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POSITIVITY OF DUNKL'S INTERTWINING OPERATOR

MARGIT ROSLER

1. Introduction and results. In recent years, the theory of Dunkl operators has
found a wide area of applications in mathematics and mathematical physics. Besides
their use in the study of multivariable orthogonality structures associated with root
systems (see, for example, [D1], [D2], [He], [vD], and [R]), these operators are closely
related to certain representations of degenerate affine Hecke algebras (see [C], [02],
and, for some background, [Ki]). Moreover, they have been successfully involved
in the description and solution of Calogero-Moser-Sutherland—type quantum many-
body systems; among the wide literature in this context, we refer to [P], [LV] and
[BF].

Let G ¢ O(N, R) be a finite reflection group oR". Fora € R" \ {0}, we denote
by o, the reflection in the hyperplane orthogonabtathat is,

o, x)
|oe|?

ou(X)=x—-2 o,

where(., .) denotes the Euclidean scalar product®h and|x| := \/{x, x). We also
use the notation., .) for the bilinear extension of the Euclidean scalar product to
CN x CN, while z — |z] is the standard Hermitean norm & . Further, letR be
the root system of7, normalized such thaty, «) = 2 for all « € R, and fix a positive
subsystenR of R. We recall from the general theory of reflection groups (see, e.g.,
[Hu]) that the set of reflections i6' coincides with{o,,« € R} and that the orbits
in R under the natural action @ correspond to the conjugacy classes of reflections
in G. Afunctionk : R — C s called a multiplicity function orR if itis G-invariant.
We write Rek > 0 if Rek(a) > 0 for all € R, andk > 0 if k(«) > O for all« € R.

The Dunkl operators associated withare first-order differential-difference op-
erators onR" which are parametrized by some multiplicity functibron R. For
£ € RV, the corresponding Dunkl operat®y (k) is given by

f(x)— f(ogx)

(o, x)

Te(k) f (X) =0 f () + Y k(a)(a, &)

aeR

,  feCYRM).

Hered: denotes the directional derivative corresponding.tas k is G-invariant, the
above definition is independent of the choiceRaf. In casek = 0, theT (k) reduce
to the corresponding directional derivatives. The oper&fofk) were introduced and
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first studied by Dunkl in a series of papers [D1], [D2], [D3], and [D4] in connection
with a generalization of the classical theory of spherical harmonics. Here the uniform
surface measure on th@' — 1)-dimensional unit sphere is modified by a weight
function that is invariant under the action of a given reflection gréumd associated
with a multiplicity functionk > 0, namely,

(1.2) we) = [ o).

(1€R+

The most important properties of the operat@gk) are as follows. LetrV =
C[RM] denote the algebra of polynomial functions B, and let?Y (n € Z, =
{0,1,2,...}) denote the subspace of homogeneous polynomials of (total) degree
Then,
(1) theT:(k),£ € RN, generate a commuting family of linear operatorsToh;
(2) eachT: (k) is homogeneous of degreel onIT", that is,T; (k) (p) € P , for
pe®);
(3) for all but a singular set of multiplicity functions, in particular for- 0, there
exists a unique linear isomorphisvi of TTV such that

V(@) =Y, Vilgy =id, and  T:(k)Vi = Vzd: forall & e RV,

Properties (1) and (2) were shown in [D1], while the existence of an intertwining
operator according to (3) was first shown in [D2] under the assumptiorD. An
abstract and extended treatment of the above items is given in [DJO].

The intertwining operatoV; plays a central part in Dunkl’s theory and its appli-
cations. In particular, it is involved in the definition of Dunkl's kerrié} (x, y) (see
(1.6)), which generalizes the usual exponential keefiel’ and arises as the integral
kernel of the Dunkl transform (see [D4] and [dJ]). An explicit formlafis known
so far only in the following very special cases.

(1) The 1-dimensional case associated with the reflection gfgum R. Here the
multiplicity function is given by a single parameter O; for k > 0, the intertwining
operatorV, has the integral representation (see [D3, Theorem 5.1])

1 '(k+1/2)

_ _ k-1 k i = ' 7
(1.2) Vip(x) = ck/lp(xt)(l 1) (A4 dt with ¢, = ENGE

(2) The direct product case associated with the reflection gZ@Upn RV. Here a
closed form of the intertwining operator was determined in [X2].

(3) The case of the symmetric grosp on R2, which has been studied in [D5].

