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Abstract

In this paper, we derive explicit product formulas and positive convolution structures for three continuous
classes of Heckman–Opdam hypergeometric functions of type BC. For specific discrete series of multiplic-
ities these hypergeometric functions occur as the spherical functions of non-compact Grassmann manifolds
G/K over one of the skew fields F = R,C,H. We write the product formula of these spherical functions
in an explicit form which allows analytic continuation with respect to the parameters. In each of the three
cases, we obtain a series of hypergroup algebras which include the commutative convolution algebras of
K-biinvariant functions on G as special cases. The characters are given by the associated hypergeometric
functions.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

There is a well-established theory of hypergeometric functions associated with root systems
due to Heckman, Opdam and Cherednik which generalizes and completes the theory of spher-
ical functions on Riemannian symmetric spaces in many respects; see [13,6,14,17] as well as
the literature cited there. In rank one, i.e. for root systems of type BC1, these hypergeometric
functions are known as Jacobi functions and were studied by Flensted-Jensen and Koornwinder
in a series of papers in the 1970s. A comprehensive exposition is given in [9]. In generalization
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of the one-variable case, hypergeometric functions associated with root systems are indexed by
continuous parameters (the multiplicities) on a given root system. They build up the solutions of
the joint eigenvalue problem for an associated system of commuting differential operators which
generalize the radial parts of all invariant differential operators on a Riemannian symmetric space
G/K of the non-compact type. In such geometric cases, the root system and multiplicity func-
tion are given in terms of the root space data of (G,K). In fact, the harmonic analysis associated
with such hypergeometric functions is only the Weyl-group invariant part of a more general har-
monic analysis associated with a commuting family of differential-reflection operators of Dunkl
type, the so-called Cherednik operators. The associated integral transform, which generalizes the
spherical transform on symmetric spaces, is studied in detail in [13]. There are, in particular,
a Paley–Wiener theorem and a Plancherel theorem established for this transform. In the geomet-
ric cases (G,K) is a Gelfand pair, and the corresponding spherical functions satisfy a product
formula which is intimately connected to the harmonic analysis on the commutative algebra of
K-biinvariant measures on G. In the rank one case, a positive product formula and harmonic anal-
ysis for Jacobi functions associated with general non-negative multiplicities were established by
Flensted-Jensen and Koornwinder, see [9]. However, apart from theses cases, the existence of a
positive product formula for multivariable hypergeometric functions and a positivity-preserving
convolution which would allow for a general Lp-theory are still open in general.

A natural idea to extend the convolution from particular geometric cases to general multi-
plicities is analytic continuation of the product formula with respect to the multiplicities. There
are only three classes of geometric cases with an infinite discrete series of multiplicities when
the rank is fixed, namely the non-compact Grassmann manifolds SO0(p, q)/SO(p) × SO(q),
SU(p, q)/S(U(p) × U(q)) and Sp(p, q)/Sp(p) × Sp(q). Their real rank is q and the spherical
functions are hypergeometric functions of type BC with multiplicities depending on p. In the
present paper, we carry out the interpolation program in these cases. We give an explicit product
formula for the spherical functions which allows analytic extension with respect to the multiplic-
ity parameter p. This yields a product formula for three continuous classes of hypergeometric
functions of type BC interpolating the group cases. Based on the product formula, we obtain a
complete picture of harmonic analysis within the framework of commutative hypergroups on the
associated Weyl chamber. In particular, the hypergeometric transform becomes an interpretation
as a hypergroup Fourier transform.

The paper is organized as follows: In Section 2, we calculate the product formula for the spher-
ical functions on the Grassmann manifolds. Section 3 gives a short account on Heckman–Opdam
theory as well as the identification of the spherical functions on Grassmann manifolds as hyper-
geometric functions of type BCq . The extension of the product formula to a continuous range of
multiplicities interpolating the dimension parameter p is carried out in Section 4, and Section 5
is devoted to the study of the associated hypergroup algebras on the Weyl chamber. A central
part of this section is the characterization of the bounded multiplicative functions which gener-
alizes well-known results for spherical functions. The reasoning here is, however, not based on
an integral representation but on exponential bounds for the Heckman–Opdam hypergeometric
functions and their generalized Harish–Chandra expansion.

2. Spherical functions on Grassmann manifolds and their product formula

We consider the Grassmann manifolds G/K where G is one of the indefinite orthogonal,
unitary or symplectic groups SO0(p, q), SU(p, q) or Sp(p, q) with maximal compact subgroup
K = SO(p) × SO(q), S(U(p) × U(q)) or Sp(p) × Sp(q), respectively. For a unified point of
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view we also consider K as subgroup of U(p;F)×U(q,F), where U(p;F) is the unitary group
over F = R,C or H. In the same way G is a subgroup of the indefinite unitary group U(p,q;F),
which is the isometry group for the quadratic form

|x1|2 + · · · + |xp|2 − |xp+1|2 − · · · − |xp+q |2

on F
p+q . To avoid exceptions which will be irrelevant lateron, we shall exclude the case p = q

and assume that p > q � 1.
It is well known that (G,K) is a Gelfand pair (this follows from Corollary 1.5.4 of [4]).

The spherical functions of this pair are characterized as the non-zero K-biinvariant continuous
functions ϕ : G → C which satisfy the product formula

ϕ(g)ϕ(h) =
∫
K

ϕ(gkh)dk for all g,h ∈ G (2.1)

where dk denotes the normalized Haar measure of K . This means that the space of continuous,
K-biinvariant compactly supported functions on G is a commutative subalgebra of the convo-
lution algebra Cc(G). The space Cc(G//K) on the double coset space G//K therefore inherits
the structure of a commutative topological algebra. The spherical functions of (G,K) provide
exactly the non-zero continuous characters of this algebra, via f �→ ∫

G
f (x)ϕ(x) dx.

To make the product formula explicit, we recall the KAK-decomposition of G. Let g and k

denote the Lie algebras of G and K . g has the Cartan decomposition g = k ⊕ p with p consisting
of the (p + q)-block matrices (

0 X

X∗ 0

)
, X ∈ Mp,q(F).

