(RN ), ‖ . ‖∞) , its strong continuity
follows from part (3) of Theorem 4.1.6. It remains to check strong continuity in the case
X = Lp(RN , wk), 1 ≤ p <∞ . In view of Lemma 4.1.8, and as Cc(RN ) is dense in Lp(RN , wk) ,
it suffices to show that limt↓0 ‖H(t)f − f‖p,wk = 0 for all f ∈ Cc(RN ) ; here we may further
assume that f ≥ 0 . We then obtain

‖Hk(t)f‖1,wk =

∫
RN

Hk(t)f(x)wk(x)dx =

∫
RN

f(x)wk(x)dx = ‖f‖1,wk for t > 0.

Since limt↓0 ‖Hk(t)f − f‖∞ = 0 , a well-known convergence criterion (see for instance [H-St])
implies that limt↓0 ‖Hk(t)f − f‖1,wk = 0. The estimate

‖Hk(t)f − f‖pp,wk ≤ ‖Hk(t)f − f‖1,wk · ‖Hk(t)f − f‖p−1
∞,wk

then entails that limt↓0 ‖Hk(t)f − f‖p,wk = 0 as well.
(2) The proof is similar as in the classical case. Let A be the generator of the semigroup
(Hk(t))t≥0 on X , and let f ∈ S (RN ) . Then by Theorem 4.1.6(1), Hk(t)f ∈ S (RN ) for all
t > 0 , and application of the Dunkl transform yields[1

t

(
Hk(t)− id

)
f
]∧k

(ξ) =
1

t

(
e−t|ξ|

2 − 1
)
f̂ k(ξ).

It is easily checked that as t ↓ 0, this tends to −|ξ|2f̂ k(ξ) in the topology of S (RN ) . The
Dunkl transform being a homeomorphism of S (RN ) , we therefore obtain

lim
t↓0

1

t

(
Hk(t)− id )f = (−|ξ|2f̂ k)∨k = ∆kf
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in the topology of S (RN ) , and therefore in ‖ . ‖p,wk as well. It follows that f belongs to the
domain D(A) of A . Thus S (RN ) ⊂ D(A) , and A|S (RN ) = ∆k . Moreover, S (RN ) is dense
in X and invariant under (Hk(t))t≥0 . A well-known characterization of cores for the generators
of strongly continuous semigroups (see, for instance, Theorem 1.9 of [Da1]) now implies that
S (RN ) is a core of A . This finishes the proof.

The above theorem says in particular that (Hk(t))t≥0 is a symmetric Markov semigroup on
L2(RN , wk) in the following sense:

4.1.10 Definition. ([Da2]) Let µ ∈ M+(RN ) . A strongly continuous contraction semigroup
(T (t))t≥0 on L2(RN , µ) is called a symmetric Markov semigroup, if it satisfies the following
conditions:

(1) The generator A of (T (t))t≥0 is self-adjoint and non-positive, i.e. 〈Af, f〉 ≤ 0 for all
f ∈ D(A) ;

(2) (T (t))t≥0 is positivity-preserving for all t ≥ 0 , i.e. T (t)f ≥ 0 for f ≥ 0 ;

(3) If f ∈ L∞(RN , µ) ∩ L2(RN , µ) then ‖T (t)f‖∞,µ ≤ ‖f‖∞,µ for all t ≥ 0 .

Theorem 1.4.2 of [Da2] implies the following

4.1.11 Corollary. For 1 < p < ∞, the semigroup (Hk(t))t≥0 on Lp(RN , wk) is a bounded
holomorphic semigroup (in the sense of [Da1]) in the sector{

z ∈ C : |Arg(z)| < π

2
·
(
1− |2/p − 1|

)}
.

4.1.12 Remarks. 1. The result that ∆k generates a symmetric Markov semigroup on
L2(RN , wk) can of course also been seen directly via the Dunkl transform. In fact, accord-
ing to Proposition 1.4.7, we have ∆k = D−1

k MDk , where Dk denotes the Dunkl-Plancherel
transform on L2(RN , wk) and M is the non-positive self-adjoint multiplication operator in
L2(RN , wk) defined by

Mf(x) = −|x|2f(x) with domain D(M) = {f ∈ H : |x|2f(x) ∈ H}.

The operator M generates the strongly continuous contraction semigroup e tMf(x) = e−t|x|
2
f(x)

on L2(RN , wk) . Since ∆k is unitarily equivalent to M , the linear operator e t∆k , t ≥ 0, (defined
via spectral calculus) is unitarily equivalent to etM , and (e t∆k)t≥0 forms a strongly continuous
contraction semigroup on L2(RN , wk) which is unitarily equivalent to (e tM )t≥0; it is given by

e t∆kf(x) = c−1
k

∫
RN

e−t|ξ|
2
f̂ k(ξ)Ek(ix, ξ)wk(ξ)dξ.

The Parseval identity for the Dunkl transform shows that this semigroup indeed coincides with
the semigroup (Hk(t))t≥0 on L2(RN , wk) .

2. For X = (C0(RN ), ‖. , .‖∞) , Theorem 4.1.9 just says that the generalized heat semigroup
is a Feller-Markov semigroup, i.e. a (strongly continuous) positive contraction semigroup on
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C0(RN ) . This observation was the starting point in [R-V2] for the construction of an associ-
ated semigroup of Markov kernels on RN , which can be considered as a generalization of the
semigroup of a Brownian motion. It is defined as follows:
For x ∈ RN and A ⊂ B(RN ) put

Pt(x,A) :=

∫
A

Γk(t, x, y)wk(y)dy (t > 0), P0(x,A) := δx(A),

with δx denoting the point measure in x ∈ RN . Then (Pt)t≥0 is a semigroup of Markov kernels
on RN in the following sense:

(1) Each Pt is a Markov kernel, and for all s, t ≥ 0, x ∈ RN and A ∈ B(RN ) ,

Ps ◦ Pt(x,A) :=

∫
RN

Pt(z,A)Ps(x, dz) = Ps+t(x,A).

(2) The mapping [0,∞) →M1(RN ), t 7→ Pt(0, . ), is weakly continuous.

Moreover, the semigroup (Pt)t≥0 has the following special property:

(3) Pt(0, . )
∧k(ξ) = e−t|ξ|

2
and Pt(x, . )

∧k(ξ) = Ek(−ix, ξ)Pt(0, . )∧k(ξ) for all ξ ∈ RN .

Here the Dunkl transform of the probability measures Pt(x, . ), t ≥ 0, is defined by

Pt(x, . )
∧k(ξ) :=

∫
bRN

Ek(−iξ, x)Pt(x, dξ).

Property (3) is a substitute for translation invariance (Pt(x+ y,A+ y) = Pt(x,A) for all y ∈
RN ), which is satisfied only in the classical case k = 0 . The proof of (1) – (3) is straightforward
by the properties of Γk and Theorem 4.1.9(1). For details and a further study of the semigroup
(Pt)t≥0 and the associated Markov process, we refer to [R-V2].

Now we come back to the general case. It is a basic fact in semigroup theory that for given
initial data f ∈ D(∆k) ⊂ X , the function u(t) := Hk(t)f provides the unique classical solution
of the abstract Cauchy problem

d

dt
u(t) = ∆ku(t) for t > 0,

u(0) = f ;

here “classical” means u ∈ C1([0,∞), X) with u(t) ∈ D(∆k) for all t ≥ 0 . Of course, Theorem
4.1.9 also leads to a solution of the following classical initial-boundary-value problem for the
generalized heat operator ∆k − ∂t :
Find u ∈ C2((0,∞)× RN ) which is continuous on [0,∞)× RN and satisfies(∆k − ∂t)u = 0 on (0,∞)× RN ,

u(0, . ) = f ∈ Cb(RN ).
(4.9)

We have the following
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4.1.13 Theorem. Let f ∈ Cb(RN ) . Then u(t, x) := Hk(t)f(x) is bounded on [0,∞) × RN

and solves (4.9).

