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Abstract: Based on the theory of Dunkl operators, this paper presents a general concept
of multivariable Hermite polynomials and Hermite functions which are associated with
finite reflection groups onRN . The definition and properties of these generalized Hermite
systems extend naturally those of their classical counterparts; partial derivatives and
the usual exponential kernel are here replaced by Dunkl operators and the generalized
exponential kernelK of the Dunkl transform. In the case of the symmetric groupSN ,
our setting includes the polynomial eigenfunctions of certain Calogero-Sutherland type
operators. The second part of this paper is devoted to the heat equation associated
with Dunkl’s Laplacian. As in the classical case, the corresponding Cauchy problem is
governed by a positive one-parameter semigroup; this is assured by a maximum principle
for the generalized Laplacian. The explicit solution to the Cauchy problem involves again
the kernelK, which is, on the way, proven to be nonnegative for real arguments.

1. Introduction

Dunkl operators are differential-difference operators associated with a finite reflection
group, acting on some Euclidean space. They provide a useful framework for the study
of multivariable analytic structures which reveal certain reflection symmetries. During
the last years, these operators have gained considerable interest in various fields of
mathematics and also in physical applications; they are, for example, naturally connected
with certain Schr̈odinger operators for Calogero-Sutherland-type quantum many body
systems, see [L-V] and [B-F2, B-F3].

For a finite reflection groupG ⊂ O(N, R) on RN the associated Dunkl operators
are defined as follows: Forα ∈ RN \ {0}, denote byσα the reflection corresponding to
α, i.e. in the hyperplane orthogonal toα. It is given by
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σα(x) = x − 2
〈α, x〉
|α|2 α,

where〈., .〉 is the Euclidean scalar product onRN and |x| :=
√〈x, x〉. (We use the

same notations for the standard Hermitian inner product and norm onCN .) LetR be the
root system associated with the reflections ofG, normalized such that〈α, α〉 = 2 for all
α ∈ R. Now choose a multiplicity functionk on the root systemR, that is, aG-invariant
functionk : R → C, and fix some positive subsystemR+ of R. The Dunkl operators
Ti (i = 1, . . . , N ) onRN associated withG andk are then given by

Tif (x) := ∂if (x) +
∑

α∈R+

k(α) αi · f (x) − f (σαx)
〈α, x〉 , f ∈ C1(RN );

here∂i denotes theith partial derivative. In casek = 0, theTi reduce to the corresponding
partial derivatives. In this paper, we shall assume throughout thatk ≥ 0 (i.e. all values
of k are non-negative), though several results of Sect. 3 may be extended to larger ranges
of k. The most important basic properties of theTi, proved in [D2], are as follows: Let
P = C [RN ] denote the algebra of polynomial functions onRN andPn (n ∈ Z+ =
{0, 1, 2 . . .}) the subspace of homogeneous polynomials of degreen. Then

The set{Ti} generates a commutative algebra of differential-
difference operators onP.

(1.1)

EachTi is homogeneous of degree−1 onP, that is,Ti p ∈ Pn−1
for p ∈ Pn.

(1.2)

Of particular importance in this paper is the generalized Laplacian associated withG

andk, which is defined as1k :=
∑N

i=1 T 2
i . It is homogeneous of degree−2 onP and

given explicitly by

1kf (x) = 1f (x) + 2
∑

α∈R+

k(α)
[ 〈∇f (x), α〉

〈α, x〉 − f (x) − f (σαx)
〈α, x〉2

]
.

(Here1 and∇ denote the usual Laplacian and gradient respectively.)
The operatorsTi were introduced and first studied by Dunkl in a series of papers

([D1–4]) in connection with a generalization of the classical theory of spherical har-
monics: Here the uniform spherical surface measure on the (N − 1)-dimensional unit
sphere is modified by a weight function which is invariant under the action of some finite
reflection groupG, namely

wk(x) =
∏

α∈R+

|〈α, x〉|2k(α) ,

wherek ≥ 0 is some fixed multiplicity function on the root systemR of G. Note that
wk is homogeneous of degree 2γ, with

γ :=
∑

α∈R+

k(α).

In this context, in [D3] the following bilinear form onP is introduced:

[p, q]k := (p(T ) q)(0) for p, q ∈ P .
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Herep(T ) is the operator derived fromp(x) by replacingxi byTi. Property (1.1) assures
that [. , .]k is well-defined. A useful collection of its properties can be found in [D-J-O].
We recall that [. , .]k is symmetric and positive-definite (in casek ≥ 0), and that [p, q]k =
0 forp ∈ Pn, q ∈ Pm with n 6= m. Moreover, for alli = 1, . . . , N, p, q ∈ P andg ∈ G,

[xi p, q]k = [p, Ti q]k and [g(p), g(q)]k = [p, q]k, (1.3)

where g(p)(x) = p(g−1(x)). The pairing [. , .]k is closely related to the scalar product
onL2(RN , wk(x)e−|x|2/2dx): In fact, according to [D3],

[p, q]k = nk

∫
RN

e−1k/2p(x) e−1k/2q(x) wk(x)e−|x|2/2dx for all p, q ∈ P, (1.4)

with some normalization constantnk > 0. Given an orthonormal basis{ϕν , ν ∈ ZN
+ }

of P with respect to [. , .]k, an easy rescaling of (1.4) shows that the polynomials

Hν(x) := 2|ν|e−1k/4ϕν(x)

are orthogonal with respect towk(x)e−|x|2
dx on RN . We call them the generalized

Hermite polynomials onRN associated withG, k and{ϕν}.

The first part of this paper is devoted to the study of such Hermite polynomial
systems and associated Hermite functions. They generalize their classical counterparts
in a natural way: these are just obtained fork = 0 andϕν(x) = (ν!)−1/2xν . In the one-
dimensional case, associated with the reflection groupG = Z2 on R, our generalized
Hermite polynomials coincide with those introduced in [Chi] and studied in [Ros]. Our
setting also includes, for the symmetric groupG = SN , the so-called non-symmetric
generalized Hermite polynomials which were recently introduced by Baker and Forrester
in [B-F2, B-F3]. These are non-symmetric analogues of the symmetric, i.e. permutation-
invariant generalized Hermite polynomials associated with the groupSN , which were
first introduced by Lassalle in [L2]. Moreover, the “generalized Laguerre polynomials”
of [B-F2, B-F3], which are non-symmetric analogues of those in [L1], can be considered
as a subsystem of Hermite polynomials associated with a reflection group of typeBN .
We refer to [B-F1 and vD] for a thorough study of the symmetric multivariable Hermite-
and Laguerre systems.

After a short collection of notations and basic facts from Dunkl’s theory in Sect. 2,
the concept of generalized Hermite polynomials is introduced in Sect. 3, along with a
discussion of the above-mentioned special classes. We derive generalizations for many
of the well-known properties of the classical Hermite polynomials and Hermite func-
tions: A Rodrigues formula, a generating relation and a Mehler formula for the Hermite
polynomials, analogues of the second order differential equations and a characterization
of the generalized Hermite functions as eigenfunctions of the Dunkl transform. Parts of
this section may be seen as a unifying treatment of results from [B-F2, B-F3 and Ros]
for their particular cases.

In Sect. 4, which makes up the second major part of this paper, we turn to the
Cauchy problem for the heat operator associated with the generalized Laplacian: Given
an initial distributionf ∈ Cb(RN ), there has to be found a functionu ∈ C2(RN ×
(0, T )) ∩ C(RN × [0, T ]) satisfying

Hku := 1ku − ∂tu = 0 onRN × (0, ∞), u(. , 0) = f. (1.5)

For smooth and rapidly decreasing initial dataf an explicit solution is easy to obtain; it
involves the generalized heat kernel
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0k(x, y, t) =
Mk

tγ+N/2
e−(|x|2+|y|2)/4t K

( x√
2t

,
y√
2t

)
, x, y ∈ RN , t > 0.

