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Zusammenfassung

Im Gegensatz zur traditionsreichen Theorie der speziellen Funktionen einer Verdnderlichen
besteht erst seit jiingerer Zeit zunehmendes Interesse auch an speziellen Funktionen in mehreren
Variablen. Eine besonders intensive Entwicklung hat dabei in den letzten Jahren im Ge-
biet der speziellen Funktionen zu Wurzelsystemen stattgefunden, mit bedeutenden Beitrdgen
durch Heckmann und Opdam, Dunkl, Macdonald und Cherednik. Wesentliche Motivation
bezieht dieses Gebiet aus der harmonischen Analyse Riemannscher symmetrischer Raume, deren
sphérische Funktionen sich als spezielle Funktionen mehrerer Variabler mit gewissen diskreten
Parametern schreiben lassen. Fiir einen Uberblick iiber den aktuellen Stand der Forschung und
weitere Literaturangaben verweisen wir auf [He3|, [M2|, [H-Sc|] und [Ki]. Ein zentrales Hilfs-
mittel in der Untersuchung spezieller Funktionen zu Wurzelsystemen sind Dunkl-Operatoren
und ihre Varianten, die trigonometrischen Dunkl-Operatoren von Heckman und Opdam sowie
die eng verwandten Cherednik-Operatoren (|D2], [H-Sc|, [Che]). Dunkl-Operatoren sind mit
endlichen Spiegelungsgruppen assoziierte, durch Spiegelungsterme modifizierte Differentialope-
ratoren. Ihre Bedeutung fiir das Studium spezieller Funktionen mehrerer Variabler ist eng
gekoppelt mit ihrer Interpretation im Kontext gewisser Darstellungen (degenerierter) affiner
Hecke-Algebren (siehe [Chel, [O2| und [Ki|). Dunkl-Operatoren — in ihrer urspriinglichen Ver-
sion — gehen zuriick auf C. F. Dunkl, der sie gegen Ende der 80iger Jahre im Rahmen seiner
Untersuchungen zu verallgemeinerten sphérischen Harmonischen einfiithrte ([D1-D5]); zur Ab-
grenzung von den weiteren Varianten werden diese Operatoren heute auch “rationale” Dunkl-

Operatoren genannt.

Eine ganz wesentliche Motivation fiir die Beschéftigung mit Dunkl-Operatoren liegt in
ihrer Bedeutung fiir die Analyse quantenmechanischer Mehrteilchenmodelle vom Calogero-
Moser-Sutherland-Typ. Dies sind exakt integrierbare eindimensionale Systeme, die erstmals
von Calogero und Sutherland (|Cal, [Su]) studiert wurden und in den letzten Jahren inner-
halb der Mathematischen Physik zunehmend an Bedeutung gewonnen haben. Calogero-Moser-
Sutherland-Modelle sind unter anderem in der konformen Feldtheorie von Interesse und werden
eingesetzt, um Modelle der fraktionalen Statistik zu testen ([Hal, [Hal]). Der Dunkl-Operator-
Formalismus liefert explizite Operatorlosungen fiir eine Vielzahl von Systemen dieses Typs

(IL-V], [K1], [BHKV], [B-F3], [U-W]).

Die vorliegende Arbeit beschéftigt sich ausschliefslich mit den klassischen, rationalen Dunkl-
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Operatoren; wir werden sie der Einfachheit halber stets “Dunkl-Operatoren” nennen.

Das erste Kapitel liefert eine Einfilhrung in die Theorie der Dunkl-Operatoren und der
Dunkl-Tranformation. Dabei ist keine inhaltliche Vollstdndigkeit angestrebt; vielmehr ist Wert
darauf gelegt, einen Uberblick iiber die fiir das Weitere grundlegenden Konzepte zu vermitteln.
Verschaffen wir uns nun einen Einstieg in den Gegenstand der Arbeit: Gegeben sei eine endliche
Spiegelungsgruppe G auf dem RY mit zugehorigem Wurzelsystem R. Die assoziierten Dunkl-

Operatoren sind dann definiert durch

Tk (@) = Bcf(@) + 3 k(o) o, €) TEL= 0] e v

aERL <O{, x>

Dabei ist Ry ein positives Teilsystem von R und (., .) ist das euklidische Standard-Skalar-
produkt auf RY; ferner bezeichnet o, die Spiegelung an der zu o orthogonalen Hyperebene
und k: R — C eine sogenannte Multiplizitatsfunktion auf R, d.h. eine unter der natiirlichen
Operation von G invariante Funktion & : R — C. Der Dunkl-Operator T¢ (k) kann insbesondere
als eine mittels k& parameterisierte Storung des gewohnlichen partiellen Ableitungsoperators in
Richtung ¢ aufgefalit werden. Ist die Multiplizitatsfunktion & identisch Null, so stimmt T¢(k)
mit der gewohnlichen Ableitung in Richtung £ {iberein. Die Aktion der Dunkl-Operatoren
Te(k) auf dem Vektrorraum der Polynomfunktionen auf RY ist G-dquivariant und homogen
vom Grad —1. Dariiberhinaus haben die Dunkl-Operatoren (bei festem k) die bemerkenswerte

Eigenschaft daf sie kommutieren:
Te (k) Ty(k) = Tp(k) Te(k) fiir alle £, € RY,

In [D4]| wurde zunéchst fiir nichtnegative Parameter k die Existenz eines homogenen linearen
Operators Vj, auf dem Raum der Polynome bewiesen, welcher die Algebra der Dunkl-Operatoren

mit der Algebra der gewthnlichen Differentialoperatoren vertauscht, d.h.
Te(k)Vy = Vi O fiir alle € € RY.

Unter der Forderung Vi (1) = 1 ist dieser auch eindeutig. Eine griindliche Analyse in [D-J-O]
ergab spéter, daf ein solcher Vertauschungsoperator tatséchlich fiir genau diejenigen Multi-
plizitdtsfunktionen existiert, fiir welche der gemeinsame Kern der T¢(k), aufgefakt als lineare
Operatoren auf dem Vektorraum der Polynome in N Variablen, keine “singuldren” Polynome
aufer den Konstanten enthilt.

Ein zentraler Teil dieser Arbeit ist dem weiteren Studium des Vertauschungsoperators Vi
fiir nichtnegative Multiplizitdtsfunktionen k& gewidmet. Obwohl eine explizite Darstellung nur
in sehr wenigen speziellen Féllen bekannt ist, duferte Dunkl in [D4] die Vermutung, daf der
Operator Vi im Fall £ > 0 stets positivitdtserhaltend auf Polynomen ist und eine Integral-
darstellung vom Bochner-Typ auf gewissen Algebren analytischer Funktionen besitzt. Diese
Vermutung wird in Kapitel 2 bewiesen. Der Beweis erfordert mehrere Schritte; der zentrale

Teil ist dabei der Nachweis der Positivitdt von Vi auf Polynomen. Entscheidend hierfiir ist eine



v

Reduktion des N-dimensionalen auf ein eindimensionales Problem, welches dann explizit zu
16sen ist. Die erforderliche Reduktion wird mittels einer Charakterisierung vom Hille-Yosida-
Typ fiir die Erzeuger positiver Halbgruppen auf Rdumen von Polynomen bewerkstelligt. Das
Hauptresultat von Kapitel 2 basiert dann auf einer Fortsetzung des Vertauschungsoperators Vj,
auf gewisse Algebren analytischer Funktionen. Es besagt, daf fiir jedes € RY ein eindeutiges
Wahrscheinlichkeitsmaf % auf der Borel-o-Algebra des RV existiert, so daR Vj, fiir analytische

Funktionen f einer geeignet grofen Klasse, und insbesondere fiir alle Polynome, die Darstellung

i) = [ HO

besitzt. Dieses Resultat erlaubt allerdings nur sehr begrenzte Aussagen beziiglich spezifischer
Eigenschaften der darstellenden Mafe, namlich ihre Trager und gewisse Invarianz-Eigenschaften
betreffend. Es ist eine interessante und noch offene Frage, unter welchen Bedingungen an die
Multiplizititsfunktion k& die Make u* absolut stetig beziiglich des Lebesgue-Mafes sind oder
aber diskrete Anteile haben.

Eine wichtige Konsequenz unseres Hauptresultats betrifft den verallgemeinerten Exponen-
tialkern Fji(z,w) zu G und k, welcher im Rahmen der Dunkl-Theorie die iibliche Expo-
nentialfunktion auf CV x CV ersetzt. Nach einem Resultat aus [O2] ist dieser Exponen-
tialkern als eindeutige Losung eines simultanen Eigenwert-Problems fiir die Dunkl-Operatoren
{T¢(k), &€ € RNV} charakterisiert; er lift sich auch schreiben als

Ei(z,w) = Vi (e("w>)(z).

Zu dem Kern Ej, gibt es eine Integraltransformation im R, die Dunkl-Transformation, welche
in [D5] eingefiihrt und in [dJ1] detailliert untersucht wurde. Sie besitzt viele Eigenschaften der
klassischen Fourier-Transformation im R ; das gewohnliche Lebesgue-Maf ist dabei allerdings

durch die G-invariante Gewichtsfunktion

wi(e) = T Keya)M
a€Ry
modifiziert. Obiges Positivitédtsresultat impliziert fiir reelle x eine Bochner-Darstellung des
Dunkl-Kerns mittels der Mafse p]; — was insbesondere zeigt, da die Funktion y — Ey(z,iy)
fiir festes © € RY positiv-definit auf R ist. Hieraus ergeben sich auch (weitgehend) schérfere
Schranken fiir den Dunkl-Kern als die in [dJ1]| angegebenen.

An dieser Stelle scheint eine Bemerkung zum eindimensionalen Fall angebracht, der mit der
Spiegelungsgruppe Zs auf R und einem Parameter k > 0 assoziiert ist. Hier ist der Dunkl-Kern
explizit bekannt; er lafst sich mittels einer konfluenten hypergeometrischen Funktion vom Typ
1 I ausdriicken (oder auch als Kombination zweier normalisierter sphérischer Bessel-Funktionen
vom Index k& —1/2 und k + 1/2), und besitzt die positive Integraldarstellung

1
EE(z,w) = ck/letzw(l A+ t)*dt (z,w e C),



mit einer Normierungskonstanten Cj > 0. Die Dunkl-Transformation Zs-invarianter Funktio-
nen stimmt iiberein mit der Hankel-Transformation zum Index k& — 1/2.

Das dritte Kapitel ist Verallgemeinerungen der klassischen Hermite-Polynome im Kontext

endlicher Spiegelungsgruppen gewidmet. Es handelt sich dabei um orthogonale und, allgemei-
ner, biorthogonale Polynomsysteme beziiglich einer Gewichtsfunktion der Form wk(ac)(f“‘g”|2
auf dem RY . Wir beziehen die Motivation fiir das Studium solcher Polynome aus ihrer Bedeu-
tung im Zusammenhang mit exakt l6sbaren quantenmechanischen Mehrteilchen-Systemen vom
Calogero-Moser-Sutherland (CMS)-Typ. CMS-Modelle beschreiben Systeme von N Teilchen
auf einem Kreis oder einer Geraden, die durch invers-quadratische Potentiale gekoppelt sind.
Wihrend die Integrabilitit solcher Modelle schon von Calogero und Sutherland ([Cal, [Su]) fest-
gestellt worden war, fithrten erst jiingere Beobachtungen von [Po| und [He2| zu einem wesentlich
tieferen Verstdndnis ihrer algebraischen Struktur. Polychronakos betrachtete den rationalen
Calogero-Operator mit externem quadratischen Potential in L?(RY),
20,12 1
Ho = —A+w?|z? + 2k(k—1) K;@ T
Hierbei ist w > 0 ein Frequenz-Parameter und k& > 0 eine Kopplungskonstante. Er erkannte,
dafs sich dieser Operator, nach Modifikation durch zusétzliche Austausch-Terme, in entkop-
pelter Form mittels Dunkl-Operatoren vom Typ Ax_1 schreiben laft, und so als eine Vari-
ante des Schrédinger-Operators fiir den klassischen harmonischen Oszillator betrachtet werden
kann. Durch die Einfiihrung entsprechender Erzeugungs- und Vernichtungsoperatoren erhielt er
dann eine explizite Operator-Losung fiir das Ausgangsmodell. Diese beobachtungen waren Aus-
gangspunkt eines intensiven und anhaltenden Studiums expliziter Losungen von CMS-Modellen
mittels geeigneter Differential-Spiegelungs-Formalismen (|L-V], [K1], [BHKV], [B-F3|, [U-W]).
Um unsere weiteren Konstruktionen zu motivieren, beginnen wir das 3. Kapitel mit einer kurzen
Diskussion klassischer CMS-Operatoren. Wir wenden uns dann, auf der Grundlage beliebiger
Wurzelsysteme, abstrakten CMS-Operatoren mit quadratischem Potential zu. Diese sind von
der Form

Hi = —Ag +w2\m\2,

mit dem Dunkl’schen Laplace-Operator

N
Ap =) T, (k).
=1

Fiir ein Wurzelsystem vom Typ An_1 stimmt der Operator H bis auf eine Eichtransformation
mit der durch Austausch-Operatoren modifizierten Version des Operators Hg iiberein. Die
Spektraleigenschaften abstrakter CMS-Operatoren sind mittels Dunkl-Operator-Formalismus
leicht vollsténdig zu klaren; sie sind denen des isotropen harmonischen Oszillators sehr ahn-
lich. Insbesondere sind die Spektren dieser Operatoren diskret und hochgradig entartet, und
es gibt eine Vielzahl moglicher Eigenfunktionsbasen. In Abschnitt 3.2 konstruieren wir natiir-

liche Klassen von Eigenfunktionen im Rahmen eines einheitlichen Konzepts verallgemeinerter
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Hermite-Polynome und biorthogonaler Polynomsysteme. Die Hermite-Polynome sind dabei
gekennzeichnet durch Orthogonalitiit im entsprechend gewichteten L?-Raum, withrend natiir-
liche biorthogonale Systeme sich mittels Erzeugungs-Operatoren gewinnen lassen. Viele der
bekannten Eigenschaften klassischer Hermite-Polynome und Hermite-Funktionen erlauben eine
Ausdehnung auf diese allgemeineren Systeme, darunter die Erzeugenden-Funktion, Rodrigues-
Formeln, und eine Mehler-Formel. Im Ay _1-Fall schlieffen unsere Hermite-Systeme die verallge-
meinerten nicht-symmetrischen Hermite-Polynome von Baker und Forrester [B-F3| als spezielle
Klasse ein. Im eindimensionalen Fall erhalten wir die verallgemeinerten Hermite-Polynome auf
R, die bereits in [Ros| untersucht wurden. Die Ergebnisse von [B-F3] und [Ros| haben viele
unserer vorliegenden allgemeinen Konstruktionen angeregt. Das Kapitel schlieftt mit einer Ver-
sion des klassischen Weyl-Heisenberg’schen Unschéarfeprinzips fiir die Dunkl-Transformation;
sein Beweis basiert auf Entwicklungen beziiglich verallgemeinerter Hermite-Funktionen.

In Kapitel 4 werden mit Spiegelungsgruppen assoziierte Wéarmeleitungskerne sowie ver-
schiedene Familien von Operatorhalbgruppen untersucht, die alle in Verbindung mit dem Dunkl-
schen Laplace-Operator stehen. Fiir eine gegebene Spiegelungsgruppe G und eine Multi-
plizitdtsfunktion k£ > 0 wird der zugehorige Warmeleitungskern durch eine verallgemeinerte
Translation gewonnen, und zwar aus der Gauft’schen Fundamentallésung des “Warmeleitungs-

Operators” Ayg — 0; . Der entsprechende Warmeleitungskern ist gegeben durch

e M ey e Ty
Li(t 2, y) = tv+N/2e B Ek(ﬁ’ﬁ»

mit einer Normierungskonstanten Mj; > 0 und dem Parameter v = >

a:,ye]RN,t>0,

k(a). Die Pos-

itivitat des Dunkl-Kerns Ej, fiir reelle Argumente (sie ergibt sich aus unserem Hauptresultat

acER,

in Kapitel 2) gewéhrleistet, daf auch T'y positiv ist. Die Situation ist in der Tat weitgehend
analog zur klassischen: Der Dunkl’sche Laplace-Operator Ay erzeugt positive Kontraktions-
Halbgruppen auf einer ganzen Reihe von Funktionenrdumen einschlieklich L?(RY,wj) und
(Co(RM), ||./loc), und T, tritt als Integralkern dieser Wirmeleitungshalbgruppen auf. Weitere
verwandte Halbgruppen ergeben sich in der iiblichen Weise; wir erhalten insbesondere verallge-
meinerte Cauchy-Kerne und Cauchy-Halbgruppen durch Subordination aus den Wérmeleitung-
shalbgruppen, und greifen die abstrakten Oszillator-Operatoren aus dem vorangehenden Kapi-
tel nochmals auf. Unsere Resultate fiir die Warmeleitungs- und Cauchy-Halbgruppen vom
Dunkl-Typ schliefsen auch die explizite Losung entsprechend (klassisch) gestellter Anfangswert-
Probleme mit Ortsgebiet RY und gewissen Wachstumsbedingungen im Unendlichen ein, so
etwa dasjenige fiir den Warmeleitungsoperator Ap — d;. Die Eindeutigkeit der Losungen 14fst
sich hier wie im klassischen Fall durch ein Maximumprinzip fiir den Warmleitungsoperator
in unbschrinkten Gebieten sicherstellen. Den Abschluf dieses Kapitels bilden Untersuchun-
gen zur Kurzzeit-Asymptotik des verallgemeinerten Warmeleitungskerns T'y,. Die Struktur des
Dunkl’schen Laplace-Operators lift erwarten, daf der Kern Ty, nach Ubergang von L2(RY, wy,)
in den ungewichteten L?(R™), fiir sehr kurze Zeiten die Spiegelungshyperebenen “nicht spiirt”

und sich wie der freie Gaufskern 'y verhélt; wir vermuten, genauer ausgedriickt, daf fiir alle x, y
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innerhalb einer festen (offenen) Weyl-Kammer die folgende asymptotische Relation besteht:

i Y Wr@) we@) Tet,2,y)

t10 To(t,z,y)

Wir geben zwei Teilresultate in Richtung dieser Vermutung an; beide basieren auf dem Ma-
ximumprinzip fiir den klassischen Wéarmeleitungsoperator. Das erste Resultat liefert die be-
hauptete Asymptotik unter einer gewissen Einschriankung an die Argumente z, y (die auf den
Einfluf der Spiegelungshyperebenen zuriickzufiihren ist), das zweite beinhaltet eine scharfe un-

tere Schranke.
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Introduction

While the theory of special functions in one variable has a long and rich history, the growing
interest in special functions of several variables is comparably recent. In particular, there
has been a rapid development in the area of special functions related to root systems, with
important contributions during the last ten years by Heckman and Opdam, Dunkl, Macdonald,
and Cherednik. The motivation for this subject comes to some extent from the harmonic
analysis on Riemannian symmetric spaces, whose spherical functions can be written as multi-
variable special functions depending on certain discrete sets of parameters. For an overview
and further references we refer to the Bourbaki lecture of Heckman [He3|, to [M2]|, [H-Sc|, and
the survey of Kirillov [Ki]. A key tool in the analysis of special functions related with root
systems are Dunkl operators and their variants, the trigonometric Dunkl operators of Heckman
and Opdam as well as the closely related Cherednik operators (|D2]|, [H-Sc|, [Che]). Dunkl
operators are differential-reflection operators, associated to a finite reflection group on some
finite-dimensional Euclidean space. Their relevance for the analysis of multivariable special
functions is closely connected with their interpretation in the context of (degenerate) affine
Hecke algebras (see [Che|, [O2] and [Ki]). In their original version, Dunkl operators were
introduced and first studied by Dunkl in a series of papers (|[D1-D5|) in the context of a theory
of generalized spherical harmonics. These operators are now sometimes called “rational” Dunkl

operators.

An equally important motivation to study Dunkl operators originates in their relevance for
the analysis of quantum many body systems of Calogero-Moser-Sutherland type. These are
exactly solvable models in one dimension, which were first studied by Calogero and Sutherland
([Cal, [Su]). During the last years, such models have gained considerable interest in mathemat-
ical physics. They are, for example, of interest in conformal field theory, and are being used
to test the ideas of fractional statistics (|Ha|, [Hal|]). The Dunkl operator formalism provides
explicit operator solutions for a variety of such systems ([L-V], [K1], [BHKV], [B-F3], [U-W]).

In this thesis, we present various contributions to the theory of the classical rational Dunkl
operators, which we always call “Dunkl operators” for short. The first chapter is intended to
provide an essentially self-contained introduction to the theory of Dunkl operators and the
Dunkl transform; it does not aim at completeness, but concentrates on those aspects which will

be important in our context. Let us briefly describe our setting: Given a finite reflection group



G on RV with root system R, the associated Dunkl operators are defined by

Te(k)f(x) = Ocf(x) + Y k(a) <a,§>W

acER

, £eRYN,

Here R, is a positive subsystem of R, (., .) is the standard Euclidean scalar product in R
04 denotes the reflection in the hyperplane orthogonal to a;, and k: R — C is a function which
is invariant under the natural action of G on the root system, called a multiplicity function on
R. The Dunkl operator T¢(k) can therefore be considered as a perturbation in the parameter &
of the usual partial derivative in direction ¢ € RV . If the multiplicity function & is identically
zero, then T¢(k) coincides with the partial derivative 0¢ (independently of the group G'). The
action of the Dunkl operators T¢(k) on the vector space of polynomial functions on RY is
G-equivariant and homogeneous of degree —1. Moreover, they have the remarkable property
that they commute:

Te (k) Ty(k) = Tp(k) Te(k) for all &,n € RY.

It was first shown in [D4] that for non-negative multiplicity functions, there exists a unique

linear and homogeneous isomorphism V} on polynomials such that Vi (1) =1 and
Te(k)Vi = V3 0c for all € € RY,

i.e. Vj intertwines the commutative algebra of Dunkl operators with the algebra of partial
differential operators. A thorough analysis in [D-J-O] subsequently revealed that such an in-
tertwining operator exists if and only if the common kernel of the T¢(k), considered as linear
operators on the vector space of polynomials, contains no “singular” polynomials besides the
constants.

A central part of this thesis is devoted to a further study of the intertwining operator Vj, for
non-negative multiplicity functions. Although an explicit form for this operator is known only
in very special cases, it was conjectured by Dunkl in [D4| that Vi should always be positivity-
preserving on polynomials, and allow a Bochner-type integral representation on certain algebras
of analytic functions. This conjecture will be confirmed in Chapter 2. Its proof affords sev-
eral steps, the crucial part being a reduction from the N-dimensional to a one-dimensional
problem, which is then solved explicitly. This reduction is achieved by a Hille-Yosida type
characterization for the generators of positivity-preserving semigroups of linear operators on
spaces of polynomials. The main result of Chapter 2 is then obtained by an extension of Vj
to larger function algebras — essentially the same as introduced by Dunkl [D4]. More precisely,
we shall prove that for each 2 € RY, there exists a unique probability measure u§ on the
Borel-o-algebra of R such that

V@) = [ Ok

for all polynomials, and in fact for all functions from a certain algebra of analytic functions in

a Euclidean ball of sufficiently large radius. As to the nature of the representing measures, this



result allows only limited conclusions, refering to invariance properties and the support. It is
an interesting and still open problem to find criteria on the multiplicities & under which the
measures Mﬁ are absolutely continuous with respect to Lebesgue measure or do have discrete
parts.

An important consequence of our main theorem concerns the generalized exponential kernel
Ej(z,w) on CN x CV associated to G’ and k, which generalizes the usual exponential function
e*®) . This kernel is also called the Dunkl kernel; by a result of [02], it is characterized as the
unique solution of a joint eigenfunction problem for the Dunkl operators {T¢(k), £ € RN}, and

it can be written as

Ei(z,w) = Vk(e<"“’>)(z).

The Dunkl kernel gives rise to an integral transform on R” | called the Dunkl-transform, which
was introduced in [D5| and studied in detail in [dJ3]. This transform shares many properties
of the classical Fourier transform on RY, with the Lebesgue measure being modified by the
G-invariant weight function
wi(a) i= T o).
aER,

The above positivity result implies, for real x, a Bochner-type representation of the Dunkl
kernel by means of the representing measures u* above. This shows in particular that the
function y + Ej(x,iy) is positive definite on RY for each fixed z € RY. We also obtain
essentially sharper bounds on the kernel Fj than those in [dJ3].

We mention that in the one-dimensional case, associated to the reflection group G = Zso on
R and a single multiplicity parameter k > 0, the corresponding Dunkl kernel is known in terms
of a confluent hypergeometric function of type 1 F; (or equivalently, as a certain combination of
two normalized spherical Bessel functions of index k —1/2 and k + 1/2 respectively); it allows

the explicit integral representation

E%Q(z,w) = Cy /11 1 -t 1+ ) dt (z,w € C),
with some normalization constant Cj > 0. In this case, the Dunkl transform of group-invariant
functions coincides with the Hankel transform of order k —1/2.

Chapter 3 is concerned with generalizations of the classical multivariable Hermite polyno-
mials to the Dunkl setting. For a finite reflection group G on RY | we consider polynomial
systems which are orthogonal or, more generally, biorthogonal with respect to weight functions
of the form wy(x)e™¥ l2l* on RY . The motivation to study such polynomials originates in their
connection with exactly solvable quantum many particle systems of Calogero-Moser-Sutherland
(CMS) type. CMS models describe a system of N particles on a circle or line which interact
pairwise through potentials of inverse square type. While the quantum integrability of such

models was already observed by Calogero and Sutherland ([Ca|, [Su]), a new aspect in the



understanding of their algebraic structure was only recently initiated by [Po] and [He2]. Poly-

chronakos considered the so-called rational Calogero Hamiltonian with harmonic confinement

1
Ho = —A+ W’z + 2k(k—1) > —

1<i<j<N (i — ;)

in L2(RM); here w > 0 is a frequency parameter and k& > 0 a coupling constant. He observed
that after a modification of this operator by additional “exchange operators”, the resulting
abstract Hamiltonian can be written in a decoupled form involving Dunkl operators of type
An_1. It can in fact be considered as a Dunkl-type variant of the classical, IN-dimensional
isotropic oscillator Hamiltonian. Introducing analogues of the classical lowering and raising
operators, Polychronakos obtained an explicit operator solution for his original model in an
elegant way. Since then, there has been an extensive and ongoing study of CMS models and
explicit operator solutions for them via differential-reflection operator formalisms (|L-V], [K1],
[BHV], [B-F3], [U-W]).