In [D3], the intertwining operato¥; is extended, fok > 0, to a bounded linear
operator on a suitably normed algebra of series of homogeneous polynomials on the
unit ball. To allow a more convenient formulation of our statements, we introduce a
slightly extended notation: Fer> 0, letK, := {x € R" : |x| < r} denote the ball of
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radiusr, and define
(1.3)

o0 oo
Avi={f K > C =Y fawith f €@ andl flla, =Yl fullok, <o0.

n=0 n=0

It is easily checked thad, is a commutative Banach-algebra with complex con-
jugation as involution (see Section 4). Moreover, it follows from [D3, Theorem 2.7]
that V, extends to a continuous linear operator 4nby Vi f := > o, Vi f,, for
f=Yr20fs € Ar. Up to now, it has been an open question whetherkfor 0,

the intertwining operato#;, is always positive, that isV;p > 0 on R" for each
nonnegative polynomiap € I". More generally, we may ask whether, for every
x € RN with |x| < r, the functionalf — Vi f(x) is positive onA,. This property,
which was first conjectured (in a slightly different setting) in [D3], is obvious in the
above special cases (1) and (2) from the explicit representati®p. dfi the S3 case,
however, the integral representations derived in [D5] failed to infer this result—at
least for a large range d@f. It is the aim of this paper to prove the above conjecture
for general reflection groups and nonnegative multiplicity functions. Our first central
result establishes positivity df, on polynomials.

THEOREM 1.1 Assume that > 0 and letp e IT" with p(x) > O for all x € RV,
Then alsoVy p(x) > 0 for all x € RV,

More detailed information abow; is then obtained by its extension to the algebras
A,. This leads to the following theorem, which is the main result of this paper.

THeoreM 1.2 Assume thak > 0. Then, for eachx € RY, there exists a unique
probability measurg:, on the Borele-algebra ofRY such that

(1) Vif = [ f@die) Torall £ e

The representing measurgs are compactly supported witbuppu, < {€ € RV :
|| < |x|}. Moreover, they satisfy

(1.5) e (B) = pux(r'B),  pexr(B) = (g H(B))

for eachr > 0, g € G, and each Borel seB € RV,

An important consequence of Theorem 1.2 concerns the generalized exponential
kernel K, which is defined by

(1.6) Kg(x,y) := Vk(e<"y>)(x) (x,y € [RN)

(see [D3]). The functiork ¢ has a holomorphic extension @V x CV and is sym-
metric in its arguments. According to [O1], the functien— K¢ (x,y)(y € CV



448 MARGIT ROSLER

fixed) may be characterized as the unique analytic solution of the sy&témf =
(£,y) f (£ e RN) with £(0) = 1. This makes it possible to translate invariance proper-
ties of the Dunkl operators to corresponding propertigs @{see [dJ, Theorem 2.8]);

in particular,K g (x, Ay) = Kg(Ax, y) for all » € C andx, y € CV. Theorem 1.2 now
implies that, for fixedy € R", the kernelK ¢ (x, iy) is positive-definite as a function
of x on R", and the same holds for the “generalized Bessel function”

1

Jo(x,iy) ::EZKg(gx,iy) (x,yE[RN).
geG

As noted in [01], the kernelg allows in some cases (for Weyl grou@sand certain
discrete sets of multiplicity functions) an interpretation as the spherical function
for some Euclidean symmetric space; in these cases, positive-definitengsssof
obvious. There are no similar interpretations known for the kekigl Nevertheless,

the conjecture that it should be positive-definite has been confirmed by several of its
properties (see [dJ]) and, in particular, by the fact #iat(x, y) > Oforallx,y € RV.

This was proved in [R] in connection with the study of a generalized heat semigroup
for Dunkl operators.

The main parts of Theorem 1.2 are obtained by a standard argumentation from
Theorem 1.1. The proof of Theorem 1.1, however, is much more involved. Its crucial
step is a reduction from th&¥-dimensional to a 1-dimensional problem, using semi-
group techniques for linear operators on spaces of polynomials. The generators of the
semigroups under consideration are certain differential-difference operators whose
common decisive property is that they are “degree-lowering.” This setting is intro-
duced in Section 2, together with a Hille-Yosida—type theorem, which characterizes
positivity of such semigroups by means of their generator. Theorem 1.1 is then proved
in Section 3. Section 4 is introduced with a short discussion of the algehraad
their spectral properties, which is the basis for the subsequent proof of Theorem 1.2.
In the last section we discuss some implications of our results in the theory of Dunkl
operators and related applications.

2. Semigroups generated by degree-lowering operators on polynomialsie
start with some general notation. LBt} := {p € 1" : p(x) > O for all x € RV}
denote the cone of nonnegative polynomialsfoh. Let 1Y := EBZ:O@]’,’(V nely)
denote the space of polynomials of (total) degree at mohe action of a subgroup
H C O(N, R) onIT" will always be the natural one, given by (x) := p(h~1x)(h €
H, p € ITY). Finally, for a locally compact Hausdorff spage M, (X) is the space
of all regular bounded Borel measuresXSrandM,j(X) is the subspace of those that
are nonnegative.