HereMk is a positive constant andK denotes the generalized exponential kernel as-
sociated withG andk as introduced in [D3]. In the theory of Dunkl operators and the
Dunkl transform, it takes over the rôle of the usual exponential kernele〈x,y〉. Some of
its properties are collected in Sect. 2. Without knowledge whetherK is nonnegative, a
solution of (1.5) for arbitrary initial data seems to be difficult. However, one can prove
a maximum principle for the generalized Laplacian1k, which is the key ingredient to
assure that1k leads to a positive one-parameter contraction semigroup on the Banach
space (C0(RN ), ‖.‖∞). Positivity of this semigroup enforces positivity ofK and allows
to determine the explicit solution of (1.5) in the general case. We finish this section
with an extension of a well-known maximum principle for the classical heat operator to
our situation. This in particular implies a uniqueness result for solutions of the above
Cauchy problem.

2. Preliminaries

The purpose of this section is to establish our basic notations and collect some further
facts on Dunkl operators and the Dunkl transform which will be of importance later on.
General references here are [D3, D4, and dJ].

First of all we note the following product rule, which is confirmed by a short calcu-
lation:
For eachf ∈ C1(RN ) and eachg ∈ C1(RN ) which is invariant under the natural action
of G,

Ti(fg) = (Tif )g + f (Tig) for i = 1, . . . , N. (2.1)

We use the common multi-index notation; in particular, forν = (ν1, . . . , νN ) ∈ ZN
+

andx = (x1, . . . , xN ) ∈ RN we setxν := xν1
1 · . . . · xνN

N , ν! := ν1! · . . . · νN ! and
|ν| := ν1 + . . . + νN . If f : RN → C is analytic withf (x) =

∑
ν aνxν , the operator

f (T ) is defined by

f (T ) :=
∑

ν

aνT ν =
∑

ν

aνT ν1
1 · . . . · T νN

N .

We restrict its action toCk(RN ) if f is a polynomial of degreek and toP otherwise.
The following formula will be used frequently:

Lemma 2.1. Letp ∈ Pn. Then forc ∈ C anda ∈ C \ {0},(
ec1kp

)
(ax) = an

(
ea−2c 1k

)
p(x) for all x ∈ RN .

In particular, for p ∈ Pn we have(
e−1k/2p

)
(
√

2x) =
√

2
n(

e−1k/4p
)
(x). (2.2)

Proof. For m ∈ Z+ with 2m ≤ n, the polynomial1m
k p is homogeneous of degree

n − 2m. Hence

(
ec1kp

)
(ax) =

bn/2c∑
m=0

cm

m!
(1m

k p)(ax) =
bn/2c∑
m=0

cm

m!
an−2m(1m

k p)(x) = an
(
ea−2c 1kp

)
(x).

�
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A major tool in this paper is the generalized exponential kernelK(x, y) onRN ×RN ,
which generalizes the usual exponential functione〈x,y〉. It was first introduced in [D3]
by means of a certain intertwining operator. By a result of [O1] (see also [dJ]), the
function x 7→ K(x, y) may be characterized as the unique analytic solution of the
systemTif = yif (i = 1, . . . , N ) on RN with f (0) = 1. Moreover,K is symmetric
in its arguments and has a holomorphic extension toCN × CN . Its power series can
be written asK =

∑∞
n=0 Kn, whereKn(x, y) = Kn(y, x) andKn is a homogeneous

polynomial of degreen in each of its variables. Note thatK0 = 1 andK(z, 0) = 1 for
all z ∈ CN .

For the reflection groupG = Z2 on R, the multiplicity functionk is characterized
by a single parameterµ ≥ 0, and the kernelK is given explicitly by

K(z, w) = jµ−1/2(izw) +
zw

2µ + 1
jµ+1/2(izw), z, w ∈ C,

where forα ≥ −1/2, jα denotes the normalized spherical Bessel function

jα(z) = 2α0(α + 1)
Jα(z)
zα

= 0(α + 1) ·
∞∑
n=0

(−1)n(z/2)2n

n! 0(n + α + 1)
.

For details and related material we refer to [D4, R, R-V and Ro].
We list some further general properties ofK and theKn (all under the assumption

k ≥ 0) from [D3, D4 and dJ]:
For allz, w ∈ CN andλ ∈ C,

K(λz, w) = K(z, λw); (2.3)

|Kn(z, w)| ≤ 1
n!

|z|n|w|n and |K(z, w)| ≤ e|z||w|. (2.4)

For allx, y ∈ RN andj = 1, . . . , N,

|K(ix, y)| ≤
√

|G| ; (2.5)

T x
j Kn(x, y) = yjKn−1(x, y) andT x

j K(x, y) = yjK(x, y); (2.6)

here the superscriptx denotes that the operators act with respect to thex-variable. In
[dJ], exponential bounds for the usual partial derivatives ofK are given. They imply in
particular that for eachν ∈ ZN

+ there exists a constantdν > 0 such that

|∂ν
xK(x, z)| ≤ dν |z||ν| e|x| |Rez| for all x ∈ RN , z ∈ CN . (2.7)

Let us finally recall a useful reproducing kernel property ofK from [D4] (it is
rescaled with respect to the original one, thus fitting better in our context of generalized
Hermite polynomials): Define the probability measureµk onRN by

dµk(x) := cke−|x|2

wk(x)dx, with ck =
(∫

RN

e−|x|2

wk(x)dx
)−1

.

Moreover, forz ∈ CN set l(z) :=
∑N

i=1 z2
i . Then for allz, w ∈ CN ,∫

RN

K(2z, x)K(2w, x) dµk(x) = el(z)+l(w)K(2z, w). (2.8)
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The generalized exponential functionK gives rise to an integral transform, called
the Dunkl transform onRN , which was introduced in [D4] and has been thoroughly
studied in [dJ] for a large range of parametersk. The Dunkl transform associated with
G andk ≥ 0 is defined by

Dk : L1(RN , wk(x)dx) → C(RN ); Dkf (ξ) :=
∫

RN

f (x) K(−iξ, x) wk(x)dx (ξ ∈ RN ).

In [dJ], many of the important properties of Fourier transforms on locally compact
abelian groups are proved to hold true forDk. In particular,Dkf ∈ C0(RN ) for
f ∈ L1(RN , wk(x)dx), and there holds anL1-inversion theorem, which we recall
for later reference: Iff ∈ L1(RN , wk(x)dx) with Dkf ∈ L1(RN , wk(x)dx), then
f = 4−γ−N/2c2

k EkDkf a.e., whereEkf (x) = Dkf (−x). (Note thatDk(e−|x|2/2)(0) =
2γ+N/2c−1

k , which gives the connection of our constantck with that of de Jeu.) Moreover,
the Schwartz spaceS(RN ) of rapidly decreasing functions onRN is invariant underDk,
andDk can be extended to a Plancherel transform onL2(RN , wk(x)dx). For details see
[dJ].

3. Generalized Hermite Polynomials and Hermite Functions

Let {ϕν , ν ∈ ZN
+ } be an orthonormal basis ofP with respect to the scalar product

[. , .]k such thatϕν ∈ P|ν| and the coefficients of theϕν are real. AsP =
⊕

n≥0 Pn

andPn ⊥ Pm for n 6= m, the ϕν with |ν| = n can for example be constructed by
Gram-Schmidt orthogonalization withinPn from an arbitrary ordered real-coefficient
basis ofPn. If k = 0, the Dunkl operatorTi reduces to the usual partial derivative∂i,
and the canonical choice of the basis{ϕν} is just ϕν(x) := (ν!)−1/2xν .