To motivate our further constructions, we start Chapter 3 with a discussion of classical CMS
Hamiltonians. We then turn to abstract CMS operators with harmonic confinement, based on

arbitrary root systems. They are of the form
Hy = —Ap +w’af,

where
N
Ay =) T, (k)
i=1

is the Dunkl Laplacian. If the root system is of type An_1, then the operator H; coincides
— up to some gauge transform — with the exchange operator modification of H¢ considered
by Polychronakos. The spectral properties of abstract CMS operators are easily determined
within the Dunkl operator formalism. They are very similar to those of the isotropic oscillator
Hamiltonian. In particular, the spectra of these operators are discrete and highly degenerate,
and there are various possible choices of eigenfunction bases. In Section 3.2, we present natural
choices of eigenfunction bases within a unified concept of generalized Hermite polynomials and
biorthogonal polynomials. In particular, the generalized Hermite polynomials are characterized
by orthogonality in the underlying weighted L?-space, while certain biorthogonal systems can
be obtained by a ladder formalism. Many of the well-known properties of classical Hermite
polynomials and Hermite functions allow extensions to generalized Hermite- and biorthogonal
systems, such as the Rodrigues formula, generating function, and a Mehler formula. In the
Apn_q-case, our Hermite systems include the generalized Hermite polynomials of Baker and
Forrester [B-F2|, |B-F3| as a particular class. In the one-dimensional case, we obtain the
generalized Hermite polynomials on R which were studied in [Ros| in connection with a Bose-
type oscillator calculus. The results of [B-F3| and [Ros| have inspired many of our present, more

general considerations. Chapter 3 is concluded by an analogue of the classical Weyl-Heisenberg



uncertainty principle for the Dunkl transform; its proof is based on expansions with respect to
generalized Hermite functions.

In Chapter 4, we study heat kernels for finite reflection groups as well as several families of
operator semigroups which are related to Dunkl’s Laplacian Aj. For a given reflection group
G and a non-negative multiplicity function k, the associated heat kernel on RY is obtained,
by a generalized translation, from the Gaussian “fundamental solution” of the Dunkl-type heat

operator Ay — 9;. This heat kernel is given by

e M (a2 z Y N
Fk(twrvy) = t,y+N/2€ v Y Ek<ﬁ7ﬁ)a xayeR 7t>07

with a suitable normalization constant My > 0 and v = )" R k(a). The positivity of the
Dunkl kernel Ej for real arguments, due to our main theorem of Chapter 2, ensures that the
kernel I'y is positive as well. In fact, there is a complete analogy to the classical situation:
the Dunkl Laplacian Ay generates positivity-preserving contraction semigroups on a variety of
Banach spaces including L?(RY,wy) and (Co(RY),|.ls), and T, serves as the integral kernel
of these generalized heat semigroups. Interesting related semigroups can be obtained by the
usual methods; in particular, we consider generalized Cauchy kernels and Cauchy semigroups,
and take up the Dunkl-type oscillator Hamiltonians from the previous Chapter. Their spectral
properties being completely known, we are directly led to a generalization of the classical
oscillator semigroup. Our results for heat- and Cauchy semigroups lead also to explicit solutions
of the associated (classical) initial value problems with spatial domain R" and certain growth
conditions at infinity, such as for the generalized heat operator Ay — 9;. Uniqueness of the
solutions is guaranteed, just as in the classical case, by a maximum principle for the generalized
heat operator on unbounded domains. The last section of this Chapter is concerned with
the asymptotic behaviour of the generalized heat kernel I'y for short times. The structure of
the Dunkl Laplacian suggests that after being transfered from L?(R™,wy) to the unweighted
L? (]RN ), the Dunkl heat kernel should not feel the reflecting hyperplanes and behave like the
free Gaussian heat kernel I'g for short times; more precisely, it is conjectured that for all x,y
within a fixed open Weyl chamber,
iy Y Wr@) we@) Te(t, 2y)
t10 To(t,x,y)

We present two partial results towards this conjecture; both are based on the maximum principle

for the classical heat operator. The first result gives the stated asymptotics under a certain
restriction on the arguments (due to the influence of the reflecting hyperplanes), the second one

provides a sharp lower bound.

Basic notations, in particular those for spaces of functions and measures, but also frequently

used specific notations, are collected in the appendix.

Major parts of this thesis are already published or accepted for publication. In their present

form, however, they differ from the original versions by revisions and extensions at many places.



In particular, [R5] contains the essential parts of Chapter 2, except of the detailed discussion of
the algebras of homogeneous series in Section 2.3.. Proposition 1.4.8 as well as partial results
of Section 4.3 are published in [R-V2|. Chapter 3.2 is a seriously revised and unified treatment
of the material on generalized Hermite polynomials and biorthogonal systems which has been
published in [R4]| and [R-V1], respectively. The result of Section 3.3 is contained in [R6]|. Finally,
parts of Section 4.1 as well as Section 4.2 are published in [R4].
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stay at the University of Virginia in Charlottesville, which was supported by a research grant
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for all his help, in particular with computer-related questions. My very special thank goes to
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Chapter 1
Basic concepts

The aim of this chapter is to provide an introductory overview of the theory of (rational)
Dunkl operators and the Dunkl transform. General references are [D2-5], [D-J-O], [dJ1] and
|O1]; for a background on reflection groups and root systems we refer to [Hu| and |G-B]. The
material of this chapter is essentially well-known; there are, however, also a few new aspects
included which are at least not explicitly contained in the literature, such as the behaviour of
Dunkl operators and the Dunkl kernel under orthogonal transformations, the Dunkl transform
of radial functions in Section 1.4, and the discussion of generalized translations in the last
section. We do not intend to give a complete survey, but rather focus on those aspects which
will be important in our context. In particular, we do not talk about generalized spherical
harmonics (see [D4] and [X2-X3| for this interesting subject), and we restrict major parts of
our discussion to non-negative multiplicity functions, because this case will be the only relevant
one in the following chapters. The proofs are omitted in as much as they can be found in the

quoted literature.

1.1 Dunkl operators

Dunkl operators are differential-reflection operators associated with a finite reflection group,
acting on some Euclidean space (E, (.,.)) of finite dimension N. We shall always assume that
E = RY with the standard Euclidean scalar product (z,y) = Z;VZI z;y;. For a € RV \ {0},

we denote by o, the reflection in the hyperplane H, orthogonal to «, i.e.

(o, 2)

oa(x) = ¢ —2

o>

where |z| := \/(z,x). We use the notation (.,.) also for the bilinear extension of the Euclidean

scalar product to CV x CV | whereas z + |2| stands for the standard Hermitean norm on C%

2| = (!21\2+-~-+ ]zN\2)1/2 for z=(z1,...,2n) € cN,



8 CHAPTER 1. BASIC CONCEPTS

A finite, non-empty set R C R \ {0} is called a (reduced) root system if
RNRa={+a} and o,R=R foralla€R.

There are no cristallographic conditions imposed on the roots, and we do not require that
R spans RY. For a given root system R the reflections o, (a € R) generate a finite group
G C O(N,R); it is called the reflection group associated with R. All reflections in G correspond
to suitable pairs of roots, and the orbits in R under the natural action of G correspond to the
conjugacy classes of reflections in G. The connected components of RN \ H, where H =
Uacr Ha, are called the Weyl chambers of G'. If W is an arbitrary fixed Weyl chamber of G,
then its closure W in RY is a fundamental domain of G, i.e. W is naturally homeomorphic
to the space (RM)Y of all G-orbits in RY, endowed with the quotient topology. For details,
we refer to Chapter 1 of [Hu|. We further fix a positive subsystem Ry ={a € R: («, ) > 0},
where 3 € RN \ H. Then for each a € R, either « € R, or —a € R, . From now on we
assume that the root system R is normalized in the sense that |a| = v/2 for all o € R; this
simplifies formulas, but is no loss of generality for our purposes.

Let M be the vector space of C-valued functions on R which are invariant under the action
of the associated reflection group G. Its dimension is equal to the number of G-orbits in R.
An element k € M is called a multiplicity function on R. We write Rek > 0 if Rek(a) > 0

for all « € R and k> 0 if k(o) > 0 for all & € R. For abbreviation, we introduce the index
vi=qk) = Y k(a). (1.1)

a€Ry

Since k is G-invariant, and therefore in particular k(—a) = k(«) for all o € R, this definition

is independent of the special choice of R, . For k > 0, we denote by wy the weight function
wi() = ] Kena)P), (1.2)

a€Ry

which is G-invariant and homogeneous of degree 27, with v = (k) as defined in (1.1). We
further fix (again for k£ > 0) the Mehta-type constants

Ck ::/ e_‘:”lQ/ka(m)da:. (1.3)
RN

Macdonald [M1] conjectured a closed expression for these constants, which was confirmed for
arbitrary root systems in Corollary 9.10 of [O1].

Now fix some root system R on RY, corresponding to a reflection group G on RY. The
Dunkl operators attached to G are first-order differential-reflection operators on R which are

parametrized by some multiplicity function k € M.

1.1.1 Definition. For ¢ € RY, the Dunkl operator T¢(k) is defined by

Te(1) (@) = 06 f(o) + 3 ko) (o) T 2T I p e ongy)
aER ’

here ¢ denotes the directional derivative corresponding to §.
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For the i-th standard basis vector £ = ¢; € RY | we use the abbreviation T;(k) = T, (k).
Again, the above definition is independent of the choice of R, . In case k = 0, the T¢(k) reduce
to the corresponding directional derivatives. The operators T¢(k) were introduced and first
studied by Dunkl in a series of papers (|D2-5|) in connection with a generalization of the classical
theory of spherical harmonics; here the uniform surface measure on the (N — 1)-dimensional
unit sphere is modified by a weight function wy as defined above. The most important features
of Dunkl operators are visible already by their action on polynomials. Before going on, we have
to provide some additional notation.

Let II"V := C[R"] denote the C -algebra of polynomial functions on RY. TI¥ has a natural
grading IV = @, ., PY, where PY (n € Zy = {0,1,...}) is the subspace of homogeneous
polynomials of (tot;;I) degree n. Let further IIY := Do P,iv , the space of polynomials of

degree at most n.

We use the standard multi-index notation; in particular, for v = (v,... ,vN) € Zﬂ\_f we
write v!:=u1!l-...-vny! and |v]:=wv1 + ...+ v, as well as
2=zt o2 and AV = AT AT
for z € CV and any family A = (Ay,..., Ay) of commuting operators on II"V. The natural

action of O(N,R) on C*(RY) is given by
h-f(z):= f(h~'z), heO(N,R).

We continue with our discussion of the Dunkl operators T¢(k). First of all, they have the
following regularity properties:
1.1.2 Lemma. (/D2], [dJ1]) Let k € M and ¢ € RN. Then the following assertions hold:
(1) If f € C(RY) with n > 1, then T¢(k)f € CPHRY).
(2) If f belongs to the Schwartz space .7 (RN) of rapidly decreasing functions on RY | then
also T¢(k)f € S (RY).
(3) Te(k) is homogeneous of degree —1 on IV, that is, Te(k)p € PN, for p e PY.
Proof. All statements follow from the representation
_ 1
@) = J(0a2) = / Oaf(z — t{o,z)ar)dt for f € CYRY), a € R.
<Oé, .%‘> 0
(1) and (3) are immediate; for details concerning (2) we refer to [dJ1]. O
We note further that by the G-invariance of k,

goTe(k)og™ = Tye(k) (9€@). (1.4)

Moreover, the T¢(k) satisfy a product rule, which is easily verified by a short calculation: If
f,g € CY(RY) and at least one of them is G-invariant, then

Te(k)(fg) = Te(k)(f) -9 + [ - Te(k)(9)- (1.5)
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The most striking property of the Dunkl operators, which was verified in [D2] by direct

computation, is the following

1.1.3 Proposition. For each k € M, the family {T¢(k), € € RN} generates a commutative

algebra of linear operators on IV .

Together with Lemma 1.1.2 (3), this fact implies that for any real-analytic function f :
RN — C with power series f(z) = Zuezf a,z” there is a unique linear operator f(7'(k)) on

IV defined by the terminating series
FTE)P) =Y aTk) (p) = Y a,Ta(k)" -...- Tn (k)" (p).
veZl veZy

The classical case k = 0 will be distinguished by the notation f(9). Of particular importance
is the generalized Laplacian associated with G and k, which is defined by Ay := p(T'(k)) with

p(r) = |x|%. Tt is homogeneous of degree —2 and satisfies

N
Ap = T (k)? (1.6)
i=1
for any orthonormal basis {¢1,...,6n} of RV, see [D2]. By our convention (o, ) = 2 for all

a € Ry, the generalized Laplacian is given explicitly by

Ay =A+2 Y k), with &uf(z) = (V@) a)  flz) = oaf(@), (1.7)

o (o, x) (o, 2)?

here A and V denote the usual Laplacian and gradient respectively.

1.1.4 Remark. 1. It follows from (1.4) together with (1.6) that Ay is equivariant under G, i.e.
goAr=Apog forall ged.

However, Ay is not fully rotationally equivariant: For h € O(N,R), define the multiplicity
function kj on the transformed root system h(R) (which belongs to the conjugate reflection
group hGh™1) by

kn(ha) == k(a), a € R. (1.8)

Then a short calculation yields
hoTE(k) =T (kn)oh  for h € O(N,R), (1.9)

where the additional superscript stands for the underlying root system. It follows, again in view
of (1.6), that
hoAf = A} on forall heON,R). (1.10)

Let us consider some important special cases:



DUNKL’S INTERTWINING OPERATOR 11

1.1.5 Ezamples. (1) The one-dimensional case. In case N = 1, the only choice of R is
R = {£/2}, corresponding to the reflection group G = {id,0} = Zy on R, where o(z) = —z.
The Dunkl operator T'(k) := T 5(k) associated with the multiplicity parameter k € C is given
by

T(0)f@) = £+ - DD e o,

Its square T'(k)2, when restricted to the even subspace C'(R)® := {f € CY(R) : f(z) =
f(=x)}, coincides with the Bessel differential operator of index k£ —1/2 on R:

2k

T(k)*|crmye f(2) = f"(x) + @)

(2) Dunkl operators of type Ay_;. These belong to the symmetric group G = Sy,
which acts in a canonical way on RY by permuting the standard basis vectors ey, ...,eyx. Each
transposition (ij) acts as a reflection 05, sending e; —e; to its negative. On C* (RM), 0;j acts
by transposing the coordinates x; and x; with respect to the standard basis. The attached root
system, of type Any_1, is given by R ={e; —e;j, 1 <i,j7 < N, i # j}. Since all transpositions
are conjugate in Sy, the vector space of multiplicity functions on R is one-dimensional. The

Dunkl operators associated with the multiplicity parameter k € C are given by
Ti(k)S = 0; + k-zﬂ (i=1,...,N),
A T
and the generalized Laplacian is

1

i~ Ty

1_Uij

AF = A+26 Y

— X
1<i<j<N

ﬁ@—@—m%

(3) Dunkl operators of type By. Let G be the Weyl group of type By (N > 2),
i.e. the reflection group on RN which is generated by the transpositions 0;j as above, as well
as the sign changes o; : ¢, & —e;, @ = 1,...,N. The group of sign changes is isomorphic
to Zév , intersects Sy trivially and is normalized by Sy, so G = Sy X Zév . There are two
conjugacy classes of reflections in G, leading to multiplicity functions of the form k = (ko, k1)

with k; € C. The associated Dunkl operators are given by

TP = 0 + kT 4 ke 30 [T L T gy,
X; gy Ti— X T + 2

where Tij += 0450405 .

1.2 Dunkl’s intertwining operator

It was first shown in [D4] that for non-negative multiplicity functions, the associated commu-
tative algebra of Dunkl operators is intertwined with the algebra of usual partial differential
operators by a unique linear and homogeneous isomorphism on polynomials. A thorough anal-

ysis in [D-J-O] subsequently revealed that such an intertwining operator exists if and only if
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the common kernel of the T¢(k), considered as linear operators on IV contains no “singular”

polynomials besides the constants. More precisely, the following characterization holds:
1.2.1 Theorem. ([D-J-O]) Let M™ := {k € M : \ecpn Ker(Te(k)) = C-1}. Then the
following assertions are equivalent

(1) ke M9,

(2) There exists a unique linear isomorphism (“intertwining operator”) Vi, of 1N such that

Vi(PR) =Py, Vilpy =id and Te(k)Vy = Vi@  for all £ € RY.

The singular parameter set M \ M"Y is explicitly determined in [D-J-O]. From [D-J-O]
together with the results of [O1] it follows in particular that M"9 is an open subset of M

which is invariant under complex conjugation, and that
{ke M :Rek >0} C M"9.

In most parts of this thesis, we will in fact restrict our attention to non-negative multiplicity
functions. The operator Vj, plays an important role in Dunkl’s theory and its applications. In
[D4] it was used, for k > 0, to define a generalized exponential kernel (the Dunkl kernel) and
an associated integral transform (the Dunkl transform); these subjects will be introduced in
the subsequent sections. An explicit form of Vi, however, is known so far only in very special

cases:

1. The one-dimensional case 1.1.5 (1). It follows from the results of [D-J-O| that
1
M = C\{ -5 —nneZi} = M.
The associated intertwining operator is given explicitly by
(3) s
n+ x2n+1

(k + %)n—i—l 7

(%)n .%'2"' Vk(x2n+1) _
(k+3),

where (a), = I'(a+n)/T'(a) is the Pochhammer symbol. For Rek > 0, this amounts to

Vk (.I'Qn) =

the following integral representation (see [D4], Th. 5.1):

1
Vipl(z) = m/_lp(mu — R+ 1)k dr. (1.11)

2. The direct product case G =75 on RN . Here M"®9 = (M,)" and for k = (k1,...,kn) €
M"¢9 | the operator Vj is defined by Vj(z¥) = Hévzl Vi, (:U;/J) . For Rek > 0, an integral
representation is easily obtained by an N -fold iteration of (1.11), c.f. [X1].

3. The case G = S3, which was studied in [D6|. Here

1 2
g—n,—g—n,nEZ+}.

For k > 0, an integral formula of Harish-Chandra on the unitary group U(3) (whose

1
M7 = C\ {-5 —n,

Weyl group is S3) was used in [D6| to construct an integral representation for Vi over a

compact subset of R?*2.
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The proof of Theorem 1.2.1 is based on a general inductive construction of operators that
intertwine the action of two sets of operators in a graded vector space (Theorem 2.1 of [D-J-0]).
When applied to the operators {9;,i=1,...,N} and {T;(k),i=1,..., N} on II"V, the quoted
theorem implies that for every k € M there exists a unique linear map Wy, : IIV — IV such
that

Wilpy = id, Wi(Py) C P and 9 Wy = WyTe(k) forall & RN

In addition, W}, is bijective for k € M™Y.
It is easily verified that the operator Wy, which of course coincides with Vk_1 for every
k € M"9  is given explicitly by
xl/
Wip)a) = > —rT(k)"p(0) = (¢T®p)(0). (1.12)

I/!
N
VEZL

An immediate consequence of (1.12) is the following Taylor-type formula:

1.2.2 Corollary. Let k € M"Y, and suppose that f : B — C is holomorphic in an open ball
B C CN around 0. Then

1) = 3 5 M ey s,
n=0 |v|=n ’

where the series Y > converges normally in B.
We finally mention the behaviour of Vj under orthogonal transformations: Let h € O(N,R),

and use the notations from Remark 1.1.4. The transformation property (1.9) for the Dunkl
operators, together with the intertwining property of V4, , implies that

TEK) Wi h = BT (k)Vi b = h™"Wa, e h = BV, h ok
In view of the characterizing properties of Vj, it follows that
AW, h = Vi forall h€ O(N,R). (1.13)
In particular,

g Weg =V, forall geG. (1.14)

In [D4], the intertwining operator Vj is, for k& > 0, extended to a bounded linear operator
on a suitably normed algebra of homogeneous series on the unit ball of R, as follows: Let
K :={z € R : |z| < 1} denote the unit ball in RY | and define

o o0
A={f:K—C, f:an with f, € PY and || f]la ::an”HOOvK <oo}. (1.15)
n=0 n=0
It is easily checked that for f € A the homogeneous expansion f = Y 7, f, is unique, and
that A is a commutative Banach-*-algebra (with complex conjugation as involution); moreover,

each f € A is real-analytic in the open ball K° and continuous on K. For more information
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we refer to Section 2.3, where this algebra will be studied in some detail. We have to point
out, however, that A as defined above is a complex algebra, whereas in [D4] only series of real-
valued polynomials are considered. In [D4] it is shown that ||[Vip o,k < ||P|loo,x for every
homogeneous polynomial p with real coeflicients; as a consequence, Vi extends to a continuous

linear operator on A by

Vif =Y Vifa for f=) f, €A. (1.16)

n=0 n=0
Up to now, it has been an open question whether for k£ > 0 the intertwining operator Vj is
always positive, i.e. Vi p >0 on RY for each nonnegative polynomial p € IIV . More generally,

Dunkl stated the following conjecture:

1.2.3 Conjecture. ([D4]) Let k > 0. Then for every x € RN with |z| < 1, the functional
f = Vif(x) is positive on A.

This statement can be derived from the explicit representation of Vj in the above listed
special cases 1 and 2; in the S3-case however, the integral representations derived in [D6]| failed
to infer this result - at least for a large range of k. The above conjecture will be proved in
Section 2.4 for general reflection groups and nonnegative multiplicity functions. One of the
tools in our proof is the following bilinear form on ITVV, associated with G and k > 0, which

was introduced in [D4] in the context of generalized spherical harmonics:

p,alk = (p(T(k))q)(0) for p,qeTI".
We collect some fundamental properties of this bilinear form.

1.2.4 Lemma. (1) If p€ PY and ¢ € PN with n # m, then [p,qlx = 0.
(2) [zip,alk = [, Ti(k)glk (p,qeT™, i=1,... N).

[
(3) [., .Jx is symmetric and non-degenerate.
4 l9-p,9-dk = [0k (pgeT™, g€q).
(5) Vap,dlk = [0 (p,geTIY).

Proof. (1) follows from the homogenity of the Dunkl operators, (2) is clear from the definition,
(3) is shown in [D4] and [D-J-O] respectively, while (4) follows from (1.4). It remains to prove
(5). In view of (1), it is enough to consider p,q € P with n € Z, . Then

Vep,qlk = |4, Vaple = q(T(k))(Vip) = Vi(q(9)p) = q(0)(p) = [p,dlo;

here the characterizing properties of V}, and the fact that ¢(0)p is a constant have been used. [

The pairing [.,.]x is closely related to the scalar product in L?(RY, e*|x|2/2wk); in fact,
we have the following identity due to Dunkl [D4], which generalizes a result of Macdonald [M1]

for the classical case:
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1.2.5 Proposition. For all p,q € IV,

e = 6t [ e pla) e @) o) da, (117)

This identity implies in particular that [.,.]; isin fact a scalar product on the vector space
I = R[RY] of real valued polynomials on RY. Later on, it will be of some importance in
several contexts; we therefore include an elegant and instructive proof which is taken from an
unpublished part of de Jeu’s thesis ([dJ3], Chap. 3.3). It involves the following commutator
results in Endc(ITY), where as usual, [A, B] = AB — BA for A, B € End¢(ITV).

1.2.6 Lemma. Fort=1,..., N,
(D) [wi, Ae/2] = =Ti(k);
(2) [wi, e 2%/2] = Ti(k) e 2+/2.
Proof. (1) follows by a short calculation (c.f. [D2], Prop. 2.2). Induction then yields that
[, (Ak/2)"] = —nTy(k)(Ar/2)" " forn > 1,
and this implies (2). O
Proof of Proposition 1.2.5. Let i € {1,...,N}, and denote the right-hand side of (1.17) by
(p, q)k. Then by the anti-symmetry of Tj(k) in L?(RY,wy) and the above Lemma,
(p, T; (k) q)k = clzl /]RN e Rkl (TZ(]{J) e_A’“ﬂq) e lzl/2 wy, do

= — clzl /RN E(k)(e_|zl2/2e_A’“/2p) . (e_Ak/2q) wy, dx

=c! /RN e~ Ak/2 (2 p) - (e*A’“/QQ) e 712wy, dx = (zip, q)k-

But the form [.,.]; has the same property by Lemma 1.2.4(3). Since the T;(k) are homoge-
neous of degree —1, an easy induction argument with respect to max(deg p, deg ¢) now finishes
the proof. O

1.3 The generalized exponential kernel

For regular multiplicity parameters, there exists a generalization of the usual exponential kernel
e!®¥)  which can be characterized as a solution of the joint eigenfunction problem for the Dunkl
operators {T¢(k), £ € RN}, The following theorem is a weakened version of [O1], Prop. 6.7.
(c.f. Theorem 2.6 of [dJ1]).

1.3.1 Theorem. For each k € M"™9 and w € CV , the system

Te(k)f = (& w)f (£€RY)

has a unique solution x — Ey(x,w) which is real-analytic on RY and satisfies f(0) = 1.

Moreover, the mapping (x,k,w) +— Ei(x,w) extends to a meromorphic function on
CN x M x CN with pole set CN x (M \ M"9) x RV
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The function E} is called the Dunkl kernel, or generalized exponential kernel, attached to
the reflection group G and the multiplicity function k. The group-invariant counterpart of this

kernel, the “generalized Bessel function”

Ji(z,w) == |é’| ZC;Ek(gz,w) (z,w e CY), (1.18)

is also of some importance.

1.8.2 Remarks. (1) If k = 0, then Ej(z,w) = e for all z,w € CN. (Recall that (.,.)

was defined to be bilinear on C x CV.)

(2) The kernel J; was introduced in [O1], where in particular the pole set of the map-
ping (z,k,w) — Ji(z,w) was determined explicitly (Prop. 9.6 of [O1]); it coincides
with the pole set of Ej (Cor. 6.10 of [O1]). The intimate connection of this pole set
with the singular parameter set of the intertwining operator and its identification with
CN x (M \ M79) x RN were observed in [D-J-O] (c.f. the remark after Theorem 4.8).

(3) For nonnegative multiplicity functions, the kernel Ej, was originally constructed in [D4] by
means of the intertwining operator V;,. In fact, the exponential function z — e/®%) | with
w € CV fixed, obviously belongs to the algebra A. Hence one can define Ek( Lw) €A
by
Ep(z,w) := Vk(e<"w>)(x), lz| < 1.

The homogeneity of Vi implies that for A € R with |[Az| <1,
BoOa,w) = iv (M)(M) _ iv (M)(:ﬁ) — By(e, )
k ) - — k nl - — k nl - k\Ls .

We therefore have a unique extension of Ek(, w) to a real-analytic function on RV sat-
isfying E‘k(Ax, w) = Ek(ZE, Aw) for all A € R. Moreover, using the intertwining property
of Vj, as well as its normalization V(1) = 1, it is easily checked that Ek fulfills the

characterization of Ej according to the above proposition; hence

Ey(z,w) = V(") (x) for |z| <1. (1.19)

(4) It is usually not required in the theory of Dunkl operators that the reflection group G
is essential relative to RY, i.e. acts on R with no nonzero fixed points. (Notice that
this condition is equivalent to (R) = R, i.e. the associated root system spans R™.)
Such an additional requirement would however impose no serious restrictions. In fact, if
G is not essential relative to RV, then V := {z € RN : gz = x forall g € G} is a
nontrivial subspace of RV, and G is essential on the orthogonal complement V- of V in
RY. Moreover, we have R C V-, and therefore T¢(k) = 0¢ for all £ € V and arbitrary
multiplicity functions k. Thus the relevant action of the Dunkl operators takes place in

V1, which is also reflected by the form of the associated Dunkl kernel. For z € CV write
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2 =2 42", with 2/ € V+iV and 2’ € V!t +iV+. Then it is immediately seen from

the characterization of Fj according to Theorem 1.3.1 that
Eip(z,w) = ¥ B (2" w") for all z,w e CV . (1.20)

Just as for the intertwining operator, the kernels Ej and J; are known explicitly for some

particular cases only. An important example is the one-dimensional situation:

1.8.83 Example. For the reflection group G = Zs on R and multiplicity parameter k& with
Rek > 0, the integral representation (1.11) for Vi implies that for all z,w € C,

1
E%Q(z,w) = Im /1 (1 -t 1+ )k dt = eV - Fi(k, 2k + 1, —2zw).

We therefore have

zZW

. . 7 . .
+ m]kﬂ/z(lzw)a and  Ji%(z,w) = jr_1/2(izw),

B (z,w) = jg_1/2(izw)

where for a > —1/2, j, is the normalized spherical Bessel function

N _ o Ja(2) _ o (=1)"(z/2)*"
jo(2) = 2°T(a+1) - =0 _F(O‘“)'nzon!r(an)' (1.21)

We list some general and basic properties of the Dunkl kernel.