Let a be a maximal abelian subalgebra of p. Then G = KAK with A = expa. The spherical
functions of (G,K) are therefore determined by their values on A. Actually, they are already
determined by their values on the topological closure A+ = exp(a+) if a+ is the positive Weyl
chamber associated with an (arbitrary) choice of positive roots within the restricted root system
� = �(a,g) of g with respect to a. We may choose for a the set of all matrices Ht ∈ Mp+q(F)

of the form

Ht =
(

0p×p
t

0(p−q)×q

t 0q×(p−q) 0q×q

)

where t := diag(t1, . . . , tq) is the q × q diagonal matrix corresponding to t = (t1, . . . , tq) ∈ R
q

(here R is considered as a subfield of C and H in the usual way). The real rank of G is q , and the
restricted root system � = �(a,g) is of type BCq with the understanding that zero is allowed
as a multiplicity on the long roots. In this way the limiting case Bq , which occurs for F = R,
is included. We identify a with R

q via Ht �→ t , where the coordinates are with respect to the
standard basis e1, . . . , eq of R

q . Then the Killing form on a becomes the standard Euclidean inner
product on R

q . Here is a comprehensive table of the roots α and their (geometric) multiplicities
m(α), that is the dimensions of the corresponding root spaces; cf. Table 9 of [12]. The constant
d denotes the dimension of F as an R-vector-space, i.e. d = 1,2,4 for F = R,C,H.
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root α multiplicity m(α) = mp,d(α)

α(t) = ±ti ; 1 � i � q d(p − q)

α(t) = ±2ti ; 1 � i � q d − 1
α(t) = ±ti ± tj ; 1 � i < j � q d

(2.2)

Thanks to our restriction p > q , the Weyl group of (a,g) is the hyperoctahedral group in all
cases, and as a Weyl chamber we may choose

a+ := {
Ht : t = (t1, . . . , tq) ∈ R with t1 > t2 > · · · > tq > 0

}
.

In our identification of a with R
q , the closed chamber a+ corresponds to the set

C := {
t ∈ R

q : t1 � t2 � · · · � tq � 0
}
.

A short calculation gives

A+ =
{

at =
( cosh t 0q×(p−q) sinh t

0(p−q)×q Ip−q 0(p−q)×q

sinh t 0q×(p−q) cosh t

)
∈ Mp+q(F): t ∈ C

}
.

Consider now

g =
(

u 0
0 v

)
at

(
ũ 0
0 ṽ

)
∈ KatK.

To obtain t back from g, we write g in (p × q)-block notation as

g =
(

A(g) B(g)

C(g) D(g)

)
.

A short calculation gives

D(g) = v cosh t ṽ. (2.3)

Let specs(x) denote the singular spectrum of x ∈ Mq(F), that is,

specs(x) =
√

spec
(
x∗x

) = (λ1, . . . , λq) ∈ R
q

with the singular values λi of x ordered by size: λ1 � · · · � λq � 0. Eq. (2.3) shows that the
singular spectrum of D(g) is given by specs(D(g)) = (cosh t1, . . . , cosh tq) =: cosh t . Therefore

t = arcosh
(
specs

(
D(g)

))
for each g ∈ KatK, t ∈ C, (2.4)

where arcosh is also taken componentwise. (Observe that D(g) � Iq and therefore all its singular
values are � 1.)
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Let us now evaluate the product formula (2.1) for the spherical functions of (G,K) explicitly.
As spherical functions are K-biinvariant, it suffices to calculate the product formula for argu-
ments g = at , h = as ∈ A+. Write at ∈ A+ in (p × q)-block notation:

at =
(

At Bt

Ct Dt

)
.

Then for at , as ∈ A+ and k = (
u 0
0 v

) ∈ K we obtain

atkas =
(∗ ∗

∗ CtuBs + DtvDs

)
and therefore

D(atkas) = CtuBs + DtvDs = (sinh t | 0)u

(
sinh s

0

)
+ cosh t v cosh s.

With the block matrix

σ0 :=
(

Iq

0

)
∈ Mp,q(F)

this can be written as

D(atkas) = sinh t σ ∗
0 uσ0 sinh s + cosh t v cosh s.

Notice that σ ∗
0 uσ0 ∈ Mq(F) is a truncation of u given by the upper left (q × q)-block of σ .

Let ϕ be a spherical function of (G,K) and put ϕ̃(t) := ϕ(at ) for t ∈ C. Then according to
formula (2.4) it satisfies

ϕ̃(t)ϕ̃(s) =
∫
K

ϕ̃
(
arcosh

(
specs D(atkas)

))
dk. (2.5)

In order to achieve a simplification of this formula we first extend the integral over K to an
integral over U(p;F) × U0(q;F) =: K0, where U0(q;F) denotes the connected component of
the identity in U(q;F). If F = H then K = K0, but in the other cases K is a proper normal
subgroup of K0. More precisely, let T := {z ∈ F: |z| = 1} and H the group of diagonal matrices
H = {dz: z ∈ T} ⊂ Mp+q(F) where the diagonal entries of dz are equal 1 apart from the entry in
position (p,p), which is z. Then K0 = H � K ∼= T � K . Suppose f is a continuous function on
K0 of the form

f (k0) = f̃
(
σ ∗

0 uσ0, v
)

for k0 =
(

u 0
0 v

)
.

Then f (dzk) = f (k) for all z ∈ T and k ∈ K and thus by Weyl’s formula,∫
f (k0) dk0 =

∫ (∫
f (dzk) dk

)
dz =

∫
f (k) dk
K0 T K K
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where on each of the involved groups, integration is with respect to the normalized Haar measure.
Thus

ϕ̃(t)ϕ̃(s) =
∫

U(p,F)

∫
U0(q,F)

ϕ̃
(
arcosh

(
specs

(
sinh t σ ∗

0 uσ0 sinh s + cosh t v cosh s
)))

dudv

with du and dv the normalized Haar measures on U(p,F) and U0(q,F) respectively. Here the
integrand depends only on v and the truncation σ ∗

0 uσ0, which is contained in the closure of the
ball

Bq := {
w ∈ Mq(F): w∗w < I

}
.

Under the assumption p � 2q this situation is covered by the following reduction lemma,
which is a consequence of Corollary 3.3 of [15]. Let

γ := d

(
q − 1

2

)
+ 1

and for μ ∈ C with Reμ > γ − 1, put

κμ =
∫
Bq

�
(
I − w∗w

)μ−γ
dw. (2.6)

Here �(x) denotes the determinant of x ∈ Mq(F), which is defined as the usual determinant
for F = R or C, while for F = H we choose the Dieudonné determinant, i.e. �(x) = (detC(x))1/2

when x is considered as a complex matrix in the usual way.

Lemma 2.1. Suppose that p � 2q . Then for continuous f : Bq → C,

∫
U(p,F)

f
(
σ ∗

0 uσ0
)
du = 1

κpd/2

∫
Bq

f (w)�
(
I − w∗w

)pd/2−γ
dw.

Proof. Consider the action of the unitary group U(p,F) on Mp,q(F) by left multiplication,
(u, x) �→ ux. The orbit of the matrix σ0 under this action is the Stiefel manifold

Σp,q = {
x ∈ Mp,q(F): x∗x = Iq

}
.

