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Abstract: Based onthe theory of Dunkl operators, this paper presents a general concept
of multivariable Hermite polynomials and Hermite functions which are associated with
finite reflection groups oR " . The definition and properties of these generalized Hermite
systems extend naturally those of their classical counterparts; partial derivatives and
the usual exponential kernel are here replaced by Dunkl operators and the generalized
exponential kernekK of the Dunkl transform. In the case of the symmetric gréup

our setting includes the polynomial eigenfunctions of certain Calogero-Sutherland type
operators. The second part of this paper is devoted to the heat equation associated
with Dunkl’s Laplacian. As in the classical case, the corresponding Cauchy problem is
governed by a positive one-parameter semigroup; this is assured by a maximum principle
forthe generalized Laplacian. The explicit solution to the Cauchy problem involves again
the kernelK, which is, on the way, proven to be nonnegative for real arguments.

1. Introduction

Dunkl operators are differential-difference operators associated with a finite reflection
group, acting on some Euclidean space. They provide a useful framework for the study
of multivariable analytic structures which reveal certain reflection symmetries. During
the last years, these operators have gained considerable interest in various fields of
mathematics and also in physical applications; they are, for example, naturally connected
with certain Schidinger operators for Calogero-Sutherland-type quantum many body
systems, see [L-V] and [B-F2, B-F3].

For a finite reflection groug’ ¢ O(IV,R) on RY the associated Dunkl operators
are defined as follows: Far € RY \ {0}, denote by, the reflection corresponding to
«, i.e. in the hyperplane orthogonaldo It is given by

* This paper was written while the author held a Forschungsstipendium of the DFG at the University of
Virginia, Charlottesville, VA, USA.
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(o, x)

o
o2

oa(x)=2—2

where(.,.) is the Euclidean scalar product ®&" and|z| := /(x,z). (We use the
same notations for the standard Hermitian inner product and nof@oylLet R be the
root system associated with the reflectiongiohormalized such thdty, ) = 2 for all
a € R. Now choose a multiplicity functiok on the root syster®, that is, aG-invariant
functionk : R — C, and fix some positive subsystel of R. The Dunkl operators
T; (i=1,...,N)onR" associated witli; andk are then given by

Tf@) = 0.0+ 3 Kayay - L —I0e) -y o cagvy,
aERy <a7 $>

hered; denotes thé" partial derivative. In caske = 0, theT; reduce to the corresponding

partial derivatives. In this paper, we shall assume throughoukthabd (i.e. all values

of k are non-negative), though several results of Sect. 3 may be extended to larger ranges

of k. The most important basic properties of thg proved in [D2], are as follows: Let

P = C[RM] denote the algebra of polynomial functions BY andP,, (n € Z, =

{0,1,2...}) the subspace of homogeneous polynomials of degr@aen

The set{T;} generates a commutative algebra of differential-

difference operators oR. (1.1)

EachT; is homogeneous of degredl onP, thatis,T; p € P,,_1

forp e P,. (1.2)

Of particular importance in this paper is the generalized Laplacian associated with
andk, which is defined ash, := Zf:fl T?. It is homogeneous of degree2 onP and
given explicitly by

Acf@) = Af@)+2 Y ke[ L S0 = [an))

D O R

(HereA andV denote the usual Laplacian and gradient respectively.)

The operatord’; were introduced and first studied by Dunkl in a series of papers
([D1-4)) in connection with a generalization of the classical theory of spherical har-
monics: Here the uniform spherical surface measure onithe (1)-dimensional unit
sphere is modified by a weight function which is invariant under the action of some finite
reflection groupz, namely

wi@) = ] o) P,

aERy

wherek > 0 is some fixed multiplicity function on the root systdinof G. Note that
wy, IS homogeneous of degree,avith

vi= ) k).

aERy

In this context, in [D3] the following bilinear form o is introduced:

[P, gl == ((T)¢)(0) forp,qeP.
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Herep(T) is the operator derived frop(x) by replacinge; by T;. Property (1.1) assures
that[., .]x is well-defined. A useful collection of its properties can be found in [D-J-O].
We recall that], .]; is symmetric and positive-definite (in case> 0), and thatp, ¢]x =
Oforp € Py, q € Py, withn #m. Moreover, forali =1,..., N, p,q € Pandg € G,

[zip,de = [0, Ti gl and  [g(p), 9(D)]x = [p, dlx, (1.3)

where g(p)(z) = p(¢—(z)). The pairing [, .] is closely related to the scalar product
on LARY, wy.(z)e~1#I°/2dz): In fact, according to [D3],

[p, gl = 1, / e/ 2p(a) e 2 2q(z) wi(w)e” 1/ %de forall p,qe P, (14)
RN

with some normalization constanf, > 0. Given an orthonormal basfg,, , v € Z}
of P with respect to [, .]x, an easy rescaling of (1.4) shows that the polynomials

H,(z) = 2Vle=20/4p, (2)

are orthogonal with respect to;k(x)e*|:”‘2dx on RY. We call them the generalized
Hermite polynomials ofR" associated witld:, k£ and{e, }.

The first part of this paper is devoted to the study of such Hermite polynomial
systems and associated Hermite functions. They generalize their classical counterparts
in a natural way: these are just obtained%cs 0 and o, () = (v!) ~2z" . In the one-
dimensional case, associated with the reflection giGup Z, on R, our generalized
Hermite polynomials coincide with those introduced in [Chi] and studied in [Ros]. Our
setting also includes, for the symmetric groGip= Sy, the so-called non-symmetric
generalized Hermite polynomials which were recently introduced by Baker and Forrester
in [B-F2, B-F3]. These are non-symmetric analogues of the symmetric, i.e. permutation-
invariant generalized Hermite polynomials associated with the gsoupwvhich were
first introduced by Lassalle in [L2]. Moreover, the “generalized Laguerre polynomials”
of [B-F2, B-F3], which are non-symmetric analogues of those in [L1], can be considered
as a subsystem of Hermite polynomials associated with a reflection group aBtype
We refer to [B-F1 and vD] for a thorough study of the symmetric multivariable Hermite-
and Laguerre systems.

After a short collection of notations and basic facts from Dunkl’s theory in Sect. 2,
the concept of generalized Hermite polynomials is introduced in Sect. 3, along with a
discussion of the above-mentioned special classes. We derive generalizations for many
of the well-known properties of the classical Hermite polynomials and Hermite func-
tions: A Rodrigues formula, a generating relation and a Mehler formula for the Hermite
polynomials, analogues of the second order differential equations and a characterization
of the generalized Hermite functions as eigenfunctions of the Dunkl transform. Parts of
this section may be seen as a unifying treatment of results from [B-F2, B-F3 and Ros]
for their particular cases.