Definition 2.1. A linear operatord on TV is calledpositiveif Ap € I for each
p € 1YY anddegree-loweringf A(TTY) c IV , foralln e Z,..
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Important examples of degree-lowering operators are linear operators that are ho-
mogeneous of some degree:, n > 1, on ITV. This includes, in particular, usual
partial derivatives and Dunkl operators, as well as products and linear combinations
of those. IfA is degree-lowering ofil", then for every analytic functioff : R — C
with power series (x) = Z/?io cxxk, there is a linear operatgt(A) on TTV defined
by the terminating series

o0

M) =Y A pw).

k=0

Notice thatf(A)(H,’;’) - H,]:’ for eachn € Z,. This yields a natural restriction

of f(A) to a linear operator on the finite-dimensional vector spHge In par-
ticular, the well-known product and exponential formulas for linear operators on
finite-dimensional vector spaces (see, for example, [Ka, §4.7]) imply corresponding
exponential formulas for degree-lowering operatordBh where the topology may

be chosen to be the one of pointwise convergence. We note two results of this type,
which are used later on.

LeEmMMA 2.2 Let A and B be degree-lowering linear operators ai. Then, for
all pe 1V andx € RV,

(i) e?px)=Ilim,_ oI —A/n)"p(x).

(i) eABp(x) =1imu_oo(ed/"eB/m) p(x) (Trotter product formula).

Each degree-lowering operataron IV generates a semigroug'*),>o of linear
operators onl1" and, in fact, on each of th&lY. The generatorA is uniquely
determined from the semigroup by

Ap(x) = |ii1[l)t_1(em —I)p(x) forall p e 1V,
t

The following key result characterizes positive semigroups generated by degree-
lowering operators; it is an adaption of a well-known Hille-Yosida—type characteriza-
tion theorem for Feller-Markov semigroups 61{K), K being a compact Hausdorff
space (see, for example, [GS, Section 2.4]).

TueoreM 2.3 Let A be a degree-lowering linear operator di" . Then the fol-
lowing statements are equivalent:
(1) ¢4 is positive onrT? for all ¢ > 0;
(2) A satisfies the “positive minimum principle”
(M) for everyp e l‘lf andxg € RV, p(xo) = 0 impliesAp(xp) > 0.

Proof. (1) implies (2). Letp € ITY with p(xo) = 0. Then,

e pxo)—plxo) . 1

_ = | ZefA > Q.
p [T;‘) te p(x0) >

(2) implies (1). Notice first that for each# 0, the operatok ! — A is bijective on
V. In fact, A1 — A is injective onIT", because otherwise there would exist some

A =lim
p(x0) im
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p eIV, p#£0,with Ap = Ap, in contradiction to the degree-lowering character of
A. As (W1 — A)(TTY) C TTY, this already proves the bijectivity af — A on eachT

and hence ofl" as well. We next claim that for evepy> 0, the resolvent operator
R(:; A) := (M — A)~Lis positive onlTV. For this, letp € TIY andg := R(; A)p.

If pis constant, thep = (1/1)p > 0. We may therefore restrict ourselves to the case
that the total degree of p (which must be even) is greater than zero. Suppose first
that p(x) > ¢|x|" for all x € RV, with some constant > 0. As A lowers the degree,
we may writeg = (1/1) p +r with a polynomialr of total degree less than Hence,
lim|x|- 00 ¢ (x) = 0o, which shows thag takes an absolute minimum, let us say, in
x0 € RN, Putg(x) := g(x) —q(x0). Theng e ¥ with §(xo) = 0, and property (M)
assures thatig (xg) = Ag(xo) > 0. For » > 0 andx € R", we therefore obtain

Aq(x) = Agq(xg) = (A — A)g(x0) + Ag(x0) = p(x0) = 0.

If pe l'Iﬁ\r’ is arbitrary, then consider the polynomiagls(x) := p(x)+e€|x|" fore > 0,
wheren is the degree op. As A is degree-lowering, by the above result, we obtain

R(A; A)p(x) = EI@OR(A; A)pe(x) >0 forallx e RV,

This proves the stated positivity @& (1; A) for » > 0. Now let p € Hﬁ andr > 0.
Then, according to Lemma 2.2(i),

‘A ) tA\ " ) n_(n "
epx)=Ilim(I—— px)=lim | —-R[—; A px)>0
n— 00 n n—oo\ t t
for all x € RV, This finishes the proof. O

3. Positivity of V. on polynomials. This section is devoted to the proof of The-
orem 1.1. The outline of this proof is as follows. In the first step, we consider the
(1-dimensional) differential-difference operators

Ag = e_SD28eSD2, s >0,
on L. Here D denotes the usual first derivative, that % (x) = p’(x) for x € R,
ands is the linear operator ofi* given by

l o 1
31  sp) :=pf€x)—p(x) P ”:3/ (D?p)(tx)(1+1)dt.
~1

2x2 2
This operator is related to the Dunkl operaf(k) associated with the reflection
groupZz on R and the multiplicity parametér > 0 by
T (k)2 = D?+ 2ks.