Proof. In order to see that u is twice continuously differentiable on (0,∞) × RN with
(∆k − ∂t)u = 0, we only have to make sure that the necessary differentiations of u may
be carried out under the integral sign in (4.5). One has to use again the estimates of Corollary
2.4.5 for the partial derivatives of Ek ; these provide sufficient decay properties for the deriva-
tives of Γk , allowing the necessary differentiations under the integral by use of the dominated
convergence theorem. From the positivity and normalization of Γk it is clear that u is bounded
on [0,∞) × RN , with ‖u‖∞ = ‖f‖∞ . It remains to prove the continuity of u as t ↓ 0 . For
fixed x ∈ RN , consider the net (mx, t)t≥0 of probability measures on RN , which are defined by

dmx, t(y) = Γk(t, x, y)wk(y)dy.

The strong continuity of the semigroup (Hk(t))t≥0 on (C0(RN ), ‖ . ‖∞) implies in particular
that for t ↓ 0 , the measures mx, t converge weakly to the point measure δx , i.e. in the
σ(M1(RN ), C0(RN ))-topology, which coincides with the σ(M1(RN ), Cb(RN ))-topology on
M1(RN ) . Therefore limt↓0 Hk(t)f(x) = f(x). Together with the continuity of f and the
already known continuity of u on (0,∞)×RN , this proves that u is continuous on [0,∞)×RN

as well.

At this point, it is still open whether our solution of the “Cauchy problem” (4.9) is unique
within an appropriate class of functions. As in the classical case, this follows from a maximum
principle for the generalized heat operator on RN×(0,∞) , which will be derived in the following
section.

4.2 Maximum principles

Recall the action of Dunkl’s Laplacian on C2(RN ) , which is given by

∆kf = ∆f + 2
∑
α∈R+

k(α) δαf

with

δαf(x) =
〈∇f(x), α〉
〈α, x〉

− f(x)− f(σαx)

〈α, x〉2
.

This operator may as well be considered on C2(Ω) for any open set Ω ⊂ RN which is invariant
under the group operation of G . In this section, we first prove a weak maximum principle for
∆k on bounded, G-invariant domains, and then present maximum principles for the generalized
heat operator ∆k − ∂t on domains of the form (0, T )×Ω , where either Ω is bounded and G-
invariant or Ω = RN . These results are to a large extent straightforward generalizations of
there classical counterparts; the crucial ingredient is the following observation:
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4.2.1 Lemma. Let Ω ⊆ RN be open and G-invariant. If a real-valued function f ∈ C2(Ω)

attains an absolute maximum at x0 ∈ Ω , i.e. f(x0) = supx∈Ω f(x) , then

∆kf(x0) ≤ 0 .

Proof. Let D2f(x) denote the Hessian of f at x ∈ Ω . The given situation enforces that
∇f(x0) = 0 and D2f(x0) is negative semi-definite; in particular, ∆f(x0) ≤ 0. Moreover,
f(x0) ≥ f(σαx0) for all α ∈ R , so the statement is obvious in the case that 〈α, x0〉 6= 0 for all
α ∈ R . If 〈α, x0〉 = 0 for some α ∈ R , we have to argue more carefully: Choose an open ball
B ⊆ Ω with center x0 . Then σαx ∈ B for x ∈ B , and σαx − x = −〈α, x〉α. Now Taylor’s
formula yields

f(σαx)− f(x) = −〈α, x〉 〈∇f(x), α〉+
1

2
〈α, x〉2 αtD2f(ξ)α ,

with some ξ on the line segment between x and σαx . It follows that for x ∈ B with 〈α, x〉 6=
0 we have δαf(x) = 1

2α
tD2u(ξ)α. Passing to the limit x → x0 now leads to δαf(x0) =

1
2α

tD2f(x0)α ≤ 0 , which finishes the proof.

We call a function f ∈ C2(Ω) k -subharmonic on Ω, if ∆kf ≥ 0 on Ω . Based on the previous
lemma, it is now easy to obtain a weak maximum principle for k -subharmonic functions on
bounded, G-invariant subsets of RN . Its range of validity is quite general, in contrast to the
strong maximum principle in [D2], which is restricted to k -harmonic polynomials on the unit
ball. Our proof follows the classical one for the usual Laplacian, as it can be found e.g. in [Jo].

4.2.2 Theorem. Let Ω ⊂ RN be open, bounded and G-invariant, and let f ∈ C2(Ω) ∩ C(Ω)

be real-valued and k -subharmonic on Ω . Then

max Ω (f) = max ∂Ω(f) .

Proof. Fix ε > 0 and put g := f + ε|x|2 . A short calculation gives ∆k(|x|2) = 2N + 4γ > 0.

Hence ∆kg > 0 on Ω , and Lemma 4.2.1 shows that g cannot achieve its maximum on Ω at
any x0 ∈ Ω. It follows that

max Ω (f + ε|x|2) = max ∂Ω (f + ε|x|2)

for each ε > 0 . Consequently,

max Ω (f) + εmin Ω|x|
2 ≤ max ∂Ω(f) + εmax ∂Ω|x|2.

The assertion now follows by letting ε→ 0 .

A similar method leads to the following maximum principle for the generalized heat operator
∆k − ∂t on bounded domains. By virtue of Lemma 4.2.1, the proof can be adapted literally
from the standard one in the classical case (see e.g. [Jo]); it is therefore omitted here.
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4.2.3 Proposition. Suppose that Ω ⊂ RN is open, bounded and G-invariant. For T > 0 put

ΩT := Ω× (0, T ) and ∂∗ΩT := {(x, t) ∈ ∂ΩT : t = 0 or x ∈ ∂Ω } .

Assume further that u ∈ C2(ΩT ) ∩ C(ΩT ) satisfies (∆k − ∂t)u ≥ 0 in ΩT . Then

max ΩT
(u) = max ∂∗ΩT (u) .

Under a suitable growth condition on the solution, this maximum principle may be extended
to the case where Ω = RN . The proof is adapted from the one in [dB] for the classical case.

4.2.4 Theorem. (Weak maximum principle for ∆k − ∂t on RN .) Let ST := RN × (0, T )

and suppose that u ∈ C2(ST ) ∩ C(ST ) satisfies(∆k − ∂t)u ≥ 0 in ST ,

u(. , 0) = f ,

where f ∈ Cb(RN ) is real-valued. Assume further that there exist positive constants C, λ, r such
that

u(x, t) ≤ C · eλ|x|2 for all (x, t) ∈ ST with |x| > r.

Then supST (u) ≤ ‖f‖∞ .

Proof. Let us first assume that 8λT < 1. For fixed ε > 0 set

v(x, t) := u(x, t)− ε · 1

(2T − t) γ+N/2
exp

{
|x|2

4(2T − t)

}
, (x, t) ∈ RN × [0, 2T ).

By Lemma 4.1.1, v satisfies (∆k − ∂t)v = (∆k − ∂t)u ≥ 0 in ST . Now fix some constant
ρ > r and consider the bounded cylinder ΩT = Ω × (0, T ) with Ω = {x ∈ RN : |x| < ρ}.
Setting M := ‖f‖∞ , we have v(x, 0) < u(x, 0) ≤ M for x ∈ Ω. Moreover, for |x| = ρ and
t ∈ (0, T ]

v(x, t) ≤ Ceλρ
2 − ε · 1

(2T ) γ+N/2
e ρ

2/8T .