In Sect. 4, which makes up the second major part of this paper, we turn to the
Cauchy problem for the heat operator associated with the generalized Laplacian: Given
an initial distributionf € C,(RY), there has to be found a functiene C?RYN x
(0, 7)) N C(RYN x [0, TY) satisfying

Hyu = Apu—0u =0 onRY x (0,00), u(.,0)=/. (1.5)

For smooth and rapidly decreasing initial dgtan explicit solution is easy to obtain; it
involves the generalized heat kernel
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Ti(z,y,1) = g ¢ (el K(ﬁ’ﬁ>’
Here M, is a positive constant anl denotes the generalized exponential kernel as-
sociated withG andk as introduced in [D3]. In the theory of Dunkl operators and the
Dunkl transform, it takes over théle of the usual exponential kern€l*¥’. Some of
its properties are collected in Sect. 2. Without knowledge whefhes nonnegative, a
solution of (1.5) for arbitrary initial data seems to be difficult. However, one can prove
a maximum principle for the generalized Laplaciap, which is the key ingredient to
assure that\;, leads to a positive one-parameter contraction semigroup on the Banach
space Co(R™), ||.|ls0)- Positivity of this semigroup enforces positivity &f and allows
to determine the explicit solution of (1.5) in the general case. We finish this section
with an extension of a well-known maximum principle for the classical heat operator to
our situation. This in particular implies a uniqueness result for solutions of the above
Cauchy problem.

r,y e RY t>0.

2. Preliminaries

The purpose of this section is to establish our basic notations and collect some further
facts on Dunkl operators and the Dunkl transform which will be of importance later on.
General references here are [D3, D4, and dJ].

First of all we note the following product rule, which is confirmed by a short calcu-
lation:
For eachf € CY(R") and eacly € C*(R™) which is invariant under the natural action
of G,

Ti(f9) = (i f)g + f(Tig) for i=1,....N. (2.1)
We use the common multi-index notation; in particular, foF (v4,...,vy) € ZY
andz = (z1,...,zy) € RN we setz” := zpt e ea, vhi= ! oo vyt and

v = +...+uy. If f 1 RY — Cis analytic withf(z) = Y, a,2” , the operator
f(T) is defined by

FI) =D a7 = a7 TR
We restrict its action t@*(R™N) if f is a polynomial of degregé and toP otherwise.
The following formula will be used frequently:
Lemma 2.1. Letp € P,,. Then forc € C anda € C\ {0},
(eCA’“p) (ax) =a" (eafch*‘)p(x) forall z € RY.
In particular, forp € P,, we have
(e72+/?p)(V2z) = V2" (e72+/%p) (). (2.2)

Proof. For m € Z. with 2m < n, the polynomialA}'p is homogeneous of degree
n — 2m. Hence

n/2] ., ln/2) o o
(eMp)an) = Y o (AFPar) = Y —a" P ATP)@) = a” (e Ahp) (@),
m=0 ’ m=0 ’

O
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A major tool in this paper is the generalized exponential kekital, ) onRY x R,
which generalizes the usual exponential funcé6h?’. It was first introduced in [D3]
by means of a certain intertwining operator. By a result of [O1] (see also [dJ]), the
function z — K(x,y) may be characterized as the unique analytic solution of the
systemT;f = y;f (6 = 1,...,N) onRY with f(0) = 1. Moreover,K is symmetric
in its arguments and has a holomorphic extensiofiox CV. Its power series can
be written asK = > 2, K,,, whereK, (z,y) = K,(y,z) andK,, is a homogeneous
polynomial of degree: in each of its variables. Note thafy = 1 andK (z,0) = 1 for
all z € CV.

For the reflection grou’ = Z, on R, the multiplicity functionk is characterized
by a single parameter > 0, and the kernek is given explicitly by

K(Zv w) = ju—l/Z(izw) + ju+1/2(izw)a Z, W € (C7

2w
2u+1

where fora > —1/2, j,, denotes the normalized spherical Bessel function

z > —~1)(2 2n
5@ = 21+ 02D < gy 30 LI
n=0

For details and related material we refer to [D4, R, R-V and Ro].

We list some further general propertiesiéfand theK,, (all under the assumption
k > 0) from [D3, D4 and dJ]:
Forallz,w € CV andX € C,

Kz, w) = K(z, \w); (2.3)

1
| K (2, w)| < H|z|”|w|" and |K(z,w)| < el#llwl, (2.4)
Forallz,y € RV andj =1,..., N,
|K (iz,y)| < V/IG]; (2.5)

,-T;EKn(xa y) = yan—l(xv y) andeK(x, y) = yjK(xa y)1 (26)

here the superscript denotes that the operators act with respect tartivariable. In
[dJ], exponential bounds for the usual partial derivativeKadre given. They imply in
particular that for each € Z% there exists a constadt > 0 such that

0V K (x,2)| < dy |2V el Rl forallz e RN, 2z e CV. 2.7
Let us finally recall a useful reproducing kernel propertyfoffrom [D4] (it is

rescaled with respect to the original one, thus fitting better in our context of generalized
Hermite polynomials): Define the probability measpgeon R by

2 2 -1
dpg(x) = cpe” "M wp(z)dz,  with ¢, = (/ el wk(x)dx) .
RN
Moreover, forz € CV seti(z) := Y.\, 22 Then for allz,w € CV,

?

/ K2z, 2)K (2w, z) dug(z) = @ K22 w). (2.8)
RN
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The generalized exponential functiéa gives rise to an integral transform, called
the Dunkl transform oR", which was introduced in [D4] and has been thoroughly
studied in [dJ] for a large range of parametkrd he Dunkl transform associated with
G andk > 0 is defined by

Dy LHRY o)) — CRY: Df(©) = [ @) K(=it, ) wn(a)de (¢ € BY).

In [dJ], many of the important properties of Fourier transforms on locally compact
abelian groups are proved to hold true fBy. In particular,D,.f € Co(RY) for

f € LYRY,wy(z)dr), and there holds ar-inversion theorem, which we recall
for later reference: Iff € LYRY,wy(x)dx) with Dy f € LYRY,wi(x)dz), then

7= 4_7_N/20% ExDif a.e., where&y f(x) = Dy f(—x). (Note thatDk(e—Wz/z)(O) =
27+N/Zc,;1, which gives the connection of our constaptvith that of de Jeu.) Moreover,

the Schwartz spacg(R”) of rapidly decreasing functions @& is invariant undeDy,,
andD;, can be extended to a Plancherel transfornL.&R" , w;,(x)dx). For details see
[dJ].