Consider further the map U(p,F) → Σp,q , u �→ uσ0. The image measure of du under this map
coincides with the normalized U(p,F)-invariant measure dσ on Σp,q . Therefore

∫
f

(
σ ∗

0 uσ0
)
du =

∫
Σ

f
(
σ ∗

0 σ
)
dσ.
U(p,F) p,q
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But σ ∗
0 σ is the q × q matrix given by the first q rows of σ only. According to Corollary 3.3

of [15], ∫
Σp,q

f
(
σ ∗

0 σ
)
dσ = 1

κpd/2

∫
Bq

f (w)�
(
I − w∗w

)pd/2−γ
dw, (2.7)

which finishes the proof. �
We thus obtain

Proposition 2.2. Suppose that p � 2q . Then the spherical functions ϕ̃(t) = ϕ(at ) satisfy the
product formula

ϕ̃(t)ϕ̃(s) = 1

κpd/2

∫
Bq

∫
U0(q,F)

ϕ̃
(
arcosh

(
specs(sinh t w sinh s + cosh t v cosh s )

))
· �(

I − w∗w
)pd/2−γ

dv dw.

Notice that the dependence on p now occurs only in the density, not in the domain of integra-
tion.

3. The spherical functions as BCq -hypergeometric functions

In this section, we first provide the necessary background on hypergeometric functions as-
sociated with root systems. For an introduction to the subject, we refer to [13,14] and part I
of [6]. In a second part, we identify the spherical functions on Grassmann manifolds within this
framework.

Let a be a finite-dimensional Euclidean space with inner product 〈 . , . 〉 which is extended
to a complex bilinear form on the complexification aC of a. We identify a with its dual space
a∗ = Hom(a,R) via the given inner product. Let R ⊂ a be a (not necessarily reduced) root
system and let W be the Weyl group of R. For α ∈ R we write α∨ = 2α/〈α,α〉 and denote by
σα(x) = x − 〈x,α∨〉α the orthogonal reflection in the hyperplane perpendicular to α.

A multiplicity function on R is a function k : R → C which is W -invariant, i.e. k(wα) = k(α)

for all α ∈ R. We denote by K the vector space of multiplicity functions on R and fix a positive
subsystem R+ of R. For k ∈ K we put

ρ(k) := 1

2

∑
α∈R+

k(α)α.

The Cherednik operator in direction ξ ∈ a is the differential-reflection operator on aC defined by

Tξ (k) = ∂ξ +
∑

α∈R+
k(α)〈α, ξ 〉 1

1 − e−α
(1 − σα) − 〈

ρ(k), ξ
〉

where ∂ξ is the usual directional derivative and eλ(ξ) := e〈λ,ξ〉 for λ, ξ ∈ aC. For fixed multi-
plicity k, the operators {Tξ (k), ξ ∈ aC} commute. Therefore the assignment ξ �→ Tξ (k) uniquely
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extends to a homomorphism on the symmetric algebra S(aC) over aC, which may be identified
with the algebra of complex polynomials on aC. The differential-reflection operator which in this
way corresponds to p ∈ S(aC) will be denoted by T (p, k). Let S(aC)W denote the subalgebra
of W -invariant elements in S(aC). Then for each p ∈ S(aC)W , the Cherednik operator T (p, k)

coincides with a W -invariant differential operator on C∞(a)W , the W -invariant functions from
C∞(a). The following theorem establishes hypergeometric functions associated with root sys-
tems. It was proved by Heckman and Opdam in a series of papers, see [6] as well as [13].

Theorem 3.1. There exists an open regular set Kreg ⊆ K with {k ∈ K: Re k � 0} ⊆ Kreg such
that for each k ∈ Kreg and each spectral parameter λ ∈ aC, the hypergeometric system

T (p, k)f = p(λ)f ∀p ∈ S(aC)W (3.1)

has a unique W -invariant solution f (t) = F(λ, k; t) which is analytic on a and satisfies
f (0) = 1. Moreover, there is a W -invariant tubular neighborhood U of a in aC such that F

extends to a (single-valued) holomorphic function on aC × Kreg × U , which is called the hyper-
geometric function associated with R. F(λ, k; t) is W -invariant both in λ and t .

Suppose that k is real. Then for W -invariant polynomials p with real coefficients, we have

T (p, k)F (λ, k; . ) = p(λ)F (λ, k; . )
which shows that

F(λ, k; t) = F(λ, k; t) ∀t ∈ a. (3.2)

The uniqueness of the solution to the hypergeometric system also implies the equivalence

F(λ, k; . ) = F
(
λ′, k; . ) ⇐⇒ λ′ ∈ W.λ.

Let C∞
c (a)W denote the W -invariant functions from C∞

c (a). The hypergeometric transform
of f ∈ C∞

c (a)W is defined by

F f (λ) =
∫
a

f (t)F (−λ, k; t) dω(t)

where the measure ω = ωk on a is given by

dω(t) =
∏
α∈R

∣∣e〈α,t〉/2 − e−〈α,t〉/2
∣∣k(α)

dt (3.3)

(dt denotes the Lebesgue measure on a). There are Paley–Wiener and Plancherel theorems
for this transform which are obtained by Weyl-group symmetrization of the (non-symmetric)
Cherednik transform studied in [13]; see also [14]. Define the measure ν = νk on ia by

dν(λ) = 1
2

dλ
|c(λ, k)|
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where dλ denotes the Lebesgue measure on ia and c( . , k) is the c-function on aC,

c(λ, k) =
∏

α∈R+

Γ (〈λ,α∨〉 + 1
2k(α

2 ))

Γ (〈λ,α∨〉 + 1
2k(α

2 ) + k(α))
·

∏
α∈R+

Γ (〈ρ(k),α∨〉 + 1
2k(α

2 ) + k(α))

Γ (〈ρ(k),α∨〉 + 1
2k(α

2 ))
(3.4)

with the convention that k(α
2 ) = 0 if α

2 /∈ R.

Theorem 3.2. (See [13, Theorems 8.6 and 9.13].)

(1) The hypergeometric transform F is an isomorphism from C∞
c (a)W onto the W -invariant

Paley–Wiener space PW(aC)W , where PW(aC) consists of all holomorphic functions f on
aC satisfying the growth condition

∃R > 0, ∀N ∈ N: sup
λ∈aC

(
1 + |λ|)N

e−R|Reλ|∣∣f (λ)
∣∣ < ∞.

The inverse of F : C∞
c (a)W → PW(aC)W is given by

F −1h(t) =
∫
ia

h(λ)F (λ, k; t) dν(λ).

(2) Let f,g ∈ C∞
c (a)W and let a+ be the Weyl chamber of W corresponding to R+. Then∫

a+

f (t)g(t) dω(t) = c

∫
ia+

F f (λ)F g(λ)dν(λ)

where c > 0 is a normalization constant.