Since λ < (8T )−1 , we see that v(x, t) ≤M on ∂∗ΩT , provided that ρ is large enough. Then
by Proposition 4.2.3 we also have v(x, t) ≤ M on ΩT . Since ρ > r was arbitrary, it follows
that v(x, t) ≤M on ST . Since ε > 0 was arbitrary as well, this implies that u(x, t) ≤M on
ST . If 8λT ≥ 1 , we may subdivide ST into finitely many adjacent open strips of width less
than 1/8λ and apply the above conclusion repeatedly.

4.2.5 Corollary. The solution of the Cauchy problem (4.9) according to Theorem 4.1.13 is
unique within the class of functions u ∈ C2(ST )∩C(ST ) which satisfy the following exponential
growth condition: There exist positive constants C, λ, r such that

|u(x, t)| ≤ C · eλ|x|2 for all (x, t) ∈ ST with |x| > r.
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4.3 Some further semigroups related to Dunkl’s Laplacian

1. Subordination and Cauchy semigroups

A standard procedure to obtain new one-parameter semigroups from known ones is by sub-
ordination. This principle is based on convolution semigroups of probability measures on the
group (R,+) which are supported on [0,∞) . For details, we refer to [Da1], [Be-F], where the
subordination principle is worked out very clearly in the related setting of translation invariant
Markov kernels on locally compact abelian groups. For the connection with fractional powers
we refer to [Go]. One of the most prominent examples in this context is the semigroup of the
N -dimensional Cauchy process, which is obtained by subordination from the N -dimensional
Gaussian semigroup. In the Dunkl setting, the same construction will lead to a generalization
of the classical Cauchy semigroup and to a solution of the following Dirichlet problem in the
upper half space: Find u ∈ C([0,∞)× RN ) ∩ C2((0,∞)× RN ) which satisfies(∆k + ∂2

t )u = 0 on (0,∞)× RN ,

u(0, .) = f.
(4.10)

Consider the heat semigroup (Hk(t))t≥0 on one of the Banach spaces X as in Theorem 4.1.9.
Let further (µt)t≥0 ⊂M1(R) be a convolution semigroup of probability measures on the group
(R,+) which is supported on [0,∞) , i.e. satisfying

(1) µ0 = δ0 ;

(2) µt ∗ µs = µt+s for all s, t ≥ 0 ;

(3) the mapping t 7→ µt is weakly continuous on [0,∞) ;

(4) suppµt ⊆ [0,∞) for all t ≥ 0 .

Then the X -valued integral

Sµ(t)(f) :=

∫ ∞
0

Hk(s)f dµt(s), (t ≥ 0)

defines a strongly continuous, positivity-preserving contraction semigroup on X , the semigroup
subordinated to (Hk(t))t≥0 by (µt)t≥0 ; (see Section 4 of [Da1]). It is explicitly given by

Sµ(t)(f) =

∫
RN

Λµ(t, x, y)f(y)wk(y)dy for t > 0,

with the kernel

Λµ(t, x, y) =

∫ ∞
0

Γk(s, x, y) dµt(s) (t > 0, x, y ∈ RN ). (4.11)

We collect some properties of the subordinated kernels Λµ ; they follow immediately from
the corresponding properties of Γk (see Lemma 4.1.3) and the fact that (µt)t≥0 is a convo-
lution semigroup of probability measures. Recall that the Laplace transform of a measure
µ ∈M1([0,∞)) is defined by

Lµ(z) :=

∫ ∞
0

e−zs dµ(s) (Re z ≥ 0).
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4.3.1 Lemma. The kernels Λµ have the following properties on (0,∞)× RN × RN :

(1) Λµ(t, x, y) = c−2
k

∫
RN
Lµt(|ξ|2)Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ .

(2) Λµ(t, x, y) > 0 and
∫
RN

Λµ(t, x, y)wk(y)dy = 1.

(3) Λµ(t+ s, x, y) =

∫
RN

Λµ(t, x, z) Λµ(s, y, z)wk(z)dz.

The Laplace transforms Lµt can be written as

Lµt(z) = e−t f(z) (t ≥ 0, Re z > 0), (4.12)

with a unique analytic function f on {Re z > 0} which is continuous on {Re z ≥ 0}. It is well
known (see Section 9 of [Be-F]) that the functions which are affiliated in this way with some
convolution semigroup of probability measures on (R,+) , supported on [0,∞) , are exactly
those analytic functions on {Re z > 0} whose restrictions to (0,∞) are Bernstein functions,
i.e., f |(0,∞) ≥ 0 and (−1)nDnf |(0,∞) ≤ 0 for all n ∈ N .

4.3.2 Example. For 0 < α < 1 , the function f(x) = xα is a Bernstein function. The corre-
sponding convolution semigroup on (R,+) is the so-called one-sided stable semigroup of order
α and is denoted by (σαt )t≥0 . The generator of the corresponding semigroup (Sα(t))t≥0 subor-
dinated to (Hk(t))t≥0 is the fractional power (∆k)

α .

Of particular interest within this class of examples is the case α = 1/2 , corresponding to
the Bernstein function f(x) =

√
x . The convolution semigroup (σ

1/2
t )t≥0 is given explicitly by

dσ
1/2
t (s) = 1[0,∞)(s) ·

1√
4π
ts−3/2e−t

2/4s ; (4.13)

c.f. Example 9.23 of [Be-F]. The corresponding subordinated kernel is called the generalized
Cauchy kernel associated with the reflection group G and the multiplicity function k ; we denote
it by Ck . Here are some further properties of this kernel, complementing those contained in
Lemma 4.3.1.

4.3.3 Lemma. The generalized Cauchy kernel Ck has the following properties:

(1) Ck(t, x, y) = c−2
k

∫
RN

e−t|ξ|Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ (t > 0, x, y ∈ RN ).

(2) Ck(t, x, 0) = λk ·
t

(t2 + |x|2)γ+(N+1)/2
, with λk =

Mk√
π
· 4γ+N/2 Γ

(
γ + (N + 1)/2

)
.

(3) For fixed y ∈ RN , the function u(t, x) := Ck(t, x, y) satisfies
(
∆k + ∂2

t )u = 0 on
(0,∞)× RN .

Proof. (1) This follows from part (1) of Lemma 4.3.1, as Lσ1/2
t (|ξ|2) = exp {−t|ξ|}.

(2) By (4.13), (4.11) and the definition of Γk , the Cauchy kernel Ck can be written as

Ck(t, x, y) =
Mk t√

4π

∫ ∞
0

s−(γ+(N+3)/2) e−(t2+|x|2+|y|2)/4sEk

( x√
2s
,
y√
2s

)
ds .
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In case y = 0 , this can be simplified by use of the substitution r = (t2 + |x|2)/4s and the
integral representation of the Gamma function:

Ck(t, x, 0) =
Mk t√

4π

∫ ∞
0

s−(γ+(N+3)/2)) e−(t2+|x|2)/4s ds

=
Mk t√

4π

( 4

t2 + |x|2
)γ+(N+1)/2

·
∫ ∞

0
e−r rγ+(N−1)/2 dr

=
Mk√
π
· 4γ+N/2 Γ

(
γ + (N + 1)/2

)
· t

(t2 + |x|2)γ+(N+1)/2
.

(3) This follows from the representation (1) by differentiation under the integral sign.