As in the classical case, we have the following connection of the basis{ϕν} with
the generalized exponential functionK and its homogeneous partsKn:

Lemma 3.1. (i) Kn(z, w) =
∑
|ν|=n

ϕν(z) ϕν(w) for all z, w ∈ CN .

(ii) K(x, y) =
∑

ν∈ZN
+

ϕν(x) ϕν(y) for all x, y ∈ RN ,

where the convergence is absolute and locally uniform onRN × RN .

Proof. (i) It suffices to consider the casez, w ∈ RN . So fix somew ∈ RN . As a function
of z, the polynomialKn(z, w) is homogeneous of degreen. Hence we have

Kn(z, w) =
∑
|ν|=n

cν, w ϕν(z) with cν,w = [Kn(. , w), ϕν ]k .

Repeated application of formula (2.6) forKn gives

cν,w = ϕν(T z)Kn(z, w) = ϕν(w) K0(z, w) = ϕν(w).

Thus part (i) is proved. For (ii), first note that by (2.4) we have|Kn(x, x)| ≤ 1
n! |x|2n

and hence, as theϕν(x) are real,|ϕν(x)| ≤ 1√
n!

|x|n for all x ∈ RN and allν with
|ν| = n. It follows that for eachM > 0 the sum

∑
ZN

+
|ϕν(x)ϕν(y)| is majorized on

{(x, y) : |x|, |y| ≤ M} by the convergent series
∑

n≥0

(
n+N−1

n

)
M2n/n! . This yields

the assertion. �
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For homogeneous polynomialsp, q ∈ Pn, relation (1.4) can be rescaled (by use of
formula (2.2)):

[p, q]k = 2n

∫
RN

e−1k/4p(x) e−1k/4q(x) dµk(x). (3.1)

This suggests to define a generalized multivariable Hermite polynomial system onRN

as follows:

Definition 3.2. The generalized Hermite polynomials{Hν , ν ∈ ZN
+ } associated with

the basis{ϕν} onRN are given by

Hν(x) := 2|ν|e−1k/4ϕν(x) = 2|ν|
b|ν|/2c∑

n=0

(−1)n

4nn!
1n

kϕν(x). (3.2)

Moreover, we define the generalized Hermite functions onRN by

hν(x) := e−|x|2/2Hν(x), ν ∈ ZN
+ . (3.3)

Note thatHν is a polynomial of degree|ν| satisfyingHν(−x) = (−1)|ν|Hν(x) for
all x ∈ RN . A standard argument shows thatP is dense inL2(RN , dµk). Thus by virtue
of (3.1) the{2−|ν|/2Hν , ν ∈ ZN

+ } form an orthonormal basis ofL2(RN , dµk). Let us
give two immediate examples:

Examples 3.3.(1) In the classical casek = 0 andϕν(x) := (ν!)−1/2xν , we obtain

Hν(x) =
2|ν|
√

ν!

N∏
i=1

e−∂2
i/4(xνi

i ) =
1√
ν!

N∏
i=1

Ĥνi (xi),

where theĤn, n ∈ Z+ denote the classical Hermite polynomials onR defined by

e−x2

Ĥn(x) = (−1)n
dn

dxn

(
e−x2)

.

(2) For the reflection groupG = Z2 on R and multiplicity parameterµ ≥ 0, the
polynomial basis{ϕn} on R with respect to [. , .]µ is determined uniquely (up to
sign-changes) by suitable normalization of the monomials{xn, n ∈ Z+}. One obtains
Hn(x) = dnHµ

n (x), wheredn ∈ R \ {0} are constants and theHµ
n , n ∈ Z+ are the

generalized Hermite polynomials onR as introduced e.g. in [Chi] and studied in [Ros]
(in some different normalization). They are orthogonal with respect to|x|2µe−|x|2

and
can be written as {

Hµ
2n(x) = (−1)n22nn! L

µ−1/2
n (x2),

Hµ
2n+1(x) = (−1)n22n+1n! xL

µ+1/2
n (x2);

here theLα
n are the Laguerre polynomials of indexα ≥ −1/2, given by

Lα
n(x) =

1
n!

x−αex dn

dxn

(
xn+αe−x

)
.



526 M. Rösler

Before discussing further examples, we are going to establish generalizations of the
classical second order differential equations for Hermite polynomials and Hermite func-
tions. For their proof we shall employ thesl(2)-commutation relations of the operators

E :=
1
2
|x|2, F := −1

2
1k and H :=

N∑
i=1

xi∂i +
(
γ + N/2

)
onP, which can be found e.g. in [H]; they are[

H, E
]

= 2E,
[
H, F

]
= −2F,

[
E, F

]
= H. (3.4)

(As usual,
[
A, B

]
= AB − BA for operatorsA, B on P.) The first two relations are

immediate consequences of the fact that the Euler operatorρ :=
∑N

i=1 xi∂i satisfies
ρ(p) = np for each homogeneousp ∈ Pn. We have the following general result:

Theorem 3.4. (1) For n ∈ Z+ set Vn := {e−1k/4p : p ∈ Pn}. ThenP =
⊕

n∈Z+
Vn,

and Vn is the eigenspace of the operator1k − 2ρ on P corresponding to the
eigenvalue−2n.

(2) For q ∈ Vn, the functionf (x) := e−|x|2/2q(x) satisfies(
1k − |x|2)f = −(2n + 2γ + N )f .

Proof. (1) It is clear thatP =
⊕

Vn . By induction from (3.4) we obtain the commuting
relations[

2ρ, 1n
k

]
= −4n1n

k for all n ∈ Z+ , hence
[
2ρ, e−1k/4

]
= 1ke−1k/4.

For arbitraryq ∈ P andp := e1k/4q it now follows that

2ρ(q) = (2ρe−1k/4)(p) = 2e−1k/4ρ(p) + 1ke−1k/4p = 2e−1k/4ρ(p) + 1kq.

Hence fora ∈ C there are equivalent:

(1k − 2ρ)(q) = −2aq ⇐⇒ ρ(p) = ap ⇐⇒ a = n ∈ Z+ and p ∈ Pn.

This yields the assertion.
(2) From (3.4) it is easily verified by induction that[

1k, En
]

= 2nEn−1H + 2n(n − 1)En−1 for all n ∈ N,

and thus
[
1k, e−E

]
= −2e−EH + 2Ee−E . It follows that

(1k − |x|2)f = 1k

(
e−Eq

) − 2Ee−Eq = e−E1kq − 2e−E (ρ + γ + N/2)q .

The stated relation is now a consequence of (1).�

Corollary 3.5. (i) The generalized Hermite polynomials satisfy the following differ-
ential-difference equation:

(
1k − 2

N∑
i=1

xi∂i

)
Hν = −2|ν|Hν , ν ∈ ZN

+ .
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(ii) The generalized Hermite functions{hν , ν ∈ ZN
+ } form a complete set of eigen-

functions for the operator1k − |x|2 onL2(RN , wk(x)dx) with(
1k − |x|2) hν = −(2|ν| + 2γ + N ) hν .

Note also that as a consequence of the above theorem, the operator1k − 2ρ has
for eachp ∈ Pn a unique polynomial eigenfunctionq of the form q = p + r, where the
degree ofr is less thann; it is given byq = e−1k/4p.