As both D? ands are homogeneous of degre® onT1%, the operators\, are well
defined and degree-lowering @ft. We prove that they have the following decisive

property.
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ProrosiTION 3.1 The operators\;, s > 0, satisfy the positive minimum principle
(M) on 1L,

We next turn to the genera@¥-dimensional setting: Her& is an arbitrary finite
reflection group ofRY with multiplicity functionk > 0. We consider the generalized
Laplacian associated witi andk, which is defined by

N
Api=) Ty (k)

i=1

with an arbitrary orthonormal basig,, ..., &y) of RV (see [D1]). It is homogeneous
of degree—2 on TV and (with our conventiorie, o) = 2 for all « € R,) is given
explicitly by

(Vf(x),a)  f(x)— f(oax)

B2 Ar=A+2) k(@)da With 8, f(x) = (. x) (@, x)2

O{GR+

Here A andV denote the usual Laplacian and gradient, respectively. Theorem 2.3
is the key to infer from the 1-dimensional setting of Proposition 3.1 to a general
multivariable extension.

ProposITION 3.2 LetL; := Ay — A. Then, fork > 0, the operators
e*SAethesA (S,t > 0)
are positive on1".

The statement of Theorem 1.1 is then finally reduced to the following consequence
of Proposition 3.2.

—A/2,84/2 s positive onrV.

CoroLLARY 3.3 The operatore
Proof. Applying Trotter’s product formula of Lemma 2.2, we obtain

e—A/ZeAk/Zp(x)

— DAL () — i e—A/Z(eA/ZneLk/Zn)np(x)
n—o0

n
i —(A—j/n)-AJ2, Ly /2n ,(1—j/n)-A /2 N N
_nll_)mool_[(e e e )p(x) (peH ,xeR )
j=1
By Proposition 3.2, each of thefactors in the above product is a positive operator
onITV. Hencee~2/2¢%+/2 js also positive o1V O

We now turn to the proof of Proposition 3.1. We start with two elementary auxiliary
results.

LemMA 3.4 For eachp e ntandc e R,

P (xp(x)) = xePp(x) +2¢¢Pp' ().
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. . 2 .
Proof. Power series expansion &f”° yields

P (xp()

_ Z%Dzn (xp(x)) =xp(x)+’;%(XD2'1P(X)+2’1D2H_1P(X))

n=0
cD? = Cn_l 2n—1 cD? cD? 1
=Xxe p(x)—i—ZCZmD px) =xe” p(x)+2ce” p'(x).
n=1 ’

LeEmMMA 3.5 Letp e H%Hl, n € Z., be an odd polynomial. Then the differential
equation

(3.3) ey —xy=p (c>0)

has exactly one polynomial solution (which belongfl@), namely,

1 X
yp(x) = -exz/ZC/ =12 (1) dt.

4 —00
Proof. The general solution of (3.3) is

1 [ X
y(x) Zaex2/2‘+—ex2/2‘/ 2% pydt, aeR.
C

—00

It therefore remains to prove that

X
(3.4) X exz/ch eilz/ch(t)dt

—0o0
is a polynomial. We use induction by. Forn = 0, the statement is obvious. For
n > 1, write p(x) = —c~txr(x) with r € T . Partial integration then yields

x i 1 X X -
/ eI p(tydt = —= / te ™12 r(tydt = e % r (x) — / eI @y dr.
o CJ_o —00

By our induction hypothesis, this equalsxz/ZC(r(x) —7(x)) with some polynomial
7 eI} . This finishes the proof. O

Proof of Proposition 3.1. The case = 0 is easy and may be treated separately.
Letp e Hi with p(xg) = 0. Thenp’(xg) = 0 andp”(xp) > 0. Thus, ifxg # 0, then
3p(xp) = p(—xo)/(ng) > 0. In casexg = 0, itis seen from the integral representation

(3.1) thatsp(0) = p”(0) > 0. From now on, we may therefore assume thatO.
We first derive an explicit representation of the operato¢s > 0), which allows

us to check property (M) easily. We claim that

1 1 ) X o
(3.5) Asp(x)=—zp(x)—@exz/4“(/ gp,x(t)dt—/ gp,x(t)dt),

—X

for p € T, with g, (1) = /% (1 +2)p(0).
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This of course, may be verified by a (tedious) direct computatiof,6k*), k € Z,
and an explicit evaluation of the corresponding integrals on the right side by series
expansions of the involved exponentials. We prefer, however, to give a more instructive
proof.

Note first that the operatoi8? ands map even polynomials to even ones and odd

polynomials to odd ones, and

1, .

—p'(x) if piseven
Sp(x) = /
()—Cp(x)) if pisodd

Now fix s > 0 and suppose that € IT! is even. Then the ponnomialSsz and
q := A p are also even, and we obtain the following equivalences:

2

qg=A;p= S(eSsz) = eSqu = p(x)= eiSDZ(xeSD q)(x).