The strongly continuous, positivity-preserving semigroup on X which is subordinated to
the heat semigroup (Hk(t))t≥0 by (σ

1/2
t ) is a natural generalization of the classical Cauchy

semigroup; it is given explicitly by

Sk(t)f(x) =


∫
RN

Ck(t, x, y)f(y)wk(y)dy if t > 0,

f(x) if t = 0.

We conclude our discussion of the generalized Cauchy semigroup with the solution of the Dirich-
let problem (4.10) on the upper half space.

4.3.4 Theorem. Let f ∈ Cb(RN ) . Then the function

u(t, x) =


∫
RN

Ck(t, x, y)f(y)wk(y)dy if t > 0,

f(x) if t = 0

belongs to Cb([0,∞)× RN ) ∩ C2((0,∞)× RN ) and solves the Dirichlet problem (4.10).

Proof. The argument is exactly the same as it was used for the generalized heat equation
(Theorem 4.1.13).

2. Generalized oscillator semigroups

For a fixed parameter ω > 0 , consider the generalized oscillator Hamiltonian

Jk = −∆k + 2ω

N∑
j=1

xj∂j

with domain D(Jk) := ΠN in the weighted Hilbert space L2(RN , dmω
k ) ; here dmω

k is the
probability measure

dmω
k (x) = c−1

k (2ω)γ+N/2 e−ω|x|
2
wk(x)dx

as defined in (3.6). In Theorem 3.1.3 it was shown that Jk is essentially self-adjoint with
discrete spectrum; moreover, according to Proposition 3.2.6, each system {Hν(ω; .), ν ∈ ZN+}
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of generalized Hermite polynomials with respect to G and k provides an orthonormal basis of
L2(RN , dmω

k ) consisting of eigenfunctions of Jk ; recall that

JkHν(ω; .) = 2|ν|ω ·Hν(ω; .). (4.14)

To abbreviate notations, we put Hν := Hν(ω; .) and denote the closure of Jk by A . Moreover,
we write 〈 ., . 〉 for the scalar product in L2(RN , dmω

k ) . Then A is just given by

A(f) =
∑
ν∈ZN+

2|ν|ω 〈f,Hν 〉 f ,

with domain
D(A) = {f ∈ L2(RN , dmω

k ) :
∑
ν∈ZN+

|ν|2|〈f,Hν 〉|2 < ∞}.

The spectral resolution of A directly implies that −A is the generator of a strongly continuous
contraction semigroup on L2(RN , dmω

k ) , namely

e−tAf =
∑
ν∈ZN+

e−2|ν|ωt 〈f,Hν 〉Hν , t ≥ 0.

Remember now the Mehler formula (3.19) for the generalized Hermite polynomials. It states
that for all x, y ∈ RN and t > 0 ,∑

ν∈ZN+

e−2|ν|ωtHν(x)Hν(y) = M(e−2t, x, y), (4.15)

with the generalized Mehler kernel

Mk(r, x, y) =
1

(1− r2) γ+N/2
exp

{
−ωr

2(|x|2 + |y|2)

1− r2

}
Ek

( 2ωrx

1− r2
, y
)
, (0 < r < 1).

It is easily seen from the absolute convergence of the sum in (4.15), together with the orthog-
onality of the generalized Hermite polynomials, that the function y 7→ Mk(e

−2t, x, y) belongs
to L2(RN , dmω

k ) for each fixed x ∈ RN . This shows that for all t > 0 ,

e−tAf(x) =

∫
RN

Mk(e
−2t, x, y)f(y) dmω

k (y) a.e..

4.3.5 Proposition.
(
e−tA

)
t≥0

is a symmetric Markov semigroup on L2(RN , dmω
k ) in the

sense of Definition 4.1.10.

Proof. A is self-adjoint and non-negative, and the semigroup
(
e−tA

)
t≥0

is positivity-preserving
on L2(RN , dmω

k ) , because the kernel Mk is strictly positive. The {Hν , ν ∈ ZN+} being orthonor-
mal with H0 = 1, we further have∫

RN
Mk(e

−2t, x, y) dmω
k (y) = 1 for all t > 0, x ∈ RN . (4.16)

This implies that the operators e−tA , t ≥ 0 are also contractive with respect to ‖ . ‖∞ .
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As a consequence, the generalized oscillator semigroup
(
e−tA

)
t≥0

also allows an extension
to a strongly continuous contraction semigroup on each of the Banach spaces Lp(RN , dmω

k ).

We introduce the following notation:

4.3.6 Definition. For f ∈ L1(RN , dmω
k ) and t ≥ 0 set

Ok(t)f(x) :=


∫
RN

Mk(e
−2t, x, y)f(y) dmω

k (y)dy if t > 0,

f(x) if t = 0

(4.17)

4.3.7 Corollary. (Ok(t))t≥0 is a strongly continuous, positivity-preserving contraction semi-
group on each of the Banach spaces Lp(RN , dmω

k ), 1 ≤ p < ∞ . It is a bounded holomorphic
semigroup in the sector {

z ∈ C : |Arg(z)| < π

2
·
(
1− |2/p − 1|

)}
.

Proof. This follows from Proposition 4.3.5 together with Theorems 1.4.1 and 1.4.2 of [Da2].

Direct inspection shows that the Mehler kernel is related to the Gaussian kernel Γk via

Mk(e
−2t, x, y) dmω

k (y) = Γk

(1− e−4ωt

4ω
, e−2ωtx, y

)
wk(y)dy (t > 0, x ∈ RN ). (4.18)

The operators Ok(t) can be expressed in terms of the heat operators Hk(t) :

Ok(t)f(x) = Hk

(1− e−4ωt

4ω

)
f
(
e−2ωtx) (4.19)

for all f ∈ C0(RN ) and all t > 0 . This implies that (Ok(t))t≥0 leaves both C0(RN ) and
S (RN ) invariant.

4.3.8 Proposition. (Ok(t))t≥0 defines a strongly continuous, positivity-preserving contraction
semigroup on (C0(RN ), ‖ . ‖∞). The Schwartz space S (RN ) is a core of its generator A0 , and
A0|S (RN ) = ∆k − 2ω

∑N
j=1 xj∂j .

Proof. It is clear from Proposition (4.3.5) that (Ok(t))t≥0 is a positivity-preserving contraction
semigroup on (C0(RN ), ‖ . ‖∞). For the remaining parts, we use our knowledge about the heat
semigroup on this space, c.f. Theorem 4.1.9. For abbreviation, we put

ϕ(t) := (1− e−4ωt)/4ω for t ≥ 0.

If f ∈ C0(RN ) , then

‖Ok(t)f(x)− f(x)‖∞ ≤
∥∥Hk

(
ϕ(t)

)
f − f

∥∥
∞ + sup

x∈RN

∣∣f(e−2ωtx)− f(x)
∣∣ ,

and both terms tend to 0 as t ↓ 0 . This proves the strong continuity. Now let f ∈ S (RN ),

and suppose that f is real-valued. Then

Ok(t)f(x)− f(x)

t
=

Hk

(
ϕ(t)

)
f
(
e−2ωtx

)
ϕ(t)

· ϕ(t)

t
+
f
(
e−2ωtx

)
− f(x)

t
. (4.20)
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Moreover,

lim
t↓0

ϕ(t)

t
= 1 and lim

t↓0

∥∥(Hk(ϕ(t))(f)− f
)
/ϕ(t) − ∆kf

∥∥
∞ = 0.