Examples 3.6. (3) TheSN -case.For the symmetric groupG = SN (acting onRN

by permuting the coordinates), the multiplicity function is characterized by a single
parameter which is often denoted by 1/α > 0, and the corresponding weight function
is given bywS(x) =

∏
i<j |xi − xj |2/α. The associated Dunkl operators are

TS
i = ∂i +

1
α

∑
j 6=i

1 − sij

xi − xj
(i = 1, . . . , N ),

wheresij denotes the operator transposingxi and xj . The operator1S − 2ρ is a
Schr̈odinger operator of Calogero-Sutherland type, involving exchange terms and an
external harmonic potential, see [B-F2 and B-F3]. It is given explicitly by

1S − 2ρ = 1 − 2
N∑
i=1

xi∂i +
2
α

∑
i<j

1
xi − xj

[
(∂i − ∂j) − 1 − sij

xi − xj

]
. (3.5)

In [B-F2], Baker and Forrester study “non-symmetric generalized Hermite polynomials”
E(H)

ν , which they define as the unique eigenfunctions of 3.5 of the form

E(H)
ν = Eν +

∑
|µ|<|ν|

cµ, νEµ ,

where theEν , ν ∈ ZN
+ are the non-symmetric Jack polynomials (associated with

SN andα) as defined e.g. in [O2] (see also [K-S]). ThusE(H)
ν = e−1S/4Eν (just by

Lemma 3.4), and indeed, up to some normalization factors, theE(H)
ν make up a system

of generalized Hermite polynomials forSN in our sense. This follows from the fact
that the non-symmetric Jack polynomialsEν , being homogeneous of degree|ν| and
forming a vector space basis ofP, are also orthogonal with respect to Dunkl’s scalar
product [. , .]S . This was proved in [B-F3] via orthogonality of theE(H)

ν . A short direct
proof can be given as follows: According to [O2], Prop. 2.10, theEν are simultaneous
eigenfunctions of the Cherednik operatorsξi for SN , which were introduced in [C] and
can be written as

ξi = αxiT
S
i + 1− N +

∑
j>i

sij (i = 1, . . . , N ). (3.6)

In fact, theEν satisfy ξiEν = νiEν , where the eigenvaluesν = (ν1, . . . , νN ) are given
explicitly in [O2]. They are distinct, i.e. ifν 6= µ, thenν 6= µ. On the other hand, it
follows at once from (3.6) together with properties (1.3) for [., .]S that the Cherednik
operatorsξi are symmetric with respect to [. , .]S . Together, this proves that theEν are
orthogonal with respect to [. , .]S . Hence a possible choice for the basis{ϕν} is to set
ϕν = dνEν , with some normalization constantsdν > 0.
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We finally remark that in this case the locally uniform convergence of the series in
Lemma 3.1(ii) extends toCN × CN , see also [B-F3], Prop. 3.10. This is because the
coefficients of the non-symmetric Jack-polynomialsEν in their monomial expansions
are known to be nonnegative ([K-S], Theorem 4.11), hence|Eν(z)| ≤ Eν(|z|) for all
z ∈ CN .
(4) A remark on theBN -case.Suppose thatG is the Weyl group of typeBN , generated
by sign-changes and permutations. Here the multiplicity function is characterized by
two parametersk0, k1 ≥ 0. The weight function is

wB(x) =
N∏
i=1

|xi|2k1
∏
i<j

|x2
i − x2

j |2k0.

Let TB
i and1B denote the associated Dunkl operators and Laplacian. We consider the

space
W := {f ∈ C1(RN ) : f (x) = F (x2) for someF ∈ C1(RN )}

of “completely even” functions; herex2 = (x2
1, . . . , x

2
N ). It is easily checked that for

completely evenf , 1Bf is also completely even. The restriction of1B to W is given
by

1B |W = 1 + 2k1

N∑
i=1

1
xi

∂i + 2k0

∑
i<j

( 1
xi − xj

(
∂i − ∂j

)
+

1
xi + xj

(
∂i + ∂j

))
− 2k0

∑
i<j

( 1
(xi − xj)2

+
1

(xi + xj)2

)(
1 − sij

)
.

Again, the operator (1B − 2ρ)|W is of Calogero-Sutherland type. Its completely
even polynomial eigenfunctions are discussed in [-BF2 and B-F3] separately from the
Hermite-case; they are called “non-symmetric Laguerre polynomials” and denoted by
E(L)

ν (x2). It is easy to see that they make up the completely even subsystem of a suitably
chosen generalized Hermite-system{Hν} for BN (and parametersk0, k1, where we
assumek0 > 0):

To this end, let againEν denote theSN -type non-symmetric Jack polynomials,
corresponding toα = 1/k0. For ν ∈ ZN

+ setÊν(x) := Eν(x2). These modified Jack
polynomials form a basis ofP ∩W . The non-symmetric Laguerre polynomials of Baker
and Forrester can be written as

E(L)
ν (x2) = e−1B/4Êν(x) .

(Note that the polynomials on the right side are in fact completely even and eigenfunc-
tions of 1B − 2ρ.) Involving again theSN -type Cherednik operators from (3), it is
easily checked that thêEν are orthogonal with respect to Dunkl’s pairing [. , .]B : The
ξi induce operatorŝξi (i = 1, . . . , N ) onW by

ξ̂if (x) := (ξiF )(x2) if f (x) = F (x2),

cf. [B-F3]. Thus ξ̂iÊν = νiÊν , and a short calculation gives

ξ̂if (x) = αx2
i (T

S
i F )(x2) + 1− N +

∑
j>i

sij =
α

2
xiT

B
i f (x) + 1− N +

∑
j>i

sij .
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Together with (1.3), this shows that theξ̂i are symmetric with respect to [. , .]B onP∩W,
and yields our assertion by the same argument as in the previous example. We therefore
obtain an orthonormal basis{ϕν} of P with respect to [. , .]B by settingϕν := dνÊη

for ν = (2η1, . . . , 2ηN ) and completing the set{ϕν , ν ∈ (2Z+)N} by a Gram-Schmidt
procedure.

Many properties of the classical Hermite polynomials and Hermite functions onRN

have natural extensions to our general setting. We start with a Rodrigues-formula; for
SN -type symmetric Hermite polynomials such a formula, involving the (symmetric)
Jack polynomials, is known, see e.g. [K].

Theorem 3.7. For all ν ∈ ZN
+ andx ∈ RN we have

Hν(x) = (−1)|ν|e|x|2

ϕν(T ) e−|x|2

. (3.7)

Proof. First note that ifp is a polynomial of degreen ≥ 0, then

p(T ) e−|x|2

= q(x) e−|x|2

with a polynomialq of the same degree. This follows easily from induction by the degree
of p, together with the product rule (2.1). In particular, the function

Qν(x) := (−1)|ν|e|x|2

ϕν(T ) e−|x|2

= e|x|2

ϕν(−T ) e−|x|2

is a polynomial of degree|ν|. In order to prove thatQν = Hν , it therefore suffices to
show that for eachη ∈ ZN

+ with |η| ≤ |ν|,

2−|η|
∫

RN

Qν(x)Hη(x) dµk(x) = δν,η , (3.8)

whereδν,η denotes the Kronecker delta. Using the antisymmetry of theTi with respect
to L2(RN , wk(x)dx) (Lemma 2.9 of [D4]) as well as the commutativity of{Ti}, we can
write

2−|η|
∫

RN

Qν(x)Hη(x) dµk(x) = ck

∫
RN

ϕν(−T )
(
e−|x|2)

e−1k/4ϕη(x) wk(x)dx

= ck

∫
RN

e−|x|2(
ϕν(T )e−1k/4ϕη

)
(x) wk(x)dx =

∫
RN

(
e−1k/4ϕν(T ) ϕη

)
(x) dµk(x).