According to Proposition 6.1 of [13],∣∣F(λ, k; t)∣∣ � |W |1/2 · e|Reλ||t | for t ∈ a, λ ∈ aC.

Thus for f ∈ C∞
c (a)W and fixed s ∈ a, the function λ �→ F f (λ)F (λ, k; s) belongs to PW(aC)W ,

and we obtain the following

Corollary 3.3. For s ∈ a and f ∈ C∞
c (a)W , the generalized translate

τsf (t) :=
∫
ia

F f (λ)F (λ, k; s)F (λ, k; t) dν(λ)

again belongs to C∞
c (a)W . Moreover,

F (τsf )(λ) = F(λ, k; s)F f (λ).
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Let us now turn to the spherical functions on the Grassmann manifolds G/K . They are iden-
tified with hypergeometric functions of type BCq , as follows: Consider a = R

q with the standard
inner product 〈 . , . 〉 and regard the restricted root system of G/K as a subset of R

q as described
in Section 2. With our convention including the case F = R, it is given by

BCq = {±ei,±2ei,1 � i � q} ∪ {±ei ± ej ,1 � i < j � q}

where (e1, . . . , eq) denotes the standard basis of R
q . The corresponding Weyl group W is the

hyperoctahedral group, which is generated by permutations and sign changes of the ei . Put R :=
{2α: α ∈ BCq} and R+ := {2ei,4ei,1 � i � q} ∪ {2(ei ± ej ),1 � i < j � q} and denote the
associated hypergeometric function by FBCq . Let m = mp,d be one of the multiplicity functions
on BCq in the geometric cases according to table (2.2) and define k = kp,d on R by

kp,d(2α) = 1

2
mp,d(α), α ∈ BCq .

Writing k in the form k = (k1, k2, k3) where k1 and k2 are the values on the roots ±2ei and
±4ei , respectively and k3 is the value on the roots 2(±ei ± ej ), we have

kp,d = (
d(p − q)/2, (d − 1)/2, d/2

)
.

The spherical functions of G/K are then indexed by spectral parameters λ ∈ C
q and given by

ϕλ(at ) = ϕ̃λ(t) = FBCq (iλ, kp,d ; t), t ∈ C.

This follows from the fact that for k = kp,d , the commutative algebra {D(p,k); p ∈ S(Cq)W }
just represents the radial parts of the algebra of all invariant differential operators on G/K , see
Remark 2.3 of [5].

Example 3.4 (The rank one case). Here R+ = {2,4} ⊂ R. We have multiplicities k1, k2 and
ρ = ρ(k) = k1 + 2k2. According to the example in [13, p. 89f], the associated hypergeometric
function is given by

FBC1(λ, k; t) = 2F1

(
λ + ρ

2
,
−λ + ρ

2
, k1 + k2 + 1

2
;− sinh2 t

)
.

With α := k1 + k2 − 1
2 , β := k2 − 1

2 and the Jacobi functions ϕ
(α,β)
λ as in [9], this can be written

as

FBC1(iλ, k; t) = ϕ
(α,β)
λ (t).

The geometric cases correspond to α = dp
2 − 1, β = d

2 − 1. In Proposition 2.2, the U0(1)-integral
cancels (use the coordinate transform w̃ := v−1w), and the product formula reduces to
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ϕ̃(t)ϕ̃(s) = 1

κpd/2

∫
B1

ϕ̃
(
arcosh |cosh t cosh s + w sinh t sinh s|) · (1 − |w|2) pd

2 −γ
dw

=
∫

Σp,1

ϕ̃
(
arcosh |cosh t cosh s + x1 sinh t sinh s|)dσ(x)

where ϕ̃ = ϕ
(α,β)
λ with α = pd

2 − 1, β = d
2 − 1. The second identity is obtained by formula

(2.7) for the sphere Σp,1 = {x ∈ Fp: |x| = 1}. In view of relation (5.24) in [9], this formula just
coincides with the product formula in rank 1 given in Section 7 of [9],

ϕ
(α,β)
λ (t)ϕ

(α,β)
λ (s) = cα,β

1∫
0

π∫
0

ϕ
(α,β)
λ

(
arcosh |cosh t cosh s + reiψ sinh t sinh s|)

· (1 − r2)α−β−1
r2β+1(sinψ)2βr dr dψ (3.5)

which degenerates for β = −1/2 (i.e. F = R) to an integral over [−1,1] with respect to (1 −
r2)α−1/2 dr .

In fact, formula (3.5) was established in [3] for arbitrary α � β � − 1
2 with (α,β) �=

(− 1
2 ,− 1

2 ), i.e. arbitrary non-negative root multiplicities different from zero.

4. Continuation of the product formula

In the following, q and d = dimR(F) are fixed. For μ ∈ C with Reμ > γ − 1 and spectral
parameter λ ∈ C

q define

ϕ
μ
λ (t) = FBCq (iλ, kμ; t), t ∈ R

q,

with multiplicity

kμ = (
μ − dq/2, (d − 1)/2, d/2

)
.

If μ = pd/2, then kμ = kp,d as in the previous section.

Theorem 4.1. For μ ∈ C with Reμ > γ −1, the hypergeometric functions ϕ
μ
λ satisfy the product

formula

ϕ
μ
λ (t)ϕ

μ
λ (s) = (δt ∗μ δs)

(
ϕ

μ
λ

)
with the probability measures

(δt ∗μ δs)(f ) = 1

κμ

∫
B

∫
U (q,F)

f
(
d(t, s;v,w)

)
�

(
I − w∗w

)μ−γ
dv dw
q 0



2790 M. Rösler / Journal of Functional Analysis 258 (2010) 2779–2800
where κμ is given by (2.6) and the argument is

d(t, s;v,w) = arcosh
(
specs(sinh t w sinh s + cosh t v cosh s )

)
.

This is a partial generalization of formula (3.5) by Flensted-Jensen and Koornwinder for BC1
to higher rank.

Proof of Theorem 4.1. The basic idea is analytic continuation with respect to the parameter μ

in the right half-plane by use of

Carlson’s theorem. (See e.g. [18, p. 186].) Let f be a function which is holomorphic in a
neighborhood of {z ∈ C: Re z � 0} satisfying f (z) = O(ec|z|) for some constant c < π . Suppose
that f (n) = 0 for all n ∈ N0. Then f is identically zero.

A direct application of Carlson’s theorem would require moderate exponential growth of the
hypergeometric function with respect to the relevant multiplicity parameter k1 in a right half-
plane. So far however, sufficient exponential estimates are available only for real, non-negative
multiplicities (Proposition 6.1 of [13], and the results of [17]). We therefore proceed in two
steps. First, we restrict to a discrete set of spectral parameters, for which the hypergeometric
function is a Jacobi polynomial and the required growth properties are guaranteed. In a second
step, we fix a non-negative multiplicity and carry out analytic continuation with respect to the
spectral parameter, using known bounds on the hypergeometric function for non-negative multi-
plicities.