This shows that the first summand in (4.20) tends to ∆kf uniformly on RN as t ↓ 0 . Further,
the mean value theorem ensures that there exists some λt ∈ (e−2ωt, 1) with

f(e−2ωtx)− f(x)

t
= 〈∇f(λtx), x〉 · e

−2ωt − 1

t
,

which uniformly tends to −2ω〈∇f(x), x〉 as t ↓ 0 . This shows that S (RN ) ⊆ D(A0) and
A0|S (RN ) = ∆k − 2ω

∑N
j=1 xj∂j . Since S (RN ) is invariant under (Ok(t))t≥0 , it follows again

from Theorem 1.9 of [Da1] that it provides a core of A0 .

4.3.9 Proposition. For each f ∈ Cb(RN ) , the function u(t, x) := Ok(t)f(x) belongs to
Cb([0,∞)× RN ) ∩ C2((0,∞)× RN ) and solves the Cauchy problem∂tu = (∆k − 2ω

∑N
j=1 xj∂j)u on (0,∞)× RN ,

u(0, .) = f.
(4.21)

Proof. With the same notations as above, we write u(t, x) = Hk

(
ϕ(t)

)
f(e−2ωtx) for t ≥ 0 and

x ∈ RN . Thus, it follows from Theorem 4.1.13 that u ∈ Cb([0,∞) × RN ) ∩ C2((0,∞) × RN ) .
Further, formula (4.15) for the Mehler kernel Mk and the differential equation (4.14) for the
generalized Hermite polynomials imply that the function M̃k(t, x) := Mk(e

−2ωt, x, y) satisfies

(∆k − 2ω
N∑
j=1

xj∂j)M̃k = ∂tM̃k on (0,∞)× RN .

The proof is then finished by differentiation under the integral in (4.17).

3. The free, time-dependent Schrödinger equation

Consider again the self-adjoint Dunkl Laplacian ∆k on L2(RN , wk) . By Stone’s Theorem (see,
e.g. Theorem 4.7 of [Go]), the skew-adjoint operator i∆k generates a strongly continuous
unitary semigroup

(
eit∆k

)
t≥0

on L2(RN , wk) . The explicit determination of this semigroup
can be achieved by standard arguments, see for instance Chapter IX. 1.8 of [Ka1] for the classical
case. First, notice that the heat kernel Γk extends naturally to complex “time” arguments, by

Γk(z, x, y) =
Mk

zγ+N/2
e−(|x|2+|y|2)/4z Ek

( x
2z
, y
)

for x, y ∈ RN and z ∈ C− := C \ {w ∈ R : w ≤ 0} ; here zγ+N/2 is the holomorphic branch
in C− with 1γ+N/2 = 1. We next determine the Schrödinger semigroup on a sufficiently large
subset of S (RN ).

4.3.10 Lemma. If f(x) = e−b|x|
2 with a parameter b > 0 , then

e it∆kf =

∫
RN

Γk(it, ., y) f(y)wk(y)dy for all t > 0. (4.22)
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Proof. Consider the function

u(t, x) :=
1

(1 + 4ibt)γ+N/2
e−b|x|

2/(1+4ibt) (t ≥ 0, x ∈ RN ).

The same calculation as in Lemma 4.1.1 shows that u satisfies the generalized Schrödinger
equation

∂tu = i∆ku on (0,∞)× RN ,

with u(0, x) = e−b|x|
2 . It is also easily verified that the function t 7→ u(t, . ) belongs to

C1([0,∞), L2(RN , wk)) . This shows that e it∆kf = u(t, . ) for t ≥ 0 . The reproducing identity
in Proposition 1.4.3(2) for Ek implies that for t ≥ 0 ,

1

(1 + 4bt)γ+N/2
e−b|x|

2/(1+4bt) =

∫
RN

Γk(t, x, y) e−b|y|
2
wk(y)dy.

By analytic continuation, this identity remains true if t is replaced by it . This completes the
proof.

The following statement is obtained exactly as its classical analogue in [Ka1], by using the
Plancherel formula for the Dunkl transform, Lemma 1.5.2(7) for the generalized translation in
L2(RN , wk) , and the injectivity of the Dunkl transform.

4.3.11 Lemma. The C-linear hull 〈M〉 of the set

M :=
{
x 7→ Lak e

−b|x|2 , a ∈ RN , b > 0
}

is dense in L2(RN , wk) .

We thus have shown that on the dense subspace 〈M〉 of L2(RN , wk), the linear operators

Sk(t)f :=

∫
RN

Γk(it, . , y)f(y)wk(y)dy , t > 0,

coincide with the unitary operators e it∆k . They can therefore be extended uniquely to unitary
operators on L2(RN , wk) , which are written in the same way, the integral now being understood
in the L2 -sense. In this sense, we have for all f ∈ L2(RN , wk),

e it∆kf =


∫
RN

Γk(it, . , y)f(y)wk(y)dy if t > 0,

f if t = 0.

(4.23)

4.4 Short–time estimates for the heat kernel

In this section we study the asymptotic behaviour of the generalized heat kernel Γk for short
times. It will be appropriate to transfer the semigroup (Hk(t))t≥0 from L2(RN , wk) to the
unweighted space L2(RN ) , which leads to the strongly continuous contraction semigroup

H̃k(t)f := w
1/2
k Hk(t)

(
w
−1/2
k f), f ∈ L2(RN ).
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The corresponding renormalized heat kernel is given by

Γ̃k(t, x, y) :=
√
wk(x)wk(y) Γk(t, x, y) (x, y ∈ RN , t > 0).

According to our results from Section 4.1 and Lemma 3.1.1, the generator of the semigroup
(H̃k(t))t≥0 is given by w

1/2
k ∆kw

−1/2
k , which is the closure of the operator

Fk = ∆− 2
∑
α∈R+

k(α)

〈α, x〉2
(k(α)− σα) (4.24)

with domain

D(Fk) := {w1/2
k g : g ∈ S (RN )} ⊂ L2(RN ).

Thus Fk can be considered to be a perturbation of the Laplacian ∆ , with singularities of inverse
square type in the reflecting hyperplanes. We conjecture that within the Weyl chambers of G ,
the heat kernel Γ̃k(t, x, y) behaves for short times like the free Gaussian heat kernel

Γ0(t, x, y) =
M0

tN/2
e−|x−y|

2/4t .

In the following, W is an arbitrary fixed Weyl chamber of G .

4.4.1 Conjecture. For all x, y ∈W ,

lim
t↓0

√
wk(x)wk(y) Γk(t, x, y)

Γ0(t, x, y)
= 1 . (4.25)

In case of the symmetric group, (4.25) was stated in [B-F3]; there was, however, no rigorous
proof given for it. At present, we are not able to prove the above conjecture in full generality. We
present two partial results; the first one gives the precise asymptotics under a certain restriction
on the arguments, the second one provides a sharp and global lower bound.
For x, y ∈W , we introduce the notation

C(x, y) := max {dist (x, ∂W ), dist (y, ∂W )} .

Our first result is the following

4.4.2 Theorem. For all x, y ∈W with |x− y| < C(x, y),

lim
t↓0

√
wk(x)wk(y) Γk(t, x, y)

Γ0(t, x, y)
= 1 .

Writing the involved heat kernels in their explicit form, this implies the following ray asymptotics
for the Dunkl kernel:

4.4.3 Corollary. If x, y ∈W with |x− y| < C(x, y), then

lim
t→∞

tγ e−〈tx, y〉Ek(tx, y) =
M0

2γMk
· 1√

wk(x)wk(y)
. (4.26)



SHORT–TIME ESTIMATES FOR THE HEAT KERNEL 83

4.4.4 Remark. In the one-dimensional case, the condition on the distance |x − y| is always
satisfied; (4.26) then becomes a special case of the well-known asymptotics of Kummer’s function

1F1 (recall the representation of the Dunkl kernel EZ2
k according to Example 1.3.3), namely

1F1(k, 2k + 1,−x) ∼ (2k)!

k!
x−k (x→ +∞).