1.3.4 Proposition. Let k€ M"™9, g€ G, h € O(N,R), z,w € CN and A € C. Then

(1) Ei(z,0) =1

(2) Eg(z,w) = Eg(w,z).

(3) Ex(gz,gw) = Ex(z,w) and Ep(Az,w) = Ex(z, \w).
(4) Ey, (hz,hw) = Ej(z,w).

() Ei(z,w) = Eg(z,).

The same properties hold for the generalized Bessel function Jy, ; moreover, Ji(gz,w) = Ji(z,w)
for all g€ G, z,w € CN.

Proof. (1) is clear from the definition and (2) was shown in [D5]. The remaining properties
follow from corresponding homogeneity properties of the Dunkl kernel; for (3) and (5) we refer
to [dJ1], while (4) can be seen as follows: The transformation property (1.9) implies that for
fixed w € CV, the function F(z):= h™!- Ey, (z,hw) on RY satisfies T¢(k)F = (£, w)F as

well as F'(0) = 1. The assertion now follows from Theorem 1.3.1 and analytic continuation. [

1.8.5 Remark. For fixed z € CV | the generalized Bessel function f,(x) := Ji(x,z) solves the
eigenvalue problem
Lyf = (z.2)f on RY,
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with the differential operator

Lif(z) = Af(z) +2 > k(o).

acR SU>

(Vi) a)
(a,
In fact, the G-equivariance of the Dunkl Laplacian A implies that

Akfz = <Z,Z>fz,

and A}, coincides with Lj for G-invariant functions from C2(RY). The operator L can also

be written in divergence form,

1
wy ()

N
Lyf(z) = > O (wi(@)0if (x)).
i=1

This is a canonical multivariable generalization of the Sturm-Liouville operator for the classical
spherical Bessel function jj_1/2, which is obtained in the one-dimensional case, c.f. Example
1.1.5 (1).

We conclude this section by a closer look at the homogeneous expansion of the Dunkl kernel.
Since E}, is holomorphic on CV x CV | it admits a unique normally convergent expansion into a
series of homogeneous polynomials. In fact, Corollary 1.2.2 with f = Ep(.,w), w € CV fixed,
shows that

Bi(z,w) = Y Egpnlz,w) (z,weCV) (1.22)
n=0

with

Epn(zw) = 3 V"“Su) w’ = vk(<":!’>n)(z). (1.23)
lv|=n

Here K}, is a homogeneous polynomial of degree n in each of its arguments; so the expansion
(1.22) coincides with the homogeneous expansion of Ej, and converges normally on CV x CV.
Comparison of the homogeneous parts shows that the properties listed in Proposition 1.3.4 hold

for each of the Ej ,, instead of Ej, as well. Moreover,
Te(k)Epn( . w) = (€,w) By po1(.,w) forall n>1, & € RY. (1.24)

We shall also need the following estimates, valid for £ > 0 ([D4], [D5]):

2" [w]"

| Ejn(z,w)| < (z,we CN, neZy). (1.25)

n!

1.4 The Dunkl transform

The generalized exponential function Ej, gives rise to an integral transform on RY | called the
Dunkl transform. It was introduced in [D5] for non-negative multiplicity functions and further
studied in [dJ1| for the more general case Rek > 0. Since several results are known for non-

negative multiplicity functions only, we shall throughout this section restrict to the case k > 0.
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On suitable function spaces, the Dunkl transform establishes a natural correspondence between
the action of multiplication operators on the one hand and the associated Dunkl operators on
the other. Definition and essential properties of the Dunkl transform rely on suitable growth
estimates for the kernel Ej. Such estimates were first derived in [D4]; the following sharper

ones were proven in [dJ1] (in fact, for the larger range Rek > 0).

1.4.1 Proposition. For all z,w € CV,
|E(z,w)| < /|G| - e™aXoca felgzw),

In particular, |Ep(—iz,y)| < /|G| for all z,y € RV .

1.4.2 Remark. We shall prove in Section 2.4 that for fixed w € CV, the function x — Ej(z,w)
has a positive, Bochner-type integral representation (Corollary 2.4.3). This in particular implies
that the factor /|G| can be omitted, see Corollary 2.4.5.

At this point, we include two important reproducing properties of the Dunkl kernel; notice

that the above estimates on Fj assure the convergence of the integrals involved.

1.4.3 Proposition. (/D5]) Let k > 0. Then
(1) / e 2p (2) Ejy(x, 2) e_lx‘Q/zwk(x)dm = e 2p(z) (pelV, zeCM).
RN

(2) Ex(z, z) Ex(z,w) e_lw‘Z/zwk(m)dw = ¢, &AW 2E (2 w) (2w e CN).
RN

The Dunkl operators T¢(k) can be considered as linear operators on L*(RY,wy) with
domain .7 (RY) or C°(RY); both spaces are dense in L*(RY wy) according to Lemma 4.5
of [dJ1]. It is of basic importance in context with the Dunkl transform that the T¢(k) are

anti-symmetric in L2(RY, wy):

1.4.4 Proposition. (/D5]) Let k> 0. Then for every f € Z(RY) and g € Cy(RY),

| T s@ g@ e = = [ 1@ TeRgta) wiado.

1.4.5 Definition. The Dunkl transform associated with G and k > 0 is given by
RN w) - GRY: TN = [ @B i) wla)de (€ €RY)

The inverse transform is defined by fV¥(y) = fk(—y).

The Dunkl transform has many properties analogous to the classical Fourier transform. The
results listed in the following proposition are proven in [D5|, [dJ1].
1.4.6 Proposition. (1) The Dunkl transform f fk is a homeomorphism of ./ (RY).

(2) (Ti(k) )" (&) = i& (&) forall f € S(RN) and j=1,...,N.
(3) (Lemma of Riemann-Lebesque) (L'(RN,wp)"¥ is a ||.||oo -dense subspace of Co(RY).
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(4) (L'-inversion) For all f € L*(RN wy) with fre LYRYN, wy),

o~

f=U" ae.

(5) (Plancherel theorem) The Dunkl transform has a unique extension to an isometric iso-
morphism of L?(RN wy), which is again denoted by f fk

The following fact is also completely analogous to the classical setting.

1.4.7 Proposition. The linear operator Ay, in L*(RY wy), with domain D(AL) = S (RY),

is essentially self-adjoint. Its closure is given by
-~ Sk VE
Akf = _(‘glsz) )
with the Sobolev-type domain

D(Ay) = {f € LXRY,wy) : [€2FF(€) € LXRY,wy)} .

Proof. By Proposition 1.4.4, A, is symmetric in L2(R™,wy,). The rest is straightforward as in

the classical case. O

We conclude this section by a special feature concerning the Dunkl transform of radial (i.e.
O(N,R)-invariant) functions: if f € L'(RY,wy) is radial, then its Dunkl transform I s
again radial and given by a classical Hankel transform. This result is not obvious, as the weight
wy, is usually invariant under the reflection group G only. Our proof is based on the explicit
integration of the operator Vj over spheres in [X2]. We first have to provide some notation and

facts concerning Hankel transforms: For a > —1/2, define the measure w, on [0,00) by
dwa (1) = (29T (a + 1))~ 1r2o Tt g,

The Hankel transform H® of order a on L!([0,00),w,) is then defined by

(HOF)(N) = /0 1) da () du(r);

Here j, is the normalized spherical Bessel function as defined in (1.21). The transform H® can

be uniquely extended to an isometric isomorphism on L?([0, 00), wq) .

1.4.8 Proposition. There is a one-to-one correspondence between the space of all radial func-

tions f in LY (RN, wy) and the space of all functions F € L([0, 00), Wyt N/2—1), Via
f(z) = F(|z|) for x € RY.

Moreover, the Dunkl transform of f is related to the Hankel transform HYTN/2=1EF of F by

-~

Fiy) = PR () for y e RV
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Proof. The result is obvious in case N = 1, v = 0; we may therefore assume that v+ N/2—1 >
—1/2. Let SN¥=! = {z € RN : |z| = 1} be the unit sphere in R with normalized surface

measure do. Put

— _ Ck
dy, = /SNl wi(x) do(x) = PN (3 1 N2

Let f and F be related as in the proposition. Then the homogenity of w; leads to

[ r@le@de = [( [ wntew) o) PO e = d [ E@

This yields the first statement. We now turn to the second assertion. Corollary 2.2 of [X2]

states that for each polynomial p in one variable and z € RV,

1
/ Vip ({z,))(y) wi(y) do(y) :d;/ p(tjz]) (1 — 27T N=3)/2 gy
SN-1 1

with some constant dj > 0 depending on k only. The homogeneous expansion (1.22) of Ej

and Mehler’s integral representation for Bessel functions (|Sz|, (1.71.6)) lead to

1
/ Ey(iz,y) wi(y) do(y) = d%/ el (1 — 2N qr = dy - Gy e (7)) (1.26)
SN-1 1

Moreover, by Prop. 1.11 and the homogeneity of wy,
Fro) =i [ FllaDBul=iz.y) wnlz) da

=c. - /000 (/SN-I Ex(—iry, z)wg(2) da(z))F(r) r2 TN gy

It follows from (1.26) that

-~ dy, oo _ _
Fr) = - [ e Gl P dr = U2 (),
which completes the proof. O

1.5 Generalized translations

If the multiplicity parameter is zero, the Dunkl transform coincides with the usual Fourier

transform on the group (R, +), and the functions
{m — Fo(—i€,x) = el e IR{N}

constitute the dual space of this group. It is an interesting question whether the Dunkl transform
and the Dunkl kernels admit a similar interpretation for arbitrary parameters k > 0. At least
in the one-dimensional case, there exists an algebraic structure on R which replaces the usual
group addition. To describe this structure, we recall from Example 1.3.3 that for the reflection

group G = Zo on R and a multiplicity parameter k > 0, the Dunkl kernel is given by

. . 2w .
EP(z,w) = €™ 1 Fy(k, 2k + 1, —2z0) = jy_yo(izw) + m]mm(mw) (z,w € C).
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Moreover, the generalized Bessel function is

T2 (z,w) = je_1pa(izw).

It is well-known that the normalized spherical Bessel functions j,_1/o with k£ > 0 satisfy the

product formula

. . r'k+1/2 . o
]k—1/2($>]k—1/2(y) = F((l/Q)F/(k)) /0 Jk—1/2(\/$2+y2 _ Qxycosé?) sin2k~1p do

for all z,y > 0, see e.g. Section 11.4 of [W]. This induces a commutative hypergroup structure
(in the sense of Dunkl, Spector and Jewett) on [0,00), with the convolution of point measures
being defined by

_ T(k+1/2) L2k—1
ey = R / g 6do.

For an introduction to hypergroups, we refer to [B-H| and [Je|]. The functions
{iL' = jk—l/Z()‘x)a A> O}

form the dual space of this hypergroup, i.e. the space of bounded, multiplicative and symmetric
functions on it.

It can be shown that the Dunkl kernels EZQ satisfy a similar product linearization which
leads to a convolution structure on the whole real line, providing a natural extension of the usual
group structure. This convolution was found and studied independently in [R3| and [Ros|. In
contrast to a hypergroup convolution, it is not positivity-preserving for & > 0, but endows R
with the structure of a so-called signed hypergroup as introduced in [R1] (see also |[R2]|). More

precisely, the following was proven in [R3]:

1.5.1 Theorem. Let k > 0. Then there is a unique bilinear and separately o(My(R), Co(R)) -

continuous convolution xp on My(R) such that the product of point measures satisfies
E,? (A z) E%Q()\,y) = /RE%Q(/\, 2)d(0gy %, 0y)(2)  forz,y e R, A e C.
This convolution has the following properties:
(1) It is associative, commutative, and norm-continuous with
(b v)(R) = w(R) - v(R) and |l v]| < 4-|pll- v for p,ve My(R).
Moreover, if k > 0, then
supp(de +i 0y) = [=lzl = [yl, =[] = [yl[] U [[le] = lyl], |2] + 1yl] for z,y #0.

(2) (Mp(R),*g) is a commutative Banach-*-algebra with unit o, involution p v+ p* (where
p*(A) == u(—A) for Borel sets A C R), and with the norm |p||" := ||L,l||, the operator
L, on My(R) being defined by L,(v) = p*,v.
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The convolution *j is given explicitly in [R3|. In case k = 0, it coincides with the usual group
convolution of (R,+). The measure wy(z)dr = |z|**dz € M*(R) is #p-invariant, i.e. for
each f € C.(R),

/RLZf(m) wg(z)dr = /Rf(x) wi(x)dr, where LY f(z) := /Rfd(éy g Oz ).
The dual space of this signed hypergroup is given by
{z = B (i€, 2); £ €R},

and the Fourier transform on it coincides with the Dunkl transform associated with Zs on R

and the parameter k.
In the higher dimensional Dunkl setting it is an open question whether there exists an analogous

convolution structure on RY which substitutes the standard group convolution and matches
the action of the corresponding Dunkl transform as above. In some particular cases, namely for
Weyl groups G and certain discrete sets of non-negative multiplicity functions, the generalized
Bessel functions Ji(.,y) allow an interpretation as the spherical functions of a Cartan motion
group; for details we refer to [O1] and [dJ3]. In these cases, they satisfy a positive product
formula, which leads to a commutative hypergroup structure on (RN )G >~ TV, where W is one
of the Weyl chambers of G. We conjecture that for all reflection groups and arbitrary non-
negative multiplicity functions, the associated generalized Bessel functions satisfy a product
formula which leads to a commutative hypergroup structure on (RN )G, and that the dual

space of this hypergroup consists of the functions
{(,0,197)\ W = C, z+— Jk(—i)\,$), A€ W}

We further conjecture that for all reflection groups and all multiplicities k£ > 0 there exists an

associated signed hypergroup structure on R such that the functions
{Yre : RY = C, 2 Ep(—i&,z), (€ RV}

constitute its dual space. Although not having a signed hypergroup structure at our disposal,
we may introduce the notion of a generalized translation in the N -dimensional Dunkl case at
least for certain function spaces as the Schwartz space . (RY) and L*(RY wy) . The definition

is natural:
Lif(z) =t /R | FH©) Bxliz ) By(iy, € we(§)de (x, y € RY). (1.27)

Notice that that for k = 0, we just have L§f(z) = f(z+y). In the one-dimensional case, (1.27)
coincides with the translation in the signed hypergroup (R, ), i.e. LY f(x) = (8y *1 0z)(f).

We collect some properties of the generalized translation (1.27):

1.5.2 Lemma. For all f € .Z(RY) and &, y € RV,
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(1) Li f(x) = Ly f(y);
(2) LYf = f;

(3) Ly f € SRY), and (L} f)"*(&) = Ex(iy, &) FF();
(4)

(5)

Y [ Bf@ueds = [ j@ e

5) Te(k)Lf = LiTe(k)f.
Moreover, if f € L>(RN,wy,), then

6) LYf = f:

(7) LZf € L2(RN,wy) for all y € RN, and (L%f)/\k = FEy(iy, )]?k,

(8) LY f(x) = Lif(y) for almost all z,y € RY.
Proof. (1) is obvious, while (2) follows from the inversion theorem for the Dunkl transform.
The first part of (3) results from the invariance of .#(R") under the Dunkl transform, together
with the bounds of Proposition 1.4.1, the second one follows from the inversion theorem for the

Dunkl transform. (4) is an immediate consequence of (3). Property (5) is obtained by applying
the Dunkl transform and using (3) as well as Proposition 1.4.6(2):

(Te(R)LY /)M (n) =i (&,m) (LLHM () = i (&, n) Exliy,n)f*(n)
= Ey,(iy,n) (Te(k) )" (n) = (L] Te(k) ) (n).

Finally, properties (6) and (7) are clear from the Plancherel theorem for the Dunkl transform,
and (8) follows from the definition. O



Chapter 2

Positivity of Dunkl’s intertwining

operator

This chapter is devoted to a further study of the intertwining operator Vi, where k is a non-
negative multiplicity function attached to a finite reflection group on RY. We prove that Vj
is positivity-preserving on polynomials and allows a positive, Bochner-type integral represen-
tation on certain algebras of analytic functions. This confirms Conjecture 1.2.3 and implies in
particular that the generalized exponential kernel of the Dunkl transform is positive definite.
The proof of our central result, positivity of V; on polynomials, affords several steps, the cru-
cial one being a reduction from the N -dimensional to a one-dimensional problem. For this, we
invoke semigroup techniques for linear operators on spaces of polynomials. The generators of
the semigroups under consideration are certain differential-reflection operators whose common
decisive property is that they are “degree-lowering”. This setting is introduced in Section 2.1,
together with a Hille-Yosida type theorem which characterizes positivity of such semigroups by
means of their generator. In Section 2.2 we then prove positivity of Vi on polynomials. Section
2.3 contains a discussion of certain algebras of homogeneous series and their spectral properties;
parts of these results are the basis for the main theorem in Section 2.4, which establishes the

announced positive integral representation of Vj.

2.1 Semigroups generated by degree-lowering operators on poly-

nomials

In the following, H_AJ = {pe I :p(z) >0 forall z € RV} denotes the cone of non-negative

polynomials on R .
2.1.1 Definition. A linear operator A on IIVV is called
(i) positive, if Ap € Hf for each p € IIY.
(ii) degree-lowering, if A(IIY) C TN, for all n € Zy ; here IIY, := {0}.

25
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Important examples of degree-lowering operators are linear operators on IV which are
homogeneous of some degree —n with n > 1. This includes in particular usual partial
derivatives and Dunkl operators, as well as products and linear combinations of those. If
A is degree-lowering on IV, then for every analytic function f : R — C with power series

f(z) =302 crx®, there is a linear operator f(A) on IV defined by the terminating series

F(A)p (x) = crAFp (2).
k=0

Notice that f(A)(IIY) C ¥ for each n € Z, . This yields a natural restriction of f(A) to
a linear operator on the finite-dimensional vector space Hﬁ/ . In particular, the well-known
product and exponential formulas for linear operators on finite-dimensional vector spaces (see,
e.g. §4.7 of [Ka2|) imply corresponding exponential formulas for degree-lowering operators on
IV | where the topology may be chosen to be the one of pointwise convergence. We note two

results of this type, which will be used later on:

2.1.2 Lemma. Suppose that A and B are degree-lowering linear operators on II'V . Then for
all peIN and x € RV,

A —
(i) etp(z) = lim (I— —) np ().
n

n—oo

(i) e Bp(z) = lim (eA/"eB/")np () (Trotter product formula).

Each degree-lowering operator A on IV generates a semigroup (etA)tZO of linear operators
on IV and, in fact, on each of the IIY. Conversely, it follows from general semigroup theory
that any semigroup (T(t))¢>o of linear operators on II"V with T'(¢)(II5) C IIY for all ¢ > 0, is
of the form T'(t) = e*4, the generator A € Endc(ITV) being uniquely determined by

1
Ap (z) = lgfg : (T(t) —1)p(z) for all p eIV,

The following key-result characterizes positive semigroups generated by degree-lowering op-

erators; it is an adaption of a well-known Hille-Yosida type characterization theorem for Feller-

Markov semigroups on C(K), K a compact Hausdorff space (see, e.g. §I1.4 of [G-S]):

2.1.3 Theorem. Let A be a degree-lowering linear operator on TI'V . Then the following asser-

tions are equivalent:
(1) et is positive on TIN for all t > 0.
(2) A satisfies the “positive minimum principle”

(M) For every p € IIY and zg € RY, p(xo) =0 implies Ap (z¢) >0

Proof. (1) = (2): Let p € IIY¥ with p(zy) = 0. Then

e'p (z0) — p(zo) L
Ap(wo) = lim t i 2 €™p (o) 20
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(2) = (1): Notice first that for each A # 0, the operator AI — A is bijective on IIV. In fact,
M — A is injective on IIV | because otherwise there would exist some p € IIV, p # 0, with
Ap = MAp, in contradiction to the degree-lowering character of A. Since (A — A)(ITY) C ¥,
this already proves bijectivity of A\I — A on each I, hence on IV as well. We next claim that
for every A > 0 the resolvent operator R(\; A) := (A — A)~! is positive on IIV. For this, let
pE Hf and q:= R(\; A) p. If p is constant, then g = %p > 0. We may therefore assume that
the total degree n of p (which must be even) is greater than 0. Suppose first that p(x) > c|z|”
for all 2 € RV, with some constant ¢ > 0. Since A lowers the degree, we may write ¢ = %p—{—r
with a polynomial 7 of total degree less than n. Hence lim|,_,o ¢(7) = 0o, which shows that
¢ attains an absolute minimum, let us say at zg € RY. Put g(z) := ¢(x) —q(zo). Then g € II¥
with G(z¢) = 0, and property (M) assure that Aq(zo) = Ag(wg) > 0. For A > 0 and x € RV

we therefore obtain
A(r) > Aq(zo) = (M — A)q(zo0) + Agq(z0) > p(x0) > 0.

If pe Hf is arbitrary, then consider the polynomials pe(x) := p(z) + €|x|™ for € > 0, where

n is the degree of p. As A is degree-lowering, and by the above result, we obtain
RN A)p(x) = lin% R\ A)pe(x) >0 forall 2 € R,
€e—

This proves the stated positivity of R(A; A) for A > 0. Now let p € II¥ and ¢t > 0. Then

according to Lemma 2.2.(i),

tA\—"m n n n
M) = Jim (1= "0) @) = Jim (FREA) i) 20
for all € RV. This finishes the proof. ]

2.2 Positivity of Vi on polynomials

Throughout this section, G is a finite reflection group on RY and k > 0 is a non-negative

multiplicity function on its root system R. We have
2.2.1 Theorem. The intertwining operator Vi, is positive on TIVV .

As the proof of this result affords several reductions, we start with a general outline: In a
first step, the statement will be reduced to an equivalent one, which involves exponentials of

Laplacians:
2.2.2 Proposition. The following statements are equivalent:

(i) Vi is positive on IV .

~A/2,0/2

(ii) The operator e is positive on TIV .
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~A/2,0/2

We are thus led to prove positivity of e on polynomials. For this, we first consider

the (one-dimensional) operators
A = e_SDQ(SeSDZ, s>0

on IT'. Here D denotes the usual first derivative, i.e. Dp(x) = p/(z) for x € R, and § is the

linear operator on II' given by

! — =z 1
Sp(x) = p;”“’) _ plo) 2;;( ) _ ;/1(D2p)(tx)(1 +1)dt. (2.1)

This operator is related to the Dunkl operator T'(k) attached to the reflection group Zs on R
and the multiplicity parameter k > 0 by

T(k)* = D? + 2k¢.

Since both D? and § are homogeneous of degree —2 on II', the operators A are well-defined

and degree-lowering on II'. We shall prove that they have the following decisive property:

2.2.3 Proposition. The operators As, s > 0, satisfy the positive minimum principle (M) on
.

We next turn to the general N -dimensional setting: Here G is an arbitrary finite reflection
group on RY with multiplicity function & > 0. We consider the generalized Laplacian Ay
associated with G and k, which is homogeneous of degree —2 on IIN. With the notation
introduced in (1.7), it can be written as

A = A + L, where Ly = 2 Z k(a)dg - (2.2)
a€ER

We shall derive the following multivariable extension of the previous result:

2.2.4 Proposition. The operators e 2 Lje5? (s > 0), satisfy the positive minimum principle
(M) on TIV.
The characterization of Theorem 2.1.3 is now the key to the following corollary, whose

second part finally implies the assertion of Theorem 2.2.1:

75A€t Ly esA

2.2.5 Corollary. (i) The operators e (s,t >0) are positive on TIV.

—A/2,08/2

(ii) The operator e is positive on TIV .

Proof. For fixed s > 0, the operators (e*SAethesA)tZO

ator e %Ly e*®. Hence (i) follows from the above proposition, together with Theorem 2.1.3.

form a semigroup on II"V with gener-

In order to prove (ii), we apply Trotter’s product formula of Lemma 2.1.2. We can write

e-A/zeAk/zp(x) _ 6_A/zeA/2+Lk/2p(I) — lim A2 (eA/2n eLk/2">np ()
n—oo
n
_ —(1—j/n)-AJ2 _Ly/2n (1—j/n)-A/2) N N
nh_}n(f)lol_[l(e e e p(x) (pell, zeRY).
]:
By Part (i), each of the n factors in the above product is a positive operator on ITI"V. Hence

e~ B/2¢B1/2 g also positive on IV . O
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We now turn to the proof of Proposition 2.2.2. We need the following positivity criterion

for polynomials:

2.2.6 Lemma. Let a >0 and suppose that h € Cy(RY) satisfies
/ h(zx) p(z) eolel? wy(x)dz >0 for all p € TIY . (2.3)
RN

Then h(x) >0 for all z € RV,

Proof. For abbreviation, put
dmy(x) = eelel? wg(z)dz € MbJr(]RN).

Step 1. We shall use the fact that IV is dense in L?(RY,dmy). This is proved (for a = 1/2)
in Theorem 2.5 of [D5] by refering to a well-known theorem of Hamburger for one-dimensional
distributions, but it can also be seen directly as follows: Suppose on the contrary that IV is not
dense in L2(RY, dmy). Then there exists some f € L2(RY,dmy,), f # 0, with [pn fpdmi =0
for all p € II"V. Now consider the measure v := fmy, € My(RY) and its (classical) Fourier-

Stieltjes transform

o(\) = /R N e ) du(z) = . F(@) e ") dmy(z).