3. Generalized Hermite Polynomials and Hermite Functions

Let {¢,,v € ZY} be an orthonormal basis @F with respect to the scalar product
[.,.]x such thatp, € P, and the coefficients of the, are real. AsP = P, Pn
andP,, L P,, for n # m, they, with || = n can for example be constructed by
Gram-Schmidt orthogonalization withiR,, from an arbitrary ordered real-coefficient
basis ofP,,. If £ = 0, the Dunkl operato¥; reduces to the usual partial derivatigg
and the canonical choice of the baéis, } is just ¢, (z) := (V1) ~¥22".

As in the classical case, we have the following connection of the Basis with
the generalized exponential functiéhand its homogeneous paits,:

Lemma3.1. (i) K,(z,w)= Z 0, (2) ¢, (w) forall z,w € CVN.
lv|=n
(i) K@,9)= ) (@) e, (y) forallz,yeRY,
vezZN

where the convergence is absolute and locally unifornRdnx R,

Proof. (i) It suffices to consider the casew € RY. So fix somav € RY. As a function
of z, the polynomialK,,(z, w) is homogeneous of degree Hence we have

Kn(sz) = Z Cu,w 991/('2) with Cow = [Kn(' 7w)a @u]k .
lvl=n
Repeated application of formula (2.6) far, gives
Cow = (py(TZ)K"(Z, ’LU) = @u(w) KO(Zv U)) = @u(w)'

Thus part (i) is proved. For (i), first note that by (2.4) we h&ig, (z, z)| < %|x|2”
and hence, as the, (z) are real|p, (z)| < \/—1;' |z|™ for all z € RY and allv with
lv| = n. It follows that for each}/ > 0 the sum)_,~ |¢. ()¢, (y)| is majorized on

(z,v) : |z|, ly| < M} by the convergent serie N1 Ar2n nl | This yields
n>0 n
the assertion. [ B
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For homogeneous polynomialsq € P, relation (1.4) can be rescaled (by use of
formula (2.2)):

ol =2 [ e ) 24 y(a) dy ). (3.1)
RN
This suggests to define a generalized multivariable Hermite polynomial syst& on

as follows:

Definition 3.2. The generalized Hermite polynomidl&,, , v € ZY} associated with
the basis{, } onRY are given by

Livl/2]
H, () = 2Mle=2k/4p (2) = 21V Z

n=0

(_ 1)’”

4nnl

Aoy (). 3-2)

Moreover, we define the generalized Hermite function®8rby
ho(z) = e~ 1220 (2), v ez, (3.3)
Note thatH,, is a polynomial of degre&/| satisfyingH, (—z) = (—1)/H, (z) for
allz € RN. A standard argument shows thats dense i .2(R", du;,). Thus by virtue

of (3.1) the{2-1"1/2H,,, v € ZI} form an orthonormal basis di*(R", dy;). Let us
give two immediate examples:

Examples 3.3(1) In the classical cage= 0 and o, (z) := (v!)~%/2z", we obtain

2 e e L 1T 5
H,(x) = \/ﬁ I | e Y% (,T’Ll) = 7@ I | Hyi(l’i),
=i =i

where theFAIn, n € Z denote the classical Hermite polynomialsi®efined by

P () = (—1)" - (7).

dx™

(2) For the reflection grougs = Z, on R and multiplicity parametep: > 0, the
polynomial basis{¢,} on R with respect to [, .], is determined uniquely (up to
sign-changes) by suitable normalization of the monom{ials n € Z.}. One obtains
H,(x) = d,H!(z), whered,, € R\ {0} are constants and thé~ , n € Z, are the
generalized Hermite polynomials &as introduced e.g. in [Chi] and studied in [RoS]
(in some different normalization). They are orthogonal with respept\i’de“””'2 and
can be written as

HY, (z) = (~1)y°22mn) Lh Y2 (a?),
HE i (2) = (—1)m 220 2n) o LY %(22),

here theL& are the Laguerre polynomials of index> —1/2, given by

1 ar ,
Ly(z) = Eﬂc—o‘e” e (x””"e_”).
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Before discussing further examples, we are going to establish generalizations of the
classical second order differential equations for Hermite polynomials and Hermite func-
tions. For their proof we shall employ th&2)-commutation relations of the operators

N
1 1
E:= E\x|2, Fi=—SA; and H = ;xi@- +(v+N/2)
onP, which can be found e.g. in [H]; they are
[H,E|=2E, [H,F|=-2F, [E,F|]=H. (3.4)

(As usual, [A, B} = AB — BA for operators4, B on P.) The first two relations are

immediate consequences of the fact that the Euler opefater Zi]ﬁl x,;0; satisfies
p(p) = np for each homogeneouysc P,,. We have the following general result:

Theorem 3.4. (1) Forn € Z. setV,, := {e /%y :p € P, }. ThenP = D.,.cz. Va,
and V,, is the eigenspace of the operata@t; — 2p on P corresponding to the
eigenvalue-2n.

(2) For ¢ € V,, the functionf(z) := e~ 17I°/2¢(z) satisfies
(Ak = |z|?)f = —(@n+2y+ N)f.

Proof. (1) Itis clear thatP = & V,, . By induction from (3.4) we obtain the commuting
relations

[Zp7 AZ] = —4nA} forall n € Z,, hence [Zp, eiA’“/“] = Ape Dk/4,
For arbitraryq € P andp := e®+/4¢ it now follows that
2p(q) = (2pe™ “¥/*)(p) = 2e7 2/ p(p) + Age™A4/*p = 2e A4/ M p(p) + Apg.
Hence fora € C there are equivalent:
(A — 2p)(q@) = —2aq <= p(p) =ap < a=n € Z+ andp € P,,.

This yields the assertion.
(2) From (3.4) it is easily verified by induction that

[Ak, E"] =2nE"*H + 2n(n — 1)E"* forall n €N,
and thus[Ag, e ? | = —2e"FH + 2B~ 1t follows that
(Ar — |22 f = Ar(e Pq) —2Be Fqg = e FArg— 2 F (p+y+N/2)q.
The stated relation is now a consequence of (1).0]

Corollary 3.5. (i) The generalized Hermite polynomials satisfy the following differ-
ential-difference equation:

N
(Ak - 22%@-)1{” = 2u|H,, veZV.
=1
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(i) The generalized Hermite functiodé, ,v € ZY} form a complete set of eigen-
functions for the operaton\;, — |z|? on L2(RY, wy(z)dz) with

(Ak = |2[) hyy = =(2v| + 2y + N) by, .