To go into detail, let R∨ = {α∨: α ∈ R} be the root system dual to R, Q∨ = Z.R∨ the coroot
lattice and P = {λ ∈ R

q : 〈λ,α∨〉 ∈ Z ∀α ∈ R} the weight lattice of R. Further, denote by P+ =
{λ ∈ P : 〈λ,α∨〉 � 0 ∀α ∈ R+} the set of dominant weights associated with R+. Then for k ∈
Kreg and λ ∈ P+,

FBCq

(
λ + ρ(k), k; t) = c

(
λ + ρ(k), k

)
Pλ(k; t)

where c(λ, k) is the c-function (3.4) which is meromorphic on C
q × K , and the Pλ are the

Heckman–Opdam Jacobi polynomials of type BCq ; see [6, Eq. (4.4.10)]. In our case, ρ(k) is
given by

ρ(k) = (k1 + 2k2)

q∑
i=1

ei + 2k3

q∑
i=1

(q − i)ei

=
(

μ − dq

2
+ d − 1

) q∑
i=1

ei + d

q∑
i=1

(q − i)ei .

Using the asymptotics of the gamma function, one checks that for fixed λ ∈ P+, the function
c(λ + ρ(kμ), kμ) is bounded away from zero as μ → ∞ in the right half-plane

H = {μ ∈ C: Reμ > γ − 1}.
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Indeed, for ρ = ρ(k) with k = (k1, k2, k3) one has

c(λ + ρ, k) =
q∏

i=1

Γ (λi + ρi)Γ (ρi + k1)

Γ (λi + ρi + k1)Γ (ρi)
·

q∏
i=1

Γ (
λi+ρi

2 + 1
2k1)Γ (

ρi

2 + 1
2k1 + k2)

Γ (
λi+ρi

2 + 1
2k1 + k2)Γ (

ρi

2 + 1
2k1)

·
∏
i<j

Γ (
λi+ρi−λj −ρj

2 )Γ (
ρi−ρj

2 + k3)

Γ (
λi+ρi−λj −ρj

2 + k3)Γ (
ρi−ρj

2 )
·
∏
i<j

Γ (
λi+ρi+λj +ρj

2 )Γ (
ρi+ρj

2 + k3)

Γ (
λi+ρi+λj +ρj

2 + k3)Γ (
ρi+ρj

2 )
.

As k1 → ∞ in the half-plane Re k1 > 0, the first product is asymptotically equal to
∏q

i=1(
1
2 )λi ,

the second one is asymptotically equal to 1, the third product is independent of k1, and the last
product is asymptotically equal to 1. Thus for fixed λ, c(λ + ρ, k) is bounded away from zero.

According to Proposition 2.2, the Pλ(kμ; . ) with μ = pd/2 (p � 2q) satisfy the product
formula

Pλ(kμ; t)Pλ(kμ; s)

= 1

κμ

∫
Bq

∫
U0(q,F)

1

c(λ + ρ(kμ), kμ)
Pλ

(
kμ;d(t, s;v,w)

)
�

(
I − w∗w

)μ−γ
dv dw (4.1)

for all t, s ∈ R
q . The Jacobi polynomials Pλ(k; . ) have rational coefficients in k with respect

to the monomial basis eν , ν ∈ P . This is shown in Par. 11 of [10], but it also follows from the
explicit determinantal construction in [1, Theorem 5.4]. Moreover, as derived in the proof of
Theorem 3.6 of [15], the normalized integral

1

|κμ|
∫
Bq

∣∣�(
I − w∗w

)μ−γ ∣∣dw

converges exactly if Reμ > γ − 1 and is of polynomial growth as μ → ∞ in H . Thus for
fixed t, s, both sides of (4.1) are holomorphic in μ ∈ H and of polynomial growth as μ → ∞
in H . Moreover, they coincide for all half-integer values μ = pd/2, p � 2q . Application of
Carlson’s theorem yields that formula (4.1) holds for all μ ∈ H . This proves the stated result for
spectral parameters λ + ρ(k) with λ ∈ P+ and k = kμ, μ ∈ H .

Denote again by C ⊂ R
q the closed Weyl chamber associated with R+. In order to extend

the product formula with respect to the spectral parameter, we fix s, t ∈ C as well as k = kμ and
restrict to real μ > γ − 1 first. Then k is non-negative, and we have the following exponential
estimate for FBCq from [13, Proposition 6.1]:

∣∣FBCq (λ, k; t)∣∣ � |W |1/2emaxw∈W Re〈wλ,t〉.

Let H ′ := {λ ∈ C
q : Reλ ∈ C0}. Then for λ ∈ H ′ and all w ∈ W ,

Re〈wλ, t〉 � Re〈λ, t〉.
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Choose a constant vector a ∈ C0 so large that d(t, s;v,w) − a is contained in the negative
chamber −C for all v ∈ U(q) and all w ∈ Bq . Then consider

F̃ (λ, k; t) := e−〈λ,a+t〉FBCq (λ, k; t).

The function F̃ is bounded as a function of λ ∈ H ′. If the spectral parameter is of the form
λ = λ̃ + ρ(kμ) with λ̃ ∈ P+, then by our previous results we have the product formula

F̃ (λ, kμ; t)F̃ (λ, kμ; s)
= 1

κμ

∫
Bq

∫
U0(q,F)

e〈λ,d(t,s;v,w)−a−s−t〉F̃
(
λ, kμ;d(t, s;v,w)

)
�

(
I − w∗w

)μ−γ
dv dw. (4.2)

Both sides are holomorphic and bounded in λ ∈ H ′. We are now going to carry out analytic ex-
tension with respect to λ. For this, we choose a set of fundamental weights {λ1, . . . , λq} ⊂ P+
and write λ ∈ H ′ as λ = ∑q

i=1 ziλi with coefficients zi ∈ {z ∈ C: Re z > 0}. Successive holo-
morphic extension with respect to z1, . . . , zq by use of Carlson’s theorem then yields the validity
of (4.2) for all λ ∈ H ′, and thus, by W -invariance and continuity, for all λ ∈ C

q . This proves the
stated product formula for real μ > γ − 1. Analytic continuation finally gives it for all μ ∈ H ,
which finishes the proof of Theorem 4.1. �
5. Hypergroup algebras associated with FBC

The positive product formula of Theorem 4.1 leads to three continuous series (d = 1,2,4) of
positivity-preserving convolution algebras on the Weyl chamber C which are parametrized by μ.
We shall describe them as commutative hypergroups, having Heckman–Opdam hypergeometric
functions as characters. In the group cases, which correspond to the discrete values μ = pd/2,
these hypergroup algebras are just given by the double coset convolutions associated with the
Gelfand pairs (G,K) as in Section 2. In the rank one case, they coincide with the well-known
one-variable Jacobi hypergroups.