Our subsequent proof of Theorem 4.4.2 is based on the maximum principle for the classical heat
equation in bounded domains of RN . It is elementary, but unfortunately somewhat technical
with respect to details. By similar methods and a successive extension of the admissible range
of arguments, we also obtain

4.4.5 Theorem. Let x, y ∈W. Then

lim inf
t↓0

√
wk(x)wk(y) Γk(t, x, y)

Γ0(t, x, y)
≥ 1 .

To start with the proofs of these theorems, we first introduce some notations. For f ∈ D(Fk) ,
define

uf (t, x) = wk(x)1/2Hk(t)
(
w
−1/2
k f

)
(x),

with the heat semigroup (Hk(t))t≥0 as defined in (4.5). In particular,

uf (t, x) =

∫
RN

Γ̃k(t, x, y) f(y) dy for t > 0, x ∈ RN . (4.27)

Theorem 4.1.6 shows that uf belongs to C([0,∞)×RN )∩C2
(
(0,∞)× (RN \H)

)
and satisfies

the generalized heat equation

(Fk − ∂t)uf = 0 on (0,∞)× (RN \H), uf (0, .) = f on RN . (4.28)

For a parameter µ ∈ R we further set

uf, µ(t, x) := e−tµ uf (t, x) (t ≥ 0, x ∈ RN ).

We shall compare uf, µ with the function

vf (t, x) := H0(t)f(x) (t ≥ 0, x ∈ RN ),

which satisfies

vf (t, x) =

∫
RN

Γ0(t, x, y)f(y) dy for t > 0, x ∈ RN . (4.29)

Since D(Fk) ⊂ Cb(RN ) , the function vf belongs to Cb([0,∞) × RN ) ∩ C2((0,∞) × RN ) and
solves the classical heat equation

(∆ − ∂t) vf = 0 on (0,∞)× RN , vf (0, .) = f. (4.30)
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Finally, we fix the following notations: Let dist( ., .) be the Euclidean distance in RN and
define

Kr(x) := {y ∈ RN : |y − x| < r} for r > 0, x ∈ RN ;

Wδ := {x ∈W : dist(x, ∂W ) > δ, |x| < δ−1 } for δ > 0; (4.31)

Cδ(x, y) := max {dist (x, ∂Wδ), dist (y, ∂Wδ) }.

Notice that Wδ′ ⊂Wδ for δ′ > δ . Moreover, for an open subset U ⊂ RN , let

A(U) := {f ∈ D(Fk) : supp f ⊆ U, f ≥ 0, and
∫
RN

f dx = 1 }.

We start with the following auxiliary result concerning certain means of the Dunkl kernel; it is
based on the positive integral representation for Vk according to Theorem 2.4.1.

4.4.6 Lemma. For all x, y ∈ RN ,∑
α∈R+

k(α)
〈α, y〉
〈α, x〉

(
Ek(x, y)− Ek(σαx, y)

)
≥ 0.

Proof. In the following, y ∈ RN is considered to be a fixed parameter, and differentiations are
carried out with respect to the variable x . The kernel Ek( ., y) being an eigenfunction of every
Dunkl operator (see Theorem 1.3.1), we have

|y|2Ek(x, y) = TyEk(x, y) = ∂yEk(x, y) +
∑
α∈R+

k(α)〈α, y〉 Ek(x, y)− Ek(σαx, y)

〈α, x〉
. (4.32)

Employing the integral representation (2.19) for Ek , we see that

∂yEk(x, y) = ∂y

∫
|η|≤|y|

e〈x, η〉 dµky(η) =

∫
|η|≤|y|

〈y, η〉 · e〈x, η〉 dµky(η) ≤ |y|2Ek(x, y).

Together with (4.32), this proves the assertion.

4.4.7 Corollary. For all x, y ∈ RN and t > 0 ,∑
α∈R+

k(α)
〈α, y〉
〈α, x〉

(
Γ̃k(t, x, y)− Γ̃k(t, σαx, y)

)
≥ 0.

The next result is the fundamental ingredient for the proofs of both theorems stated above.

4.4.8 Lemma. Let δ > 0. Then there exist constants mδ,Mδ ∈ R such that for all f ∈ A(Wδ),

(∆− ∂t)(uf, µ − vf )

≥ 0 on (0,∞)× Wδ for µ ≥Mδ,

≤ 0 on (0,∞)× Wδ for µ ≤ mδ.
(4.33)

Proof. Putting together (4.28) and (4.30) and observing (4.24), we obtain that for t > 0 and
x ∈ RN \H,

(∆ − ∂t)(uf, µ − vf )(t, x) =
(
µ+ 2

∑
α∈R+

k(α)

〈α, x〉2
(k(α) − σxα )

)
uf,µ(t, x); (4.34)
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here the superscript in σxα indicates the operation in the variable x . Now let x, y ∈Wδ . Then
2δ2 ≤ 〈α, x〉〈α, y〉 ≤ 2/δ2 (recall that |α| =

√
2). Together with Corollary 4.4.7, this leads to

the estimate∑
α∈R+

k(α)

〈α, x〉2
Γ̃k(t, σαx, y) ≤ 1

2δ2

∑
α∈R+

k(α)
〈α, y〉
〈α, x〉

Γ̃k(t, σαx, y)

≤ 1

2δ2

∑
α∈R+

k(α)
〈α, y〉
〈α, x〉

Γ̃k(t, x, y) ≤ 1

δ4

∑
α∈R+

k(α)

〈α, x〉2
Γ̃k(t, x, y) .

It follows that for x ∈Wδ , t > 0 and f ∈ A(Wδ) ,∑
α∈R+

k(α)

〈α, x〉2
· σxα uf, µ(t, x) ≤ 1

δ4

∑
α∈R+

k(α)

〈α, x〉2
· uf, µ(t, x).

The assertion is now immediate.

For each δ > 0 fix now constants mδ ,Mδ ∈ R according to Lemma 4.4.8. We may in addition
assume that Mδ > 0 . This will simplify some estimates.

4.4.9 Lemma. Let δ > 0. Then for all x, y ∈Wδ and t > 0 ,

(1) Γ0(t, x, y)− e−tmδ Γ̃k(t, x, y) ≤ M0

tN/2
e−Cδ(x,y)2/4t .

(2) e−tMδ Γ̃k(t, x, y)− Γ0(t, x, y) ≤ (2δ−2)γ · Mk

tγ+N/2
e−Cδ(x,y)2/4t .

Proof. (1) Fix y ∈Wδ . For abbreviation, put µ := mδ and choose h > 0 sufficiently small such
that Kh(y) ⊂ Wδ . Take an arbitrary test function f ∈ A

(
Kh(y)

)
and consider the function

vf − uf, µ on [0,∞)× Wδ. First of all,

(vf − uf, µ)(0, x) = 0 for all x ∈Wδ.

Put Cδ := dist (y, ∂Wδ) . Since uf, µ ≥ 0 , and by the definition of vf , we further obtain for all
t > 0 and x ∈ ∂Wδ the estimate

(vf − uf, µ)(t, x) ≤ vf (t, x) ≤ M0

tN/2
e−(Cδ−h)2/4t .

Moreover, Lemma 4.4.8 ensures that

(∆− ∂t)(vf − uf, µ) ≥ 0 on (0,∞)×Wδ.