Note also that as a consequence of the above theorem, the oparater2p has
for eachp € P,, a unique polynomial eigenfunctianof the form ¢ = p + r, where the
degree of- is less tham; it is given byq = e~ 2+/%p,

Examples 3.6. (3) The Sy-case.For the symmetric groug = Sy (acting onRY

by permuting the coordinates), the multiplicity function is characterized by a single
parameter which is often denoted byl > 0, and the corresponding weight function

is given byws(z) =[], [=: — z;|%/*. The associated Dunkl operators are

1 1—s; .
TS=0,+=Y =29 (i=1...,N),
o — Tr; — l‘j
J7
where s;; denotes the operator transposingand z;. The operatorAg — 2p is a
Schibdinger operator of Calogero-Sutherland type, involving exchange terms and an
external harmonic potential, see [B-F2 and B-F3]. It is given explicitly by

(3.5)

_ al 2 1
As—zp—A—ZZl‘iai'*'aZ {(81'_8]')_

T — T
i=1 i<j Tt

1
xZ; j

In [B-F2], Baker and Forrester study “non-symmetric generalized Hermite polynomials”
EM)_ which they define as the unique eigenfunctions of 3.5 of the form

E£H) =FE, + Z C/l,,l/E,u,v
[l <Iv|

where theE,, v € ZY are the non-symmetric Jack polynomials (associated with
Sy anda) as defined e.g. in [02] (see also [K-S]). Thi™) = ¢=2s/4E,, (just by
Lemma 3.4), and indeed, up to some normalization factorsizfié make up a system

of generalized Hermite polynomials féfy in our sense. This follows from the fact
that the non-symmetric Jack polynomidls, being homogeneous of degree and
forming a vector space basis B, are also orthogonal with respect to Dunkl’s scalar
product [, .] 5. This was proved in [B-F3] via orthogonality of ttie"). A short direct
proof can be given as follows: According to [O2], Prop. 2.10, Hyeare simultaneous
eigenfunctions of the Cherednik operatgrsor Sy, which were introduced in [C] and
can be written as

EG=oax T +1-N+> s;  (i=1,...,N). (3.6)

j>i

In fact, theF, satisfy ¢, E, =7, F,, , where the eigenvalugs= (71, ...,7y) are given
explicitly in [O2]. They are distinct, i.e. i #Z u, thenv # @. On the other hand, it
follows at once from (3.6) together with properties (1.3) for.Js that the Cherednik
operators; are symmetric with respect to,[.] s . Together, this proves that ttig, are
orthogonal with respect to [.]s . Hence a possible choice for the ba§js, } is to set
v, =d,E,, with some normalization constants > O.
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We finally remark that in this case the locally uniform convergence of the series in
Lemma 3.1(ii) extends t&" x C¥, see also [B-F3], Prop. 3.10. This is because the
coefficients of the non-symmetric Jack-polynomialsin their monomial expansions
are known to be nonnegative ([K-S], Theorem 4.11), hgifit€z)| < E,(|z|) for all
z € CV,

(4) A remark on theB -case. Suppose thatr is the Weyl group of typd3y, generated
by sign-changes and permutations. Here the multiplicity function is characterized by
two parameterég, k1 > 0. The weight function is

N

wp(r) = H |Jci|2k1 H \xf — x?\%o.

i=1 i<j

Let 72 andA 5 denote the associated Dunkl operators and Laplacian. We consider the
space
W= {f e CYRY): f(x)= F(z?) forsomeF e C*RM)}

of “completely even” functions; here? = (22,..., 2%). It is easily checked that for
completely every, Agf is also completely even. The restriction&f to W is given

by

N
1 1 1
Aplw = A+2k121:x—1& + 2]6'02(1‘1 ey (& — 8]) + zi+a, (81 +8j)>
i= i<j
1 1
) 2/90;((% 2 +9€j)2) (1= 50)-

Again, the operator A5 — 2p)|w is of Calogero-Sutherland type. Its completely
even polynomial eigenfunctions are discussed in [-BF2 and B-F3] separately from the
Hermite-case; they are called “non-symmetric Laguerre polynomials” and denoted by
EX)(2?). Itis easy to see that they make up the completely even subsystem of a suitably
chosen generalized Hermite-systéi, } for By (and parameterkg, k1, where we
assumekg > 0):

To this end, let agairf’, denote theSy-type non-symmetric Jack polynomials,
corresponding tex = 1/ko. Forv ¢ ZY setE,(z) := E,(z?). These modified Jack
polynomials form a basis d? " 1. The non-symmetric Laguerre polynomials of Baker
and Forrester can be written as

E (%) = e *2/*E, (x).
(Note that the polynomials on the right side are in fact completely even and eigenfunc-
tions of A — 2p.) Involving again theSy-type Cherednik operators from (3), it is

easily checked that th&’,, are orthogonal with respect to Dunkl’s pairing | 5: The
&; induce operatorg; (i = 1,...,N) onW by

& f@) = (EF)a?) i f(z) = F(?),

cf. [B-F3]. Thus &, E, = 7, E,, and a short calculation gives

glf(x) = arX(TPF)(x?) + 1 — N+Zsij = %inTiBf(x) +1-— N+Zsij.

j>i F>i
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Together with (1.3), this shows that tEl,,eare symmetric with respectto,[.] g onPNW,
and yields our assertion by the same argument as in the previous example. We therefore

obtain an orthonormal basisp, } of P with respect to [,.] 5 by settingy, = d, E,
for v = (21, ..., 2nx) and completing the sétp,, , v € (2Z.)"} by a Gram-Schmidt
procedure.

Many properties of the classical Hermite polynomials and Hermite functioi®son
have natural extensions to our general setting. We start with a Rodrigues-formula; for
Sn-type symmetric Hermite polynomials such a formula, involving the (symmetric)
Jack polynomials, is known, see e.g. [K].

Theorem 3.7. For all v € ZY andz € RY we have
H,(x) = (-)"lelF o, (1) e~ 121, (3.7)
Proof. First note that ifp is a polynomial of degree > 0, then
p(T)e " = gla)e T

with a polynomialy of the same degree. This follows easily from induction by the degree
of p, together with the product rule (2.1). In particular, the function

Qu(x) = (1)l p (1) el = elel oy (—T) e~ o

is a polynomial of degre¢/|. In order to prove thaf), = H,, it therefore suffices to
show that for eachy € Z2 with |n| < |v|,

o—In| /]R QU@ H (@) dpi(2) = b1 (3.8)

whered, ,, denotes the Kronecker delta. Using the antisymmetry offthwith respect
to L2(RY, wy(z)dz) (Lemma 2.9 of [D4]) as well as the commutativity F; }, we can
write

2 [ QU@ dn) = [ o D) g @) )i

= Ck /RN ™17 (g (D)e /40, ) (1) wi () dar = /RN (72 %0, (T) ) (x) dpix ().