But as|η| ≤ |ν|, we haveϕν(T ) ϕη = [ϕν , ϕη]k = δν,η from which (3.8) follows.
�

There is also a generating function for the generalized Hermite polynomials:

Proposition 3.8. For n ∈ Z+ andz, w ∈ CN put Ln(z, w) :=
∑

|ν|=n Hν(z) ϕν(w).
Then

∞∑
n=0

Ln(z, w) = e−l(w)K(2z, w),

the convergence of the series being locally uniform onCN × CN .
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Proof. Suppose first thatz, w ∈ RN . By definition of theHν and in view of formula
(2.6) forKn we may write

Ln(z, w) = 2ne−1z
k/4Kn(z, w) = 2n

bn/2c∑
m=0

(−1)m

4mm!
l(w)mKn−2m(z, w)

=
bn/2c∑
m=0

(−1)m

m!
l(w)mKn−2m(2z, w)

for all n ∈ Z+. By analytic continuation, this holds for allz, w ∈ CN as well. Using
estimation (2.4), one obtains

Sn(z, w) :=
bn/2c∑
m=0

1
m!

|l(w)|m|Kn−2m(2z, w)| ≤
bn/2c∑
m=0

1
m!

|w|2m · |2z|n−2m|w|n−2m

(n − 2m)!
.

If n is even, setk := n/2 and estimate further as follows:

Sn(z, w) ≤ |w|2k

k!

k∑
m=0

(
k

m

)
(2|z|2)k−m =

1
k!

(|w|2(1 + 2|z|2)
)k

.

A similar estimation holds ifn is odd. This entails the locally uniform convergence of
the series

∑∞
n=0 Ln(z, w) onCN × CN , and also that

∞∑
n=0

Ln(z, w) =
∞∑
n=0

∞∑
m=0

(−1)m

m!
l(w)mKn−2m(2z, w) (with Kj := 0 for j < 0)

=
∞∑

m=0

(−1)m

m!
l(w)m

∞∑
n=0

Kn−2m(2z, w) = e−l(w)K(2z, w)

for all z, w ∈ CN . �

Applying Lemma 2.1 top = ϕν with c = −1/4 anda = 1/λ, we obtain the following
formula for the generalized Hermite polynomials:

Lemma 3.9. For λ ∈ C \ {0}, ν ∈ ZN
+ andx ∈ RN ,(λ

2

)|ν|
Hν

(x

λ

)
=

(
e−λ21k/4ϕν

)
(x).

Proposition 3.10. The generalized Hermite functions{hν , ν ∈ ZN
+ } are a basis of

eigenfunctions of the Dunkl transformDk onL2(RN , wk(x)dx), satisfying

Dk(hν) = 2γ+N/2c−1
k (−i)|ν| hν .

Proof. We use Prop. 2.1 from [D4], which says that for allp ∈ P andz ∈ CN ,

ck

2γ+N/2

∫
RN

e−1k/2p(x) K(x, z) wk(x)e−|x|2/2dx = el(z)/2p(z). (3.9)

Here again,l(z) =
∑N

i=1 z2
i . Let pν(x) := e1k/2Hν(x). In view of (3.9) we can write
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Dk(hν)(ξ) =
∫

RN

Hν(x)K(−iξ, x) wk(x)e−|x|2/2dx = 2γ+N/2c−1
k e−|ξ|2/2pν(−iξ)

for all ξ ∈ RN . By definition ofHν we havepν(x) = 2|ν|e1k/4ϕν(x). So we arrive at

Dk(hν)(ξ) = 2γ+N/2c−1
k e−|ξ|2/2 2|ν|(e1k/4ϕν

)
(−iξ).

Application of Lemma 3.9 withλ = −i now yields that
(
e1k/4ϕν

)
(−iξ) =

(−i/2)|ν|Hν(ξ), hence

Dk(hν)(ξ) = 2γ+N/2c−1
k (−i)|ν|hν(ξ).

�

We finish this section with a Mehler-type formula for the generalized Hermite poly-
nomials. For this, we need the following integral representation:

Lemma 3.11. For all x, y ∈ RN andν ∈ ZN
+ we have

e−|x|2

Hν(x) = 2|ν|
∫

RN

K(x, −2iy) ϕν(iy) dµk(y).

Proof. A short calculation, using again relation (2.2), shows that for homogeneous
polynomialsp formula (3.9) may be rewritten as∫

RN

e−1k/4p(x) K(x, 2z) dµk(x) = el(z)p(z) (z ∈ CN ). (3.10)

By linearity, this holds for allp ∈ P. Lemma 3.9 withλ = i further shows that

e1k/4ϕν(x) =
( i

2

)|ν|
Hν(−ix).

As ϕν is homogeneous of degree|ν|, we thus can writeϕν(2iy) = (−i)|ν| e−1k/4H∗
ν (y)

with H∗
ν (y) = Hν(iy). From (3.10) it now follows that∫

RN

K(x, −2iy) ϕν(2iy) dµk(y) = e−|x|2

H∗
ν (−ix),

which yields the assertion.

Theorem 3.12. (Mehler-formula for theHν). For r ∈ Cwith |r| < 1and allx, y ∈ RN ,

∑
ν∈ZN

+

Hν(x)Hν(y)
2|ν| r|ν| =

1
(1 − r2) γ+N/2

exp

{
−r2(|x|2 + |y|2)

1 − r2

}
K

(
2rx

1 − r2
, y

)
.

Proof. Consider the integral

M (x, y, r) :=

c2
k

∫
RN ×RN

K(−2rz, v)K(−2iz, x)K(−2iv, y) wk(z)wk(v) e−(|z|2+|v|2)d (z, v).
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The bounds (2.4) and (2.5) onK assure that it converges for allr ∈ C with |r| < 1 and
all x, y ∈ RN . Now write K(−2rz, v) =

∑∞
n=0(2r)nKn(iz, iv) in the integral above.

As
∞∑
n=0

|2r|n|Kn(iz, iv)| ≤ e2|r||z||v| ,

the dominated convergence theorem yields that

M (x, y, r) =
∞∑
n=0

(2r)n
∫

RN

∫
RN

Kn(iz, iv) K(−2iz, x) K(−2iv, y) dµk(z) dµk(v)

=
∞∑
n=0

(2r)n
∑
|ν|=n

(∫
RN

K(−2iz, x) ϕν(iz) dµk(z)
)(∫

RN

K(−2iv, y) ϕν(iv) dµk(v)
)
.

From the above lemma we thus obtain

M (x, y, r) = e−(|x|2+|y|2)
∑

ν∈ZN
+

r|ν| Hν(x)Hν(y)
2|ν| , (3.11)

and this series, as a power series inr, converges absolutely for allx, y ∈ RN . On
the other hand, iterated integration and repeated application of formula (2.3) and the
reproducing formula (2.8) show that for realr with |r| < 1 we have

M (x, y, r) = ck

∫
RN

(∫
RN

K(−2rz, v) K(−2iy, v) dµk(v)
)
K(−2iz, x)e−|z|2

wk(z)dz

= ck e−|y|2
∫

RN

e(r2−1)|z|2

K(2iry, z) K(−2ix, z) wk(z) dz

= ck(1 − r2)−(γ+N/2)e−|y|2
∫

RN

e−|u|2

K
(
u ,

2iry√
1 − r2

)
K

(
u ,

−2ix√
1 − r2

)
wk(u) du

= (1− r2)−(γ+N/2) exp

{
−|x|2 + |y|2

1 − r2

}
K

( 2rx

1 − r2
, y

)
.

By analytic continuation, this holds for{r ∈ C : |r| < 1} as well. Together with (3.11),
this finishes the proof. �

4. The Heat Equation for Dunkl Operators

As before, let1k denote the generalized Laplacian associated with some finite reflection
groupG on RN and a multiplicity functionk ≥ 0 on its root systemR. Recall that its
action onC2(RN ) is given by

1kf = 1f + 2
∑

α∈R+

k(α) δαf ,

where

δαf (x) =
〈∇f (x), α〉

〈α, x〉 − f (x) − f (σαx)
〈α, x〉2

.
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Its action may as well be restricted toC2(�), where� ⊂ RN is open and invariant
under the group operation ofG. We call a functionf ∈ C2(�) k-subharmonic on�, if
1kf ≥ 0 on�.