Since x — elM#l belongs to L2(RN, dmy,) for all A € RV, the dominated convergence theorem

yields

n:

70 = S E [ p) ) dme(e) = 0.
n=0 RN

By injectivity of the Fourier-Stieltjes transform on M;(RY), it follows that ¥ = 0 and hence

f =0 a.e., a contradiction.
Step 2. Now assume that h € Cy(RY) satisfies (2.3). In order to prove h > 0, it suffices to

check that

fhdmy, >0 forall feCFH(RM). (2.4)
RN

For this, let f € CHRY) and € > 0. By density of IV in L?(R",dmy) there exists some
p=rpc €IV with ||[\/f —pllam, <e. With M := |A]loo g it follows that

‘/ fhdmk—/ thdmk’ < M/ |f — p*| dmy,
RN RN RN
<MV F=pllame IVF+Pll2me < Me- 21V f

2,myp + 6)7
which tends to 0 as € — 0. This proves (2.4) and yields the assertion. O

The proof of Proposition 2.2.2 is now easily accomplished:
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Proof of Proposition 2.2.2. Combining the Macdonald-type identity (1.17) with part (5) of
Lemma 1.2.4, we obtain for all p,q € IV the identity

clzl /]RN e_Ak/Q(Vkp)(:c) e_Ak/Qq(x) e 17l/2 wg(z)dr = CJI/R e_A/Qp(x) e_A/Qq(x) e l71*/2 gy

N

Since e_A’“/Q(Vk p) = Vi (e_A/zp) , and since we may also replace p by eA/2p and q by eBr/2g

in the above identity, it follows that for all p,q € IV
c,;l/ Viep (x) q(x) e 12 wi(z)dr = cg? /Np(a:) e A2eBR 2 (1) e 12y (2.5)
R

Now suppose that (i) is satisfied, i.e. Vj is positive on II"V. Then the left-hand side of (2.5)
is non-negative for all p,q € Hf . Now fix p € Hf and apply Lemma 2.2.6 with, let us say,
a = 1/4, to the function h(z) := e #°/4e=2/2e8:/2¢ () € Cy(RN). This yields (ii). The

converse direction is obtained by the same argument. O

We next turn to the proof of Proposition 2.2.3. We start with two elementary auxiliary

results:

2.2.7 Lemma. For each p € II' and c € R,
P (xp(x)) = zePp () + 2ceP7Y (2).

. . 2 .
Proof. Power series expansion of " yields

o0 o0

P (aple)) = 30 S D (aple) +Z;, (z D*"p (2) + 20 D> 'p(x))

n:0

O
2.2.8 Lemma. Let p € H%n—i—l , n € Zy , be an odd polynomial. Then the differential equation
cy —xy = p (c>0) (2.6)

has exactly one polynomial solution (which belongs to H%n ), namely

1 - T 29
ypla) = —e" /20/ e /2 p(t) dt.
Proof. The general solution of (2.6) is
1 xX
y(z) = ae® /2 4 6x2/20/ e*t2/2cp(t) dt, aeR.
& —00

It therefore remains to prove that

x ex2/2"’/ e*t2/2cp(t) dt



POSITIVITY OF V,, ON POLYNOMIALS 31

is a polynomial. We use induction by n: For n = 0, the statement is obvious. For n > 1, write

p(x) = —c lar(z) with » € II} . Partial integration then yields
2n

/ e /% p(t) dt = —1/ te P2 () dt = e /% p(z) — / e~/ (1) dt.

c

By our induction hypothesis, this equals e~*"/2¢(r(z) —7(z)) with some polynomial 7 € IIY, .
This finishes the proof. O

Proof of Proposition 2.2.3. The proof will be divided into several steps.

Step 1. The case s = 0 is easy and may be treated separately: Let p € II' with p(zo) = 0.
Then p'(z0) = 0 and p”(z¢) > 0. Thus if 2o # 0, then &p(zg) = p(—z0)/(222) > 0. In case
zg = 0, it is seen from the integral representation (2.1) that dp (0) = p”(0) > 0.

From now on, we may therefore assume that s > 0.
Step 2. We first derive an explicit representation of the operator As (s > 0), which allows to

check property (M) easily: We claim that

1 1 x o
Agp (z) = — Q—Sp(x) - @eIQ/A‘S (/ gp,o(t)dt — / Gp, (1) dt) for p e I,
with gy o(t) = e /% (t 4+ ) p(t). (2.7)

This may of course be verified by a (tedious) direct computation of As(z*), k € Z, , and an
explicit evaluation of the corresponding integrals on the right side by series expansions of the

involved exponentials. We prefer, however, to give a more instructive proof:
Note first that the operators D? and § map even polynomials to even ones and odd poly-

nomials to odd ones, and that

1
0 (@) ;p'(:c) if p is even,
p\T) = 1 /

(E p(:p)) if p is odd.

Now fix s > 0 and suppose that p € IT' is even. Then the polynomials eSDQp and ¢ := Agp
pp

are also even, and we obtain the following equivalences:
q=Asp < 5(65D2p) = eSqu — p(z) = e—sD? (x eSDQq) (x).
By use of Lemma 2.2.7, this becomes
p(z) = xq(z) — 2sq'(x),

which is a differential equation of type (2.6) for ¢. Lemma 2.2.8, together with a further partial

integration, now implies that
1 x2/4s ‘ —t2/4s 1
Asp(z) = — 5 € e p'(t)dt
—0o0

= — —px) — 4% 612/48/ et/ tp(t)dt (p even). (2.8)
S —0oQ
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In a similar way, we calculate ¢ = Agp for odd p € II': In this case, 68D2p and g = Agp are

odd as well, and we have the equivalence

q=Ap — % G eswp(ﬂﬁ)) = P ().
Hence there exists a constant ¢; € R such that

ePp(z) = x(cr + h(x)), with h(z) = /0 "0, (t) dt.
Applying Lemma 3.4 again, we obtain

p(x) = cre~sD’ (x) + ze 5 0°) (x) —2s 6_5D2h'(1:) = cix+ze P (x) —2sq(z).  (2.9)

In order to determine e~ 2h, note that

%(G_SDQh (z)) = e_SDQh/(x) = q(x).

Consequently, there exists a constant co € R such that
2 x
e *P7h(z) = ¢ —i—/ q(t) dt. (2.10)
0
Now write p(r) = z P(z) and q(z) = 2 Q(z) with even P, Q € TI'. Then by (2.9) and (2.10),
x
P(z) = c1+ +/ tQ(t)dt —2sQ(x),
0
and therefore
Pl(z) = 2Q(z) — 25 Q' ().
This is exactly the same differential equation as we had in the even case before, and the transfer
of (2.8) gives
1 1

Agp (z) = —2—819(:15) - 482€x2/48$/ e_t2/4sp(t) dt (p odd). (2.11)

If finally p € II! is arbitrary, then write p = p. +p, with even part p.(x) = (p(z)+ p(—x))/2
and odd part p,(z) = (p(x) — p(—z))/2. The combination of (2.8) for p. with (2.11) for p,
then leads to

1 1 22 /4s T s t+x t—x
Mapl@) = —oplo) = qp e/ [ (ST pe) 4 T (),

and an easy reformulation yields the stated representation (2.7).
Step 3. In order to prove that A, satisfies the positive minimum principle (M), define

F,(x) ::/ Gp,(t) dt — / gp.z(t)dt, for peIl' and z € R.

—0o0 —x

Now let p € I} with p(x9) = 0. Then in view of (2.7),

1 2
Asp ($0) = _@ €x0/48 Fp(l‘o),
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and it remains to check that Fj,(xo) < 0. For this, we rewrite F, as

—|z| )
Fy(x) :/ gp,z(t)dt—/ gp, () dt.

—o0 z|
Since p is non-negative, the sign of g, ,(t) coincides with the sign of z +t for all z,t € R.
This shows that in fact, Fj,(xz) <0 for all z € R, which completes the proof. O

We come to the final step in the proof of Theorem 2.2.1.
Proof of Proposition 2.2.4. Since Ly = 23 g, k(a)da with k(a) > 0 for all a, it is

enough to make sure that each of the operators
Pl = e 6,e™ (e €eRy)

satisfies the positive minimum principle (M). (Here the assumption k& > 0 is crucial!) Now fix
o € Ry . A short calculation shows that J, and hence also p?, is equivariant under orthogonal

transformations, i.e.

go,o(‘;og_1 = ppo for g € O(N,R).

Moreover, it is easily checked that p? satisfies (M) if and only if g o p% o ¢! does so for some
(and hence all) g € O(N,R). We may therefore assume that a = v/2e; = (v/2,0,...,0). As

1) V3e, Obviously commutes with each of the partial derivatives 0o, ...,9y on RV we obtain

s _ —s0? 50?2
Pze, = € 6\/561 e’ |

But this operator acts in the first variable only, namely via As:

pf/ﬁel b ($1 3. )xN) = Asp:cz b TN (561), where DPxo,...,zn (xl) = p(xlvx% s 7$N)7 pE HN'
Proposition 2.2.3 now yields the assertion. O

We conclude this section by an immediate application of Theorem 2.2.1.

2.2.9 Summability of orthogonal series in generalized harmonics. The study of gener-
alized spherical harmonics associated with a finite reflection group and a multiplicity function
k > 0 was one of the starting points of Dunkl’s theory in [D4]| and has been extended in
[X2| and [X3|. Many results for classical spherical harmonics carry over to these spherical k-
harmonics, where harmonicity is now meant with respect to Ay . In particular, there is a natural
decomposition of PN|gn-1 into subspaces of k-spherical harmonics, which are orthogonal in
L2(SN=1 awy,). In [X2], Cesaro summability of generalized Fourier expansions with respect to
an orthonormal basis of spherical k-harmonics is studied. Recall that a sequence {s,}nez L1
called Cesaro summable of order § to s, for short, Cs-summable to s, if
n

(7%6);0 (n—:—_kz— 1>sk — s with n — oco.

The following result is proven in [X2| under the requirement that the intertwining operator Vj

is positive on IV ; Theorem 2.2.1 now assures its validity for all & > 0:
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2.2.10 Theorem. Let f : SN=! — C be continuous, and let {s,} denote the sequence of
partial sums in the expansion of f as a Fourier series with respect to a fixed orthonormal basis
of spherical k-harmonics. Then {s,} is uniformly Cs-summable over SN=1 to f, provided

that § > v+ N/2 —1 with v=) k().

acRy

2.3 An algebra of homogeneous series

More information about Vi will be obtained by its extension to Dunkl’s algebra

A={f:K—>C, f=) fo with fp Py and [flla =) |fallscx < oo},

n=0 n=0
as introduced in Section 1.2. In the present section, we will discuss this algebra in some detail.
First of all, we note that for f € A, the homogeneous expansion f =3 " f, is unique. For
this, suppose that f € A vanishes identically on the ball K = {x € RV : |z| < 1}. For any
fixed € K and —1 < XA < 1 we then have 0 = >">° f,(2)\", which is a power series in
A. Hence fp(z) = 0 for all n, which implies the stated uniqueness. Notice further that the
topology of A is stronger than the topology induced by the uniform norm on K, and that A
is not closed with respect to ||.||co, i, in view of the Stone-Weierstraff theorem. In particular,

A is not a uniform algebra on K. The following result is straightforward:

2.3.1 Lemma. (A, |.||4) is a commutative Banach-x-algebra with the pointwise multiplication

of functions, complex conjugation as involution, and with unit 1.

Proof. To show completeness, let (f™)ez, be a Cauchy sequence in A. Then for € > 0 there

exists an index m(e) € Zy such that
oo
Z N — [ loox <€ for m,m’ > m(e). (2.12)
n=0

In particular, for each degree n the homogeneous parts (f;*)mez, converge uniformly on K,

and hence within P2 to some g, € PY. It further follows from (2.12) that
oo
Z lgn — fi'lloo,x < € for m > m(e).
n=0

Therefore g := Y °gn belongs to A with [|g — f™||a — 0 for m — oco. It is also easily
checked by a Cauchy-product argument that A is an algebra with || fg|la < |/ flla-|lglla for
all f,g € A. The rest is obvious. O

It is now in particular clear that the extension of Vi according to (1.16) is a well-defined,
continuous linear operator on (A4, |.]|4). Our main theorem in the following section will be
based on a Bochner-theorem for positive functionals on commutative Banach-*-algebras; for

this, we need the symmetric spectrum of A, i.e. the subspace of the spectrum A(A) given by

As(A):={p € AA): o(F) = p(J) Tforall fe A}.
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As usual, A(A) and Ag(A) are equipped with the Gelfand-topology. While the determination
of the complete spectrum requires some further knowledge about A and will be carried out later,

its symmetric part is obtained quite easily: For = € K, define the evaluation homomorphism
at x by @z A—C, oi(f) = f(x).

2.3.2 Lemma. Ag(A)={¢;:x € K}, and the mapping x — p, is a homeomorphism from
K onto Ag(A).

Proof. 1t is obvious that ¢, belongs to Ag(A) for each = € K, and that the mapping = — ¢,
is injective and continuous on K. As K and Ag(A) are compact Hausdorff spaces, it remains
to show that = — ¢, is surjective, i.e. each ¢ € Ag(A) is of the form ¢, with some x € K. To
this end, put \; := o(z;) for i = 1,..., N. By symmetry of ¢ we have A := (\1,...,\y) € RV,
Moreover,

AP = e(lz) < [Hallla = 1.

This shows that A € K. By definition of A, the identity p(\) = ¢(p) holds for all polynomials
p € TIV. The assertion now follows from the density of IV in (A, |.]|4). O

To achieve a more comprehensive knowledge of A and its spectrum, we have to extend
functions from A to complex arguments. Besides the real unit ball K ¢ RY | we introduce the
complex unit ball

U:={zeCV:|z] <1}

We shall see that each function f € A has a unique continuation to the well-known ball algebra

B:={g:U — C,g is continuous on U and holomorphic in its interior U°}.

The following observation will be crucial:

2.3.3 Lemma. For each homogeneous polynomial p € C[CV],

1Pllo. = lIPlloo,r -

Proof. As p is homogeneous, there exists some zy € U with |z9| = 1 such that ||p|lecy =
Ip(20)|. Write 29 = mg + iyo with zg, yo € RY, and choose matrices M, My € O(N,R) such
that

@-(1,...,1), ngozm'(l,...,l).

VN VN

Then L(z + iy) := Myx +iMay is bijective and R-linear on CV with |L(z)| = |2| for all z €
CN. Moreover, L maps K onto itself and satisfies L(zo) = ﬁ(l, ..., 1) with A = |xo| +i|yol .
Notice that |A| = 1, because |z| = 1. Now define p;, € C[C] by pp(z) :=p(L~12). Then p,,

is again homogeneous, and

Mlx():

A A 1 1
[Pl = llpLllccv = \pL(ﬁ,--wﬁ)\ = \PL(ﬁ»---jﬁ)\ < Pzl = lIPlloox -

This yields the assertion. O
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2.3.4 Proposition. Fach f € A has a unique extension fE B. For f = Y22, fn €A, this

extension is given by f(z) := Yoo fu(2).

2.3.5 Remark. The inclusion A — B, f — f, is not surjective. To see this, consider first the
case N = 1. Let F be a continuous function on the torus T = {z € C : |z| = 1}, whose Fourier
series does not converge absolutely. Consider the Poisson modification of F), i.e. the unique

function f € B with f|r = F'. For |z| < 1, it can be written as

EigN PN 1 [7 L

f(z) = 7;)F(n)z" with F(n) = 27T/7r F(e™)e ™t .
It follows that f|x does not belong to A. This counterexample for N = 1 gives also coun-
terexamples in higher dimensions: We distinguish dimension 1 from dimensions N > 1 by an
additional subscript. For F' € C(T) and f € B(;) as above, the function g(z) := f(21), with
z=(z1,...,2n) € CN, obviously belongs to By . The expansion of g as a power series in the
complex unit ball U® is given by g(z) = > 7, F(n)z}, which shows that the restriction of g
to Ky does not belong to A(y).

Proof of Proposition 2.3.4. As a consequence of the above lemma, the series » ° . f, con-
verges uniformly on the complex ball U. This shows that f is well defined with f € B. An
easy induction argument, based on the identity theorem for holomorphic functions in one di-
mension, shows that the extension f +— f is unique: For this, put M; :={2€ U°:z; € R for
j>i}, i=1,...,N. We have to show that for functions f, g holomorphic in U°, the equality
f =g on K° = M implies that f = ¢ on U° = My41. Butif f=g on M; (1 <i<N),

then the identity theorem in one dimension implies that f =g on M;;1 as well. O

We are now able to determine the complete spectrum of A. Notice first that for each z € U,

a well-defined evaluation homomorphism on the algebra A is given by

p: A= C,  9.(f) = f(2).

2.3.6 Lemma. The spectrum of A is given by A(A) = {¢. : z € U}. Moreover, the mapping
z v @, is a homeomorphism from U onto A(A).

Proof. It is again obvious that each ¢, , z € U, belongs to A(A), that z — ¢, is injective and

that the mapping z — ¢, is continuous on U. Again, it remains to show that each ¢ € A(A)

is of the stated form. For this, put \; := @(x;) for i = 1,..., N and define py € PY by

pa(z) == Zfil % 22. Then p(\) = p(p) for all polynomials p € TI¥ | and thus in particular,
A2 = x| = )] < palla = lpalloee < 1.

This proves A € U, and the same density argument as in Lemma 2.3.2 implies that ¢ = ¢,. O
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2.4 The main theorem

As before, G is a finite reflection group on RY and k > 0 is a non-negative multiplicity function
on its root system R. It will be convenient to have a slightly extended notion of Dunkl’s algebra
of homogeneous series: For 7 > 0 let K, := {z € RY : |z| < r} denote the ball of radius r and
define

A ={f:K, = C, x> fo(z):= f(rz) € A}, (2.13)

as well as ||f||4, := ||fr]|a. Notice that A, C As with ||.||a, > ||.]|a, for s > r. The dilated
algebra (A, ,|.|]|4,) is again a commutative Banach-*-algebra, and Vj, extends uniquely to a
continuous linear operator on A, by Vi f := (Vi f;)1/r. Moreover, the results of Section 2.3 for
A transfer to A, in the obvious way; in particular, Ag(A,) can be naturally identified with
K,. Of particular interest in the following is the exponential function z — e(®?) (z € CV),

which belongs to A, for each r > 0. Notice that by (1.19),
Ep(z,2) = Vi(e!*))(z) for all z e RY. (2.14)

Here is the main result of this chapter.

2.4.1 Theorem. For each x € RN there exists a unique probability measure ¥ € M'(RY)
such that

W@ = [ O forall f e Ay (215)

The representing measures ¥ are compactly supported with supp ut C {¢€ € RN 1 |¢| < |z},

and the mapping RN — MY(RN), x s u¥ is weakly continuous. Moreover, the measures p*
satisfy

pk (B) = pk(r7'B), b (B) = uh(g7'B), and p(B) = pk(h7'B) (2.16)
for each r >0, g € G, h € O(N,R) and each Borel set B € B(RN).
Proof. Fix z € RN and put r = |z|. Then the mapping

is a bounded linear functional on A,, and Theorem 2.2.1 implies that it is positive on the
dense subalgebra ITV of A,, ie. ®,(|p|?) > 0 for all p € IIV. Consequently, ®, is a
positive functional on the whole Banach-x*-algebra A,. Now, by a well-known Bochner-type
representation theorem for positive functionals on commutative Banach-x*-algebras (see e.g.

Theorem 21.2 of [F-D]), there exists a unique measure v € M;"(Ag(A,)) such that

B.(f) = / Flo)dvk() forall fe A, (2.17)
Ag(Ar)
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with f the Gelfand transform of f. Denote by M; the image measure of V!j under the homeo-

morphism Ag(A,) = K, , ¢ = £. Equation (2.17) then becomes
Wi = [ HOdk© forall £ ey
{lgI< [}

The normalization Vi1 = 1 implies that u” is a probability measure on {¢ € RY : |¢| < |=|}.
To see the uniqueness of the representing measures ij, we use representation (2.15) with
f(z) = e~y e RN, Together with (2.14), this implies that the classical Fourier-Stieltjes

transform of ,uf;, xr € RY | is just given by

%wwa/fmwwwzm@4m (2.18)
RN

Thus the uniqueness of p* follows from the injectivity of the Fourier-Stieltjes transform on
MY(RY). In order to check that =+ u¥ is weakly continuous, take a sequence (x,,)nen C RY
with lim, yoo zn = o € RY. Then (2.18) and the continuity of the kernel Ej yield that
(k)N — (uk )" pointwise on RY. By Lévy’s continuity theorem (Satz 23.8 of [Bal), this
implies that the ,uf;n converge weakly to ,u’;:O. Finally, the transformation properties (2.16)
follow immediately from the homogenity-preserving character of Vj, on IV and the invariance
property (1.13). O]

2.4.2 Remark. In the one-dimensional case, associated with the reflection group G = Zo on R

and multiplicity parameter k > 0, the representing measures p* € M1 (R), z > 0, are given by

C(k4+1/2) 1gz(t)
L(1/2)T(k)  a%

duk(t) = (x —t)F 1z + )~ at.

This is immediate from the explicit representation (1.11) for Vj.

As an important consequence of Theorem 2.4.1 we obtain that for fixed y € RY | the function
x +— Ey(z,iy) is positive definite on RY | and the same holds for the generalized Bessel function

x v Jp(z,iy).

2.4.3 Corollary. For each z € CV, the function =+ Ey(x,z) has the Bochner-type repre-

sentation
Ey(x,z) —/ &2 duk(€), (2.19)
]RN

where the ,u]; are the representing measures from Theorem 2.4.1. In particular, Ey(z,y) > 0
for all z,y € RN, and for each x € RN the function y — Ei(x,iy) is positive definite on
RN . Moreover, for each fired x € RN the generalized Bessel function y v+ Jy(x,iy) is positive
definite on R .

Proof. This is immediate from Theorem 2.4.1 and representation (2.14), together with Bochner’s

theorem. O
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In those cases where the generalized Bessel functions Ji(.,y) allow an interpretation as
the spherical functions of a Cartan motion group, the positive definiteness of these functions
is an immediate consequence. Moreover, for the group G = S3 and non-negative multiplicity
functions, it results from the integral representations in |[D6]. There are, however, no group-
theoretical interpretations known for the kernel Fj. Nevertheless, the conjecture that it should
be positive definite has been confirmed by several of its properties (see [dJ1]|); moreover, it
can be shown by classical methods characterizing positive semigroups, namely a variant of
the Lumer-Phillips theorem, that Ej(z,y) > 0 for all 2,y € RY. This was carried out in
[R4] in connection with the study of generalized heat semigroups for Dunkl operators. These
semigroups will be studied in Chapter 4 of this thesis — now however on the basis of the already

known positivity of the Dunkl kernel.

From (2.19) we obtain further knowledge about the support of the representing measures
k.
Mo :
2.4.4 Corollary. The measures u’;, z € RN, satisfy
(i) supp p¥ is contained in co{gx, g € G}, the convex hull of the orbit of x under G.
(i) supppy N {gz, g € G} #10.

Proof. (i) follows from Corollary 3.3 of [dJ1]. For the proof of (ii) it is therefore enough to show
that

supp i N {6 € RY : [¢] = |z} # 0.

Suppose on the contrary that suppu® N {€ € RN : |¢| = |z|} = 0 for some x € RY. Then
there exists a constant o €]0, 1] such that supp pf C {¢ € RV : |¢| < o|x|}. This leads to the

estimate

Buey) = [ o aube) < ol
€| <olz|

for all y € RY. On the other hand, Proposition 1.4.3 with w = 0 says that

e /RN Ey(z,y) e~ (W02 0 (y)dy = 1.

Now let r > 0. As both formulas above remain valid if x is replaced by rx, it follows that

<ot /R a2 el )y < o /R T 2 (),

which tends to 0 as r — 00, a contradiction. ]

This result implies useful estimates for Fj and its derivatives, which partially sharpen those
of [dJ1], Lemma 3.5.

2.4.5 Corollary. For all z,y € RN and z € CV, the kernel Ej, satisfies

(1) 102 By, 2)] < [2] " max e0m B9 (v € ZE, vl =m+ ... vw).
ge



40 THE MAIN THEOREM

(2) [Eg(z,iy)| < 1.

3) E > min el9%:9)
(3) k(w,y)_ggge

Proof. Each ¢ € co{gz, g € G} isoftheform { =3 o Ag-gx with A\g >0and > o Ag =1.
This leads for all z € CV to the estimates

i R <R < R . 2.20

gglg(g:v, ez) < Re({2) < max (92, Re z) (2.20)

Part (1) is now obtained by differentiating the expression under the integral in (2.19), and using

then (2.20). Part (2) is a special case of part (1), and part (3) is also immediate from (2.20). O

2.4.6 Corollary. The Dunkl transform on L*(RY wy) satisfies

7k
1/ oo < 1 N1 -

A further consequence of Theorem 2.4.1 is the possibility to extend Vj to larger function
spaces:
2.4.7 Remark. The integral representation (2.15) for Vj allows an extension to -Z°(RY), the

space of locally bounded, Borel measurable functions on RY | via

f(x /f ) dii(y

On the subspace W := {f € C(RV)n LY(RY) : fe LYRM)} ¢ Z2(RY) an equivalent
representation of 17;@ is obtained by the inversion theorem for the classical Fourier transform:

Let f € W. Then
@ =" [ ([ Fodera)ate =" [ FonGsade. @2

In particular, Vi, also satisfies the intertwining property Tg(k)Vk =V de (£ € RY). We
mention that on W NC>(RY), the operator V. coincides with the extension of Vj, to C>=(RN)
which was already obtained in [dJ3], Chap. 3.4 as a consequence of a Paley-Wiener theorem
for the Dunkl transform.

At the end of this chapter we would like to indicate an application of Theorem 2.4.1 to the
study of probabilistic aspects of Dunkl’s theory.

2.4.8 Generalized moment functions. The classical moments of probability measures on
RY have many applications to sums of independent random variables. The definition of these
moments is based on the monomial “moment functions” z = az'a5? ... 2, z € RN v e Zf .
Recently, in [R-V2| a concept of Markov kernels and Markov processes which are homogeneous
with respect to a given Dunkl transform has been developed. In this context, generalized
moment functions on R provide a useful tool. They generalize the classical moment functions

and are defined as the unique coefficients my,,, in the expansion

my ,(T)
Ey(z,y) = k’i()y (x eRY, yeC).

I/!
N
veLy
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Comparison with the homogeneous expansion of Ej, (1.22) and (1.23), shows that
mpy, () = Vi(2¥) € Pa‘ for v ez .

Theorem 2.4.1 in particular implies the following useful relations for the generalized moment

functions, which are obvious only in the classical case (again, we assume k > 0):
iy, (z)] < |z and 0 <my (2)? < myp g (x) forall zeRY, ve zy .

The first inequality is clear from the support properties of the measures p, while the second
one follows from Jensen’s inequality. Among the applications of these moments, we mention the

construction of martingales from Dunkl-type Markov processes; for details, we refer to [R-V2].