But as|n| < |v|, we havep,(T) ¢, = [¢v, eyl = 6., from which (3.8) follows.
O

There is also a generating function for the generalized Hermite polynomials:

Proposition 3.8. For n € Z. andz,w € CN put Ly (z,w) := 3,2, H.(2) ¢u(w).
Then

Z L, (z,w) = e ™K (@22, w),

n=0

the convergence of the series being locally unifornCohx CV.
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Proof. Suppose first that,w € RY. By definition of theH, and in view of formula
(2.6) for K,, we may write

[n/2]

Lo(zyw) = 2% 24K (2o w) = 2 Y 1)
m=0

4]

l(w)mKn—Zm(Z7 w)

[n/2] m
= Z ( 1) l('UJ)mKn_zm(ZZ, w)
m!

m=0

for all n € Z.. By analytic continuation, this holds for ailw € C" as well. Using
estimation (2.4), one obtains

[n/2] [n/2]

1 ‘22|n72m|w|n72m

— m 2m
Sn(z,w) = Z = )™ Ko (22, w)] < Z el L By e ey
m=0 m=0
If nis even, sek := n/2 and estimate further as follows:
k
|w|* k Nk—m _ L 2 21\ k
Sn(z,w) < T% m (2|z[%) = H(‘w| (1 +22] )) .

A similar estimation holds if: is odd. This entails the locally uniform convergence of
the serie$ " 2, L, (z,w) onCY x CV, and also that

e’} [eelNee] _1yn .
> Lo(zw)=> ) ( m? I(w)" Ky —2m(2z,w)  (with K; :=0 for j < 0)
n=0 n=0 m=0 ’

- i (_ﬂil)m (w)™ i Ko —om(22,w) = e K (22,w)
=0 :

n=0
forall z,w e CVN. 0O

Applying Lemma 2.1t = ¢, with ¢ = —1/4 anda = 1/, we obtain the following
formula for the generalized Hermite polynomials:

Lemma 3.9. For A € C\ {0}, v € ZY andzx € RY,

(5)"5(5) = (e

Proposition 3.10. The generalized Hermite functiods,,, v € ZY} are a basis of
eigenfunctions of the Dunkl transforf, on L?(RY , wy,(x)dx), satisfying

Di(hy) = 27N 2 1 (=), .

Proof. We use Prop. 2.1 from [D4], which says that forak P andz € CV,

Cl _ —|zl? — z
TZ/Z /]RN e 2 2p(2) K (z, 2) wi(z)e 1= 2dz = 1P/ 2p(2). (3.9

Here again/(z) = YN, 22. Letp, (z) := e**/2H,,(z). In view of (3.9) we can write
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Dr(h,)(€) = /RN H, (2)K(—i&, x) wk(z)e*|x|2/2dx = 2’Y+N/ZC;1€7‘£‘2/ZPV(*Z'E)

for all ¢ € RY. By definition of H, we havep, (z) = 2/*|e2+/4¢, (x). So we arrive at
2 .
Di(h)(§) = 202 e IE2 21 (e84 %, ) (—i).

Application of Lemma 3.9 withA\ = —i now yields that (e®</%p,)(—i¢) =
(—i/2) H,(€), hence

Diu(h)() = 27N 2¢, (i) Ry ().
O

We finish this section with a Mehler-type formula for the generalized Hermite poly-
nomials. For this, we need the following integral representation:

Lemma 3.11. For all =,y € RY andv € ZY we have

VP 1 () = 2 / K (2, —2iy) (i) dp(y)-
RN

Proof. A short calculation, using again relation (2.2), shows that for homogeneous
polynomialsp formula (3.9) may be rewritten as

/ e M/ Ap(x) K (z, 22) dug(z) = e Pp(z) (2 € CM). (3.10)
RN
By linearity, this holds for alp € P. Lemma 3.9 with\ = i further shows that
(NP )
eAk/4<,Ou($) = (E)‘ |HV(—Zx)

As ¢, is homogeneous of degr@g, we thus can write, (2iy) = (—i)*l e=2+/*H* ()
with H(y) = H, (iy). From (3.10) it now follows that

|, Ko =2 e = o (=),

which yields the assertion.

Theorem 3.12. (Mehler-formulaforthed,). Forr € Cwith|r| < 1andallz,y € RV,

Hy(2)Hu(y) 1o _ 1 (|2 + |y[*) 2rx
Z 2lv| = (1_7,2)7+N/2 expy — 1— 2 K 1_r2’y :

veZlN

Proof. Consider the integral
M(z,y,r) =
ci/ K(—Zrz,v)K(—Ziz7x)K(—Ziv,y)wk(z)wk(u)e_(lzlzﬂvlz)d(z,v).
RN xRN
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The bounds (2.4) and (2.5) dki assure that it converges for ale C with |r| < 1 and
allz,y € RY. Now write K(—2rz,v) =Y -2,(2r)"K,(iz, iv) in the integral above.
As

oo
S 20" Ko iz, iv)| < 2l
n=0

the dominated convergence theorem yields that

[e.9]

M(x,y,r) = ;}(27“)" /]RN /RN K, (iz, ) K(—2iz,2) K(—2iv,y) dui(z) dpg(v)
=S @ 3 ([ KC2ina e du) ([ K2 e dn).
n=0 |v|=n R RY

From the above lemma we thus obtain

v Ho @) Hy ()

= o~y \
M(J?,y,’l“) =€ Z r ZIV‘ ]

VEZ{V

(3.11)

and this series, as a power series-jrconverges absolutely for all,y € RY. On
the other hand, iterated integration and repeated application of formula (2.3) and the
reproducing formula (2.8) show that for realith |r| < 1 we have

M(a:,y,r):ck/ (/ K(—ZTZ,U)K(—ZZ'y,v)d,uk(v))K(—Ziz,x)ef‘z‘zwk(z)dz
RN NJRN
= ¢k 67‘y|2/ e(rzfl)lzlzK(Ziry,z) K(—2iz, 2) wi(z) dz

RN

2iry —2ix
= cp(1—1? 7(7+N/2)ef‘y|2/ ef‘ulzK(u, )K(u, )w ) du

_ z|? + |y|? 2rx
=(1-r W”V/?)exp{—' l_y }K(l_rz,y).

By analytic continuation, this holds fdr € C : |r| < 1} as well. Together with (3.11),
this finishes the proof. O

4. The Heat Equation for Dunkl Operators

As before, letA;, denote the generalized Laplacian associated with some finite reflection
groupG onRY and a multiplicity functiork > 0 on its root systenk. Recall that its
action onC?(R™) is given by

Apf=Af+2 k(@)daf,

aERy

where

(Vf@).a) @)= [(0ar)

(o, ) (o, )2

baf(x) =
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Its action may as well be restricted @?(2), whereQ2 ¢ R is open and invariant
under the group operation 6f. We call a functionf € C?(R2) k-subharmonic o182, if
Arf >0o0ongQ.