Let us first briefly recall some key notions and facts from hypergroup theory. For a detailed
treatment, the reader is referred to [8]. Hypergroups generalize the convolution algebras of locally
compact groups, with the convolution product of two point measures δx and δy being in general
not a point measure again but a probability measure depending on x and y.

Definition 5.1. A hypergroup is a locally compact Hausdorff space X with a weakly continu-
ous, associative convolution ∗ on the space Mb(X) of regular bounded Borel measures on X,
satisfying the following properties:

1. The convolution product δx ∗ δy of two point measures is a compactly supported probability
measure on X, and supp(δx ∗ δy) depends continuously on x and y with respect to the so-
called Michael topology on the space of compact subsets of X (see [8]).

2. There is a neutral element δe satisfying δe ∗ δx = δx = δx ∗ δe for all x ∈ X.
3. There is a continuous involution x �→ x̄ on X such that for all x, y ∈ X, e ∈ supp(δx ∗ δy) is

equivalent to x = ȳ, and δx̄ ∗ δȳ = (δy ∗ δx)
−. Here for μ ∈ Mb(X), the measure μ− is given

by μ−(A) = μ(A−) for Borel sets A ⊂ X.
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Due to the weak continuity, the convolution of measures on a hypergroup is uniquely deter-
mined by the convolution of point measures.

If the convolution is commutative, then (Mb(X),∗) becomes a commutative Banach-∗-
algebra with identity δe . Moreover, there exists an (up to a multiplicative factor) unique Haar
measure ω, that is a positive Radon measure on X satisfying∫

X

f (x ∗ y)dω(y) =
∫
X

f (y)dω(y) for all x ∈ X, f ∈ Cc(X),

where f (x ∗ y) = (δx ∗ δy)(f ). The multiplicative functions of a commutative hypergroup X are
given by

χ(X) = {
ϕ ∈ C(X): ϕ �= 0, ϕ(x ∗ y) = ϕ(x)ϕ(y) ∀x, y ∈ X

}
.

The decisive object for harmonic analysis is the dual space of X, defined by

X̂ := {
ϕ ∈ χ(X): ϕ is bounded and ϕ(x) = ϕ(x) ∀x ∈ X

}
.

The elements of X̂ are called characters. As in the case of LCA groups, the dual of a commu-
tative hypergroup is a locally compact Hausdorff space with the topology of locally uniform
convergence. It is naturally identified with the symmetric part of the spectrum of the convolu-
tion algebra L1(X,ω). In contrast to the group case, X̂ is often a proper subset of χ(X). The
Fourier transform on L1(X,ω) is defined by f̂ (ϕ) := ∫

X
f ϕ dω. It is injective, and there exists

a unique positive Radon measure π on X̂, called the Plancherel measure of (X,∗), such that
f �→ f̂ extends to an isometric isomorphism from L2(X,ω) onto L2(X̂,π). As for groups, there
are convolutions between functions from various classes of Lp-spaces (or measures) on a hyper-
group with Haar measure ω. For example, if 1 � p � ∞ and f ∈ L1(X,ω), g ∈ Lp(X,ω), then
the convolution product

f ∗ g(x) =
∫
X

f (x ∗ y)g(y) dω(y)

belongs to Lp(X,ω) and satisfies ‖f ∗ g‖p,ω � ‖f ‖1,ω‖g‖p,ω.
Let us come back to the situation of Section 3. With the notions from there, we can now state

our main theorem:

Theorem 5.2.

(1) Let μ > γ − 1. Then the probability measures given by

(δs ∗μ δt )(f ) = 1

κμ

∫
Bq

∫
U0(q,F)

f
(
d(s, t;v,w)

)
�

(
I − w∗w

)μ−γ
dv dw (5.1)

for s, t ∈ C define a commutative hypergroup structure Cμ = (C,∗μ) on the chamber
C ∼= a+. The neutral element is 0 and the involution is the identity mapping. The support
of δs ∗μ δt satisfies



2794 M. Rösler / Journal of Functional Analysis 258 (2010) 2779–2800
supp(δs ∗μ δt ) ⊆ {
r ∈ C: ‖r‖∞ � ‖s‖∞ + ‖t‖∞

}
where ‖ .‖∞ is the maximum norm in R

q .
(2) A Haar measure of the hypergroup Cμ is given by the weight function (3.3) of the corre-

sponding hypergeometric transform,

dωμ(t) = const ·
q∏

i=1

|sinh ti |2μ−d(q−1)−1|cosh ti |d−1 ·
∏

1�i<j�q

∣∣cosh(2ti ) − cosh(2tj )
∣∣d dt.

Proof. (1) It is clear that δs ∗μ δt is a probability measure on C with

supp(δs ∗μ δt ) = {
d(s, t;v,w) = arcosh

(
specs(sinh s w sinh t + cosh s v cosh t )

)
,

v ∈ U0(q,F), w ∈ Bq

}
.

For the support statement, we denote by ‖A‖ the spectral norm of A ∈ F
q×q , that is ‖A‖ =

‖specs(A)‖∞ (the biggest singular value of A). By the submultiplicativity of ‖ .‖ we obtain for
v and w within the relevant range the estimate

‖sinh s w sinh t + cosh s v cosh t‖ � ‖sinh s‖‖sinh t‖ + ‖cosh s‖‖cosh t‖
= sinh‖s‖∞ · sinh‖t‖∞ + cosh‖s‖∞ · cosh‖t‖∞
= cosh

(‖s‖∞ + ‖t‖∞
)
.

This implies the stated support inclusion. For the weak continuity of the convolution ∗μ on
Mb(C), it suffices to verify that for each f ∈ Cb(C), the mapping (s, t) �→ f (s ∗μ t) is con-
tinuous. But this is immediate because d(s, t;v,w) depends continuously on its arguments.
To see that ∗μ is commutative, we note that specs(A) = specs(A

∗) for A ∈ Fq×q , and hence
d(t, s;v,w) = d(s, t;v∗,w∗). As the integral in (5.1) is invariant under the substitution v �→
v∗ = v−1,w �→ w∗, it follows that δt ∗μ δs = δs ∗μ δt . For the associativity of ∗μ it suffices to
verify that

δr ∗μ (δs ∗μ δt )(f ) = (δr ∗μ δs) ∗μ δt (f )

for all f ∈ C∞
c (Rq)W and all r, s, t ∈ C. In view of the Paley–Wiener theorem for the hypergeo-

metric transform, both sides are equal to∫
iRq

F f (λ)F (λ, k; r)F (λ, k; s)F (λ, k; t) dν(λ).