Chapter 3

(Generalized Hermite polynomials and

biorthogonal systems

This chapter presents a general concept of multivariable biorthogonal polynomials with respect
to weight functions of the form u)k(:v)e_‘”k""2 on RY | where k is a non-negative multiplicity
function on the root system of a given finite reflection group and w > 0 a frequency parame-
ter. This concept includes, as a particular case, orthogonal polynomial systems with respect to
such weight functions, which are called generalized Hermite polynomials. The definition and
properties of these polynomials extend naturally those of the classical multivariable Hermite
polynomials; partial derivatives and the usual exponential kernel are replaced by Dunkl oper-
ators and the Dunkl kernel here. In particular, for root systems of type A and B there is
some physical relevance of the associated biorthogonal systems: They arise as the eigenfunc-
tions of Hamiltonians which describe certain exactly solvable quantum many body systems of

Calogero-Moser-Sutherland type.
In Section 3.1 we give a short explanation of linear Calogero-Moser-Sutherland models and

the relevance of Dunkl operators in their algebraic description; we also solve the spectral prob-
lem for abstract Calogero-Moser-Sutherland operators with harmonic confinement. The spectra
of these operators are highly degenerate, and there are several favourable choices of eigenfunc-
tion bases, having in common that they fit into the above mentioned concept of biorthogonality.
This concept is developed in Section 3.3, and several classes of examples are studied. Some em-
phasis is put on the particular class of generalized Hermite polynomials. In the one-dimensional
case, associated with the reflection group G = Zs on R, these generalized Hermite polynomials
coincide with those introduced in [Chi| and studied in [Ros|. Our setting also includes, for the
symmetric group G = Sy, the so-called non-symmetric generalized Hermite polynomials which
were recently introduced by Baker and Forrester in [B-F2|, [B-F3|. These are non-symmetric
analogues of the symmetric (i.e. permutation-invariant) generalized Hermite polynomials asso-
ciated with the group Sy, which were first introduced by Lassalle [La2|. Moreover, the “gen-

eralized Laguerre polynomials” of [B-F2|, [B-F3|, which are non-symmetric analogues of those

42
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in [Lal|, can be considered as a subsystem of Hermite polynomials associated with a reflection
group of type By . For a thorough study of the symmetric multivariable Hermite- and Laguerre
systems we refer to [B-F1|, [vD] and [K2|. Besides of the second order differential equations,
many of the well-known properties of classical Hermite polynomials and Hermite functions al-
low extensions to our biorthogonal systems, such as the Rodrigues formula, generating function
and the Mehler formula. We conclude this chapter by an application of generalized Hermite
expansions: They are used to derive an analogue of the classical Heisenberg-Weyl uncertainty

principle for the Dunkl transform.
In order to make notations more transparent, we shall frequently omit the explicit reference

to the underlying multiplicity function k& in the Dunkl operators, and therefore e.g. write T¢
instead of T¢(k).

3.1 Linear Calogero-Moser-Sutherland models

The Calogero-Moser-Sutherland (CMS) models are quantum many-body models in one dimen-
sion; they describe a system of N particles on a circle or line which interact pairwise through
long range potentials of inverse square type. These models are exactly solvable and therefore
of great interest for the understanding of quantum many-body physics. They have in particu-
lar attracted some attention in conformal field theory and are being used to test the ideas of
fractional statistics (|[Hal|, [Ha|). The study of CMS models was initiated by Calogero (|Cal).

He considered a translation invariant N -particle system with a potential of the form

390
V(z) = Z [m + g1(w; — ﬂfj)2 )
1<i<j<N M7° J

for which he computed the spectrum and determined the structure of the eigenfunctions and
scattering states. Up to a center of mass motion (21§j<k§N(xj —x3)? = Nl|z|]? — (Z] xj)z)
this system is equivalent to the so-called rational Calogero model with harmonic confinement,

whose quantum Hamiltonian on L?(RY) is

Ho = —A+ &’z + 2k(k—1) > (3.1)

2
1<i<j<N (25 — ;)

with frequency parameter w > 0 and a coupling parameter k > 0. H¢ is symmetric and

bounded from below with the ground state
_ 2
folz) = e/ i (2);
here wy, is the Sy -type weight function

wi(x) = H v — x| %K.

1<i<j<N
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The standard circle model, whose study was initiated by Sutherland ([Su|), is characterized by
the Hamiltonian .

He — —A - 3.2

y Y92 dna)? (3:2)
1<J
on L?([0,1]V); here g > —1/2 is again a coupling constant and
1.

d(zs,z5) = - sin (71‘(1‘1 — xj))
is the chord length between the positions of the particles ¢ and j on a circle of circumference 1.
It was first observed by Perelomov [Pe| that (3.1) is completely quantum integrable, i.e. there
exist N algebraically independent symmetric linear operators in L?(RY) which commute with
each other and with H¢c. The quantum integrability of (3.2) was proven in [CRM|, while the
complete integrability of the classical Hamiltonian systems associated with (3.1) and (3.2) goes

back to Moser [Mo].
There are natural extensions of these systems in the context of abstract root systems, see

e.g. |O-P2|, [H-Sc|. In particular, if R is an arbitrary root system on RY (not necessarily
cristallographic), and k is a nonnegative multiplicity function on it, then the corresponding

abstract linear CMS operator with harmonic confinement is given by
Hy, = —Fp +w’laf”
with the formal expression

Fo=A-2 k(a)(k(a)-1)

acR

(o, )

If R is of type An_1, then 7—~[k just coincides with H¢ . For both the classical and the quantum
case, partial results on the integrability of this model, as well as periodic variants, are due to
Olshanetsky and Perelomov [O-P1], [O-P2]. A new aspect in the understanding of the algebraic
structure and the quantum integrability of CMS systems was later initiated by Polychronakos
[Po] and Heckman [He2|. The underlying idea is to construct quantum integrals for (linear)
CMS models from differential-reflection operators. Polychronakos introduced them in terms
of an “exchange-operator formalism” for the linear CMS model (3.1). He thus obtained a
complete set of commuting observables for (3.1) in an elegant way. In [He2| it was observed
in general that the complete algebra of quantum integrals for abstract linear CMS models - in
case of an arbitrary root system, but without harmonic confinement - is intimately connected
with the corresponding algebra of Dunkl operators. Since then, there has been an extensive
and ongoing study of CMS models and explicit operator solutions for them via differential-
difference operator formalisms; among the broad literature, we refer to [L-V], [K1|, [BHV],
[BHKV], [B-F3|, [U-W]. We briefly describe the connection of (abstract) linear CMS models to

Dunkl operators: Consider the following modification of ]?k, involving reflection terms:

Fe=A0A-2)"

a€ERL

s (h(@) — ). 33)

(
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In order to avoid singularities in the reflecting hyperplanes, it is suitable to carry out a gauge
transform by /wg. This leads to the following

3.1.1 Lemma. The operator Fy, with domain
D(Fi) = {(w’f : f € S(®V)} € PRY),
is essentially self-adjoint in L2(RN). D(Fy) is invariant under Fy,, and
Fi = wy? Apwy 2

Proof. A short calculation yields that for f € C?(RY) and z ¢ |J

aER, H,,
i ) (x), ) f(z)
wy (@) A(w, f)(z) = ) + 2a§+k ( (a,z) (a,a:>2>
i
ﬁ;f (@) (B,2) .

Applying Proposition 1.7.(i) of [D2] to the bilinear form B(xz,y) := (z,y) on RY, we obtain
that for every plane rotation g € G with g # e,

a,BER}:0,03=g

Therefore the last sum in (3.4) reduces to

(recall our normalization |a|?> = 2 for all a € Ry ). As wy is G-invariant, this implies

w20 f(2) = w2 @) A ) (@) — 2 S ko) k(a)f(z) — f(oa®)

a€R+ < ’x>2
)42 ko ( n ;>a> B f(a:)<ozi”>(;w)>
acR
= Auf(@), (3.5)

where the last identity follows from the explicit representation (1.7) for Aj. The assertion now
follows from the facts that Ay, with domain . (R"), is essentially self-adjoint in L?(RY,wy,)
(c.f. Chapter 1), and that the mapping

®: L2RY) = L2RN uy), fesw f

is an isometric isomorphism. O
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Consider now the algebra of G-invariant polynomials on RV
(¢ = {pelV :g-p =p forall g G}.

If p € (TY)Y, then the Dunkl operator p(T) leaves (IIV)¢ invariant (by (1.4)). For such p,
denote the restriction of p(T) to (ITV)Y by Res (p(T)). Then, as observed in [He2|, the family

{Res (p(T)) : p € ()%}
is a commutative algebra of differential operators, containing the operator
Res (Ag) = wk_l/kawi/Q.

This implies the integrability of the CMS operator Fi. For the special case of the symmetric
group, this is essentially also contained in |Po| (where, however, the above gauge transform is
omitted). As already mentioned, Polychronakos also succeeded to determine a complete set of
quantum integrals for the Sy -type Hamiltonian H¢ with harmonic confinement - at least in the
physically relevant bosonic and fermionic subspaces of L?(RY). He constructed the integrals

by a Lax formalism involving the lowering and raising operators

+:
J

a; = wi/Q(wxj + Tf)w,;l/2 and a} 12

wy*(w; — T Y,

Then a;.' is the adjoint of a; in L*(RY), and the families {aj, j = 1,...,N} as well as
{aj, j=1,...,N} commute (c.f. the more general treatment in Lemma 3.1.6.) It was further
shown in [Po] that the operators
N
I, = Z(ajaj)m, meN
j=1

commute in L?(R™). Moreover, the restriction of I; to the bosonic subspace
LPRMNSN .= {f e L?(RN):g-f = f forall g€ Sy}

coincides, up to an additive constant, with the Hamiltonian Ho . In a similar way, the restriction
of I7 to the fermionic subspace of completely anti-symmetric functions coincides up to a constant
with H¢, the coupling constant 2k(k—1) being replaced by 2k(k+1). Concerning more general
root systems, there are only particular results of this kind for systems of type By and Ga, see
[B-F2] and [Hi-K|. For the abstract CMS operator Hj, with harmonic confinement, the general
question of how to obtain an algebra of quantum integrals is, to the author’s knowledge, still
open. We shall however see from the results below that the spectral properties of 7-[k in the

“bosonic” subspace

LPRMNY = {fe L*RN):g-f=f forall g€ G}
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are rather easy to describe, and that it is possible to obtain complete bases of eigenfunctions by
a suitable ladder formalism. We again work with the gauge-transformed version with reflection
terms,

Hy = wy (= Fr+ Pl w)? = —Ap + 22|

This operator is symmetric and densely defined in L?(R™,w;) with domain D(Hy,) := .7 (RY).
Notice that in case k = 0, Hj, is just the Hamiltonian of the N -dimensional isotropic harmonic
oscillator. We further consider the Hilbert space L?(RM ,dm¢ ), where m§ is the probability

measure
dmi(z) = c;1(2w)7+N/2 e_”|x|2wk(m)dx e MYRY) (w>0), (3.6)

and the operator

N
T = —Ap + 2w ijaj

j=1
in L2(RY ,dmy ), with the dense domain D(Jj) := IV, The subsequent theorem gives a
complete description of the spectral properties of Hy and J; and generalizes well-known facts
for the corresponding classical operators. Its proof relies on the s/(2)-commutation relations of

the operators
N

1, 1
E = §|x] , F= —§Ak and H := Z;x,,az + (y+ N/2)
on TTV (with the index v = y(k) as defined in (1.1)), which can be found in [He2|. They are
[H,E| =2E, [H,F] =-2F, [E,F]=H. (3.7)

Notice that the first two relations are immediate consequences of the fact that the Euler operator

N
p = Z 1'182 (3.8)
i=1
satisfies p(p) = np for each homogeneous p € P,,. We start with the following
3.1.2 Lemma. On D(J;,) = IV,
Te = e?lel’/2 (Hie — (27 + N)w) ewlel?/2,

In particular, Jy, is symmetric in L*(RVN, dmg).

Proof. From (3.7) it is easily verified by induction that
[Ag, E"] = 2nE" 'H + 2n(n — 1)E™ 1 forall neN,
and therefore [Ak, e_“’E] = 2we “FH + 20?Ee *F. Thus on IV,
Hpe P = —Ape P + 2°FevF = e “PA, +20we ™ “FH = 67°JE(‘71€ + (27 + N)w).

O]
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3.1.3 Theorem. For w >0 and n € Z define

Ve i={e /My ipe PNy ey and WP = {e P2 ¢(2), q € Vel C S (RY).

n

Then the following assertions hold:

(1) The spaces L*(RY,dm¥) and L*(RN,wy) admit the orthogonal Hilbert space decomposi-
tions
RN, dmy) = @ Ve and L*RY,wp) = @ Wy
REZ+ ’VLGZ+
here V¥ is the eigenspace of Jy corresponding to the eigenvalue 2nw, and Wy s the

eigenspace of Hy corresponding to the eigenvalue (2n + 2y + N)w.

(2) The operators Hy and Ji are essentially self-adjoint; the spectra of their closures are
discrete and given by o(Hy) = {(2n+2y+ N)w, n € Z1} and o(Jy) = {2nw, n € Z,}

respectively.

Proof. (1) Equation (3.7) and an induction argument yield the commuting relations [p, A%] =
—2nA7 for all n € Z, and hence

[2Wp7 efAk/ﬁlw] — Ak efAk/ﬁlw.

Ak/4w

If ¢ € TIV is arbitrary and p:=e q , it follows that

_ _ 1 _ _ 1
p(a) = (pe™ /%) (p) = e/ % p(p) + —Ape™ ¥/ p = ™M/ p(p) 4 —Ayg.
2w 2w
Hence for a € C the following relations are equivalent:
(—=Ag +2wp)(q) = 2awq <= p(p) =ap <= a=n € Z; and pc PY.

Thus each function from V% is an eigenfunction of J corresponding to the eigenvalue 2nw,
and V¥ L V¥ for n # m by the symmetry of Ji. This proves the statements for Jj, because
IV = @V is dense in L*(RY,dm¢). The statements for H, are then immediate by the

previous Lemma.
(2) follows from (1) by a well-known criterion for self-adjointness of symmetric operators on

a Hilbert space which have a complete set of orthogonal eigenfunctions within their domain
(Lemma 1.2.2 of [Da3]). O

3.1.4 Remark. Part (1) of the above theorem implies in particular that the operator [J; has
for each given p € PN a unique polynomial eigenfunction g of the form ¢ = p + r, where the
degree of r is strictly less than n; it is given by ¢ = e 2/4p.

By the G-equivariance of Ay, the spectral resolution of the CMS operator 7—~Lk in the bosonic

subspace L?(RN )G is now an easy consequence of Theorem 3.1.3.
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3.1.5 Corollary. For n € Z,, put W% = {e_“’|m|2/26_Ak/4“’p: pe PN @9 ). Then

LQ(RN)G _ @ WTLZJ,G7

n€Z+
and W& is the eigenspace of Hy, in L2(RME corresponding to the eigenvalue (2n+2v+ N)w.

We next prove Rodrigues formulas for the eigenfunctions of Jp and Hp; they generalize
results from [BHV| and [BHKV] for the Sy - case, where explicit bases of bosonic and fermionic
eigenfunctions for the Calogero Hamiltonian H¢o were constructed from its vacuum state. We
first introduce an obvious analogue of the Sy -type ladder operators: We define “lowering” and
“raising” operators in L2(R™,wy) by

1 1 _

Then, by the anti-symmetry of the T in L2(RY wy) (Prop. 1.4.4), Aj is the adjoint of A; in

this Hilbert space, and
N

M = Y (AAT + AT A)).

j=1

Moreover, the following commutation relations are verified by short calculations:
3.1.6 Lemma. Fori,j=1,...,N,

(1) [, Af) = w- [T, ) = (i id + Locg, kla)aia; oa);
(2) [Ai, 4] = [Af, Af] = 0.

In particular, each p € IV defines unique linear operators p(A), p(A*) in L2(RY wy) with

domain .7 (RY). We shall further use the following rescaling formula:

3.1.7 Lemma. Let p € P,,. Then for c € C and a € C\ {0},
(eCAkp) (ax) =a" (eai%A’“)p(az) (x € RN).

Proof. For m € Z, with 2m < n, the polynomial A}’p is homogeneous of degree n — 2m.

Hence
[n/2] om [n/2] om .,
(e2p)(az) = 7 (AP az) = D S I (Ap) (@) = a” (e Ap) (a).
m=0 m=0

3.1.8 Theorem. (Rodrigues formulas for the eigenfunctions of Jr and Hy.)
(1) Let f=e Bk/%p ¢ Ve with p € PN . Then

f(x) _ (%)new\xIQ p(T) e—w\a:|2. (3_9)
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(2) Let f(z) = e “lel/2e=Br/Ap () € Wo

n >’

with p € PY . Then

1
V2w

Proof. For the proof of (1), it suffices to consider the case w = 1/2; in fact, Lemma 3.1.7 with
¢=—1/2 and a = v/2w then implies that

f@) = () pat)eielr2. (3.10)

e () = (2w) 2 e p(Vawa) = (2w) (1) e (p(T) K1) (Vo )
(—2w)™ elel? p(T) el

Hence let w = 1/2, and consider the Dunkl operator T}, j =1,..., N, as a linear operator on
L*(RN, e*‘m|2/2wk(a:)dx), with domain ITV. Its adjoint is given by

T = _elzlr2 T; 0 e 1t?/2 — x; —Tj; (3.11)

here the first identity follows again from the anti-symmetry of T; in L?(RY,wy), and the second

one is obtained by the product rule (1.5). Our assertion is therefore equivalent to
e 8 2p = p(T7)(1) (3.12)

This identity is now easily checked by induction with respect to the degree n of p: The case
n =0 is clear. Moreover, if (3.12) holds for p € PY, then by (3.11) and Lemma 1.2.6(2),

Tip(T)(1) = Tje ®%p = wje/2p — Tje 842 p = e84/ (ap),
which finishes the proof of (1). To obtain (2) from (1), write
flz) = (2w) (/2 0 p(=T) o e I#1*/2) (¢=wI#1*/2)
Again by the product rule (1.5), we have
el7*/2 o p(—T) 0 e“lel/2 = (wz; —Tj) = V2" p(Ah). (3.13)
This yields the assertion. O

We finish this section by the spectral resolution for the Dunkl transform, which is also in
analogy to the classical case k = 0. Recall that by the Plancherel theorem 1.4.6, the Dunkl
transform Dy : f — fk is unitary on L2(RN, wy).

3.1.9 Proposition. The Dunkl transform Dy, on L*(RYN wy) has the spectrum

{(=i)7, 5 =0,...,3}. The eigenspace belonging to the eigenvalue (—i)’ is

Ei= |J w,.

n=jmod4
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Proof. Take f(x) = e“x|2/2q(m) € W with ¢ = e 2%/*p, p € PN. Let further p:= e+/?q.
Employing Proposition 1.4.3(1), we obtain
~ 1 ) B N
F9&) == [ Eu(=ig ) e 2 px) e Py (x)da
Ck JRN
112 /9~ . 112 .
= e IEF25(—ig) = e7IEF/2 (eAk/‘lp)(_Zé').

Application of Lemma 3.1.7 with a = i and ¢ = —1/4 now shows that the last expression
equals

e PR (e S p(e) = (=) ().
Since L*(RM,wy) = Dz, WL, this finishes the proof. O

3.2 Biorthogonal polynomials associated with reflection groups

Up to now, there are ambiguities in the possible choices for the bases of eigenfunctions of
the Hamiltonians J; and Hp, caused by the high degeneracy of their spectra. One natural
requirement is orthogonality in the underlying Hilbert space, which leads to the concept of
generalized Hermite polynomials and Hermite functions. Another criterion is the possibility
to generate the basis within a suitable operator formalism; this is not conveniently met by
generalized Hermite systems, but can be achieved by weakening the orthogonality requirement
and considering, more generally, biorthogonal systems. Such systems also admit interpretations
and applications in probability theory (see [R-V1] and [R-V2]).

The definition and essential properties of biorthogonal systems will be based on the Macdo-
nald relation (1.17) for Dunkl’s scalar product [.,.]r. We start from a rescaled version, which
is easily obtained from Lemma 3.1.7: For all p € 737]1\[ , q € 737,]\{ and all w > 0,

i = Vo [ e () e g ) dm (0 (3.14)
with the measure m{ as defined in (3.6). Notice that both sides of (3.14) are zero for
n # m. Identity (3.14) suggests to construct orthogonal polynomial systems in L?(RY, dmg)
from orthogonal homogeneous polynomial systems with respect to [.,.]x via p — e Bkl
and, more generally, biorthogonal systems in L%(RY, dm{) from bidual homogeneous polyno-
mial systems with respect to [.,.];. In the following, we denote by PN (R) := IIY NPY the

vector space of real-valued homogeneous polynomials of degree n € Z, on RV .

3.2.1 Definition. A family {¢,, ¥, , v € Zf } C Hg is called a homogeneous dual sys-

tem with respect to [.,.]g, if for every n € Z., the sets {p,, v € Z¥, |v| = n} and
{4, v € ZY, |v| = n} are dual R-bases of PY(R) with respect to the scalar product [.,.]x
on Hﬁ.

Notice that a homogeneous dual system {p, 1, , v € Zf } always satisfies

wo = o = 1.
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Moreover, as P L PN for n # m by Lemma 1.2.4, the complete sets {p, , v € Zf} and
{¢, v € ZY' } constitute dual bases of IIY with respect to [.,.], i.e.

(v, Vulr = 6y, forall v, peZl,

where § is the Kronecker-symbol. Of particular importance is the special case that the sets
{pv} and {1, } coincide; {p,} is then called a homogeneous orthonormal system with respect
to [.,.]x. Such a system can for example be constructed by Gram-Schmidt orthogonalization

within each PY(R) from an arbitrary ordered R-basis.

3.2.2 Examples. (1) If k =0, then the natural choice of a homogeneous orthonormal system

with respect to [.,.]x is @, (z) = (W1)~1/22¥.

(2) A simple case is the one-dimensional situation (G = Zy acting on R, with multiplicity
k > 0). Here every homogeneous dual system with respect to [.,.]r is of the form
{cpx™, dya™} with suitable normalization constants ¢, d, € R\ {0}. In particular there

exists, up to sign changes, only one orthonormal system {y,} with respect to [.,.]x.

(3) Suppose that {p,, 1, } is a homogeneous dual system with respect to [., .]o (i.e. £ =0).
Since for k > 0 the intertwining operator Vj is an isomorphism of PN (R), the family
{o, := Vi(py), |v| = n} is a basis of PN(R), and Lemma 1.2.4(5) implies that {¢,, ¥, }
constitutes a homogeneous dual system with respect to [.,.]z. The most important

special case of this construction is obtained for the natural choice p, = 1, = (v!)~"/22".

(4) The An_q-case: Non-symmetric Jack polynomials. For the definition of these polynomi-
als, we need a partial order <p on Z%, which was introduced in [02] in a more general
context; see also [K-S|. For this we need the usual dominance order on the set of partitions
with at most N nonzero parts, Ay = {\A = (A1,...,An) C Zf AL > > AN} it s
given by

A<p p <= |A =|u| and i)\igim for 1 <j <N.
i=1 i=1
This partial order is extended to all compositions as follows: For each v € Zf there
exists a unique permutation w, € Sy of minimal length and a unique partition v* € Ay
such that v = w,v*. For u, v € Zf one then defines u <p v, if either u* <p v*
or p© = v and w, < w, in the Bruhat order of Sy (see Chapter 5 of [Hu] for its
definition). Moreover, one defines p <p v if and only if p <p v and p # v.

Now consider G = Sy and fix a multiplicity parameter k > 0. Then the associated
non-symmetric Jack polynomials E, , v € Z¥ , as introduced in [02] (see also [K-S]), are
uniquely defined by the following conditions:

(i) E,(x) = 2 + Z ey, px? with ¢, € R;

pu<pv

(ii) For all p<p v, (El,(x),g;“)k =0;
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here the inner product (.,.); on IV is given by

(Fow = [ 10 [Tl - 2 a
™ i<j
with T = {z € C : |2| = 1} and dz being the Haar measure on T". Notice that by
definition, the set {E, , |v| = n} forms a vector space basis of PY(R). We claim that the
E,, , which are orthogonal with respect to (.,.); by construction, also form a homogeneous
orthogonal basis with respect to the Dunkl inner product [.,.]p (for Sx). This is easily
seen as follows: According to [O2], Prop. 2.10, the E, are simultaneous eigenfunctions of

the Cherednik operators §; for Sy, which were introduced in [Che| and can be written as
1 .
fizzxiﬂs—i—l—]\f—i—ZJU (i=1,...,N), (3.15)
J>i

where the TZ»S are the Dunkl operators of type Ay_1, c.f. Example 1.1.5 (2). In fact, the
E, satisty & F, = 7;E, , where the eigenvalues 7 = (71,...,7y) are given explicitly in
[O2]. They are distinct, i.e. if v # p, then ¥ # . On the other hand, it follows from
(3.15), together with the properties of [.,.]; (Lemma 1.2.4), that the Cherednik operators
& are symmetric with respect to [.,.]x. This proves that the E, are orthogonal with

respect to [., ] -

3.2.3 Definition. Let {¢,, ¥} be a homogeneous dual system with respect to [.,.];. Then
for fixed w > 0, the associated biorthogonal polynomial systems {R,(w;.), v € Zf } and
{S,(w;.), v € Z¥} in L2(RY dm¥) are given by

R, (w;z) = v2w‘y|e_A’“/4w<pl,(x), Sy(w;z) = \/2w|y‘e_Ak/4‘“wy(m).
Moreover, we define the associated biorthonormal functions
ry(wyx) == dj’ e_‘*’|z‘2/2R,j(w;$), sy(wyx) == df’ e_wlm‘z/QS,,(w; z), (vezl)

in L>(RY,w;,), with the normalization constant

\/ﬂ’y-i_N/Q
R

We list elementary properties of these systems, which also justify our terminology.

dg -

3.2.4 Lemma. For all w > 0, the following assertions hold:

(1) The R,(w;x) and S, (w;x) are real-valued polynomials of degree |v|. They satisfy
R, (w;—z) = ()R, (wiz);  Ry(wiz) = Ry(1;Vewa),

and the same relations hold for the S, (w;.).
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(2) The systems {Ry(w;.)} and {S,(w;.)} constitute biorthogonal bases of L*(RYN,dm%’) with
R, (w;.) Su(w;.)dmy = 6.
RN
Moreover, the systems {r,(w;.)} and {s,(w;.)} form biorthogonal bases of
L2(RN, wy) with
/ ry(w;.) sp(w;.) wi(x)dr = 6,,,.
RN

(3) For each n € Zy, the family {R,(w;.), |[v| = n} constitutes a basis of V¥, while the
family {r,(w;.), [v| = n} is a basis of W. The same statements hold for the systems

{S,} and {s,}.

Proof. Part (1) follows from Lemma 3.1.7 with ¢ = —1/4 and a = y/w. Part (2) is an immediate
consequence of formula (3.14), together with the density of IV in L2(RY,dm¥). Part (3) is

obvious. ]
The orthonormal case gives rise to a separate notation:

3.2.5 Definition. If {¢,} is a homogeneous orthonormal system with respect to |[.,.], then

the associated generalized Hermite polynomials and Hermite functions are defined by
H,(w;z):= \/2wly|e_Ak/4wgpl,(a:) and  hy(w;x) == d e_w‘x|2/2H,,(w;:L'), velzl.

By construction, the Hermite polynomials {H,(w;.), v € Z}} and the Hermite functions
{hy(w;.), v € ZY} form orthonormal bases of L2(RY,dm%) and of L?(RY, wy) respectively.
As a consequence of Lemma 3.2.4 (3), biorthogonal and generalized Hermite systems satisfy

second order differential-difference equations according to Theorem 3.1.3 as well as Rodrigues
formulas according to Theorem 3.1.8. Moreover, they constitute bases of eigenfunctions for the
Dunkl transform. We recapitulate these properties here only for the special case of generalized

Hermite systems; for biorthogonal systems they are completely analogous.