By use of Lemma 3.4, this becomes
(3.6) p'(x) = xq(x) —25q' (x),

which is a differential equation of type (3.3) fgr Lemma 3.5, together with a further
partial integration, now implies that

1 X
ASp(x)z—gexz/‘k/ eftz/‘kp/(t)dt

—00
1 1 o * 2

(3.7) =——pkx)——e* /43/ e Mtp)di (p even).
2s 452 o0

In a similar way, we calculatg = A, p for odd p e ITL. In this casee“sz and
q = Agp are odd as well, and we have the equivalence

d /1 pe 2
q=0sp = —(ZeP'pn) =P ).

Hence, there exists a constante R such that
eSDZp(x) = x(cl—i-h(x))a with h(x) = / eSDZq(t)dt.
0
Applying Lemma 3.4 again, we obtain

3.8) p(x) = cle_‘YDZ(x) +xe_‘YD2h(x) - 2se_SD2h/(x)
. =c1x +xe_SD2h(x)—2vq(x).
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In order to determine‘“Dzh, note that
d
d—(e*wzh(x)) =P (x) = g ().
X

Consequently, there exists a constgng R such that

X

(3.9) P h(x) :cz+/ q(t)dt.
0

Now write p(x) = x P(x) andg(x) = x Q(x) with evenP, Q e T1L. Then, by (3.8)
and (3.9),

P(x) =cl+cz+/ tQt)dt—2sQ(x),
0
and therefore,

P'(x) =x Q(x)—2s Q' (x).

This is exactly the same differential equation as we had in the even case before, and
the transfer of (3.7) gives

(3.10) Agp(x) = —%p(x) — 4—126x2/4"'x/ e_tz/%p(t)dt (p odd).
S —0o0

Finally, if p € T! is arbitrary, then writep = p. + p, with even partp,(x) =
(p(x) + p(—x))/2 and odd partp,(x) = (p(x) — p(—x))/2. The combination of
(3.7) for p, with (3.10) for p, then leads to

X

1 1
Asp(x):_zp(x)_zls_Zex /4y/

—00

—12/4s t+x r—x _
e (—2 PO+ p( n)dr,

and an easy reformulation yields the stated representation (3.5).
In order to prove tha\; satisfies the positive minimum principle (M), define

X o0
Fp(x) :=/ gp,x(t)dt—/ gpx(t)dt, for p e andx € R.
—00 —X
Now let p € ITL with p(xo) = 0. Then, in view of (3.5),

1 2
Asp(xo) = —@exo/‘ka(xo),

and it remains to check that, (xo) < 0. For this, we rewriteF, as

—lx 00
Fp(x):/ gp,x(t)d[_f gp,x(t)dt-
—00 |x]
As p is nonnegative, the sign ¢f, ,(¢) coincides with the sign ofx +¢) for all
x,t € R. This shows that, in factF,(x) < 0 for all x € R, which completes the
proof. O
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Proof of Proposition 3.2. For fixeds > 0, the operatorge 4 ¢! L4 e52),-o form a
semigroup o1V with generatoe*“ L;e*”. According to Theorem 2.3, it therefore
suffices to prove that this generator satisfies the positive minimum principle (M) on
1V, With the notation of (3.2), we have

Ly=2 Z k(a)sy with k(a) >0, forall « € R

OtER+

It is therefore enough to make sure that each of the operators
o) = e SR8, (¢ € Ry)

satisfies (M). (Here the assumpti@n> 0 is crucial!) Now fixe € R;. An easy
calculation shows tha,, and hence)], are rotation-equivariant, that is,

gopyog t=pS,, forgeSQAN,R).
We may therefore assume that= V2e1=(+/2,0,...,0). As 8ﬁ81 obviously com-
mutes with each of the partial derivatives ..., 9y on R, we obtain

N —s582 592
= 1 1
e, =€ 102 ¢

But this operator acts on the first variable only, namely,Aja

'Of/zelp(xl’ o XN) = A P,y (K1),

The assertion now follows from Proposition 3.1. O

In order to complete the proof of Theorem 1.1, we employ the following bilinear
form on TV associated wittG andk, which was introduced in [D3] (for a further
discussion, see also [DJO]):

[p,qlk == (p(T)g)(0) for p,q e IV,

Here p(T}) is the differential-difference operator which is obtained frpix) by
replacing eachy; by the corresponding Dunkl operat@}, (k). The casek = 0 is
distinguished by the notatiop(d). Notice that[ p, ¢lx = 0 for p € Y andq € PV
with n # m. It was shown in [D3] that fok > 0 and for allp, g € TV,

2
(3.112) [p,q]k =ck '/D;N efAk/zp(x)efAk/zq(x)eilxl /Zwk(x)dx,

wherewy is the weight function defined in (1.1) and:= (fzy e P20 (x)dx) L.
We remark that (3.11) can also be proved in a completely independent way by us-
ing certain biorthogonal polynomial systems (Appell characters and cocharacters) in
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L2(RN, e~ ¥P/2y, (x)dx): see [RV2]. Another useful identity fdr, ] is
(3.12) [Vkp.qlk =[p.qlo, forall p,qem”.