This proves the assertion.
From the explicit form of the convolution it is obvious that 0 is neutral. In the discrete cases

μ = pd/2 coming from Gelfand pairs, ∗μ is the convolution of a double coset hypergroup.
Moreover, supp(δs ∗μ δt ) is independent of μ. In order to see that the identity mapping is a
hypergroup involution for all μ, it therefore suffices (by uniqueness of an involution) to show
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that the zero matrix 0 is contained in supp(δt ∗μ δt ). But

d(t, t; Iq,−Iq) = arcosh
(
specs

(−(sinh t )2 + (cosh t )2)) = arcosh(Iq) = 0,

which proves the claim.
(2) Let f,g ∈ C∞

c (Rq)W . Notice first that

f (t) =
∫

iRq

F f (λ)F (λ, k; t) dν(λ)

by the inversion theorem for the hypergeometric transform (Theorem 3.2). As F(λ, k; s ∗μ t) =
F(λ, k; s)F (λ, k; t) for all s, t ∈ C we obtain, with the notation of Corollary 3.3,

f (s ∗μ t) = τsf (t).

The Plancherel formula (Theorem 3.2) further gives∫
C

(τsf )g dωμ = c

∫
iC

F (τsf )F g dν = c

∫
iC

F f (λ)F (λ, k; s)F g(λ) dν(λ)

= c

∫
iC

F f (λ)F (τsg)(λ) dν(λ) =
∫
C

f (τsg) dωμ

with a constant c > 0. It was used here that F(λ, k; s) = F(−λ, k; s) = F(λ, k; s) for λ ∈ iC.
Choose now a sequence gn ∈ C∞

c (Rq)W , n ∈ N, such that gn ↑ 1 pointwise. Then also τs(gn) ↑ 1,
and the monotonic convergence theorem shows that∫

C

(τsf ) dωμ =
∫
C

f dωμ.

This proves that ωμ is a Haar measure of Cμ. �
Lemma 5.3. Suppose that ϕ : Cμ → C is continuous and multiplicative, i.e.

ϕ(s)ϕ(t) = ϕ(s ∗μ t) for all s, t ∈ C.

Then ϕ = ϕ
μ
λ with some λ ∈ Cq .

Proof. The proof follows standard arguments. For abbreviation, we write k = kμ, ω = ωμ and
∗ = ∗μ. In a first step, consider g ∈ C∞

c (Rq)W . Let p ∈ S(Cq)W be a W -invariant polynomial
and T (p) = T (p, kμ) the associated Cherednik operator. As

g(s ∗ t) =
∫

q

F g(λ)F (λ, k; s)F (λ, k; t) dν(λ)
iR
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for all s, t ∈ C, we obtain

T (p)sg(s ∗ t) =
∫

iRq

F g(λ)p(λ)F (λ, k; s)F (λ, k; t) dν(λ) = T (p)tg(s ∗ t) (5.2)

and

T (p)sg(s ∗ t)|s=0 = T (p)g(t).

Suppose now ϕ is continuous, non-zero and multiplicative on C. Notice first that ϕ(0) = 1,
because 0 is neutral. We extend ϕ to a W -invariant function on R

q and choose g ∈ C∞
c (Rq) with∫

C
ϕg dω = 1. Recall that the involution of the hypergroup Cμ is the identity. Thus

ϕ ∗ g(s) =
∫
C

ϕ(s ∗ t)g(t) dω(t) = ϕ(s)

and therefore

ϕ(s) = ϕ ∗ g(s) =
∫
C

ϕ(t)τtg(s) dω(t),

which belongs to C∞(Rq) because τtg ∈ C∞
c (Rq) for all t according to Lemma 3.3. Further,

ϕ(s ∗ t) =
∫
C

ϕ(r)τrg(s ∗ t) dω(r)

and therefore

T (p)sϕ(s ∗ t) =
∫
C

ϕ(r)T (p)s
(
τrg(s ∗ t)

)
dω(r) =

∫
C

ϕ(r)T (p)t
(
τrg(s ∗ t)

)
dω(r)

= T (p)tϕ(s ∗ t).

In particular,

T (p)ϕ(t) = T (p)tϕ(s ∗ t)|s=0 = T (p)sϕ(s ∗ t)|s=0 = σϕ(p) · ϕ(t)

with σϕ(p) = (T (p)ϕ)(0). The mapping p �→ σϕ(p) is obviously multiplicative and linear
on S(Cq)W . According to a well-known result form invariant theory (see e.g. [7, Chap. III.4,
Lemma 3.11]), it coincides with a point evaluation, that is,

∃λ ∈ C
q : σϕ(p) = p(λ) ∀p ∈ S

(
C

q
)W

.

It is thus shown that ϕ satisfies the hypergeometric system (3.1) with spectral parameter λ,
corresponding to R = BCq and k = kμ. By uniqueness of the solution, it follows that ϕ =
FBCq (λ, kμ; . ) = ϕ

μ
−iλ. �
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Theorem 5.4. The set of multiplicative functions and the dual space of the hypergroup Cμ are
given by

χ(Cμ) = {
ϕλ = ϕ

μ
λ : λ ∈ C + iC

}
,

Ĉμ = {
ϕλ ∈ χ(Cμ): λ ∈ W.λ and Imλ ∈ co(W.ρ)

}
where ρ = ρ(kμ) and co(W.ρ) denotes the convex hull of the Weyl group orbit W.ρ.

The second part of this theorem is in accordance with the characterization of the bounded
spherical functions of a Riemannian symmetric space of non-compact type, see [7, Chap. IV,
Theorem 8.1]. In our more general context, we shall not work with an integral representation
but proceed by using estimates on the hypergeometric function given in [17] as well as the gen-
eralized Harish–Chandra expansion of [13]. We mention at this point that for the Grassmann
manifolds over F = R, there is an explicit integral formula for the spherical functions given in
[16] which could probably also be used after analytic extension.