3.2.6 Proposition. The generalized Hermite polynomials {H,(w;.)} and Hermite functions

{hy(w;.)} associated with the basis {p,} have the following properties:

(1) The H,(w;.), v € ZY are a basis of eigenfunctions of —Ay+2wp in L2 (RN, dmy), with
(—Ag + 2wp) Hy(w;.) = 2[v|w - Hy(w;.).
(2) The hy(w;.), v € ZY are a basis of eigenfunctions of —Ay +w?|z|? in L*(RY, wy), with
(=g +w?|z[) hy(ws ) = @]+ 2y + N)w - hy(w;.).

Moreover, the functions h,(1;.) are a basis of eigenfunctions for the Dunkl transform in
LY (RN, wy), satisfying b, (1;.)" = (=i)"1h,(1;.) .
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(3) (Rodrigues formulas)

H,(w;z) = (\;%)IVl@wle@u(T) e~wlel?, hy(w;z) =

d;: (A+) efw|x\2/2
NIz |
Notice that in view of (3.13), the Rodrigues formula for the generalized Hermite polynomials

can also be written as

Hy(w;z) = (2w) M2 ¢, (2wa — T)(1). (3.16)

We continue with some examples:

3.2.7 Examples. (1) Classical multivariable Hermite polynomials. Let k = 0, and choose the
standard orthonormal system ¢, (z) = (v!)~%/22¥, with respect to [.,.]o. The associated

Hermite polynomials are given by

vl N _ N
_ V2w He_83/4w(az’.’i) _ 2 v|/2
V! ey ‘ V!

H,(w;z) H,, (Vw ), (3.17)

i=1
where the ﬁ[n, n € Z4 are the classical Hermite polynomials on R defined by

= 2d1’l 2
Hy(z) = (~1)"e® ——e™@ .
(0) = (-1 e Te

(2) The natural biorthogonal systems associated with G and k. These are the systems
{R%(w;.)} and {S9(w;.)} which are obtained for the special choice

D) == (W) VVi(@"), W0(@) = ()2

The systems {R%(w;.)} and {SY%(w;.)} have been studied in [R-V1], [R-V2], where they
have been called generalized Appell systems. Notice that

RO(w;.) = Vi(Hy(w;.))

with the classical Hermite polynomials H,(w;.) from (3.17). The intertwining property

of Vi now implies that

TjR)ye,(wia) = \[2w(vj +1) - R)(w;z);  (=1,...,N).

Finally, the A;r are creation operators in the literal sense for the natural eigenstates s’
of Hki
ATy ATy
OQ(w;z) = dl‘:w_‘l’l/z . 7( ) emwlel?/2 — ,=lvl/2, 7( ) s9(w; ).

vl V!

In case G = Sy, complete symmetrization and anti-symmetrization of these states gives
the bosonic and fermionic eigenstates for the N-body Calogero Hamiltonian which were

constructed in [BHV].
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(3) The one-dimensional case (G = Zy on R, multiplicity parameter k£ > 0). Recall that up

to sign changes, there exists only one homogeneous orthonormal system with respect to
[.,.]k. The associated Hermite polynomials are given, up to multiplicative constants, by
the generalized Hermite polynomials H”(/wz) on R. These polynomials can be found
e.g. in [Chi| and were further studied in [Ros| in connection with a Bose-like oscillator
‘Qk e lzl?

calculus. The HF are orthogonal with respect to |z and can be written as

HE (x) = (=1)"22mn) LE 12 (22),
HE, .\ (z) = (—1)m22 il o LE2 (22);

here the LS are the Laguerre polynomials of index a > —1/2, given by

1 dan
Ly(x) = ax*“ex e <x"+ae*x>.

All biorthogonal systems coincide, up to multiplicative constants, with the Hermite sys-
tems HF(y\/wx).

The following further examples concern generalized Hermite polynomials of type Any_1 and

By . They show that our concept of generalized Hermite polynomials includes in particular the

generalized Hermite and Laguerre systems of Baker and Forrester [B-F2|, [B-F3].

3.2.8 Examples. (1) The An_1-case. We again assume that the multiplicity parameter k is

positive. To stress the dependence on the symmetric group, we use the notation TZ-S and
Ag (for the generalized Laplacian), as well as [.,.]s for Dunkl’s bilinear form. In [B-F2],
Baker and Forrester study “non-symmetric generalized Hermite polynomials” E,(,H), which

they define as the unique eigenfunctions of Ag — 2p of the form

Ez(/H) = F,+ Z Cu,uEu (C#,V € R)'
lul<[v]

Here the E,, v € Zf are the non-symmetric Jack polynomials (associated with Sy and

k) as defined in Example 3.2.2 (3). Remark 3.1.4 now implies that EYD = e=B8s/AR,,
Therefore the E,SH), up to some normalization factors, make up a system of generalized

Hermite polynomials for Sy in our sense, with parameter w = 1.

A remark on the By -case. Suppose that R is a root system of type By, and k = (ko, k1)
a nonnegative multiplicity function on it. The associated Dunkl operators and Dunkl

Laplacian are denoted by TiB and Ap, cf. Examples 1.1.5 (3). We consider the space

W= {fecC'RY): f(x) = F(z?) for some F € C*(RY)}

of “completely even” C'-functions; here x? = (z%,...,2%;). The restriction of Ap to W
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is given by

N
AB|W:A+2]€12%&'+2]{702< L (0 0;) + — (aﬁaﬂ‘))

Ti — T Ts Ti
=1 i<j ? J it J

1 1
—2ko Zj:((xz —2)? + @it fL‘j)Q) (1= soy5).
It is easily checked that for completely even f, Apf is also completely even. The operator
(Ap — 2p)|w is also of CMS-type. Its completely even polynomial eigenfunctions are
discussed in [B-F2| and [B-F3| separately from the Hermite-case; they are called “non-
symmetric Laguerre polynomials” and denoted by El(,L)(:UQ). It is easy to see that they
make up the completely even subsystem of a suitably chosen generalized Hermite system

{H,(1;.)} for By associated with (ko, k1), where we assume ko > 0.

To this end, let again FE), denote the Sy -type non-symmetric Jack polynomials, corre-
sponding to the multiplicity parameter ko. For v € ZY set Ey(x) := E,(z?). These
modified Jack polynomials form a homogeneous basis of IIY N W . The non-symmetric

Laguerre polynomials of Baker and Forrester can be written as

EB (2?) = e 28/1E, (2).

v

(Notice that the polynomials on the right-hand side are in fact completely even and
eigenfunctions of Ap — 2p, according to Theorem 3.1.3). Involving again the Sx-type
Cherednik operators (3.15), it is easily checked that the E, are orthogonal with respect
to Dunkl’s pairing [.,.]p. In fact, the & induce operators & (t=1,...,N) on W by

§i f(2) = (&F)(2%) if f(z) = F(a?),
c.f. [B-F3]. Thus & E, = v; E,, with the same eigenvalues 7; as in Example 3.2.2 (3).

A short calculation gives

£ @) = —a2(TSF)(a?) + (1= N+ 3 oy P(s?)

ko j>i
1 B
= <2—k0xZTZ +1— N+ Zaz])f(l‘)
71>
Employing Lemma 1.2.4 again, we obtain that the EZ are symmetric with respect to [.,.]p

on ITN N W. This yields our assertion by the same argument as in the previous example.
We therefore obtain a homogeneous orthonormal system {y,} with respect to [.,.]p
by setting ¢, = d,,E’n for v = (2n1,...,2ny) (with suitable normalization constants

d, > 0), and completing the set {p,, v € (2Z4)"} by a Gram-Schmidt procedure.
We continue by a simple but useful representation of the Dunkl kernel Ej and its homo-
geneous parts Ej, , in terms of a given dual system {¢,, ¢, }. It is the foundation for several
further properties of our (bi-)orthogonal systems, which generalize results from |B-F2|, |B-F3]

and [Ros| obtained for special cases.
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3.2.9 Lemma. (i) If {p,, ¥} is a homogeneous dual system with respect to [., .|, then

Epn(z,y) = Z 0 (), (y) forall nez,, x,yecCN.
v[=n

(i) If {pu} is orthonormal with respect to [.,.]x, then

Ey(z,y) = Z ou(T) eu(y)  for all z,y € cV,

N
vELY
where the convergence is normal on CN x CN .

Proof. For (i), it suffices to consider the case z,y € RV. As a function of z, the polynomial

Eyn(z,y) is homogeneous of degree n. Hence we have

Epn(z,y) = Z v,y (@) with ey = [Epn(,y), k-

v|=n
Repeated application of formula (1.24) for Ej, gives

Cuy = wu(T)Ek,n( ) y) = ¢V(y) Ek,O( ) y) = ¢V(y)

This shows (i). To prove (ii), note first that ¢, (x) = ¢, (Z) for all v. We can therefore estimate

1/2 1/2
> le@e)l < (X @) (X lenwl?)
lv|=n lv|=n lv|=n
= Bunle D" By, ) < AT
where for the last step, inequality (1.25) was used. This implies the assertion. O

We mention the following interesting consequence for the Dunkl kernel:

3.2.10 Corollary. The Dunkl kernel associated with G and k > 0 satisfies

Ey(z,y) < V/Ei(z,2)Ey(y,y) for all z,y € RY.

In particular, Ey(z,z)>1 for all z € RN,

Proof. Let {¢,} be an arbitrary homogeneous orthonormal system with respect to [., .Jx, and
recall that the polynomials ¢, are real-valued on RY. The first statement is therefore obtained
by applying the Cauchy-Schwarz inequality in representation (ii) of Lemma 3.2.9; the second
one then follows by setting y = 0. O

As a further consequence of Lemma 3.2.9, biorthogonal systems on RY can be obtained
from a common generating function, which generalizes the well-known generating function of

the classical multivariate Hermite polynomials in a canonical way.
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3.2.11 Proposition. Suppose that {R,(w;.)} and {S,(w;.)} are biorthogonal systems on RY
corresponding to the homogeneous dual system {p,, 1¥,} with respect to [.,.|x. Then for all
z,y € CN,
<yy>/2Ek ZZR (w;z) Yy (y ZZS (w; ) pu(y).
n=0|v|=n n=0 |v|=n
Both series y o>, converge normally on CN x CN.

Proof. It suffices to prove the first identity; moreover, by Lemma 3.2.4 (1), we may restrict
ourselves to the case w = 1/2. For this, put L,(z,y) := ZM:n R,(1/2;x) ¢, (y), and suppose
first that x,55 € RY. By definition of the R, and in view of formula (1.24) for Ey , we may

write
Ln(xay) = e_Ak/QEk,n(xay) = ZO 2J,7' <yay>j Ek,n—?j(xay)'
j:

By analytic continuation, this holds for all z,y € C" as well. Using (1.25), one further obtains

1n/2) 020 o5 e 2

1 A y[¥ 2" y"

Su(e.y) = D gl 1Ben-g(@ )] < 3 o5 =o 0
7=0 J- 7=0 J: 1)

If n is even, set m :=n/2 and estimate further as follows:

Snl® —2mmv§:< >’|2m3):m!<|y2| (1+||))

A similar estimate holds if n is odd. This entails the normal convergence of the series Y 7 Ln(x,y)
on CN x CV, and also that

ZLn(xy ZZ Y (y,9) By, n—oj(z,y) (with Ejp;:=0 for 1<0)
n=0

i
n0]02']

8

—1)J = _
(Qj j), (W) Y Broneaj(z,y) = e WP Ey(x,y)
’ n=0

=]

j:
for all z,y € CV. O

We conclude this section by a Mehler formula for biorthogonal systems. For this, we need the

following integral representation.

3.2.12 Lemma. Let p € PY. Then for all z,y € RV,

121272 Ak/2 / By (z, —iy) p(iy) dmk/ (y).
Proof. Put q:= e ®+/?p. Lemma 3.1.7 with a = —i and ¢ = —1/2 shows that e®+/?p(z) =
~Ai/20

i"q(—ix), hence p = (—i)"e with ¢*(z) = ¢q(iz). Employing Proposition 1.4.3(2), we

thus obtain
, 1/2 , - % 2 Z1wl2/2 s,
| Bl i) pli) dm*(y) = | Bl =io) (e 20) () dmy*(y) = &2 g7 (i),
which yields the stated identity. O
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3.2.13 Theorem. (Mehler-formula for biorthogonal systems). Suppose that {R,(w;.)} and
{Sy(w;.)} are biorthogonal polynomial systems associated with G and k. Then for r € C with
Ir| <1 and all z,y € RV,

> 1 wr?(|z? + |y|?) 2wrx
} : E : . . v| _ _
R,,(w,x)S,,(w,y)r - (1—1“2)’Y+N/2 exp{ 1_ .2 Ek(]_—’l"27 Z/)

n=0 |y|:n

Proof. We may again assume that w = 1/2. Consider the integral
My (z,y,r) = / Ex(—rz,v)Ex(—iz, z)Ep(—iv,y) d(ml,lg/2 ® mi/Q)(z, v).
RN xRN
The bounds of Corollary 2.4.5 on Ej, assure that it converges for all » € C with |r| < 1 and all
z,y € RN, Now write Ey(—rz,v) =Y o0 r"Ey (iz,iv) for the above integral, and remember
the representation of the Ej, , in terms of the underlying homogeneous system {,, 1, }. Since

oo

S 1| B (iz, i) < el

n=0

(by (1.25)), the dominated convergence theorem yields that

My(w,y,r) = D 1" /RN | Brn(iz,10) Bil(~i2,0) Ei(~iv,9) dmy*(2) dmy* (v)
n=0

= Z r" Z ( ox Ex(—iz,z) p,(iz) dmi/2(2)> ( o Ex(—iv,y) ¢y, (iv) dm,lc/2(v)>;
n=0 lv|=n

From the above lemma we thus obtain

My (z,y,r) = e_(‘”|2+|y|2)/2ir” Z R,(1/2;2)5,(1/2;y). (3.18)

n=0 lv|=n
On the other hand, iterated integration and repeated application of Theorem 1.3.4(3) and the
reproducing formula Prop. 1.4.3(2) show that for real r with |r| <1,

My, ,7) =5 /R | /R  By(r2,0) By(—iy,v) dm)*(0) ) Bu(iz, 2)e 1 2wy ()2

:cgle—‘yw2 /]RN e(r2_1)|z|2/2Ek(iry,z) Ey(—iz, z) wi(z) dz

e_|“|2/2Ek(u, iry )Ek<u,i)wk(u)du

= L1 = )N/ P2 /

RN V1—r2 V1—r2
2 2
_ + |y rT
ISR N S B e ( )
(1=7%) xp 2(1—12) 12 Y
By analytic continuation, this holds for {r € C : |r| < 1} as well. Together with (3.18), this
finishes the proof. O

3.2.14 Corollary. Let {H,(w;.)} be a generalized Hermite system associated with G and k.
Then

y 1 wr?(|z? + y|?) 2wrx
> Hy(w;z)Hy(wsy)r" = (1= p2)rhz &P {— .2 Ek<1 — y) (3.19)
uer

the sum on the left hand side being absolutely convergent for all x,y € RN and 0 <r < 1.
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3.3 An uncertainty principle for the Dunkl transform

In his paper [dJ2], de Jeu proved a quite general uncertainty principle for integral operators
with bounded kernel which applies to the Dunkl transform; this result has the form of an € —¢-
concentration principle as first stated in [D-S] for the Fourier transform. However, analogues of
the classical variance-based Weyl-Heisenberg uncertainty principle for the Dunkl transform have
up to now only been given in the one-dimensional case (|[R-V3| and [Roo|). Here we present an
extension to general Dunkl transforms in arbitrary dimensions. Our main result is the following

generalization of the classical Heisenberg-Weyl uncertainty principle:

3.3.1 Theorem. Let f € L*(RY wy). Then

Il fllz - 1ELF* 2 = (7 4 N/2) - [1f 2 - (3.20)

Moreover, equality holds if and only if f(x) = ce~dlel®

for some constants ¢ € C and d > 0.

If the multiplicity function k is identically 0, then the above result reduces to the classical
Weyl-Heisenberg inequality on L%(R%).

Our proof of Theorem 3.3.1 is based on expansions in terms of generalized Hermite functions.
This generalizes a well-known method for the (one-dimensional) classical situation, see e.g. [dBr].
Essentially the same method was used in [Roo|, where the result of Theorem 3.3.1 was proven for
the one-dimensional case. The additional effort in the general Dunkl setting is only of technical
nature, but it requires a zero-centered situation. This is a certain restriction, which cannot
easily be removed in the general case. In the one-dimensional case, an uncentered version was
proven in [R-V3|. It is based on commutator methods which become difficult to handle in
higher dimensions, as a consequence of the involved reflection terms, c.f. Lemma (3.1.6). For

comparison with Theorem 3.3.1, we briefly recapitulate the result from [R-V3|:
Let G = Z2 on R and k a nonnegative multiplicity parameter on its root system. Let further

Q be the multiplication operator on L?(R,wy,) defined by Qf(x) := xf(z), with domain
D(Q) = {f € L*(R,wy) : xf € L*(R, wy)}.
For f € D(Q) with || f]|2,w, = 1 the k-variance of f is defined by

varg(f) == ||(z — (zf, f>k)f||%,wk )

with (.,.), denoting the scalar product in L?(R,wy). Put further
1

folw) = (@) + Fa)), fola) = 5 (@)~ ().

Then we have

3.3.2 Theorem. (/R-V3]) Let f € D(Q) with f* € D(Q) and ||f|lamw, = 1. Then

varg(F) - vari(F) = (K(1felBou, — 1FolB) +5) - (3:21)

Moreover, equality holds if and only if f has the form f(x) = de—cz”. E%Q (ib, x), where ¢ > 0,

be C and d > 0 is a suitable normalization constant.
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Notice that this result coincides with the one of Theorem 3.3.1 only for even functions, and

that the lower bound in (3.21) is not uniform.

For the proof of Theorem 3.3.1, we fix an arbitrary system {H,, v € Ziv } of generalized
Hermite polynomials associated with G and k > 0 according to Definition 3.2.5, with frequency
parameter w = 1. Let further {h,, v € Zf } be the associated system of generalized Hermite
functions. Recall from Proposition 3.2.6 that the h,, v € Z_]\J , form an orthonormal basis of

eigenfunctions for the Dunkl transform in L2(RY,wy), with
k= (=), . (3.22)
Moreover, they satisfy the differential-reflection equation
(=Ag + |2*) hy = (2v] + 27+ N) hy. (3.23)

Since H, is a polynomial of degree |v| with real coefficients, we have (3N-term) recurrencies of
the following form: For v € ZY | let I, = {p € Z¥ : |ju| — |v|| < 1}. Then

xzjH, = Z c,Z;MHM and xzjh, = Z cg',uh“ for j=1,...,N, (3.24)
pel, nel,

with coefficients c,{ u € R. We shall also need the dual counterparts of these recurrences:

3.3.3 Lemma.

Tih, = Y it"MHelel b, (j=1,...,N, vezl) (3.25)
pel,

Proof. By (3.22) and Prop. 1.4.6 (2), we have
zih, = iMzpk = V(TR

On the other hand, it follows from (3.24) that

A j — i lul gk
xjh, = g ¢y phy = E 8 hy
pel, pel,

The assertion now follows form the injectivity of the Dunkl transform. O

We write (.,.)p for the scalar product in L?(R™ w;). The main part in the proof of
Theorem 3.3.1 is the following Parseval-type identity.

3.3.4 Lemma. Let f € L2(RY wy). Then

L P U@ + 1P @R wne)de = 3 (@lel 2+ 3)- [( ), [

N
vELY
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Proof. Fix j € {1,...,N}. Since the h, form an orthonormal basis of L?(R™, w;), we can

| JaPlr@Pueds = 3 [afn), = X [(fash),

ueZN ueZN

write

By use of (3.24), this becomes

S e, (P = 3 (D0 ehued ) (Fohu) (b

veZl) w,pely w, peZy velnl,

Here the last equality is justified by the facts that the involved index sets I, are finite, and
that p € I, <= v € I, holds for all v, u € Zf. Exploiting (3.24), Prop. 1.4.6(2) and the

Parseval identity for the Dunkl transform, one further obtains
/ PP @) P = Y0 [ f )P = Y [(FRa R = DD [ T,
R veZy vez vezy

With the recurrency (3.25), this becomes

Z Z Z’lul*lulflclz’# 1=l cﬁ,p . <f, )k (f hP>k
veZl u, pely
S (0 e )i (), (Fhg),

1, pGZf vel,Nl,

Thus we arrive at

/RN 2P @) + P @) D@y de = S A b By, (3.26)

N
W, pELL

where

A, = (1 1+ 4lel= IMI Z Z C] C]

Jj=lvel,Nnli,
On the other hand, a short calculation, using (3.24) and (3.25), shows that

(lz|* = Ag)hy, = Z SN el , (iR, = > A, Ly, (3.27)

j=1pel, pel, pGZﬁ

where for the last identity, the fact was used that the coefficients ci p are symmetric in their

subscripts:
c) S, = /]RN zjhy (x)hy(x)wy(z)de = cﬁy
But by equation (3.23), the left-hand side of (3.27) is equal to (2|v|+ 2y + N) h, . The linear

independence of the h, now implies that

0 if p#£ v,

Ay, =
2| +2y+ N ifp=v.

Together with (3.26), this yields the assertion. O
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. . . _|rl2 . . .
Since hg is a constant multiple of e~1*I"/2 we obtain as an immediate consequence the

following

3.3.5 Corollary. For f < L?>(RN,wy),
/RN 2> (|f @) + | FF @) P)we(z) dz > (27 + N) - [ £]3,0,

Moreover, equality holds if and only if f(x) = ce 1®/2 with some constant ¢ € C.

Proof of Theorem 3.3.1. We may assume that ||f|2w, = 1. For s > 0 define fy(z) :=
sTYN/2f (%) Short calculations, having in mind that wy is homogeneous of degree 2+, show
that

| fsll2w, =1 and ﬁk(§) = TN/2. fk(sf) for all s >0 and & € RY.

The above corollary implies that

B(s) = [ P UR@P + 7A@ Junla) do = 2+ N
On the other hand, we can write
@s(s) = 8 el B + g -1 1P [
It is easily checked that s+ ®(s) attains a minimum on ]0, co[, namely

Tk
2y, 2 "2, -

2| felf

This implies (3.20). Further, equality in (3.20) holds if and only if minge (o o) ®s(s) = 2y+N.

By the second part of the corollary, this condition is satisfied if and only if f(x) = ce=s12l*/2

with some constants ¢ € C and s > 0. This finishes the proof. O



Chapter 4
Heat kernels for finite reflection groups

The positivity of the Dunkl kernel Ej(z,y) for real arguments, due to our main theorem in
Chapter 2, is the cornerstone for the investigations of this final Chapter. In its first section,
we introduce generalized heat kernels for Dunkl operators and construct various classes of
semigroups by them, following well-known classical concepts. The most important semigroup in
this context will be the generalized heat semigroup, which in particular leads to a solution of the
Cauchy problem for the Dunkl-type heat operator Ay —; on (0,00) x RY | with initial data in
Cy(RY). To obtain uniqueness results, Section 4.2 provides analogues of the maximum principles
for the classical heat operator in bounded and unbounded domains; of course, if unbounded,
the underlying domain has to be group-invariant in our setting. In Section 4.3, several related
semigroups are constructed, such as a variant of the classical Cauchy semigroup, which can be
constructed from the heat semigroup via subordination, generalized oscillator semigroups, and
the unitary semigroup of the time-dependent, Dunkl-type Schrédinger equation in L?(RN, wy,).
The last section is devoted to a study of the short-time asymptotic behaviour of the generalized

heat kernel.
As before, G is a finite reflection group on R, with root system R and a non-negative

multiplicity function k on R. Moreover, v:=3_,cp, k().

4.1 Heat semigroups

This section deals with strongly continuous one-parameter semigroups related to Dunkl’s Lapla-
cian Aj and with associated Cauchy problems. The basic semigroups under consideration are
those which are generated by Ay (more precisely, by its closure) on several function spaces,
including L?(RY,wy,) and (Co(RY),].|ls). These semigroups are positivity-preserving con-
traction semigroups; in fact, they are governed by an integral kernel which can be considered as
a natural generalization of the classical Gaussian heat kernel; it is nonnegative as a consequence
of our positivity result for Dunkl’s intertwining operator. We start with an explicit construction

of this generalized heat kernel.

65
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4.1.1 Lemma. For parameters a > 0 and b € R\ {0}, the function

B 1 b|$|2
u(t,z) = (@ — bty T2 eXp{4(a — bt)}

solves the generalized heat equation Apu = Oyu on (—oo,a/b) x RY in case b > 0, and on
(a/b,00) x RN in case b < 0.

Proof. Tt is easily checked that Zf\; 1 Tiz; = N +2v. Together with the product rule (1.5), this
shows that for each A € C,

N
Ay (e’\‘m|2) = ZTi(Q)\:Ui e)‘|m|2) =2\ (N + 2y + 2)\|z[?) Ml (4.1)
=1
From this the assertion is obtained by a short calculation. O

In particular, the function

1

_ Me _epja : .
Fk(t,x) = e ,  with M = W,

tY+N/2

is a solution of the heat equation Apu—0d;u =0 on (0,00) x RV, It generalizes the fundamental

solution for the classical heat equation Awu — d;u = 0, which is given by
Fo(t, z) = (4mt)~N/2elel/4t
The normalization constant M)}, is chosen such that
/RN Fi(t,x) wg(x)de = 1 for all t > 0. (4.2)

In the classical case, the free heat kernel on RY is obtained from Fj simply by translations.
This corresponds to the fact that the solution of “Cauchy problems” for the classical heat
operator, with suitable decay of the given initial data, is obtained from the initial data by
convolution with the fundamental solution. In the Dunkl setting, we may replace the classical
convolution on RY by the weak generalized translation on the Schwartz space .7 (RY) as
introduced in (1.27). For this, we use the reproducing formula of Proposition 1.4.3(2) and
conclude that

~ 1 2
FE(t6) = e Hel, (4.3)

Applying the quoted reproducing formula again, we obtain from the generalized translation

(1.27) the representation

- M, 24 )y|? L Y
Y — (lz[*+y[?) /4t = _J
Lk Fk<t,{L‘) o N/26 Ek(ﬁ, t). (4.4)

This motivates the following

4.1.2 Definition. The generalized heat kernel I'y is given by

z,y e RN ¢ >0.

e My e x Y
I‘k(tax7y) = {1 +N/2 e \* Y Ek(ﬁa ﬁ)?
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Notice in particular that y — 'y (¢, z,y) belongs to . (RY) for fixed ¢ > 0, z € RY. We collect

a series of further fundamental properties of this kernel.

4.1.3 Lemma. The heat kernel Ty, has the following properties on (0,00) x RY x R¥ :

1) Tultiag) = 2 [ e Bulia.©) Bul-in &) wn(€)de.