In fact, for p,q € Y with n € Z, one obtains

Vap. gl =g, Vi plk = ¢(T) (Vi p) = Vi (q(d) p) = q(0)(p) = [p. q]o.

Here the characterizing properties ¥f and the fact thag (9)p is a constant have
been used. For general g € TV, (3.12) then follows from the orthogonality of the

spaces?), n € 7, with respect to both scalar products.
Finally, we need the following positivity criterion for polynomials.

LemMA 3.6, Leta > 0 and suppose thdt € C;,(RY) satisfies
(3.13) / h(x)p(x)ef"‘lx‘zwk(x)dx >0, forall pe Hﬁ.
RN

Thenh(x) > Ofor all x € RV.
Proof. For abbreviation, put

dmy(x) = e‘“mzwk(x)dx € M;'(IRN).

We use thafl" is dense inL2(R", dmy). This is proved (withw = 1/2) in [D4,
Theorem 2.5] by referring to a well-known theorem of Hamburger for 1-dimensional
distributions, but it can also be seen directly as follows. Supposelifats not
dense inL2(RN,dmy). Then there exists som¢ € LZ(RYN,dmy), f # 0, with
Jr~ fpdmy =0 for all p € TIN. Now consider the measuse:= fm; € M,(RY)
and its (classical) Fourier-Stieltjes transform

’ﬁ(k):/ e_iu’x)dv(x):f £ e % dmy (x).
RN RN

As x > eI pelongs toL2(RY, dmy) for all » € RV, the dominated convergence
theorem yields

w=Y" (_’v) /RN £, x)" dmy (x) = 0.

n
n=0

By injectivity of the Fourier-Stieltjes transform o, (R"), it follows thatv = 0,

and hencef =0 a.e., a contradiction.
Now assume that € C;,(R") satisfies (3.13). In order to prove> 0, it suffices

to check that

(3.14) / fhdm >0, forall feCl(RY).
[RN
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For this, letf € CF(RY) ande > 0. By density oflT" in L2(RY, dm;), there exists
somep = pe € IV with ||y/f — pllzm, <e. With M := |||l gw, it follows that

‘/ fhdmk—/ p2hdmy §M/ | f = p?|dmy
RN RN RN
=M- ||\/?_p”2,mk ||\/?+p“2,mk = MG'(ZH\/?”Z,mk—i_G)’

which tends to 0 witke — 0. This proves (3.14) and yields the assertion. O

The proof of Theorem 1.1 is now easily accomplished.

Proof of Theorem 1.1.Combining formulas (3.12) and (3.11), we obtain for all
p.q € IV the identity

ck /u;{N e A2V, p)(x)e /2 (x)e ¥ 2y (x) dx
:00/ e_A/Zp(x)e_A/Zq(x)e_lx‘z/zdx.
[RN

As e 2/2(Vi p) = Vi(e"2/?p) and as we may also replageby ¢*/?p andg by
e®/24 in the above identity, it follows that for ap, g € TV,

i / Vep(0)g(x)e 2wy (x)dx = co / prye 82622 (x)e W 2.
RN RN
Corollary 3.3 now implies that
f Vkp(x)q(x)eilx‘z/zwk(x)dx >0, forall p,ge Hﬁ.
[RN

For fixed p € T1Y, we may therefore apply Lemma 3.6 with, let us say: 1/4 to

the functionii(x) := e~ ¥*/4V, p(x) € C(RY). This shows thav p(x) > 0 for all
x € RY and yields the assertion. O

4. Proof of the main result. We start this section with a short discussion of
the algebrasA, (r > 0) introduced in (1.3). We should first point out that these
are complex algebras, whereas in [D3] only series of real-valued polynomials are
considered. It is easily checked that is a subalgebra of the space of functions
that are continuous on the bal. and real-analytic in its interior. In fact, for real-
valuedp € ?Y andi = 1,..., N, the inequality||d; pllcc.x, < nllpllec.x, holds as a
consequence of the Van der Corput—Schaake inequality (see [D3]). This allows us to
differentiate f = Y 72 f» € A, termwise and arbitrarily often. The topology af
is stronger than the topology induced by the uniform normkpnNotice also that
A, is not closed with respect - || k, and thatA, € A; with ||-[[a, > |- ||a, for
s < r. The following observation is straightforward.
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Lemma 4.1 (A, | -1l4,) is a commutative Banack-algebra with the pointwise
multiplication of functions, complex conjugation as involution, and init