Proof of Theorem 5.4. The identification of χ(Cμ) is furnished by the previous lemma. For the
identification of the dual space, note first that

ϕλ = ϕλ

as a consequence of (3.2). Thus ϕλ is real if and only if λ ∈ W.λ. It remains to identify those
functions from χ(Cμ) which are bounded. For this, we observe first that the set A = {λ ∈ C

q :
ϕλ ∈ Ĉμ} is closed in C

q . Indeed, suppose that (λi)i∈N is a sequence in A which converges to
λ0 ∈ Cq . Being members of a hypergroup dual, the ϕλi

are uniformly bounded by 1 (see [8]). As
(λ, t) �→ ϕλ(t) is continuous, it follows by a standard compactness argument that the sequence
ϕλi

converges to ϕλ0 locally uniformly on C (see e.g. [2, Chap. XII, Section 8]). This implies

that ϕλ0 belongs to Ĉμ as well.
Next recall that

ϕλ(t) = FBCq (iλ, kμ; t) =: Fiλ(t)

and notice that F−λ = Fλ. We thus have to prove that Fλ is bounded if and only if Reλ ∈
co(W.ρ). We may assume that λ = ξ + iη with ξ, η ∈ C. By Corollary 3.1 of [17],∣∣Fλ(t)

∣∣ � Fξ (t) ∀t ∈ C. (5.3)

Further, according to Remark 3.1 of [17], Fξ behaves asymptotically (for large arguments in C)
as

Fξ (t) � e〈ξ−ρ,t〉 ·
∏

α∈R+
0 |〈α,ξ〉=0

(
1 + 〈α, t〉). (5.4)

Here R+
0 are the indivisible positive roots, in our case R+

0 = {2ei,2(ei ± ej ),1 � i < j � q}.
Consider now λ = ξ + iη with ξ = Reλ ∈ co(W.ρ). We claim that Fλ is bounded. By closedness
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of A, it suffices to assume that ξ is actually contained in the open interior of co(W.ρ). Then there
exists a constant 0 < s < 1, s = 1 − ε, such that ξ ∈ co(W.sρ). We use the characterization

co(W.x) =
⋂

w∈W

w
(
x − C∗) (5.5)

for x ∈ C, where C∗ = {x ∈ R
q : 〈t, x〉 � 0 ∀t ∈ C} is the closed dual cone of C; see e.g.

[7, Lemma IV.8.3]. This shows that sρ − ξ ∈ C∗ and therefore

〈ξ − ρ, t〉 = 〈ξ − sρ, t〉 − ε〈ρ, t〉 � −ε〈ρ, t〉 ∀t ∈ C.

Note that 〈ρ, t〉 > 0 for all t ∈ C \ {0}, because our multiplicity is non-negative and different
from zero. Hence 〈ρ, t〉 � c|t | for some constant c > 0. Together with estimates (5.3) and (5.4),
this proves boundedness of Fλ as claimed.

For the converse inclusion, we have to show that Fλ is unbounded if ξ = Reλ /∈ co(W.ρ).
For real λ = ξ ∈ C we use again (5.4). According to (5.5), there exists some t ∈ C such that
〈ξ − ρ, t〉 > 0 (recall that 〈ξ, t〉 � 〈wξ, t〉 for all w ∈ W ). This implies that Fξ is unbounded
in C.

In case η = Imλ �= 0 we employ the Harish–Chandra expansion of Fλ (see [13]) in the interior
C◦ of C. It is of the form

Fλ(t) =
∑
w∈W

c(wλ)e〈wλ−ρ,t〉
( ∑

q∈Q+
Γq(wλ)e−〈q,t〉

)

with (unique) coefficients Γq(wλ) ∈ C, where Γ0(wλ) = 1. Here Q+ is the positive lattice gen-
erated by R+ and c(λ) = c(λ, kμ) denotes the c-function.

As ξ ∈ C \co(W.ρ), there is some t ∈ C and hence also some t0 ∈ C◦ such that 〈ξ −ρ, t0〉 > 0.
Fix t0 and consider Fλ(st0) for s ∈ R, s → +∞. As the imaginary part of λ is non-zero,
Lemma 4.2.2 in Part I of [6] implies that there exist constants Mwλ > 0 (depending on t0) such
that ∣∣Γq(wλ)

∣∣ � Mwλe
〈q,t0〉 for all q ∈ Q+.

For s ∈ R, s > 0 we may therefore estimate∣∣∣∣ ∑
q∈Q+\{0}

Γq(wλ)e−〈q,st0〉
∣∣∣∣ � Mwλ

∑
q∈Q+\{0}

e(1−s)〈q,t0〉,

which tends to zero as s → +∞. Thus

Fλ(st0) �
∑
w∈W

c(wλ)e〈wλ−ρ,st0〉 =
∑
w∈W

c(wλ)es〈wξ−ρ,t0〉eis〈wη,t0〉 as s → +∞.

Notice that c(λ) �= 0. Moreover, 〈ξ −ρ, t0〉 � 〈wξ −ρ, t0〉 for all w ∈ W where equality can only
occur if wξ = ξ . Therefore, the leading term of the last sum is

es〈ξ−ρ,t0〉 ·
∑

w∈W

c(wλ)eis〈wη,t0〉
ξ
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with Wξ = {w ∈ W : wξ = ξ}. Application of Lemma 5.5 below now implies that s �→ Fλ(st0) is
unbounded as s → +∞. This finishes the proof. �
Lemma 5.5. Let f (s) = eas · ∑N

k=1 cke
iλks on R with constants a > 0, ck ∈ C which are not all

zero, and distinct λk ∈ R. Then f is unbounded on [0,∞).

Proof. Let T > 0. Then according to Corollary 2 of [11],

T∫
0

∣∣∣∣∣
N∑

k=1

cke
iλks

∣∣∣∣∣
2

ds = (
T + 2πθδ−1) N∑

k=1

|ck|2

with a constant δ > 0 depending on the λk and |θ | � 1. If f were bounded on [0,∞), say
|f | � M , this would imply that

T∫
0

∣∣∣∣∣
n∑

k=1

cke
iλks

∣∣∣∣∣
2

ds � M2

T∫
0

e−2as ds � M2

2a
,

a contradiction. �
Notice that only the first part of our proof of Theorem 5.4 uses uniform boundedness of

hypergroup characters in order to settle boundedness of Fλ in the case where Reλ is contained
in the boundary of co(W.ρ). The rest of the proof works equally for arbitrary root systems R and
arbitrary non-negative multiplicities k � 0, k �= 0, and the case k = 0 is classical. Actually, we
have

Corollary 5.6. Let R ⊂ a be an arbitrary root system, k � 0 a non-negative multiplicity function
and ρ = ρ(k). Then the associated hypergeometric function t �→ F(λ, k; t) is unbounded on a if
Reλ /∈ co(W.ρ). Moreover, t �→ F(λ, k; t) is bounded on a if Reλ is contained in the interior of
co(W.ρ).

We return to our specific BC-cases and identify the dual space Ĉμ of the hypergroup Cμ

with a subset of C
q via ϕλ �→ λ. Due to the condition λ ∈ {w.λ, w ∈ W } it is contained in the

union of finitely many hyperplanes in C
q ∼= R

2q of real dimension q . Note that the chamber C

is a proper subset of Ĉμ. The following is an immediate consequence of Opdam’s Plancherel
theorem (Theorem 3.2):

Proposition 5.7. The Plancherel measure of the hypergroup Cμ is given by the measure

dπμ(λ) = 1

|c(iλ, kμ)|2 dλ

on Ĉμ ⊂ C
q . Its support coincides with the chamber C.
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