The generalized Laplacian satisfies the following maximum principle, which will be
important later on:

Lemma 4.1. LetQ C R" be open and:-invariant. If areal-valued functiorfi € C?(Q)
attains an absolute maximumag € €, i.e. f(zo) = sup,c f(x), then

Arf(zo) < 0.

Proof. Let D?f(x) denote the Hessian gfin x € Q. The given situation enforces that
V(o) = 0 andD?f(z0) is negative semi-definite; in particulay.f(zo) < 0. Moreover,
f(xo) > f(oaxo) forall & € R, so the statement is obvious in the case that:y) 7 0
forall a € R. If («, z) = 0 for somex € R, we have to argue more carefully: Choose
anopenbalB C Qwith centerzo. Thens,2z € Bforx € B,ando,z—2 = —(o, z)a.
Now Taylor’s formula yields

F(oua) — F(0) = ~(0,2) (V (@), ) + 3 )7 0 DY@

with some¢ on the line segment betweanando, . It follows that forz € B with
(a,z) # 0 we haves, f(z) = 3a' D?f(£)a. Passing to the limit — zo now leads to

Oa f (o) = %atDZf(xo)a < 0, which finishes the proof. O

At this stage it is not much effort to gain a weak maximum principle fer
subharmonic functions on boundé#nvariant subsets &, which we wantto include
here before passing over to the heat equation. Its range of validity is quite general, in
contrast to the strong maximum principle in [D1], which is restricted-foarmonic
polynomials on the unit ball. Our proof follows the classical one for the usual Laplacian,
as it can be found e.qg. in [J].

Theorem 4.2. LetQ C R" be open, bounded ar@-invariant, and letf € C*(Q) N
C(R2) be real-valued and-subharmonic of2. Then

maxg(f) = maxaa(f) -
Proof. Fix e > 0 and puy := f +¢|x|2. A short calculation givea,(|z|?) = 2N +4y >
0. HenceArg > 0 on, and Lemma 4.1 shows thattannot achieve its maximum on
Q at anyxg € Q. It follows that
maxg (f + 6|513|2) = maxpq (f + 6|$|2)
for eache > 0. Consequently,

maxg (f) + eminglz[? < maxpa(f) + e maxaq|z|?.

The assertion now follows with — O. O
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In this section we consider the generalized heat operator
Hk = A — at

on function space§?(Q x (0, 7)), whereT > 0 andQ C R is open and;-invariant.
Among the variety of initial- and boundary value problems which may be posdd;for
in analogy to the corresponding classical problems, we here focus on the homogeneous
Cauchy problem: Fing € C2(R™ x (0, T)) which is continuous oR™ x [0, 7] and
satisfies
uW(0)=f € CyEN). *-1)

Firstof all, let us note some basic solutions of the generalized heat eqé&tion 0.

Again we sety :=>" k(a) > 0.

{Hku =0 onRY x (0,7),

aERy

Lemma 4.3. For parameters: > 0 andb € R\ {0}, the function

u(x,t) = 1 exp{ ble? }
’ (a — bt)v+N/2 4(a — bt)

solves Hyu = 0 onRY x (—o00,a/b) in caseb > 0, and onRY x (a/b, o0) in case
b < 0.

Proof. The product rule (2.1) together wiﬁ,ﬁle = N + 2v shows that for each
A>0,

N
Ak(ek\w\z) = ZTi (2)\%' eklz\Z) =2\ (N + 2y + 2)\|:)3|2) Al
=1
From this the statement is obtained readily by a short calculation]

In particular, the function

My  _. : Y
Fi(z,t) = t'y+11\<f:/2e | \2/4t’ with M, =477/, ,
is a solution of the heat equatidf),u. = 0 onRY x (0, 00). It generalizes the fundamental
solution for the classical heat equatiagxw — d,u = 0, which is given byFy(z,t) =

(4rt)~N/2¢=12I°/4 The normalization constadt/, is chosen such that
/ Fi(z,t) wi(x)de =1 forall ¢ > 0.
RN

In order to solve the Cauchy problem (4.1), it suggests itself to apply Fourier trans-
form methods — in our case, the Dunkl transform — under suitable decay assumptions
on the initial dataf. In fact, in the classical case = 0 a bounded solution of (4.1)
is obtained by convolving with the fundamental solutiofy, and its uniqueness is a
consequence of a well-known maximum principle for the heat operator. It is not much
effort to extend this maximum principle to the generalized heat opefatan order
to obtain unigeness results; we shall do this in Prop. 4.12 and Theorem 4.13 at the end
of this section. However, in our general situation it is not known whether there exists a
reasonable convolution structure®fY matching the action of the Dunkl transfofn,,

i.e. making it a homomorphism on suitable function spaces. In the one-dimensional case
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this is true: there is &*-convolution algebra associated with the reflection gréppn
R and the multiplicity parametér = 1, > 0; this convolution enjoys many properties of
a group convolution. It is studied in [R] (see also [R-V and Ros].
In the N-dimensional case, we may introduce the notion of a generalized translation
at least on the Schwartz spas€R”) (and similar onL?(R" , wy(z)dx)), as follows:

2
LU@) = o [ PFO K OK G O un(©)di v eRY. f e SR,

(4.2)
Note thatin cas& = 0, we simply havel§ f(z) = f(z+y), while in the one-dimensional
case, (4.2) matches the above-mentioned convolution structie@learly, L} f(x) =
L% f(y); moreover, the inversion theorem for the Dunkl transform assured.flyat f
for y = 0 and D (LY f)(€) = K (iy, £)Dy. f(£). From this it is not hard to see (by use of
the bounds (2.7)) that} f belongs taS(RY) again.

Let us now consider the “fundamental solutiaf(. , ) for ¢ > 0. A short calcula-

tion, using Prop. 3.10 or Lemma 4.11 of [dJ], shows that

(DrFR)(E, ) = e, (4.3)

By use of the reproducing formula (2.8) one therefore obtains from 4.2 the representation

M
LV B, ) = e (/4 g (4.4)

N,

Vi va)

Definition 4.4. The generalized heat kerng}, is given by

My,
Fk(fx, y7t) = tT/ 7(‘I|2+Iy‘ )/4t K( T,y S RN7 t>0.

\F\F)

Lemma 4.5. The heat kerndl';, has the following properties dR”Y x RN x (0, o0):

2 2
(1) Tulont) = gy [ K. K (e

(2) For fixedy € RY, the functionu(z,t) := T'x(z,y,t) solves the generalized heat
equation H,u = 0onRY x (0, c0).

3) /]RN Cp(x,y,t) wg(x)dx = 1.