Proof. To show completeness, lef™),,cz, be a Cauchy sequence i). Then
for € > 0 there exists an index(¢) € Z such that

0
4.1) Z | £ - ”oo,l(, <e, form,m’ > me).
n=0

In particular, for each degreg the homogeneous part§),,cz, converge uniformly
on K, and hence withi®"¥ to someg, € ®~ . It further follows from (4.1) that

o0
ZHgn—f,T”wKr <e, form>me).
n=0

Therefore,g := > 72 ;g» belongs toA, with ||g — f™|l4, — O for m — oco. It
is also easily checked by a Cauchy-product argument Ahais an algebra with
I fglla, <IIflla,-liglla, forall f,g € A,. Therestis clear. O

We next determine the symmetric spectrumAyf, that is, the subspace of the
spectrumA (A,) given by

As(A) i={p e AA) 1 o(NH=o(f) forall feAl}
As usual,Ag(A,) is equipped with the Gelfand topology. Foe K, the evaluation
homomorphism at is defined byy, : A, — C, ¢ (f) :== f(x).

LEMMA 4.2 As(A,) = {¢x : x € K, }, and the mapping — ¢, is a homeomor-
phism fromK, onto Ag(A,).

Proof. Itis obvious thatp, belongs toAs(A,) for eachx € K, with ¢, # ¢, for
x # y, and that the mapping — ¢, is continuous ork,. It remains to show that
eachy € Ag(A,) is of the formg;, with somei € K,. To this end, pui; := ¢(x;)
fori =1,..., N. By symmetry ofp, we haver := (A1, ..., Ay) € RY. Moreover,

M2 =o(Ix?) < [ Ix?], =r%

This shows thath € K,. By definition of A, the identity p(A) = ¢(p) holds for
all polynomials p € I". The assertion now follows from the density Gf¥ in
(Ar, I+ 114,)- O

Proof of Theorem 1.2.Fix x € RY and putr = |x|. Then the mapping

Dyt f = Vif(x)

is a bounded linear functional ofi., and Theorem 1.1 implies that it is positive on
the dense subalgebf®" of A,, that is,®, (|p|?) > 0 for all p € ITY. Consequently,
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®, is a positive functional on the whole BanaetalgebraA,. Now, by a well-
known Bochner-type representation theorem for positive functionals on commutative
Banachx-algebras (see, for example, [FD, Theorem 21.2]), there exists a unique
measure, € M, (As(A,)) such that

(4.2) . (f) =f Fl@)ydvi(p), forall fea,
As(Ar)

with 7 the Gelfand transform of . Denote byu, the image measure of under the
homeomorphism\s(A,) — K,, ¢x — x. Equation (4.2) then becomes

ka(X)=/{|S| ‘ l}f(&)dux(é), forall f € Ajy.

The normalizationV;1 = 1 implies thatu, is a probability measure off € RY :

|&] < |x|}. The unigqueness afi, among the representing probability measures on
RV is clear, because identity (1.4) in particular determines the (classical) Fourier-
Stieltjes transform ofx,. Finally, the transformation properties (1.5) follow imme-
diately from the homogeneity-preserving characteipbn IT" and the invariance
propertyViog = go Vi for all g € G (see [D3, Theorem 2.3]). This finishes the proof
of Theorem 1.2. O

5. Some consequences and applicationdn this final section, we discuss only a
short selection of implications that arise from the positivity of Dunkl's intertwining
operator. We expect that several more useful applications can be found, and it would
also be of interest to have an explicit form fdrfor larger classes of reflection groups.

In what follows, it is always assumed thiat- 0. The most prominent consequence

of Theorem 1.2, as already mentioned in the introduction, is positive-definiteness of
Dunkl's generalized exponential kernel. Up to now, this has been known only in the
special cases where positivity f is visible from an explicit integral representation.

In particular, for the reflection grou@ = Z2 on R and multiplicity parametek > 0,
formula (1.2) shows that

1
Kg(x,iy) = ck/ e 1—n)f A4k dr = eV 1 Fy(k, 2k +1, —2ixy).
-1

The following general result is an immediate consequence of Theorem 1.2 with
f(x) = e and Bochner’s theorem.

ProposiTION 5.1 For eachz € CV, the functionx — K¢ (x, z) has the Bochner-
type representation

(5.1) Kg(x,z) =/[RN e ¥dp (€):
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here theu, are the representing measures from Theorem 1.2. In particKlatx, y)
> Oforall x,y € RV, and for eachx € R" the functiony — K¢ (x,iy) is positive-
definite onR ™.

CoROLLARY 5.2 Foreachx € RY, the generalized Bessel functiorn> Jg (x,iy)
is positive-definite ofR ™.

We mention that for the grouy = S3, this corollary follows from the integral
representations in [D5]. From the integral representation (5.1), together with [dJ,
Corollary 3.3], we obtain further knowledge about the support of the representing
measuregt, .