The maximum principle for ∆− ∂t on (0,∞)× Wδ therefore implies that

vf − uf, µ ≤
M0

tN/2
e−(Cδ−h)2/4t on (0,∞)× Wδ.

Since f ∈ A
(
Kh(y)

)
was arbitrary, we conclude that

Γ0(t, x, η) − e−tµΓ̃k(t, x, η) ≤ M0

tN/2
e−(Cδ−h)2/4t for all (t, x, η) ∈ (0,∞)×Wδ ×Kh(y).
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In particular, by taking the limit h→ 0 ,

Γ0(t, x, y) − e−tµΓ̃k(t, x, y) ≤ M0

tN/2
e−C

2
δ /4t for all (t, x) ∈ (0,∞)×Wδ .

The assertion now follows by the symmetry of (1) in x and y .
(2) The proof is very similar to the previous one; we therefore restrict ourselves to a short
outline. We put µ := Mδ > 0 and consider now, for f ∈ A

(
Kh(y)

)
, the function uf, µ−vf on

[0,∞)×Wδ. We use the fact that for all x, y ∈W and all g ∈ G , the inequality |gx−y| ≥ |x−y|
holds; see, for instance, Theorem 3.1.2 of [G-B]. Together with the bounds on Γk according to
Lemma 4.1.3(3), we obtain the following estimate, valid for all t > 0 and x ∈Wδ :

(uf, µ − vf )(t, x) ≤ uf (t, x) ≤ (2δ−2)γ · Mk

tγ+N/2
e−(Cδ−h)2/4t .

Moreover, Lemma 4.4.8 implies that

(∆− ∂t)(uf, µ − vf ) ≥ 0 on (0,∞)×Wδ.

The assertion is now obtained in the same way as above.

Theorem 4.4.2 is an easy consequence of this lemma.

Proof of Theorem 4.4.2. Suppose that x, y ∈ W satisfy the stated condition. Choose δ > 0

sufficiently small such that x, y ∈Wδ . Then Lemma 4.4.9 implies the relations

1 − e−tmδ
Γ̃k(t, x, y)

Γ0(t, x, y)
≤ e (|x−y|2−Cδ(x,y)2)/4t ,

e−tMδ
Γ̃k(t, x, y)

Γ0(t, x, y)
− 1 ≤ (2δ−2)γ · Mk

M0 tγ
e (|x−y|2−Cδ(x,y)2)/4t .

The expressions on the right-hand side tend to 0 as t ↓ 0 , provided that |x − y| < Cδ(x, y) .
Under this condition on x, y ∈Wδ , we therefore obtain

lim
t↓0

Γ̃k(t, x, y)

Γ0(t, x, y)
= 1 . (4.35)

The statement now follows by taking the limit δ → 0 .

The proof of Theorem 4.4.5 is based on the following iteration:

4.4.10 Lemma. Let ε, δ > 0 , n ∈ N0 , and

Hn, ε,δ(t, x, y) := (1− ε)(2n−1) · Γ0(2nt, x, y) − 2nM0

tN/2
e−δ

2/4t

for x, y ∈ RN and t > 0 . Then there is a constant tε,δ,n > 0 such that for all 0 < t < tε,δ,n

and all x, y ∈W(n+2)δ with |x− y| <
√

2
n−3

δ ,

e−2ntmδ Γ̃k(2
nt, x, y) ≥ Hn, ε,δ(t, x, y) ≥ 0 . (4.36)
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Proof. We start with some introductory remarks concerning the kernels Γ0 and Γ̃k .
1. Γ0 satisfies ∫

RN
Γ0(t, x, z) dz = 1 (t > 0, x ∈ RN ). (4.37)

2. The reproducing identity for Γk (Lemma 4.1.3(4)) implies that

Γ̃k(2t, x, y) =

∫
RN

Γ̃k(t, x, z) Γ̃k(t, y, z) dz (t > 0, x, y ∈ RN ). (4.38)

3. A short calculation shows that for all x, y, z ∈ RN and t > 0 ,

Γ0(2t, x, z) Γ0(2t, y, z) = Γ0(4t, x, y) Γ0(t, z, (x+ y)/2). (4.39)

4. The localizing property and translation invariance of the Gaussian kernel Γ0 assure that for
all ε, δ > 0, there exists a constant tε,δ > 0 such that∫

|z−x|≤δ/4
Γ0(t, x, z) dz ≥ 1− ε for 0 < t < tε,δ , x ∈ RN . (4.40)

5. For ε, δ > 0 , n ∈ N0 there exist constants t′ε,δ,n > 0 such that

Hn, ε,δ(t, x, y) ≥ 0 (4.41)

for all 0 < t < t′ε,δ,n and x, y ∈ RN with |x − y| <
√

2
n−1

δ . In fact, by the definition of Γ0 ,
(4.41) is equivalent to

(1− ε)(2n−1) − 2n(1+N/2) exp
{ |x− y|2

2n+2 t
− δ2

4t

}
≥ 0 ,

and this can be clearly achieved, under the assumption above on x and y , for all sufficiently
small times t > 0 . We may also assume that t′ε,δ,n+1 ≤ t′ε,δ,n for all n .

We now turn to the main part of the proof. We put

tε,δ,n := min (t′ε,δ,n , 2
2−ntε,δ).

The proof of (4.36) will be carried out by induction with respect to n . If n = 0 , then the
statement follows directly from part (1) of Lemma 4.4.9 (because Cδ(x, y) ≥ δ for all x, y ∈
Wδ ), and by (4.41). Now suppose that (4.36) is true for n ∈ N0 . Let further 0 < t < tε,δ,n+1

and x, y ∈ W(n+3)δ with |x − y| <
√

2
n−2

δ . Then (4.41) ensures that Hn+1, ε,δ(t, x, y) ≥ 0

holds. To prove the first inequality in (4.36) for n+ 1 , we put µ = mδ and

Kx,y,δ := {z ∈ RN : |z − (x+ y)/2| < δ/4} .

In particular, Kx,y,δ ⊂W(n+2)δ . Moreover, we observe that for all z ∈ Kx,y,δ ,

|z − x| ≤ |z − (x+ y)/2|+ |x− y|/2 ≤ δ/4 +
√

2
n−2

δ ≤
√

2
n−1

δ ,
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and, by (4.41), Hn, ε,δ(t, x, z) ≥ 0 . In the same way we obtain Hn, ε,δ(t, y, z) ≥ 0 . Using the
results from the beginning of the proof and the induction hypothesis, we therefore conclude

e−2n+1tµ Γ̃k(2
n+1t, x, y) =

(4.38)

∫
RN

e−2ntµ Γ̃k(2
nt, x, z) e−2ntµ Γ̃k(2

nt, y, z) dz

≥
∫
Kx,y,δ

e−2ntµ Γ̃k(2
nt, x, z) e−2ntµ Γ̃k(2

nt, y, z) dz

≥
∫
Kx,y,δ

Hn, ε,δ(t, x, z)Hn, ε,δ(t, y, z) dz

≥
(4.37)

(1− ε)2(2n−1)

∫
Kx,y,δ

Γ0(2nt, x, z) Γ0(2nt, y, z) dz − 2n+1M0

tN/2
e−δ

2/4t

=
(4.39)

(1− ε)2(2n−1) Γ0(2n+1t, x, y)

∫
Kx,y,δ

Γ0(2n−1t, (x+ y)/2, z)dz − 2n+1M0

tN/2
e−δ

2/4t .

Since 2n−1t < tε,δ , property (4.40) implies that∫
Kx,y,δ

Γ0(2n−1t, (x+ y)/2, z)dz > 1− ε .