M, (| —lyN?
4 Tp(z,y,0)| < We (Il =lvly"/4

Proof. (1) is clear from the above derivation. For (2), remember théit/ (iz,£) =
—|¢|2K (iz, €). Hence the assertion follows at once from representation (1) by taking
the differentiations under the integral. This is justified by the decay properties of the
integrand and its derivatives in question (use estimation (2.7) for the partial derivatives
of K (ix, &) with respect tar.) To obtain (3), we employ formula (4.4) as well as (4.2)
and write

/RN Cr(x,y,t) w(x)dx = Dy (L;yFk)(O, t) = K(—iy,0)(Di F1)(0,t) =1

Finally, (4) is a consequence of the estimate (2.4)or O
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Remarks.1. For integer-valued multiplicity functions, Berest and Molchanov [B-M]
constructed the heat kernel for theinvariant part ofH;, (in a conjugated version)
by shift-operator techniques.

2. In contrast to the classical case, it is not yet clear at this stage that the Rerisel
generally nonnegative. In fact, it is still an open conjecture that the functigly, .)
is positive-definite orR" for eachy € R” (cf. the remarks in [dJ and D3]. This
would imply a Bochner-type integral representatiodty, .) and positivity of K on
RY x RY as an immediate consequence. In the one-dimensional case this conjecture
is true, and the Bochner-type integral representation is explicitly known (see [Ros or
R]. By one-parameter semigroup techniques, it will however soon turn ouktht
at least positive oY x R¥,

Definition 4.6. For f € C,(RV) andt > 0 set

/R Tuley DG wrli)y i 10

f(z) if +=0.

Part (4) of Lemma 4.5 assures that for eackr 0, H(t)f is well-defined and
continuous ofR ™. It provides a natural candidate for the solution to our Cauchy problem.
Indeed, when restricting to initial data from the Schwartz sg@&" ), we easily obtain
the following:

Theorem 4.7. Suppose thaf € S(RY). Thenu(x,t) := H(t)f(x), (v,t) € RY x
[0, 00), solves the Cauchy-problem (4.1) for eath> 0. Morover, it has the following
properties:

(i) H(t)f € S(RN) for eacht > 0.

(i) HE+s)f =Ht)H(s)f foralls,t>0.

(i) |H®)f = flloogy — 0 witht — 0.

Proof. Using formula (1) of Lemma 4.5 and Fubini’'s theorem, we can write

u(z,t) = H(t) f(x)

H@)f(x) = { (4.5)

2
Ck

= TN /]R . /R K (i, K (—iy, & 1 (o) wi(©wily) dédy

2
Ck

= gz |, T DOK G O wn(e)ie (4.6)

for all t > 0. (Remember tha§(R") is invariant under the Dunkl transform.) This
makes clear that (i) is satisfied. As before, it is seen that differentiations may be taken
under the integral in (4.6), and thA,u = 0 onRY x (0, co). Moreover, in view of the
inversion theorem for the Dunkl transform, (4.6) holds for 0 as well. Using (2.5),
we thus obtain the estimation

i

IH®F = flosn < VIGlgigs || IPef@IL = e 1) wn©de,

and this integral tends to 0 with— 0. This yields (iii). In particular, it follows that
is continuous ofR™ x [0, o). To prove (ii), note thatDy, (H (1) f) (€) = e 11Dy f(¢) .
Therefore
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Dy (H(t +5)f)(€) = e "D (H(5)) £(8) = D (HOH(5)f) S).
The statement now follows from the injectivity of the Dunkl transfornsgi ). d

We are now going to show that in fact the linear operaibf§ onS(RY) extend to a
positive contraction semigroup on the Banach sgag®’), equipped with its uniform
norm||.||.. To this end, we consider the generalized Laplacdigras a densely defined
linear operator oiwo(RY) with domainS(RY).

Theorem 4.8. (1) The operatorr;, onCo(RY)is closable, and its closur&,, generates
a positive, strongly continuous contraction semigrddfft), * > 0} on Co(RY).

(2) The action ofl’(t) on S(RY) is given byT'(t)f = H(t)f.

Proof. (1) We apply a variant of the Lumer-Phillips theorem, which characterizes gen-
erators of positive one-parameter contraction semigroups (see e.g. [A], Cor. 1.3). It
requires two properties:

(i) The operator;, satisfies the following “dispersivity condition”: Suppose tlfiat
S(RY) is real-valued with makf(z) : = € RN} = f(z0). ThenAy f(xo) < 0.

(i) The range of\I — A, is dense irCo(RY) for some) > 0.

Property (i) is an immediate consequence of Lemma 4.1. Condition (ii) is also satisfied,
because\] — A, mapsS(R™V) onto itself for each\ > 0; this follows from the fact
that the Dunkl transform is a homeomorphism&{fR") and Dy, (A — Ag)f)(€) =
(A + €D Dy £(€). The assertion now follows by the above-mentioned theorem.
(2) It is known from semigroup theory that for evefy e S(RY), the function
t — T(t)f is the unique solution of the abstract Cauchy problem

d -
{ Jult) = Bru(t) fort >0, 4.7)

u(0) = f

within the class of all (strongly) continuously differentiable functiansn [0, co) with
values in the Banach spac€y(R"), ||.|[-). By property (i) of Theorem 4.6 we have
H(t)f € CoRN) for f € S(RN). Moreover, from representation 4.6 &f(t) f it is
readily seen that — H(t)f is continuously differentiable on [@c) and solves (4.7).
This finishes the proof. O

Corollary 4.9. The heatkerndr, is strictly positive oiR™Y xR x (0, co). In particular,
the generalized exponential kernel K satisfies

K(z,y) >0 forall z,y € RV,

Proof. For any initial distributionf € S(R") with f > 0 the last theorem implies that
/ T, y, ) f W) wr(y)dy = T(t)f(x) > 0 forall (z,t) € R x [0, c0).
]RN

As y — T (x,y,t) is continuous oY for each fixedr € RY andt > 0, it follows
thatl'y(z,y,t) > 0 forallz,y € RV andt > 0. HenceK is nonnegative as well. Now
recall again the reproducing identity (2.8), which says that
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e(lx‘zﬂylz)K(Zz, y) = ck / K(z,22)K(y, 22) wi(2) e~ 1P dz
RN

for all ,y € RY. The integrand on the right side is continuous, non-negative and not
identically zero (becaus& (x,0)K (y,0) = 1). Therefore the integral itself must be
strictly positive. [

Corollary 4.10. The semigroudT'(t)} on Co(RY) is given explicitly by
T(t)f = H(t)f, f € Co(RY).