The generalized Laplacian satisfies the following maximum principle, which will be
important later on:

Lemma 4.1. Let� ⊆ RN be open andG-invariant. If a real-valued functionf ∈ C2(�)
attains an absolute maximum atx0 ∈ �, i.e.f (x0) = supx∈� f (x), then

1kf (x0) ≤ 0 .

Proof. Let D2f (x) denote the Hessian off in x ∈ �. The given situation enforces that
∇f (x0) = 0 andD2f (x0) is negative semi-definite; in particular,1f (x0) ≤ 0. Moreover,
f (x0) ≥ f (σαx0) for all α ∈ R, so the statement is obvious in the case that〈α, x0〉 6= 0
for all α ∈ R. If 〈α, x0〉 = 0 for someα ∈ R, we have to argue more carefully: Choose
an open ballB ⊆ � with centerx0. Thenσαx ∈ B for x ∈ B, andσαx−x = −〈α, x〉α.
Now Taylor’s formula yields

f (σαx) − f (x) = −〈α, x〉 〈∇f (x), α〉 +
1
2
〈α, x〉2 αtD2f (ξ)α ,

with someξ on the line segment betweenx andσαx. It follows that forx ∈ B with
〈α, x〉 6= 0 we haveδαf (x) = 1

2αtD2f (ξ)α. Passing to the limitx → x0 now leads to
δαf (x0) = 1

2αtD2f (x0)α ≤ 0, which finishes the proof. �

At this stage it is not much effort to gain a weak maximum principle fork-
subharmonic functions on bounded,G-invariant subsets ofRN , which we want to include
here before passing over to the heat equation. Its range of validity is quite general, in
contrast to the strong maximum principle in [D1], which is restricted tok-harmonic
polynomials on the unit ball. Our proof follows the classical one for the usual Laplacian,
as it can be found e.g. in [J].

Theorem 4.2. Let � ⊂ RN be open, bounded andG-invariant, and letf ∈ C2(�) ∩
C(�) be real-valued andk-subharmonic on�. Then

max
�

(f ) = max∂�(f ) .

Proof. Fix ε > 0 and putg := f +ε|x|2. A short calculation gives1k(|x|2) = 2N +4γ >
0. Hence1kg > 0 on�, and Lemma 4.1 shows thatg cannot achieve its maximum on
� at anyx0 ∈ �. It follows that

max
�

(f + ε|x|2) = max∂� (f + ε|x|2)

for eachε > 0. Consequently,

max
�

(f ) + ε min
�
|x|2 ≤ max∂�(f ) + ε max∂�|x|2.

The assertion now follows withε → 0. �
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In this section we consider the generalized heat operator

Hk := 1k − ∂t

on function spacesC2(�× (0, T )), whereT > 0 and� ⊆ RN is open andG-invariant.
Among the variety of initial- and boundary value problems which may be posed forHk

in analogy to the corresponding classical problems, we here focus on the homogeneous
Cauchy problem: Findu ∈ C2(RN × (0, T )) which is continuous onRN × [0, T ] and
satisfies {

Hku = 0 onRN × (0, T ),
u(. , 0) = f ∈ Cb(RN ).

(4.1)

First of all, let us note some basic solutions of the generalized heat equationHku = 0.
Again we setγ :=

∑
α∈R+

k(α) ≥ 0.

Lemma 4.3. For parametersa ≥ 0 andb ∈ R \ {0}, the function

u(x, t) =
1

(a − bt)γ+N/2
exp

{
b|x|2

4(a − bt)

}
solvesHku = 0 on RN × (−∞, a/b) in caseb > 0, and onRN × (a/b, ∞) in case
b < 0.

Proof. The product rule (2.1) together with
∑N

i=1 Tixi = N + 2γ shows that for each
λ > 0,

1k

(
eλ|x|2)

=
N∑
i=1

Ti

(
2λxi eλ|x|2)

= 2λ (N + 2γ + 2λ|x|2) eλ|x|2

.

From this the statement is obtained readily by a short calculation.�

In particular, the function

Fk(x, t) =
Mk

t γ+N/2
e−|x|2/4t , with Mk = 4−γ−N/2ck ,

is a solution of the heat equationHku = 0 onRN ×(0, ∞). It generalizes the fundamental
solution for the classical heat equation1u − ∂tu = 0, which is given byF0(x, t) =
(4πt)−N/2e−|x|2/4t . The normalization constantMk is chosen such that∫

RN

Fk(x, t) wk(x)dx = 1 for all t > 0.

In order to solve the Cauchy problem (4.1), it suggests itself to apply Fourier trans-
form methods – in our case, the Dunkl transform – under suitable decay assumptions
on the initial dataf . In fact, in the classical casek = 0 a bounded solution of (4.1)
is obtained by convolvingf with the fundamental solutionF0, and its uniqueness is a
consequence of a well-known maximum principle for the heat operator. It is not much
effort to extend this maximum principle to the generalized heat operatorHk in order
to obtain uniqeness results; we shall do this in Prop. 4.12 and Theorem 4.13 at the end
of this section. However, in our general situation it is not known whether there exists a
reasonable convolution structure onRN matching the action of the Dunkl transformDk,
i.e. making it a homomorphism on suitable function spaces. In the one-dimensional case
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this is true: there is aL1-convolution algebra associated with the reflection groupZ2 on
R and the multiplicity parameterk = µ ≥ 0; this convolution enjoys many properties of
a group convolution. It is studied in [R] (see also [R-V and Ros].

In theN -dimensional case, we may introduce the notion of a generalized translation
at least on the Schwartz spaceS(RN ) (and similar onL2(RN , wk(x)dx)), as follows:

Ly
kf (x) :=

c2
k

4γ+N/2

∫
RN

Dkf (ξ) K(ix, ξ)K(iy, ξ) wk(ξ)dξ; y ∈ RN , f ∈ S(RN ).

(4.2)
Note that in casek = 0, we simply haveLy

0f (x) = f (x+y), while in the one-dimensional
case, (4.2) matches the above-mentioned convolution structure onR. Clearly,Ly

kf (x) =
Lx

kf (y); moreover, the inversion theorem for the Dunkl transform assures thatLy
kf = f

for y = 0 andDk(Ly
kf )(ξ) = K(iy, ξ)Dkf (ξ). From this it is not hard to see (by use of

the bounds (2.7)) thatLy
kf belongs toS(RN ) again.

Let us now consider the “fundamental solution”Fk(. , t) for t > 0. A short calcula-
tion, using Prop. 3.10 or Lemma 4.11 of [dJ], shows that

(DkFk)(ξ, t) = e−t|ξ|2

. (4.3)

By use of the reproducing formula (2.8) one therefore obtains from 4.2 the representation

L−y
k Fk(x, t) =

Mk

tγ+N/2
e−(|x|2+|y|2)/4t K

( x√
2t

,
y√
2t

)
. (4.4)

Definition 4.4. The generalized heat kernel0k is given by

0k(x, y, t) :=
Mk

tγ+N/2
e−(|x|2+|y|2)/4t K

( x√
2t

,
y√
2t

)
, x, y ∈ RN , t > 0.

Lemma 4.5. The heat kernel0k has the following properties onRN × RN × (0, ∞):

(1) 0k(x, y, t) =
c2
k

4γ+N/2

∫
RN

e−t|ξ|2

K(ix, ξ) K(−iy, ξ) wk(ξ)dξ.

(2) For fixedy ∈ RN , the functionu(x, t) := 0k(x, y, t) solves the generalized heat
equationHku = 0 onRN × (0, ∞).

(3)
∫

RN

0k(x, y, t) wk(x)dx = 1.