@ [ et welo)dy = 1

My elaeuP /4 M, I
< < T gr—y|* /4t
(3) t,.H_N/Q géléle = Fk‘(t;x7y) = t,y+N/2 Igneane
@) Tult+soy) = [ Tultin2) Dulo,2) ()
RN

(5) For fived y € RY | the function u(t,x) := T1(t, z,y) solves the generalized heat equation
Apu = O on (0,00) x RV,

Proof. (1) is clear from (4.3) and the definition of I'y, and (2) follows from (4.2) together with
Proposition 1.5.2 (4). The estimates (3) are an immediate consequence of Corollary 2.4.5. For

the proof of (4), use (1) and Fubini’s theorem to obtain
[ Dt T 2) ()
RN

= %2/ / e P By (i, €) Ejy(—iz, &) Ti(s, y, 2) wy (2)we (€)dz d€
RN JRN

=t [P B sy ()
R

=t [ e TR B i, €) B, un(©)d¢ = Tut+ s,5.0).
RN

Finally, for (5) remember that A¥ Ey(iz,§) = —|¢{|*Eg(iz,£). Hence the assertion follows at
once from representation (1) by interchanging differentiation and integration. This is justified

by the decay properties of the integrand and its derivatives in question (see Corollary 2.4.5). [

4.1.4 Remark. In the one-dimensional case, the generalized heat kernel was already introduced
in [Ros|. In the general case, but only for integer-valued multiplicities, Berest and Molchanov
[B-M] constructed the heat kernel for the G-invariant part of Ay (in a conjugated version) by

shift-operator techniques.

4.1.5 Definition. For f € LP(RY wy) (1 <p < o) and t > 0 set

/RN Ti(t 2, y9) f(y) wi(y)dy if ¢ >0,

f(x) if t=0

Hi(t)f () := (4.5)

Notice that the decay properties of I'y, assure that the integral defining Hy(t)f(x) converges
for all ¢ > 0, 2 € RY. The properties of the operators Hy(t) are most easily described on the
Schwartz space .7 (R™):
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4.1.6 Theorem. Let f € Z(RY). Then u(t,x) := Hy(t)f(x) belongs to Cy([0,00) x RY) N
C?((0,00) x RN) and solves the Cauchy problem

(A —0)u=0 on (0,00) x RY,

(4.6)
u(0,.) = f.
Moreover, Hy(t)f has the following properties:
(1) Hp(t)f € Z(RYN) forall t >0.
(2) Hy(t+s)f = Hp(t)Hi(s)f for all s,t>0.
(3) [1Hk(®)f = flloory — 0 with t —0.
Proof. By use of Lemma 4.1.3 (1) and Fubini’s theorem, we write
u(t,z) = Hy(t) f(x)
= / (i, €) Ex(—iy, €) e f(y)wy(&)wi(y) dédy
RN JRN
= /R TR Byliz, € wi(§)dE - (> 0). (4.7)

The invariance of .#(R") under the Dunkl transform makes clear that (1) is satisfied. Moreover,
part (2) is an immediate consequence of the reproducing formula for 'y, (Lemma 4.1.3 (4)). As
before, it is seen that differentiation may be interchanged with integration in (4.7), and that
Apu = Ou on (0,00) x RV, In view of the inversion theorem for the Dunkl transform, (4.7)

holds for ¢t = 0 as well. Using the bound of Corollary 2.4.5 on E}, we thus obtain the inequality

1HOF = o < " [ IFHOI0 = e mn(e)as

and this integral tends to 0 as ¢ — 0. This yields (3). In particular, it follows that u is

continuous and bounded on RY x [0, 00). O
4.1.7 Remark. The integral operators Hy(t), t > 0, are well-defined also on II'V. In fact,
Hiy(t)p(z) = e®Fp(z) forall t >0, pellV. (4.8)

This follows from Proposition 1.4.3(1) in case ¢t = 1/2, and by use of the rescaling formula 3.1.7
in the general case. Thus for each p € II'V, the function u(t,z) = Hy(t)p(z) is a polynomial
solution of the heat equation Agu = du on (0,00) x RY with u(0,.) = p.

4.1.8 Lemma. For every t > 0, Hy(t) defines a continuous linear operator on each of the
Banach spaces LP(RY wy) (1 < p < 00), (Co(RY),].]leo) and (Co(RM),||.lls0), with norm
IHR @) < 1.
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Proof. The estimates for the kernel I'y in Lemma 4.1.3(3) and its normalization ensure that

for every f € L®(RN wy), we have H(t)f € Cy(RY) with ||Hy(t)flloo < ||f]loc - Moreover, if

f € LP(RN,wy,), then Jensen’s inequality implies that
HOI@P < [ Tt W)l o),

and therefore ||Hg(t)f|lpw, < I|fllpuw, - Finally, the invariance of Co(RY) under Hy(t) follows
from part (1) of the previous theorem, together with the density of .7 (R™) in Co(R™). O

In the following, X is one of the Banach spaces LP(RY,wy)(1 < p < 00) or (Co(RM), [|.]ls0) -
We consider the Dunkl Laplacian Ay as a linear operator in X with dense domain D(Ay) :=
S (RN).

4.1.9 Theorem. (1) (Hy(t))t>0 is a strongly continuous, positivity-preserving contraction

semigroup on X .

(2) Ay is closable, and its closure Ay is the generator of the semigroup (Hy(t))t>0 on X .

In view of this result, we call (Hy(t)):>0 the generalized Gaussian or heat semigroup on X .

Proof. (1) Theorem 4.1.6(2), together with Lemma 4.1.8 and the density of .#(RY) in X,
ensures that (H())¢>0 forms a semigroup of continuous linear operators on X . Its positivity
is clear by the positivity of I'y. Moreover, in case of X = (Co(R™), || . ||oc), its strong continuity
follows from part (3) of Theorem 4.1.6. It remains to check strong continuity in the case
X = LP(RY wy), 1 < p < 0o. In view of Lemma 4.1.8, and as C.(R") is dense in LP(RY wy),
it suffices to show that limy g ||H (t)f — fllpw, = 0 for all f € C.(RY); here we may further
assume that f > 0. We then obtain
IO 1 = [ B f @ wnodde = [ f@yun)ds = [Flw, for >0

Since limy g [[Hg(t)f — fllo = 0, a well-known convergence criterion (see for instance [H-St])
implies that limg g ||Hg(t)f — fll1,w, = 0. The estimate

1HR () f = 5w, < IHE@)F = Fllvw, - 1HE@F = fl5

then entails that limy o ||Hg(t)f — fllpw, = 0 as well.
(2) The proof is similar as in the classical case. Let A be the generator of the semigroup
(Hi(t))i>0 on X, and let f € . (RY). Then by Theorem 4.1.6(1), Hy(t)f € Z(RY) for all
t > 0, and application of the Dunkl transform yields

1 . k 1, L2 -~

[ (k) —id) £]"(€) = (e = 1) F*(©).
It is easily checked that as t | 0, this tends to —\5]2fk(£) in the topology of .#(RY). The
Dunkl transform being a homeomorphism of . (RY), we therefore obtain

tim 5 (Hi(0) — id)f = (~|PF)Y = Auf
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in the topology of .#(R¥), and therefore in ||. ||y, as well. It follows that f belongs to the
domain D(A) of A. Thus .#(RY) C D(A), and Al y@wny = Ag. Moreover, S (RN) is dense
in X and invariant under (H(t))¢>0. A well-known characterization of cores for the generators

of strongly continuous semigroups (see, for instance, Theorem 1.9 of |Dal|) now implies that
Z(RY) is a core of A. This finishes the proof. O

The above theorem says in particular that (Hg(t)):>0 is a symmetric Markov semigroup on

L?*(RY wy) in the following sense:

4.1.10 Definition. (|[Da2|) Let pu € M+ (RY). A strongly continuous contraction semigroup
(T(t))i>0 on L2(RYN ) is called a symmetric Markov semigroup, if it satisfies the following

conditions:

(1) The generator A of (T(t))¢>0 is self-adjoint and non-positive, i.e. (Af, f) < 0 for all
f € D(A);

(2) (T'(t))+>0 is positivity-preserving for all ¢ > 0, ie. T(t)f >0 for f > 0;

(3) If £ € L®RN, u) N LA RN, p) then [|T(t) flloop < || f]looy for all £ >0.

Theorem 1.4.2 of [Da2| implies the following

4.1.11 Corollary. For 1 < p < oo, the semigroup (Hg(t))i>0 on LP(RN,wy)is a bounded

holomorphic semigroup (in the sense of [Dal]) in the sector

{zeC: |Arg(2)] < g(l —12/p —1])}.

4.1.12 Remarks. 1. The result that A, generates a symmetric Markov semigroup on
L?*(RN wy) can of course also been seen directly via the Dunkl transform. In fact, accord-
ing to Proposition 1.4.7, we have Aj, = DI;IMD;C, where D, denotes the Dunkl-Plancherel
transform on LQ(RN ,wi) and M is the non-positive self-adjoint multiplication operator in
L?(RN wy,) defined by

Mf(z) = —|z|*f(x) with domain D(M) = {f € H : |z|*f(z) € H}.

The operator M generates the strongly continuous contraction semigroup e f(z) = e~tll? f(zx)
on L2(RN, wy). Since Ay, is unitarily equivalent to M, the linear operator e*** ¢ > 0, (defined
via spectral calculus) is unitarily equivalent to e | and (emk)tzo forms a strongly continuous

contraction semigroup on L?(R¥ wy,) which is unitarily equivalent to (e*™);>q; it is given by

_ ~ e~ .
B pla) =t [ eI Blin ) wn(e)de

The Parseval identity for the Dunkl transform shows that this semigroup indeed coincides with

the semigroup (Hy(t))i>0 on L2(RN wy).

2. For X = (Co(RYM), ||, -Jloo), Theorem 4.1.9 just says that the generalized heat semigroup

is a Feller-Markov semigroup, i.e. a (strongly continuous) positive contraction semigroup on
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Co(RY™). This observation was the starting point in [R-V2] for the construction of an associ-
ated semigroup of Markov kernels on R, which can be considered as a generalization of the
semigroup of a Brownian motion. It is defined as follows:

For z € RV and A Cc Z(R") put

Pz, A) = /AFk(t,x,y)wk(y)dy (t>0), Po(z,A):=0:(A),

with 4, denoting the point measure in € RV. Then (P,);>0 is a semigroup of Markov kernels

on RV in the following sense:

(1) Each P, is a Markov kernel, and for all s,¢ >0, 2 € RV and A € ZRY),
Pso Py(z,A) := / Pi(z,A) Ps(x,dz) = Psiy(z, A).
RN
(2) The mapping [0,00) — MY(RYN), ¢+ P(0, .), is weakly continuous.
Moreover, the semigroup (P;);>o has the following special property:
(3) Py(0, ) (¢) = e ™ and Py(x,.)"* (&) = Ep(—iz, &) Pi(0, ) (&) for all € € RV,

Here the Dunkl transform of the probability measures P;(z, .), t > 0, is defined by
Pz, )™(€) = [ Eyp(~i€ ) Pi(x, dg).
bRN

Property (3) is a substitute for translation invariance (P(z +y, A+y) = Pi(z,A) for all y €
RM), which is satisfied only in the classical case k = 0. The proof of (1) — (3) is straightforward
by the properties of 'y, and Theorem 4.1.9(1). For details and a further study of the semigroup
(P)t>0 and the associated Markov process, we refer to [R-V2].

Now we come back to the general case. It is a basic fact in semigroup theory that for given
initial data f € D(Ay) C X, the function wu(t) := Hy(t)f provides the unique classical solution
of the abstract Cauchy problem

here “classical” means u € C1([0,00), X) with u(t) € D(Ay) for all t > 0. Of course, Theorem
4.1.9 also leads to a solution of the following classical initial-boundary-value problem for the
generalized heat operator Ap — O;:

Find u € C?((0,00) x RY) which is continuous on [0,00) x RY and satisfies

(A —0)u =0 on (0,00) x RY,
u(0,.) = f c Cp(RM).

We have the following



72 CHAPTER 4. HEAT KERNELS FOR FINITE REFLECTION GROUPS

4.1.13 Theorem. Let f € Cy(RY). Then u(t,z) := Hy(t)f(x) is bounded on [0,00) x RV
and solves (4.9).

Proof. In order to see that w is twice continuously differentiable on (0,00) x RY with

(A — 9)u = 0, we only have to make sure that the necessary differentiations of u may
be carried out under the integral sign in (4.5). One has to use again the estimates of Corollary
2.4.5 for the partial derivatives of E}; these provide sufficient decay properties for the deriva-
tives of I'g, allowing the necessary differentiations under the integral by use of the dominated
convergence theorem. From the positivity and normalization of I'y, it is clear that u is bounded
on [0,00) x RV with ||uljac = [|f]loo. It remains to prove the continuity of u as t | 0. For

fixed x € RY, consider the net (myg,)i>0 of probability measures on RY | which are defined by

dmg, (y) = Ti(t, z,y) we(y)dy.

The strong continuity of the semigroup (Hy(t));>0 on (Co(RYM),|.||s0) implies in particular
that for ¢ | 0, the measures m, ; converge weakly to the point measure d,, i.e. in the
o(MY(RN), Co(RY))-topology, which coincides with the o(M'(RYN), Cy(RN))-topology on
MY(RY). Therefore limyg Hy(t)f(z) = f(x). Together with the continuity of f and the
already known continuity of u on (0,00) x RY | this proves that u is continuous on [0, c0) x RY

as well. O

At this point, it is still open whether our solution of the “Cauchy problem” (4.9) is unique
within an appropriate class of functions. As in the classical case, this follows from a maximum
principle for the generalized heat operator on R x (0, 00), which will be derived in the following

section.

4.2 Maximum principles

Recall the action of Dunkl’s Laplacian on C?(R¥), which is given by

Arf = AF+2 ) k(a)daf

acER

with

Suf(x) = (Vf(@),a)  flz) = floax) |

(o, ) (o, x)?

This operator may as well be considered on C2(§2) for any open set © C RY which is invariant
under the group operation of G. In this section, we first prove a weak maximum principle for
Ay on bounded, G-invariant domains, and then present maximum principles for the generalized
heat operator Ay — 9; on domains of the form (0,7") x £, where either 2 is bounded and G-
invariant or © = RY. These results are to a large extent straightforward generalizations of

there classical counterparts; the crucial ingredient is the following observation:
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4.2.1 Lemma. Let Q C RN be open and G -invariant. If a real-valued function f € C%(Q)

attains an absolute mazimum at xo € Q, i.e. f(xg) = sup,cq f(x), then

Proof. Let D?f(x) denote the Hessian of f at x € . The given situation enforces that
Vf(zo) = 0 and D?f(xg) is negative semi-definite; in particular, Af(zo) < 0. Moreover,
f(zo) > f(oazp) for all a € R, so the statement is obvious in the case that («,zg) # 0 for all
a € R. If (a,xz9) = 0 for some o € R, we have to argue more carefully: Choose an open ball
B C Q with center zp. Then o,z € B for z € B, and o, — x = — (o, x)a. Now Taylor’s

formula yields

floaz) ~ f() = (0,2} (VS (z),0) + 3 (o,2)? 0 DA (),

with some & on the line segment between x and o,z. It follows that for x € B with (a, x) #
0 we have 0of(z) = 2a'D?u({)a. Passing to the limit z — z¢ now leads to &of(zg) =
$a!'D? f(zg)or < 0, which finishes the proof. O

We call a function f € C?(2) k-subharmonic on €2, if Ajf > 0 on Q. Based on the previous
lemma, it is now easy to obtain a weak maximum principle for k-subharmonic functions on
bounded, G-invariant subsets of RV . Its range of validity is quite general, in contrast to the
strong maximum principle in [D2], which is restricted to k-harmonic polynomials on the unit

ball. Our proof follows the classical one for the usual Laplacian, as it can be found e.g. in [Jo].

4.2.2 Theorem. Let  C RY be open, bounded and G -invariant, and let f € C%(Q) N C(Q)

be real-valued and k-subharmonic on 2. Then

maxg (f) = maxan(f).

Proof. Fix € > 0 and put g := f + €|z|?>. A short calculation gives Ay(|z|?) = 2N + 4y > 0.
Hence Apg > 0 on €2, and Lemma 4.2.1 shows that g cannot achieve its maximum on Q at

any xg € Q. It follows that
maxg (f + elz]*) = maxaq (f + elz[?)
for each € > 0. Consequently,
maxgq (f) + eminﬁ\x|2 < maxgqo(f) + emaxgq|z|?.

The assertion now follows by letting € — 0. O

A similar method leads to the following maximum principle for the generalized heat operator
A — 0¢ on bounded domains. By virtue of Lemma 4.2.1, the proof can be adapted literally

from the standard one in the classical case (see e.g. [Jo]); it is therefore omitted here.
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4.2.3 Proposition. Suppose that Q C RY is open, bounded and G -invariant. For T > 0 put
Qr =0 x(0,7) and 0 :={(x,t) €dQr:t=0 or z € 0N}.
Assume further that uw € C*(Qr) N C(Qr) satisfies (Ap — O)u >0 in Qp. Then

maxg_(u) = maxg,o,(u).

Under a suitable growth condition on the solution, this maximum principle may be extended

to the case where = RY. The proof is adapted from the one in [dB] for the classical case.
4.2.4 Theorem. (Weak mazimum principle for Ap — 9 on RN .)  Let Sy := RN x (0,7)
and suppose that u € C?(S7) N C(St) satisfies

(Ak—ﬁt)u Z 0 n ST,

u( ’O) =7,

where f € Cy(RYN) is real-valued. Assume further that there exist positive constants C, \,r such
that
u(z,t) < C- eMel? for all (x,t) € Sy with |x| > r.

Then  supg, (1) < ||f]le-

Proof. Let us first assume that 8\T < 1. For fixed € > 0 set

— 1 |z[? N
v(x,t) = u(x,t) —€- QT — 1)V exp{4(2T_ 5 } , (x,t) e RY x [0,2T).
By Lemma 4.1.1, v satisfies (Ax — 0)v = (Ap — d)u > 0 in Sy. Now fix some constant
p > r and consider the bounded cylinder Qr = Q x (0,7) with Q = {z € RN : |z| < p}.
Setting M := ||f|ls, we have v(z,0) < u(z,0) < M for x € Q. Moreover, for |z| = p and
t € (0,T]

2 ]. 2
U(Iﬂf) < Ce/\p — € Wep /ST.

Since A\ < (87)7!, we see that v(z,t) < M on 0,Qr, provided that p is large enough. Then
by Proposition 4.2.3 we also have v(x,t) < M on Qp. Since p > r was arbitrary, it follows
that v(x,t) < M on St. Since € > 0 was arbitrary as well, this implies that u(z,t) < M on
St. If 8AT > 1, we may subdivide Sr into finitely many adjacent open strips of width less
than 1/8\ and apply the above conclusion repeatedly. O

4.2.5 Corollary. The solution of the Cauchy problem (4.9) according to Theorem 4.1.13 is
unique within the class of functions u € C?(St)NC(St) which satisfy the following exponential

growth condition: There exist positive constants C, A\, r such that

lu(z,t)] < C- M for all (x,t) € Sp with |z| > 7.
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4.3 Some further semigroups related to Dunkl’s Laplacian

1. Subordination and Cauchy semigroups

A standard procedure to obtain new one-parameter semigroups from known ones is by sub-
ordination. This principle is based on convolution semigroups of probability measures on the
group (R,+) which are supported on [0,00). For details, we refer to [Dal|, [Be-F|, where the
subordination principle is worked out very clearly in the related setting of translation invariant
Markov kernels on locally compact abelian groups. For the connection with fractional powers
we refer to [Go|. One of the most prominent examples in this context is the semigroup of the
N -dimensional Cauchy process, which is obtained by subordination from the NV-dimensional
Gaussian semigroup. In the Dunkl setting, the same construction will lead to a generalization
of the classical Cauchy semigroup and to a solution of the following Dirichlet problem in the
upper half space: Find u € C([0,00) x RY) N C?((0,00) x RY) which satisfies

(A + 0H)u=0 on (0,00) x RY,
u(0,.) = f.

Consider the heat semigroup (H(t)):>0 on one of the Banach spaces X as in Theorem 4.1.9.

(4.10)

Let further (u;)i>0 € M*(R) be a convolution semigroup of probability measures on the group

(R, +) which is supported on [0,00), i.e. satisfying

(1) mo = do;

(2) e * s = pegs for all st >0;

(3) the mapping ¢+ p; is weakly continuous on [0, 00);
(4) supp s € [0,00) for all ¢t > 0.

Then the X -valued integral
S0 = [ (). (2 0)

defines a strongly continuous, positivity-preserving contraction semigroup on X, the semigroup

subordinated to (Hg(t)):>0 by (tt)i>0; (see Section 4 of [Dal]). It is explicitly given by

S.00) = [ Aultn ) Wun(n)dy for ¢,
with the kernel
Mltay) = [ Tuls.op)dun(s) (¢ 0, @y eRY) (4.11)

We collect some properties of the subordinated kernels A,; they follow immediately from
the corresponding properties of I'y (see Lemma 4.1.3) and the fact that (u:)i>0 is a convo-

lution semigroup of probability measures. Recall that the Laplace transform of a measure

p € M([0,00)) is defined by

Lu(z):= /000 e **du(s) (Rez>0).
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4.3.1 Lemma. The kernels A, have the following properties on (0,00) x RY x RN :
1) Aultorn) = % [ Lalle) Bulia.€) Bu(—in. € wn(6)de.

(2) Ap(t,z,y) > 0 and /]RN Ayt z,y) we(y)dy = 1.

(3) Au(t+s,z,y) = /]RN At x, 2) Au(s,y, 2) wi(2)dz.

The Laplace transforms Lu; can be written as
Li(z) =e B (£>0, Rez > 0), (4.12)

with a unique analytic function f on {Rez > 0} which is continuous on {Re z > 0}. It is well
known (see Section 9 of [Be-F|) that the functions which are affiliated in this way with some
convolution semigroup of probability measures on (R,+), supported on [0,00), are exactly
those analytic functions on {Rez > 0} whose restrictions to (0,00) are Bernstein functions,
ie., flooo) =0 and (=1)"D"f[oc) <0 forall n€N.

4.8.2 Example. For 0 < a < 1, the function f(z) = z® is a Bernstein function. The corre-
sponding convolution semigroup on (R, +) is the so-called one-sided stable semigroup of order
a and is denoted by (of')¢>0. The generator of the corresponding semigroup (Sq(t)):>0 subor-
dinated to (Hy(t))i>o is the fractional power (Ay)*.

Of particular interest within this class of examples is the case a = 1/2, corresponding to

the Bernstein function f(z) = y/z. The convolution semigroup (at1 / 2),520 is given explicitly by

ts3/2¢1"/4s : (4.13)

do{"*(5) = 1[p.00)(5) =

c.f. Example 9.23 of [Be-F|. The corresponding subordinated kernel is called the generalized
Cauchy kernel associated with the reflection group G and the multiplicity function k; we denote
it by Ck. Here are some further properties of this kernel, complementing those contained in
Lemma 4.3.1.

4.3.3 Lemma. The generalized Cauchy kernel Cy has the following properties:

1) Cultoy) = 6 [ e Bl OB(-in O un(©)ds (10, 2,y € BY),

t . My,
(2) Clt,,0) = Ay @ epyreE  vith Ak = ﬁ-4V+N/2F('y+(N+1)/2).
(3) For fized y € RN, the function u(t,z) := Ci(t,x,y) satisfies (Ak +02)u = 0 on

(0,00) x RV

Proof. (1) This follows from part (1) of Lemma 4.3.1, as EU§/2(|£|2) = exp {—t[¢|}.
(2) By (4.13), (4.11) and the definition of I'y, the Cauchy kernel Cj can be written as

= — — L)ds.
Var Jo V2s' /25
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In case y = 0, this can be simplified by use of the substitution r = (t* 4 |z|?)/4s and the

integral representation of the Gamma function:
Cultyz,0) = b [™ ev492) 12y s g
Myt

var Jo
4 +(N+1)/2 o
= (mrep) ey,
T 0
M,

— 7k grtN/2 . t
v 4 L(y+ (N +1)/2) T )

(3) This follows from the representation (1) by differentiation under the integral sign. O

The strongly continuous, positivity-preserving semigroup on X which is subordinated to
the heat semigroup (Hg(t)):>0 by (at1 / 2) is a natural generalization of the classical Cauchy

semigroup; it is given explicitly by

et @) — | Jow OB W)y iE >0,
f(z) if t=0.

We conclude our discussion of the generalized Cauchy semigroup with the solution of the Dirich-

let problem (4.10) on the upper half space.

4.3.4 Theorem. Let f € Cy(RN). Then the function

u(t,z) = ¢ JRY

f(x) if t=0
belongs to Cy([0,00) x RY) N C?((0,00) x RY) and solves the Dirichlet problem (4.10).

Proof. The argument is exactly the same as it was used for the generalized heat equation
(Theorem 4.1.13). O

2. Generalized oscillator semigroups

For a fixed parameter w > 0, consider the generalized oscillator Hamiltonian

N
T = —Ap+ QMijaj
j=1
with domain D(J;) := IV in the weighted Hilbert space L?(RY, dm¥); here dm% is the
probability measure

dmg(z) = cgl(2w)7+N/2 e_w|m|2wk(1‘)dw

as defined in (3.6). In Theorem 3.1.3 it was shown that [J is essentially self-adjoint with

discrete spectrum; moreover, according to Proposition 3.2.6, each system {H,(w;.), v € Z}'}
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of generalized Hermite polynomials with respect to G and k provides an orthonormal basis of

L2(RN, dm¥) consisting of eigenfunctions of J; recall that
T Hy(w; ) = 2vjw - Hy(w; ). (4.14)

To abbreviate notations, we put H, := H,(w; .) and denote the closure of J; by A. Moreover,
we write (.,.) for the scalar product in L*(RY, dm%). Then A is just given by

> 2w (f H) f,

N
VEZ+

with domain

D(A) = {f € LP®RY,dmy) : Y [W[|(f, H,)[> < oo}

VEZN
The spectral resolution of A directly implies that —A is the generator of a strongly continuous

contraction semigroup on L?(RY, dm{’), namely

e Af = Z e 2t (f H,VH,, t>0.

N
vELY

Remember now the Mehler formula (3.19) for the generalized Hermite polynomials. It states
that for all 2,y € RN and ¢t > 0,

S e () H, (y) = M(e, ), (4.15)

N
vELY

with the generalized Mehler kernel

1 wr2(|az|2 + |y|2) 2wrx
Mk(T’x’y):(l_ﬂ)erl\f/?eXp{_ 1_ 42 Ek<1_T2,y>, (0<r<1).

It is easily seen from the absolute convergence of the sum in (4.15), together with the orthog-
onality of the generalized Hermite polynomials, that the function y +— My(e=2! x,y) belongs
to L*(RY,dm¥) for each fixed € RY. This shows that for all ¢ > 0,

@) = [ M) f@) dmi () o

4.3.5 Proposition. (e _tA)tzo is a symmetric Markov semigroup on L2(RN,dm‘,’;) in the

sense of Definition 4.1.10.