Proof. This is clear from part (2) of Theorem 4.8 and the previous corollary, which
implies that the operator® (¢) are continuous — even contractive —@Gg(R"). O

Remark.The generalized Laplacian also leads to a contraction semigroup on the
Hilbert spaceH = L?(RY,w(x)dz); this generalizes the results of [Ros] for the
one-dimensional case. In fact, 18f denote the multiplication operator cH de-

fined by M f(x) = —|z|2f(z) and with domainD(M) = {f € H : |z|*°f(x) €

H}. M is self-adjoint and generates the strongly continuous contraction semigroup
M@®)f() = e t=Ff) (¢t > 0) on’H. For f € S(RYN), we have the identity
Di(Arf) = M(Dyf). AsS(RYN) is dense iD (M), this shows that, has a self-adjoint
extensionA;, onH, namely A, = D, *M Dy, where hereD;, denotes the Plancherel-
extension of the Dunkl transform t. The domain ofA,, is the Sobolev-type space
D(A) = {f € H 1 |¢2Dif(€) € H}. Being unitarily equivalent withlZ, the operator

Ay, also generates a strongly continuous contraction semigf@@) } on H which is
unitarily equivalent with{ M (¢)}; it is given by

T = [ e D) Kl wn(e)ic

The knowledge thdt, is nonnegative allows also to solve the Cauchy problem (4.1)
in its general setting:

Theorem 4.11. Let f € C,(RN). Thenu(z, t) := H(t) f(x) is bounded oiR"Y x [0, oc)
and solves the Cauchy problem (4.1) for edth- 0.

Proof. In order to see that is twice continuously differentiable dR”™ x (0, oo) with
Hiu = 0, we only have to make sure that the necessary differentiationgmady be
taken under the integral in (4.5). One has to use again the estimations (2.7) for the partial
derivatives of K'; these provide sufficient decay properties of the derivativeE;of
allowing the necessary differentiationswfinder the integral by use of the dominated
convergence theorem. Boundedness &f clear from the positivity and normalization
(Lemma 4.5(3)) of'y; infact, [u(z, )| < ||f|lery ONRY x [0, 00). Finally, we have
to show thatH (t) f(x) — f(&) with x — £ andt — 0. We start by the usual method:
For fixede > 0, choos& > 0 such thalf(y) — f(§)| < efor |y — &| < 2§ and let
M = || f| oo r~ . Keeping in mind the positivity and normalizationof, we obtain for

|z — | < d the estimation

HOM) = FO1 < | [ Tied (o)~ 1))

< / T,y D1 () — F©)wnly)dy
ly—z|<d



Hermite Polynomials and the Heat Equation for Dunkl Operators 539

+ / Ce@ v Ol () — F©)lwn(v)dy
ly—z|>48

<e+ 2M T'y(z,y, hwr(y)dy-
ly—x[>d

It thus remains to show that for eaéh> 0,

iM(z,1)—¢,0) / Ti(z,y, hwi(y)dy = 0.
Jly—z|>8

For abbreviation put
fe= [ Ty dudy,
ly—=z|<o

As I(z,t) < 1, it suffices to prove that liminf (0 I(xz,t) > 1. For this, choose
some positive constast < 6 andh € S(RV) with 0 < h < 1, h(¢) = 1 and such that
h(y) = 0 for ally with |y — £| > § — ¢’. Then for each: with |z — £| < ¢’ the support
of h is contained infly € RY : |y — x| < §}; therefore

[ My sty < 1.
RN
for all (z, t) with |x — £| < §’. But according to Theorem 4.7 we have

M) / BTk, v, 6) wi(y)dy = h(E) = 1
RN

This finishes the proof. 0O

It is still open whether our solution of the Cauchy problem 4.1 is unique within an
appropriate class of functions. As in the classical case, this follows from an maximum
principle for the generalized heat operatoifoh x (0, co). The first step is the following
weak maximum principle foff;, on bounded domains. It is proved by a similar method
as used in Theorem 4.2. By virtue of Lemma 4.1, this proof is literally the same as the
standard proof in the classical case (see e.qg. [J]) and therefore omitted here.

Proposition 4.12. Suppose tha® ¢ R” is open, bounded an@-invariant. ForT > 0
set

Qr =2 x(0,00) and 0.Qr ={(z,t) €0Qr:t=00r x €9Q}.
Assume further that € C?(Q27) N C(Q7) satisfiesH,u > 0in Q. Then
maxg, (1) = Maxa, o, ().
Under a suitable growth condition on the solution, this maximum principle may be

extended to the case whee= R” . The proof is adapted from the one in [dB] for the
classical case.
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Theorem 4.13. (Weak maximum principle fofZ;, on RY). Let Sy := RY x (0,7)
and suppose that. € C?(S7) N C(St) satisfies

{Hkuzo in St,
u(-,0)=f,

where f € Cy(RY) is real-valued. Assume further that there exist positive constants
C, A\, r such that

‘ 2

u(z,t) < C - forall (z,t) € Sy with || > 7.

Then supg (u) < supw(f).-

Proof. Let us first assume that\g < 1. For fixede > 0 set

[

v(x,t) = ulx,t) —e- @T — 1) 7N /2 eXp{ 42T — 1)

}, (z,t) e RN x [0, 27).

By Lemma 4.3p satisfiesH,v = Hiu > 0 in .Sp. Now fix some constard > r and
consider the bounded cylind®r = Q x (0, T) with @ = {z € RY : |z| < p}. Setting
M := sup,~ (f), we havev(z,0) < u(z,0) < M for x € Q. Moreover, for|z| = p
andt € (0,77,

2 1 2
U(l',t) S Ce)\p — €~ Wep /BT.

As )\ < (87)7%, we see that(z,t) < M ond,Qr, provided that is large enough.
Then by Prop. 4.12 we also havér,t) < M onQr . Asp > rwas arbitrary, it follows
that v(z,t) < M onSt. Ase > 0 was arbitrary as well, this implies tha(z, t) < M
on S7. If 8AT > 1, we may subdivideS into finitely many adjacent open strips of
width less than 18\ and apply the above conclusion repeatedly. O

Corollary 4.14. The solution of the Cauchy problem (4.1) according to Theorem 4.11
is unique within the class of functiomsc C?(St) N C(S7) which satisfy the following
exponential growth condition: There exist positive constarita, » such that

lu(z, )] < C-eM** forall (z,t) € Sy with |z| > r.

Acknowledgementlt is a pleasure to thank Charles F. Dunkl and Michael Voit for some valuable comments
and discussions.

Note added in proof

It has ecently been proven by the author thatfor 0, the Dunkl kernek — K (iy, x)

is in fact positive-definite oR” for eachy € R (cf. Remark 2 after Lemma 4.5); this
result will be published in a forthcoming paper.
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