(4) |0k(x, y, t)| ≤ Mk

tγ+N/2
e−(|x|−|y|)2/4t.

Proof. (1) is clear from the above derivation. For (2), remember that1x
k K(ix, ξ) =

−|ξ|2K(ix, ξ). Hence the assertion follows at once from representation (1) by taking
the differentiations under the integral. This is justified by the decay properties of the
integrand and its derivatives in question (use estimation (2.7) for the partial derivatives
of K(ix, ξ) with respect tox.) To obtain (3), we employ formula (4.4) as well as (4.2)
and write∫

RN

0k(x, y, t) wk(x)dx = Dk

(
L−y

k Fk

)
(0, t) = K(−iy, 0)(DkFk)(0, t) = 1.

Finally, (4) is a consequence of the estimate (2.4) forK. �
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Remarks.1. For integer-valued multiplicity functions, Berest and Molchanov [B-M]
constructed the heat kernel for theG-invariant part ofHk (in a conjugated version)
by shift-operator techniques.

2. In contrast to the classical case, it is not yet clear at this stage that the kernel0k is
generally nonnegative. In fact, it is still an open conjecture that the functionK(iy, .)
is positive-definite onRN for eachy ∈ RN (cf. the remarks in [dJ and D3]. This
would imply a Bochner-type integral representation ofK(iy, .) and positivity ofK on
RN ×RN as an immediate consequence. In the one-dimensional case this conjecture
is true, and the Bochner-type integral representation is explicitly known (see [Ros or
R]. By one-parameter semigroup techniques, it will however soon turn out thatK is
at least positive onRN × RN .

Definition 4.6. For f ∈ Cb(RN ) andt ≥ 0 set

H(t)f (x) :=


∫

RN

0k(x, y, t)f (y) wk(y)dy if t > 0,

f (x) if t = 0.

(4.5)

Part (4) of Lemma 4.5 assures that for eacht ≥ 0, H(t)f is well-defined and
continuous onRN . It provides a natural candidate for the solution to our Cauchy problem.
Indeed, when restricting to initial data from the Schwartz spaceS(RN ), we easily obtain
the following:

Theorem 4.7. Suppose thatf ∈ S(RN ). Then u(x, t) := H(t)f (x), (x, t) ∈ RN ×
[0, ∞), solves the Cauchy-problem (4.1) for eachT > 0. Morover, it has the following
properties:

(i) H(t)f ∈ S(RN ) for eacht > 0.

(ii) H(t + s)f = H(t)H(s)f for all s, t ≥ 0.

(iii) ‖H(t)f − f‖∞,RN → 0 with t → 0.

Proof. Using formula (1) of Lemma 4.5 and Fubini’s theorem, we can write

u(x, t) = H(t)f (x)

=
c2
k

4γ+N/2

∫
RN

∫
RN

K(ix, ξ)K(−iy, ξ) e−t|ξ|2

f (y) wk(ξ)wk(y) dξdy

=
c2
k

4γ+N/2

∫
RN

e−t|ξ|2Dkf (ξ)K(ix, ξ) wk(ξ)dξ (4.6)

for all t > 0. (Remember thatS(RN ) is invariant under the Dunkl transform.) This
makes clear that (i) is satisfied. As before, it is seen that differentiations may be taken
under the integral in (4.6), and thatHku = 0 onRN × (0, ∞). Moreover, in view of the
inversion theorem for the Dunkl transform, (4.6) holds fort = 0 as well. Using (2.5),
we thus obtain the estimation

‖H(t)f − f‖∞,RN ≤
√

|G| c2
k

4γ+N/2

∫
RN

|Dkf (ξ)|(1 − e−t|ξ|2)
wk(ξ)dξ,

and this integral tends to 0 witht → 0. This yields (iii). In particular, it follows thatu
is continuous onRN × [0, ∞). To prove (ii), note thatDk

(
H(t)f

)
(ξ) = e−t|ξ|2Dkf (ξ) .

Therefore
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Dk

(
H(t + s)f

)
(ξ) = e−t|ξ|2Dk

(
H(s)f

)
f (ξ) = Dk

(
H(t)H(s)f

)
(ξ).

The statement now follows from the injectivity of the Dunkl transform onS(RN ). �

We are now going to show that in fact the linear operatorsH(t) onS(RN ) extend to a
positive contraction semigroup on the Banach spaceC0(RN ), equipped with its uniform
norm‖.‖∞. To this end, we consider the generalized Laplacian1k as a densely defined
linear operator onC0(RN ) with domainS(RN ).

Theorem 4.8. (1) The operator1k onC0(RN ) is closable, and its closure1k generates
a positive, strongly continuous contraction semigroup{T (t), t ≥ 0} onC0(RN ).

(2) The action ofT (t) onS(RN ) is given byT (t)f = H(t)f .

Proof. (1) We apply a variant of the Lumer-Phillips theorem, which characterizes gen-
erators of positive one-parameter contraction semigroups (see e.g. [A], Cor. 1.3). It
requires two properties:

(i) The operator1k satisfies the following “dispersivity condition”: Suppose thatf ∈
S(RN ) is real-valued with max{f (x) : x ∈ RN} = f (x0). Then1kf (x0) ≤ 0.

(ii) The range ofλI − 1k is dense inC0(RN ) for someλ > 0.

Property (i) is an immediate consequence of Lemma 4.1. Condition (ii) is also satisfied,
becauseλI − 1k mapsS(RN ) onto itself for eachλ > 0; this follows from the fact
that the Dunkl transform is a homeomorphism ofS(RN ) and Dk

(
(λI − 1k)f

)
(ξ) =

(λ + |ξ|2)Dkf (ξ). The assertion now follows by the above-mentioned theorem.
(2) It is known from semigroup theory that for everyf ∈ S(RN ), the function

t 7→ T (t)f is the unique solution of the abstract Cauchy problem
d

dt
u(t) = 1ku(t) for t > 0,

u(0) = f

(4.7)

within the class of all (strongly) continuously differentiable functionsu on [0, ∞) with
values in the Banach space (C0(RN ), ‖.‖∞). By property (i) of Theorem 4.6 we have
H(t)f ∈ C0(RN ) for f ∈ S(RN ). Moreover, from representation 4.6 ofH(t)f it is
readily seen thatt 7→ H(t)f is continuously differentiable on [0, ∞) and solves (4.7).
This finishes the proof. �

Corollary 4.9. The heat kernel0k is strictly positive onRN×RN×(0, ∞). In particular,
the generalized exponential kernel K satisfies

K(x, y) > 0 for all x, y ∈ RN .

Proof. For any initial distributionf ∈ S(RN ) with f ≥ 0 the last theorem implies that∫
RN

0k(x, y, t)f (y) wk(y)dy = T (t)f (x) ≥ 0 for all (x, t) ∈ RN × [0, ∞).

As y 7→ 0k(x, y, t) is continuous onRN for each fixedx ∈ RN andt > 0, it follows
that0k(x, y, t) ≥ 0 for all x, y ∈ RN andt > 0. HenceK is nonnegative as well. Now
recall again the reproducing identity (2.8), which says that
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e(|x|2+|y|2)K(2x, y) = ck

∫
RN

K(x, 2z)K(y, 2z) wk(z) e−|z|2

dz

for all x, y ∈ RN . The integrand on the right side is continuous, non-negative and not
identically zero (becauseK(x, 0)K(y, 0) = 1). Therefore the integral itself must be
strictly positive. �

Corollary 4.10. The semigroup{T (t)} onC0(RN ) is given explicitly by

T (t)f = H(t)f, f ∈ C0(RN ).