This finally leads to
e−2n+1tµ Γ̃k(2

n+1t, x, y) ≥ Hn+1 ε,δ(t, x, y),

which finishes the proof.

Proof of Theorem 4.4.5. By choosing δ > 0 small and n ∈ N large enough, we can achieve that

x, y ∈W(n+2)δ and |x− y| <
√

2
n−3

δ .

Let ε > 0 be arbitrary and fix tε,δ,n > 0 according to Lemma 4.4.10. Then (4.36) implies that
for 0 < t < tε,δ,n ,

e−2ntmδ
Γ̃k(2

nt, x, y)

Γ0(2nt, x, y)
≥ (1− ε)(2n−1) − 2n(1+N/2) exp

{ |x− y|2
2n+2 t

− δ2

4t

}
,

and the subtracted term tends to 0 as t ↓ 0 . This yields the assertion.



Appendix: Notation

General

Z , R , C the sets of integer, real and complex numbers, respectively
N {n ∈ Z : n > 0}
Z+ {n ∈ Z : n ≥ 0}
〈z, w〉

∑N
i=1 ziwi ; z, w ∈ CN

|x| 〈x, x〉1/2 ; x ∈ RN

|z|
(
|z1|2 + . . .+ |zN |2

)1/2
; z ∈ CN

For ν = (ν1 , . . . , νN ) ∈ ZN+ and z = (z1 , . . . , zn) ∈ CN :
ν! ν1! · . . . · νN !

|ν| ν1 + . . .+ νN

zν zν11 · . . . · z
νN
N

∂M, M, M◦ the topological boundary, closure and interior of a set M ⊂ RN

SN−1 {x ∈ RN : |x| = 1}
O(N,R) group of orthogonal linear transformations in RN
Z2 Z / 2Z
SN symmetric group in N elements

Spaces of polynomials

ΠN = C[RN ] C-algebra of polynomial functions on RN (N ∈ N)

ΠN
R = R [RN ] R-algebra of polynomial functions on RN

C [CN ] C-algebra of polynomial functions on CN

PNn {p ∈ ΠN : p(λx) = λnp(x) for all λ > 0, x ∈ RN}, n ∈ Z+

the homogeneous polynomials of total degree n
ΠN
n

⊕n
k=0 PNk ; the polynomials in ΠN of total degree at most n

PNn (R) ΠN
R ∩ PNn

ΠN
+ {p ∈ ΠN : p(x) ≥ 0 for all x ∈ RN}

Spaces of measures and functions

For a locally compact Hausdorff space X :
C(X) space of complex-valued, continuous functions on X

Cb(X) the bounded functions in C(X)
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Cc(X) the compactly supported functions in C(X)

C0(X) the functions in C(X) which vanish at infinity
C+(X) the real-valued, nonnegative functions in C(X)

C+
c (X) Cc(X) ∩ C+(X)

C+
b (X) Cb(X) ∩ C+(X)

B(X) Borel-σ -algebra on X

M+(X) space of positive Radon measures on X

Mb(X) space of bounded Radon measures on X

M+
b (X) Mb(X) ∩M+(X)

M1(X) subspace of Mb(X) consisting of probability measures
σ(V,W ) the weak topology on V induced by W ;

V a vector space and W a subspace of its algebraic dual
σ(M1(X), Cb(X)) the weak topology on M1(X)

δx point measure in x ∈ X
suppµ support of a Radon measure µ
supp f support of a function f : X → C
Lp(X,µ) Lp -space on X with respect to the measure µ ∈M+(X); 1 ≤ p ≤ ∞

‖f‖p, µ
(∫

X
|f |p dµ

)1/p
; f ∈ B(X), 1 ≤ p <∞

‖f‖∞, µ inf {C > 0 : |f(x)| ≤ C locally µ- almost everywhere}

If X is a locally compact subspace of RN :
Lp(X) Lp(X, dx); dx the Lebesgue mesure on X

‖f‖p,w ‖f‖p,w(x)dx for w ∈ B(X), w ≥ 0

For an open set U ⊆ RN :
Ck(U) space of k -times continuously differentiable functions on U ; k ∈ Z+∪{∞}
Ckc (U) subspace of compactly supported functions in Ck(U)

S (RN ) Schwartz space of rapidly decreasing functions on RN

Particular symbols
(The page number refers to the first occurence in the text)
Hα hyperplane in RN orthogonal to α ∈ RN ; p. 7

σα reflection in the hyperplane Hα ; p. 7
R a root system in RN (usually fixed); p. 8
R+ a positive subsystem of R ; p. 8
G the finite reflection group generated by R ; p. 8
M vector space of multiplicity functions on R ; p. 8
M reg the regular parameter set; p. 12
k a multiplicity function on R (usually fixed)
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k ≥ 0 k(α) ≥ 0 for all α ∈ R (always assumed after Chapter 1); p. 8

γ := γ(k)
∑

α∈R+
k(α); p. 8

For a multiplicity function k ≥ 0 and a parameter ω > 0 :

wk(x)
∏
α∈R+

|〈α, x〉|2k(α) ; p. 8

ck

∫
RN

e−|x|
2/2wk(x)dx ; p. 8

dmω
k (x) c−1

k (2ω)γ+N/2 e−ω|x|
2
wk(x)dx ∈M1(RN ); p. 47

dωk c
−1/2
k (2ω)γ/2+N/4 ; p. 53

Mk c−1
k 2−γ−N/2 ; p. 66

Dunkl operators associated with G and k :
Tξ = Tξ(k) Dunkl operator in direction ξ ∈ RN associated with the

(fixed) reflection group G and multiplicity function k; p. 8
Ti = Ti(k) Tei(k); {e1, . . . , eN} the standard basis of RN

∆k
∑N

i=1 Ti(k)2 ; the Dunkl Laplacian associated with G and k ; p. 10

Fk w
1/2
k ∆k w

−1/2
k in L2(RN ) ; p. 45

Hk −∆k + ω2|x|2 in L2(RN , wk); p. 47

Jk −∆k + 2ω
∑N

j=1 xj∂j , in L2(RN , dmω
k ); p. 47

Further symbols (refering to a fixed reflection group G and multiplicity fuction k ≥ 0):
Vk intertwining operator; p. 12
A Dunkl’s algebra of homogeneous series on {x ∈ RN : |x| ≤ 1} ; p. 14
Ar rescaled version of A (scaling factor r > 0); p. 37
Ek generalized exponential kernel (Dunkl kernel); p. 16
Jk generalized Bessel function; p. 16
jα normalized spherical Bessel function of order α ≥ −1/2 ; p. 17

Γk generalized heat kernel; p. 66
Γ0 classical heat kernel
f 7→ f̂ k Dunkl transform on L1(RN , wk) or L2(RN , wk) ; p. 20
f 7→ f∨k inverse Dunkl transform; p. 20
Lyk generalized translation by y ∈ RN ; p. 24
[p, q]k (p(T (k) q)(0); p, q ∈ ΠN ; p. 14

{ϕν , ψν} homogeneous dual system with respect to [ . , . ]k ; p. 51
{Rν(ω; .), Sν(ω; .)} biorthogonal polynomial system in L2(RN , dmω

k ); p. 53
{rν(ω; .), sν(ω; .)} biorthonormal function system in L2(RN , wk); p. 53
{Hν(ω; . )} system of generalized Hermite polynomials in L2(RN , dmω

k ); p. 54
{hν(ω; . )} system of generalized Hermite functions in L2(RN , wk) ; p. 54
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