CorOLLARY 5.3 The measureg,, x € RY, satisfy
(i) suppu, is contained inco{gx, g € G}, the convex hull of the orbit of under
G;
(i) suppuxNigx, g € G} # 0.
Proof. The proof of (i) follows from [dJ, Corollary 3.3]. For the proof of (ii), it is
therefore enough to show that
suppu: N{€ € RY 1 [§] = |x[} #0.

Suppose, to the contrary, that syppN (¢ € RY : |&| = |x|} = ¥ for somex € RV,
Then there exists a constamte 10, 1] such that supp, € {£ € RY : |§| < o|x|}.
This leads to the estimation

KG(x,y) :/ e(éy}')dux(é) Sea|x|\y|
{I§1=olx]}
for all y € RV. On the other hand, [D3, Theorem 3.2] with= 0 says that

_ 2 2
Ck/[R{N Ko(x, y)e SPHYD/2y () dy — 1.

Now letr > 0. As both formulas above remain validiifis replaced by x, it follows
that

1< Ck/ o~ rxPHD/2,015l]y, (3) dy < Ck/ =D 2y, () dy,.
RN RN

which tends to 0 with- — oo, a contradiction. O

This result implies useful estimates f&f; and its derivatives, which partially
sharpen those of [dJ].

CorOLLARY 5.4 Letv € ZY and |v| = v1+---+vy. Then, for allx € RY and
zeCN,

|0 K (x,2)| < |x|I"]. eM@eqsxRe),

In particular, |Kg(x,iy)| < 1forall x,y € RV.
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Proof. This is immediate by differentiation under the integral in (5.1) and the fact
that, foré e co{gx, g € G} andz € C¥, the estimation R&, z) < maX,cc (gx, Rez)
holds. O

Remark. Our proof of Theorem 1.2 did not involve any results from [dJ]. Without
referring to [dJ], the following weaker estimates fkig; and its derivatives are an
immediate consequence of (5.1). het ZY. Then, for allx € RY andz € C¥,

-|Re
|0YKg(x,2)| < x|Vl xRz

We give two further applications of our positivity results. The first one concerns
a question from approximation theory stated in [X1], namely, the summability of
orthogonal series in generalized spherical harmonics. In fact, the study of general-
ized spherical harmonics associated with a finite reflection group and a multiplicity
function k > 0 was one of the starting points of Dunkl’s theory in [D3] and has
been extended in [X1] and [X3]. Many results for classical spherical harmonics carry
over to these sphericatharmonics, where harmonizity is now meant with respect
to Ag. In particular, there is a natural decompositionggf |¢v-1 into subspaces of
k-spherical harmonics, which are orthogonal IR(SY 1, wi(x)dx). In [X1], Xu
studies the Cesaro summability of generalized Fourier expansions with respect to an
orthonormal basis of sphericelharmonics. Recall that a sequeneg, 7, is called
Cesaro-summable of ordéito s, ((C, §)-summable te, for short) if

1 " —k+6-—1 .
—Z nok sp —> s With n — oo.
(n+8> n—k

k=0
n

The following result is proven in [X1] under the requirement that the intertwining
operatorV; is positive onl1". Theorem 1.1 now assures its validity for &l 0.

THEOREM 5.5 Let f : S¥~1 — C be continuous, and lét,} denote the sequence
of partial sums in the expansion ¢f as a Fourier series with respect to a fixed
orthonormal basis of sphericakharmonics. Thefs, } is uniformly(C, §)-summable
overSV—1to f, provideds > y + N/2—1withy =" k().

Another application of our positivity result is related with probabilistic aspects of
Dunkl’s theory and concerns generalizations of the classical moment functions to the
Dunkl setting. The definition of the classical moments of probability measures on
RY is based on the monomial “moment functioms; (x) = x” = x; x5? - x\", x €
RN, v e Z¥. They have many applications in the study of sums of independent
random variables. Recently, a concept of Markov kernels and Markov processes that
are homogeneous with respect to a given Dunkl transform was developed in [RV1].
In this context, generalized moment functions RN provide a useful tool. They

generalize the classical monomial moment functiongx) and are defined as the

OlGR+
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unigue analytic coefficients in the expansion

m ,v(x)
KG(x,y)zszy” (xE[RN,yeCN).
ueZi’ '

From the definition ofK, it follows that
mgy(x) = Vk(x”), for ve Zﬁ.

Theorem 1.2, in particular, implies the following useful relations for the generalized
moment functions, which are obvious only in the classical case (again, we assume
k> 0):

Mooand  0<my,(x)? <mypon(x), forall x e RV, veZ¥.

[mi ()| < |x]
The first inequality is clear from the support properties of the meaguyesvhile
the second one follows from Jensen’s inequality. Among the applications of these
moments, we mention the construction of martingales from Dunkl-type Markov pro-
cesses (for details, refer to [RV1]).
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