_tA) is positivity-preserving

Proof. A is self-adjoint and non-negative, and the semigroup (e >0
on L2(RY, dm{), because the kernel My, is strictly positive. The {H, ,v € ZY} being orthonor-

mal with Hg = 1, we further have

My(e72, x,y)dm$(y) = 1 forall t >0, z € RV, (4.16)
RN

This implies that the operators e %4, ¢ > 0 are also contractive with respect to ||.[loo. O
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As a consequence, the generalized oscillator semigroup (e _tA) +>o also allows an extension
to a strongly continuous contraction semigroup on each of the Banach spaces LP(RY, dmy).

We introduce the following notation:

4.3.6 Definition. For f € LY(RY,dm¥) and t > 0 set

My (e, z,y) f(y) dm§ (y)dy if ¢ >0,
Or(t)f(z) == ¢ /RN (4.17)

f(x) it t=0
4.3.7 Corollary. (Og(t))i>0 is a strongly continuous, positivity-preserving contraction semi-
group on each of the Banach spaces LP(RN,dmf), 1 <p<oo. Itisa bounded holomorphic

semagroup in the sector
T
{ze€C: |Arg(2)| < 5 (1—12/p —1])}.

Proof. This follows from Proposition 4.3.5 together with Theorems 1.4.1 and 1.4.2 of [Da2|. O

Direct inspection shows that the Mehler kernel is related to the Gaussian kernel I'y via
1— e—4wt

My (e7 2, z,y) dm¥ (y) = Fk(T’ e*%tx,y> wp(y)dy  (t >0, x € RY). (4.18)

The operators Og(t) can be expressed in terms of the heat operators Hy(t):

1— ef4wt

On)f(x) = Hy(————)f(e™"2) (4.19)

for all f € Co(RY) and all ¢ > 0. This implies that (O (t))>0 leaves both Co(RY) and
S (RYN) invariant.

4.3.8 Proposition. (Og(t)):>0 defines a strongly continuous, positivity-preserving contraction

semigroup on (Co(RM), . lec). The Schwartz space .#(RYN) is a core of its generator Agy, and
N

AO‘KV(RN) = Ak — 2w Zj:l l‘jaj.

Proof. 1t is clear from Proposition (4.3.5) that (O (t)):>0 is a positivity-preserving contraction
semigroup on (Co(RM), || . ||oc). For the remaining parts, we use our knowledge about the heat

semigroup on this space, c.f. Theorem 4.1.9. For abbreviation, we put
o(t) == (1 —e /40 for t > 0.
If f€ Co(RY), then

10k() f(z) = f(@)]loo < [|[Hi(e®)f — fllo + SEI;RQV\f(e_Mw)—f(w)\,

and both terms tend to 0 as ¢ | 0. This proves the strong continuity. Now let f € .7(RY),
and suppose that f is real-valued. Then

O(t)f(2) = f(z) _ Hi(p(®)) '
t N o(t) t t

~
—~
ml
[\
S
S
8
SN—
S
~~
~
N~—

(4.20)
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Moreover,

%ﬁogt) =1 and tim | (o)) ~ £)/p(t) = Duf |, = 0.

This shows that the first summand in (4.20) tends to Agf uniformly on RY as ¢ | 0. Further,

the mean value theorem ensures that there exists some \; € (e72% 1) with

6_2wt.’E _ T e—Zwt -1
Al t) /@) = (Vf(Ma), z) - 0
which uniformly tends to —2w(Vf(z),z) as t | 0. This shows that .7 (R") C D(Ap) and
Aol y@mny = Ap — 2w Zjvzl z;0;. Since . (RY) is invariant under (O(t)):>0, it follows again
from Theorem 1.9 of [Dal| that it provides a core of Ay. O

4.3.9 Proposition. For each f € Cy(RY), the function u(t,x) := Oy(t)f(z) belongs to
Cy([0,00) x RV) N C2((0,00) x RY) and solves the Cauchy problem

O = (Ap — 2w YN 2;05)u  on (0,00) x RY,
u(0,.) = f.
Proof. With the same notations as above, we write u(t,z) = Hy(p(t)) f(e"***z) for ¢ > 0 and
x € RN, Thus, it follows from Theorem 4.1.13 that u € Cy([0,00) x RY) N C2((0,00) x RY).

Further, formula (4.15) for the Mehler kernel Mj and the differential equation (4.14) for the
generalized Hermite polynomials imply that the function Mk(t, x) := My(e 2! x,y) satisfies

(4.21)

N
(A — Zwajaj)Mk = 8;M}, on (0,00) x RY.
j=1

The proof is then finished by differentiation under the integral in (4.17). O

3. The free, time-dependent Schrédinger equation

Consider again the self-adjoint Dunkl Laplacian Ay on L?(R™,w;). By Stone’s Theorem (see,

e.g. Theorem 4.7 of [Gol), the skew-adjoint operator iA; generates a strongly continuous

unitary semigroup (eitzk) on L*(RN,wy). The explicit determination of this semigroup

t>0
can be achieved by standard arguments, see for instance Chapter IX. 1.8 of [Kal] for the classical

case. First, notice that the heat kernel I'y extends naturally to complex “time” arguments, by

= M (PP g (2
Fk(zvxay) - Z7+N/26 Ek(%ﬁU)
for z,y € RY and z € C_ := C\ {w € R : w < 0}; here 27*"/2 is the holomorphic branch

in C_ with 177"/2 = 1. We next determine the Schrédinger semigroup on a sufficiently large
subset of .7 (RY).

4.3.10 Lemma. If f(z) = e " with a parameter b > 0, then

ez’tZkf — / Ti(it, ., y) f(y) wk(y)dy  for all t > 0. (4.22)
RN
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Proof. Consider the function

_ 1 —bl|2/ (1+4ibt) N
u(t,x) = (1+4ibt)7+N/2€ (t>0, z€RY).

The same calculation as in Lemma 4.1.1 shows that u satisfies the generalized Schrédinger
equation
du = iAgu on (0,00) x RY,

with w(0,2) = e " It is also easily verified that the function ¢ — wu(t,.) belongs to
C1([0,00), L2(RN ,wy,)). This shows that eitBrf = u(t, .) for t > 0. The reproducing identity
in Proposition 1.4.3(2) for Ej implies that for ¢ > 0,

1

—blz|?/(144bt) _ —b|y|?
T = [ Tulta) e )y,

By analytic continuation, this identity remains true if ¢ is replaced by it. This completes the

proof. O

The following statement is obtained exactly as its classical analogue in [Kal], by using the
Plancherel formula for the Dunkl transform, Lemma 1.5.2(7) for the generalized translation in
L?(RN,wy,), and the injectivity of the Dunkl transform.

4.3.11 Lemma. The C-linear hull (M) of the set
M= {zw— Lie g e RY b >0}

is dense in L*(RN wy).

We thus have shown that on the dense subspace ( M) of L?(RY wy), the linear operators

SuOF = [ Tulite ) welo)dy, ¢ 0.

coincide with the unitary operators eithk They can therefore be extended uniquely to unitary
operators on L?(R™,wy,), which are written in the same way, the integral now being understood

in the L?-sense. In this sense, we have for all f € L2(RY wy),

sy _ | [Tt 0w ey € o

f if t=0.

(4.23)

4.4 Short—time estimates for the heat kernel

In this section we study the asymptotic behaviour of the generalized heat kernel I'y, for short
times. It will be appropriate to transfer the semigroup (Hy(t))i>0 from L2(RY,wy) to the

unweighted space L2(R™), which leads to the strongly continuous contraction semigroup

Ho)f = w Ho(t) (w2 f),  f e L2RY).
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The corresponding renormalized heat kernel is given by

Fktxy = Vwg(@)wr(y) Tr(t, z,y) (z,y € RY, t>0).

According to our results from Section 4.1 and Lemma 3.1.1, the generator of the semigroup

(ﬁk(t))tz() is given by w,i/Q kak_lﬂ, which is the closure of the operator
F. = _ — .
=22 Y MO ) o) (420
acRy

with domain

D(Fy) := {w,i/zg s ge SRV} c LERY).

Thus Fj can be considered to be a perturbation of the Laplacian A with singularities of inverse
square type in the reflecting hyperplanes. We conjecture that within the Weyl chambers of G,
the heat kernel fk(t, x,y) behaves for short times like the free Gaussian heat kernel

Mo .32
Fo(t7x’y) — W@ ‘x yl /4t'

In the following, W is an arbitrary fixed Weyl chamber of G.

4.4.1 Conjecture. For all z,y € W,

fjg Y@ wew) Dl 2,9) _ (4.25)

0 FO(ta z, y)

In case of the symmetric group, (4.25) was stated in [B-F3|; there was, however, no rigorous
proof given for it. At present, we are not able to prove the above conjecture in full generality. We
present two partial results; the first one gives the precise asymptotics under a certain restriction

on the arguments, the second one provides a sharp and global lower bound.

For z,y € W, we introduce the notation
C(z,y) := max {dist (z, OW), dist (y,0W)} .
Our first result is the following

4.4.2 Theorem. For all xz,y € W with |z —y| < C(z,y),

iy Y Wr(@) wily) Ti(t, 2 y)

£,0 Lo(t, z,y)

Writing the involved heat kernels in their explicit form, this implies the following ray asymptotics
for the Dunkl kernel:

4.4.3 Corollary. If x,y € W with |x —y| < C(x,y), then

M, 1
lim 7 eV By (ta, y) = 0

lim P ey (4.26)
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4.4.4 Remark. In the one-dimensional case, the condition on the distance |x — y| is always
satisfied; (4.26) then becomes a special case of the well-known asymptotics of Kummer’s function

1F1 (recall the representation of the Dunkl kernel E,%Q according to Example 1.3.3), namely

(2k)! ok

1F1(k52k+177$) ~ k!

(r — 400).

Our subsequent proof of Theorem 4.4.2 is based on the maximum principle for the classical heat
equation in bounded domains of RYV. It is elementary, but unfortunately somewhat technical
with respect to details. By similar methods and a successive extension of the admissible range

of arguments, we also obtain

4.4.5 Theorem. Let x,y € W. Then

Vior() wily) T
lim inf wk(x)wk(y) k(tvxvy) > 1.

t0 Lo(t,z,y) -

To start with the proofs of these theorems, we first introduce some notations. For f € D(Fy),
define

ug(t,z) = wi(a) "/ Hi() (w2 ) @),
with the heat semigroup (Hy(t))i>0 as defined in (4.5). In particular,
up(t,z) = / Tu(t,z,y) fy)dy for t >0, 2 € RV, (4.27)
RN

Theorem 4.1.6 shows that uy belongs to C([0,00) x RY)NC?((0,00) x (R \ H)) and satisfies

the generalized heat equation
(Fr —0)up = 0 on (0,00) x (RY\ H), wuy(0,.) = f on RY. (4.28)
For a parameter ;1 € R we further set
up ,(t, ) == e Mup(t,z) (t>0, 2 €RY).
We shall compare uy , with the function
v(t,x) == Ho(t)f(x) (t>0,z¢€ ]RN),

which satisfies

v(t,x) = /]RN Do(t,z,y)f(y)dy for t >0, z € RY. (4.29)

Since D(Fx) C Cp(RY), the function vy belongs to Cy([0,00) x RY) N C2((0,00) x RY) and

solves the classical heat equation

(A —8)vy =0 on (0,00) xRN, v(0,.) = f. (4.30)
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Finally, we fix the following notations: Let dist(.,.) be the Euclidean distance in R™ and
define

K. (z):={yecRY: |y—z| <r} for r>0,2cR";
Ws = {x € W : dist(z,0W) > 6, |x| <6 '} ford > 0; (4.31)
Cs(x,y) := max {dist (x, 0Wy), dist (y,0W;) }.

Notice that Wy C W5 for &’ > §. Moreover, for an open subset U C RY | let

AWU) == {f € D(Fy) : suppf C U, f>0, and / fdex=1}.
RN
We start with the following auxiliary result concerning certain means of the Dunkl kernel; it is
based on the positive integral representation for Vi according to Theorem 2.4.1.
4.4.6 Lemma. For all x,y € RN,

> k(a)

aER

(,y) — Ex(0az,y)) > 0.

Proof. In the following, y € RY is considered to be a fixed parameter, and differentiations are
carried out with respect to the variable x. The kernel Fy(.,y) being an eigenfunction of every

Dunkl operator (see Theorem 1.3.1), we have

yl® Ex(x,y) = T,E(x,y) = 0,Ec(z,y) + > k(a) @m&%mmn (4.32)
acR4 ’

Employing the integral representation (2.19) for Ej, we see that
0,Buw.y) = 0y [ e = [ty aub(o) < lPEu(oy).
Inl<lyl Inl<lyl

Together with (4.32), this proves the assertion. O

4.4.7 Corollary. For all z,y € RN and t >0,

> k(a)

acERL

(t €T y) fk(t70axay)) > 0.

The next result is the fundamental ingredient for the proofs of both theorems stated above.

4.4.8 Lemma. Let 6 > 0. Then there exist constants mg, Ms € R such that for all f € A(Ws),

>0 on (0,00) x Wy for u> Mg,
(A= 0)(ug,u—vy) (4.33)
<0 on (0,00) x Wy for p<ms.
Proof. Putting together (4.28) and (4.30) and observing (4.24), we obtain that for ¢ > 0 and

rcRV\ H,

(A — 0)(uy o —vp)(t,z) = (u+2 Z - ag)> gt 2); (4.34)

acR

)
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here the superscript in ¢ indicates the operation in the variable x. Now let x,y € W;s. Then
202 < (o, z){a,y) < 2/6% (recall that |a| = v/2). Together with Corollary 4.4.7, this leads to

the estimate

3 mn(t,aaz,y) < o O ko)

achy acRL <a’$>
. % S ko) zzzii ot 2,y) < % 3 <ifj§2 Ty (t,2,y) .

ac€RL

It follows that for z € W5, ¢t >0 and f € A(Ws),

The assertion is now immediate. O

For each § > 0 fix now constants mg, Ms € R according to Lemma 4.4.8. We may in addition

assume that Mz > 0. This will simplify some estimates.
4.4.9 Lemma. Let 6 > 0. Then for all x, y € Ws and t >0,

o~ My _ 2
(1) To(t,z,y) — e tmg Tyt z,y) < We Cs(w,y)"/4t

— = _ Mk) _ x 2
(2) e tM;s Tr(t,z,y) — To(t,xz,y) < (20 2)7 TN e~ Co(zy)? /4t

Proof. (1) Fix y € Ws. For abbreviation, put u := mg and choose h > 0 sufficiently small such
that Kj(y) C Ws. Take an arbitrary test function f € A(Kjp(y)) and consider the function
vy —uy,, on [0,00) x Ws. First of all,

(vg —uy,,)(0,2) = 0 forall x € Ws.

Put Cjs := dist (y,0W;s). Since uy , > 0, and by the definition of vy, we further obtain for all
t >0 and x € W5 the estimate

Mo _(ci_p2
(vp —uyp W)t 2) < vt z) < We (Cs—h)?/4t

Moreover, Lemma 4.4.8 ensures that
(A —=0)(vg —uy,,) >0 on (0,00) x Ws.
The maximum principle for A — 9, on (0,00) x Wy therefore implies that

M
v —uyp,, < 15]\[—/02@*(0‘5*@2/41t on (0,00) x Ws.

Since f € A(K h(y)) was arbitrary, we conclude that

~ M
FO(taxvn) - e_turk(tax777) < t]\[i/()Qe_(Cé_h)Q/th for all (tana"?) € (0,00) X Ws X Kh(y)
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In particular, by taking the limit h — 0,

= My _
To(t,z,y) — e Ti(t,z,y) < tN—/OQe C3/4t for all (t,x) € (0,00) x W;.

The assertion now follows by the symmetry of (1) in z and y.
(2) The proof is very similar to the previous one; we therefore restrict ourselves to a short

outline. We put p:= Ms > 0 and consider now, for f & A(Kh(y)), the function uy , —vy on
[0, 00) x W5. We use the fact that for all z, y € W and all g € G, the inequality |gz—y| > |z—y|
holds; see, for instance, Theorem 3.1.2 of [G-B]. Together with the bounds on I'y according to
Lemma 4.1.3(3), we obtain the following estimate, valid for all ¢ > 0 and z € W;:

_ My o2
(up,n —vp)(t,x) < up(t,z) < (20 2)V.t7+N/2 e~ (Cs—h)"/at

Moreover, Lemma 4.4.8 implies that
(A —=0)(uf,,—vf) >0 on (0,00) x Ws.

The assertion is now obtained in the same way as above. O

Theorem 4.4.2 is an easy consequence of this lemma.

Proof of Theorem 4.4.2. Suppose that x,y € W satisfy the stated condition. Choose § > 0
sufficiently small such that z,y € Ws. Then Lemma 4.4.9 implies the relations

emtms Le(bT0Y) - (aomyP 5w/

1 —
1—\0(t7 €, y)
etMs LT 9) 0 g5mayy Me oy =Cotany /it
Lo(t,z,y) Moty

The expressions on the right-hand side tend to 0 as ¢ | 0, provided that |z —y| < Cs(x,y).

Under this condition on z, y € Wy, we therefore obtain

Ty (t
lim LEBTY) (4.35)
t10 To(t,z,y)
The statement now follows by taking the limit § — 0. O

The proof of Theorem 4.4.5 is based on the following iteration:

4.4.10 Lemma. Let €,0 >0, n € Ny, and

2™ M,
0 6762/4t
tIN/2

Hy o5t z,y) = (1— )@Y . T2, z,y) —

for xz,y € RN and t > 0. Then there is a constant tesn > 0 such that for all 0 <t < tcsn
and all z, y € Wy, 19)5 with |v —y| < \/ﬁn_gé,

e~ 2" tms fk(Q”t,a:,y) > Hp es5(t,z,y) > 0. (4.36)



SHORT-TIME ESTIMATES FOR THE HEAT KERNEL 87

Proof. We start with some introductory remarks concerning the kernels I'y and fk

1. Ty satisfies

/ Do(t,z,2)dz = 1 (t>0,zeRY). (4.37)
RN
2. The reproducing identity for I';, (Lemma 4.1.3(4)) implies that
fk(Qtaxay) = / fk(t,ZII,Z) fk(t7y> Z) dz (t >0,z,y€ RN) (438)
RN

3. A short calculation shows that for all z,y,z € RY and ¢t > 0,
F0(2t7 z, Z) FU(ztv Y, Z) - F0(4t7 €T, y) FO(tv 2y (lC + y)/z) (439)

4. The localizing property and translation invariance of the Gaussian kernel I'y assure that for

all €,6 > 0, there exists a constant ¢, s > 0 such that
/ To(t,,2)dz > 1—¢ for 0<t<t.5,zecRY. (4.40)
|z—x|<5/4

5. For €,6 > 0, n € Ny there exist constants ¢. ;> 0 such that
Hn, E,é(ta l‘,y) >0 (4.41)

forall 0 <t <t . and z,y € RY with |z —y| < 2" '6. In fact, by the definition of T,

€,0,n

(4.41) is equivalent to

2 2
_\@27=1) _ on(1+N/2) [z —yl” Ty
(1—¢) 2 exp{ 2 ¢ 4t}_0,

and this can be clearly achieved, under the assumption above on z and y, for all sufficiently

small times ¢ > 0. We may also assume that t_ 5, ., < t 5 forall n.

We now turn to the main part of the proof. We put

. / 92—
tf:l;,n ‘= 1mn (te,é,n ) 2 nte,5>-

The proof of (4.36) will be carried out by induction with respect to n. If n = 0, then the
statement follows directly from part (1) of Lemma 4.4.9 (because Cs(x,y) > § for all z,y €
W), and by (4.41). Now suppose that (4.36) is true for n € Ng. Let further 0 <t < tc 5,41
and x,y € W,y3)5 with [z —y| < V2" %5, Then (4.41) ensures that Hy1 c5(t,z,y) > 0
holds. To prove the first inequality in (4.36) for n + 1, we put u = mg and

Koy ={2€RY: [z —(z+y)/2| </4}.
In particular, K, 5 C W, 2)s. Moreover, we observe that for all z € K, s,

z—a| < 2= (z+y)/2+ |z —yl/2 < 5/4+v2" 5 < V2" 5,
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and, by (4.41), Hy, ¢5(t,z,2) > 0. In the same way we obtain H, .s(t,y,2) > 0. Using the

results from the beginning of the proof and the induction hypothesis, we therefore conclude

6—2"+1tu fk(2n+1t7 x, y) = / e—2"tu fk,‘ (2nt7 xz, Z) e—?"tu fk’ (zntv Y, Z) dz
(4.38) JrN

> / e~ 2t fk(2nt, x,z) e 2t fk(Qnt, y,z)dz
K,

z,y,0

> / Hy os(t, 2, 2) Hy, 5t y, =) d=
K

z,y,0

2n ), o

> (1—¢€)2"D / Lo(2"t,2,2)To(2",y,2) dz — —75— €
(4.37) Kuys N/
n 2n+1M 2
_ _\2(27-1) n+1 n—1 _ 0 —62/4
W9 (1—¢) To(2" t, x,y) /Kx,y,(;PO(z t,(x+vy)/2,2)dz N2 © :
Since 2"t < t.g, property (4.40) implies that
/ Do(2" ', (x4 4)/2,2)dz > 1 —e.
Kz,y,5
This finally leads to
6—2"+1tu fk(2n+lt7xay) 2 HnJrl 6,5(t7xay)7
which finishes the proof. O

Proof of Theorem 4.4.5. By choosing § > 0 small and n € N large enough, we can achieve that
7,y € Wiqoys and |z —y| < \on_gé.

Let € > 0 be arbitrary and fix t. 5, > 0 according to Lemma 4.4.10. Then (4.36) implies that
for 0 <t <tesnm,

Cong . TR(27, 2, y) " lz—y|2 52
2ntms 1RWSTLTY) o (@20 =1) _ on(14+N/2) { yI- 7}
‘ Co@t,a,y) — 79 R UCTEC TS &

and the subtracted term tends to 0 as ¢ | 0. This yields the assertion. O



Appendix: Notation

General

Z,R, C the sets of integer, real and complex numbers, respectively
N {neZ:n>0}

Zy {n€eZ:n>0}

(z,w) SN ziwi; z,weCN

] (z,2)!/?; zeRN

2] (a2 +...+2n)?; zecV

For v=(v1,...,vn) €ZY and z=(z1,...,2,) € CV:

V! vl vyl

V| vi+...+uN

2Y 2t

oM, M, M° the topological boundary, closure and interior of a set M C RV
SN—1 {z eRN: |z| =1}

O(N,R) group of orthogonal linear transformations in RV

Zs 7] 27

SN symmetric group in N elements

Spaces of polynomials

Y = C[RY] C-algebra of polynomial functions on RV (N € N)

Y = R[RY) R-algebra of polynomial functions on R

c[cN] C-algebra of polynomial functions on CV

PN {peIlV : p(Ax) = \"p(x) for all A >0, z € RV}, necZ,
the homogeneous polynomials of total degree n

HnN Di_ P,iv . the polynomials in IV of total degree at most n

PN(R) Iy n Py

I {pen? : p(x) >0 for all x € RV}

Spaces of measures and functions

For a locally compact Hausdorff space X :
C(X) space of complex-valued, continuous functions on X
Cp(X) the bounded functions in C(X)

89
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C.(X) the compactly supported functions in C'(X)
Co(X) the functions in C(X) which vanish at infinity
CH(X) the real-valued, nonnegative functions in C(X)
O (X) CL(X) N CH(X)

C5 (X) CH(X) N CH(X)

B(X) Borel-o-algebra on X

M (X) space of positive Radon measures on X

My(X) space of bounded Radon measures on X
MF(X) My(X) 1 M*(X)

M(X) subspace of M;(X) consisting of probability measures
o(V, W) the weak topology on V' induced by W

V' a vector space and W a subspace of its algebraic dual
o(M*Y(X),Cy(X)) the weak topology on M*(X)

Oy point measure in x € X

supp support of a Radon measure u

supp f support of a function f: X — C

LP(X, ) LP-space on X with respect to the measure p € M*(X); 1<p<oo
17l (furan)™ reseo.1<p<x

| flloo, 1 inf {C >0: |f(z)] < C locally p- almost everywhere }

If X is a locally compact subspace of RV :

LP(X) LP(X,dx);  dx the Lebesgue mesure on X

| £l p,w ||f”p,w(z)dx for we B(X), w>0

For an open set U C RN :

Cck(U) space of k-times continuously differentiable functions on U ; k € Z 1 U{oo}
CkU) subspace of compactly supported functions in C*(U)

Z(RY) Schwartz space of rapidly decreasing functions on RV

Particular symbols

(The page number refers to the first occurence in the text)

H, hyperplane in RY orthogonal to a € RV ; p. 7

Oa reflection in the hyperplane H,; p. 7

R a root system in RY (usually fixed); p. 8

Ry a positive subsystem of R; p. 8

G the finite reflection group generated by R; p. 8

M vector space of multiplicity functions on R; p. 8
MTed the regular parameter set; p. 12

k a multiplicity function on R (usually fixed)
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k>0
v = (k)

k(o) >0 for all « € R (always assumed after Chapter 1); p. 8
Za€R+ k?(O[), p- 8

For a multiplicity function k>0 and a parameter w > 0:

wg ()
ck

dmy) (z)
iy

My,

[acr, (@)@ p.8

/ e_|x‘2/2wk(ac)da:; p. 8

RN

¢t (2w) 1N/ el Py (2)de € MLY(RN); p. 47
0;1/2(2w)7/2+N/4; p. 53

clzl 2-7=N/2. . 66

Dunkl operators associated with G and k:

T = Te(k)

Dunkl operator in direction ¢ € RV associated with the
(fixed) reflection group G and multiplicity function k; p. 8
T.,(k); {e1,...,en} the standard basis of RY

Zﬁil Ti(k)Q; the Dunkl Laplacian associated with G and k; p. 10
w;/QAk wk_l/2 in L2(RN); p. 45

—Ap +w?|z)? in L2RY wy); p. 47

—Aj + 2w Z;Vﬂ z;0;, in LQ(RN,dm‘,‘C’); p. 47

Further symbols (refering to a fixed reflection group G and multiplicity fuction k >0 ):

Vi

)

fr fE

f — ka

Ly,

[p, alk

{ov, ¥}
{Ru(ws.), Su(w;.)}
{ro(w; ), sv(w;.)}
{Hy(w;.)}

{ho(w; )}

intertwining operator; p. 12

Dunkl’s algebra of homogeneous series on {z € RV : |z| < 1}; p. 14
rescaled version of A (scaling factor r > 0); p. 37

generalized exponential kernel (Dunkl kernel); p. 16

generalized Bessel function; p. 16

normalized spherical Bessel function of order o« > —1/2; p. 17
generalized heat kernel; p. 66

classical heat kernel

Dunkl transform on L'(RY,wy) or L2(RY,wy); p. 20

inverse Dunkl transform; p. 20

generalized translation by y € RY; p. 24

(p(T(k) q)(0); p,qeTIN; p. 14

homogeneous dual system with respect to [., .]x; p. 51
biorthogonal polynomial system in L? (]RN ,dm¢); p. 53
biorthonormal function system in L*(R™,wy); p. 53

system of generalized Hermite polynomials in L?(RY, dmy); p. 54

system of generalized Hermite functions in L?(R™,wy); p. 54
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