Proof. This is clear from part (2) of Theorem 4.8 and the previous corollary, which
implies that the operatorsH(t) are continuous – even contractive – onC0(RN ). �

Remark.The generalized Laplacian also leads to a contraction semigroup on the
Hilbert spaceH := L2(RN , wk(x)dx); this generalizes the results of [Ros] for the
one-dimensional case. In fact, letM denote the multiplication operator onH de-
fined by Mf (x) = −|x|2f (x) and with domainD(M ) = {f ∈ H : |x|2f (x) ∈
H}. M is self-adjoint and generates the strongly continuous contraction semigroup
M (t)f (x) = e−t|x|2

f (x) (t ≥ 0) on H. For f ∈ S(RN ), we have the identity
Dk(1kf ) = M (Dkf ). AsS(RN ) is dense inD(M ), this shows that1k has a self-adjoint
extension1̃k on H, namely 1̃k = D−1

k MDk, where hereDk denotes the Plancherel-
extension of the Dunkl transform toH. The domain of1̃k is the Sobolev-type space
D(1̃k) = {f ∈ H : |ξ|2 Dkf (ξ) ∈ H}. Being unitarily equivalent withM, the operator
1̃k also generates a strongly continuous contraction semigroup{T̃ (t)} on H which is
unitarily equivalent with{M (t)}; it is given by

T̃ (t)f (x) =
∫

RN

e−t|ξ|2Dkf (ξ) K(ix, ξ) wk(ξ)dξ.

The knowledge that0k is nonnegative allows also to solve the Cauchy problem (4.1)
in its general setting:

Theorem 4.11. Letf ∈ Cb(RN ). Thenu(x, t) := H(t)f (x) is bounded onRN × [0, ∞)
and solves the Cauchy problem (4.1) for eachT > 0.

Proof. In order to see thatu is twice continuously differentiable onRN × (0, ∞) with
Hku = 0, we only have to make sure that the necessary differentiations ofu may be
taken under the integral in (4.5). One has to use again the estimations (2.7) for the partial
derivatives ofK; these provide sufficient decay properties of the derivatives of0k,
allowing the necessary differentiations ofu under the integral by use of the dominated
convergence theorem. Boundedness ofu is clear from the positivity and normalization
(Lemma 4.5(3)) of0k; in fact, |u(x, t)| ≤ ‖f‖∞,RN onRN × [0, ∞). Finally, we have
to show thatH(t)f (x) → f (ξ) with x → ξ andt → 0. We start by the usual method:
For fixedε > 0, chooseδ > 0 such that|f (y) − f (ξ)| < ε for |y − ξ| < 2δ and let
M := ‖f‖∞,RN . Keeping in mind the positivity and normalization of0k, we obtain for
|x − ξ| < δ the estimation

|H(t)f (x) − f (ξ)| ≤
∣∣∣ ∫

RN

0k(x, y, t)
(
f (y) − f (ξ)

)
wk(y)dy

∣∣∣
≤

∫
|y−x|<δ

0k(x, y, t)|f (y) − f (ξ)|wk(y)dy
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+
∫

|y−x|>δ

0k(x, y, t)|f (y) − f (ξ)|wk(y)dy

< ε + 2M
∫

|y−x|>δ

0k(x, y, t)wk(y)dy.

It thus remains to show that for eachδ > 0,

lim(x,t)→(ξ,0)

∫
|y−x|>δ

0k(x, y, t)wk(y)dy = 0.

For abbreviation put

I(x, t) :=
∫

|y−x|≤δ

0k(x, y, t)wk(y)dy.

As I(x, t) ≤ 1, it suffices to prove that lim inf(x,t)→(ξ,0) I(x, t) ≥ 1. For this, choose
some positive constantδ′ < δ andh ∈ S(RN ) with 0 ≤ h ≤ 1, h(ξ) = 1 and such that
h(y) = 0 for all y with |y − ξ| > δ − δ′. Then for eachx with |x − ξ| < δ′ the support
of h is contained in{y ∈ RN : |y − x| ≤ δ}; therefore∫

RN

h(y)0k(x, y, t)wk(y)dy ≤ I(x, t)

for all (x, t) with |x − ξ| < δ′. But according to Theorem 4.7 we have

lim(x,t)→(ξ,0)

∫
RN

h(y)0k(x, y, t) wk(y)dy = h(ξ) = 1.

This finishes the proof. �

It is still open whether our solution of the Cauchy problem 4.1 is unique within an
appropriate class of functions. As in the classical case, this follows from an maximum
principle for the generalized heat operator onRN ×(0, ∞). The first step is the following
weak maximum principle forHk on bounded domains. It is proved by a similar method
as used in Theorem 4.2. By virtue of Lemma 4.1, this proof is literally the same as the
standard proof in the classical case (see e.g. [J]) and therefore omitted here.

Proposition 4.12. Suppose that� ⊂ RN is open, bounded andG-invariant. ForT > 0
set

�T := � × (0, ∞) and ∂∗�T := {(x, t) ∈ ∂�T : t = 0 or x ∈ ∂� } .

Assume further thatu ∈ C2(�T ) ∩ C(�T ) satisfiesHku ≥ 0 in �T . Then

max
�T

(u) = max∂∗�T
(u) .

Under a suitable growth condition on the solution, this maximum principle may be
extended to the case where� = RN . The proof is adapted from the one in [dB] for the
classical case.
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Theorem 4.13. (Weak maximum principle forHk on RN ). Let ST := RN × (0, T )
and suppose thatu ∈ C2(ST ) ∩ C(ST ) satisfies

{
Hku ≥ 0 in ST ,
u(. , 0) = f ,

wheref ∈ Cb(RN ) is real-valued. Assume further that there exist positive constants
C, λ, r such that

u(x, t) ≤ C · eλ|x|2

for all (x, t) ∈ ST with |x| > r.

Then supST
(u) ≤ supRN (f ).

Proof. Let us first assume that 8λT < 1. For fixedε > 0 set

v(x, t) := u(x, t) − ε · 1
(2T − t) γ+N/2

exp

{ |x|2
4(2T − t)

}
, (x, t) ∈ RN × [0, 2T ).

By Lemma 4.3,v satisfiesHkv = Hku ≥ 0 in ST . Now fix some constantρ > r and
consider the bounded cylinder�T = � × (0, T ) with � = {x ∈ RN : |x| < ρ}. Setting
M := supRN (f ), we havev(x, 0) < u(x, 0) ≤ M for x ∈ �. Moreover, for |x| = ρ
andt ∈ (0, T ],

v(x, t) ≤ Ceλρ2 − ε · 1
(2T ) γ+N/2

e ρ2/8T .

As λ < (8T )−1, we see thatv(x, t) ≤ M on ∂∗�T , provided thatρ is large enough.
Then by Prop. 4.12 we also havev(x, t) ≤ M on�T . Asρ > r was arbitrary, it follows
that v(x, t) ≤ M onST . As ε > 0 was arbitrary as well, this implies thatu(x, t) ≤ M
on ST . If 8λT ≥ 1, we may subdivideST into finitely many adjacent open strips of
width less than 1/8λ and apply the above conclusion repeatedly. �

Corollary 4.14. The solution of the Cauchy problem (4.1) according to Theorem 4.11
is unique within the class of functionsu ∈ C2(ST ) ∩ C(ST ) which satisfy the following
exponential growth condition: There exist positive constantsC, λ, r such that

|u(x, t)| ≤ C · eλ|x|2

for all (x, t) ∈ ST with |x| > r.

Acknowledgement.It is a pleasure to thank Charles F. Dunkl and Michael Voit for some valuable comments
and discussions.

Note added in proof
It has ecently been proven by the author that fork ≥ 0, the Dunkl kernelx 7→ K(iy, x)
is in fact positive-definite onRN for eachy ∈ RN (cf. Remark 2 after Lemma 4.5); this
result will be published in a forthcoming paper.
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