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POSITIVITY OF DUNKL’S INTERTWINING OPERATOR

MARGIT RÖSLER

1. Introduction and results. In recent years, the theory of Dunkl operators has
found a wide area of applications in mathematics and mathematical physics. Besides
their use in the study of multivariable orthogonality structures associated with root
systems (see, for example, [D1], [D2], [He], [vD], and [R]), these operators are closely
related to certain representations of degenerate affine Hecke algebras (see [C], [O2],
and, for some background, [Ki]). Moreover, they have been successfully involved
in the description and solution of Calogero-Moser-Sutherland–type quantum many-
body systems; among the wide literature in this context, we refer to [P], [LV] and
[BF].
LetG⊂O(N,R) be a finite reflection group onRN . Forα ∈RN \{0}, we denote

by σα the reflection in the hyperplane orthogonal toα; that is,

σα(x)= x−2〈α,x〉|α|2 α,

where〈. , .〉 denotes the Euclidean scalar product onRN and|x| := √〈x,x〉. We also
use the notation〈. , .〉 for the bilinear extension of the Euclidean scalar product to
CN ×CN , while z �→ |z| is the standard Hermitean norm onCN . Further, letR be
the root system ofG, normalized such that〈α,α〉 = 2 for all α ∈ R, and fix a positive
subsystemR+ of R. We recall from the general theory of reflection groups (see, e.g.,
[Hu]) that the set of reflections inG coincides with{σα,α ∈ R+} and that the orbits
in R under the natural action ofG correspond to the conjugacy classes of reflections
in G. A functionk : R→ C is called a multiplicity function onR if it is G-invariant.
We write Rek ≥ 0 if Rek(α)≥ 0 for all α ∈ R, andk ≥ 0 if k(α)≥ 0 for all α ∈ R.
The Dunkl operators associated withG are first-order differential-difference op-

erators onRN which are parametrized by some multiplicity functionk on R. For
ξ ∈RN, the corresponding Dunkl operatorTξ (k) is given by

Tξ (k)f (x) := ∂ξf (x)+
∑
α∈R+

k(α)〈α,ξ〉f (x)−f (σαx)〈α,x〉 , f ∈ C1(RN )
.

Here∂ξ denotes the directional derivative corresponding toξ . As k isG-invariant, the
above definition is independent of the choice ofR+. In casek = 0, theTξ (k) reduce
to the corresponding directional derivatives. The operatorsTξ (k) were introduced and
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first studied by Dunkl in a series of papers [D1], [D2], [D3], and [D4] in connection
with a generalization of the classical theory of spherical harmonics. Here the uniform
surface measure on the(N − 1)-dimensional unit sphere is modified by a weight
function that is invariant under the action of a given reflection groupG and associated
with a multiplicity functionk ≥ 0, namely,

wk(x)=
∏
α∈R+

|〈α,x〉|2k(α).(1.1)

The most important properties of the operatorsTξ (k) are as follows. Let�N =
C[RN ] denote the algebra of polynomial functions onRN , and let�N

n (n ∈ Z+ =
{0,1,2, . . . }) denote the subspace of homogeneous polynomials of (total) degreen.
Then,
(1) theTξ (k),ξ ∈RN , generate a commuting family of linear operators on�N ;
(2) eachTξ (k) is homogeneous of degree−1 on�N , that is,Tξ (k)(p) ∈ �N

n−1 for
p ∈ �N

n ;
(3) for all but a singular set of multiplicity functions, in particular fork ≥ 0, there

exists a unique linear isomorphismVk of �N such that

Vk
(
�N
n

)= �N
n , Vk|�N

0
= id, and Tξ (k)Vk = Vk∂ξ for all ξ ∈RN.

Properties (1) and (2) were shown in [D1], while the existence of an intertwining
operator according to (3) was first shown in [D2] under the assumptionk ≥ 0. An
abstract and extended treatment of the above items is given in [DJO].
The intertwining operatorVk plays a central part in Dunkl’s theory and its appli-

cations. In particular, it is involved in the definition of Dunkl’s kernelKG(x,y) (see
(1.6)), which generalizes the usual exponential kernele〈x,y〉 and arises as the integral
kernel of the Dunkl transform (see [D4] and [dJ]). An explicit form ofVk is known
so far only in the following very special cases.
(1) The 1-dimensional case associated with the reflection groupZ2 onR. Here the

multiplicity function is given by a single parameterk ≥ 0; for k > 0, the intertwining
operatorVk has the integral representation (see [D3, Theorem 5.1])

Vkp(x)= ck
∫ 1

−1
p(xt)(1− t)k−1(1+ t)k dt with ck =  (k+1/2)

 (1/2) (k)
.(1.2)

(2) The direct product case associated with the reflection groupZN2 onR
N . Here a

closed form of the intertwining operator was determined in [X2].
(3) The case of the symmetric groupS3 onR3, which has been studied in [D5].
In [D3], the intertwining operatorVk is extended, fork ≥ 0, to a bounded linear

operator on a suitably normed algebra of series of homogeneous polynomials on the
unit ball. To allow a more convenient formulation of our statements, we introduce a
slightly extended notation: Forr > 0, letKr := {x ∈RN : |x| ≤ r} denote the ball of
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radiusr, and define

Ar :=
{
f :Kr → C,f =

∞∑
n=0

fn with fn ∈ �N
n and‖f ‖Ar :=

∞∑
n=0
‖fn‖∞,Kr <∞

}
.

(1.3)

It is easily checked thatAr is a commutative Banach-∗-algebra with complex con-
jugation as involution (see Section 4). Moreover, it follows from [D3, Theorem 2.7]
that Vk extends to a continuous linear operator onAr by Vkf := ∑∞

n=0Vkfn for
f = ∑∞

n=0fn ∈ Ar . Up to now, it has been an open question whether, fork ≥ 0,
the intertwining operatorVk is always positive, that is,Vkp ≥ 0 onRN for each
nonnegative polynomialp ∈ �N . More generally, we may ask whether, for every
x ∈ RN with |x| ≤ r, the functionalf �→ Vkf (x) is positive onAr . This property,
which was first conjectured (in a slightly different setting) in [D3], is obvious in the
above special cases (1) and (2) from the explicit representation ofVk. In theS3 case,
however, the integral representations derived in [D5] failed to infer this result—at
least for a large range ofk. It is the aim of this paper to prove the above conjecture
for general reflection groups and nonnegative multiplicity functions. Our first central
result establishes positivity ofVk on polynomials.

Theorem 1.1. Assume thatk ≥ 0 and letp ∈�N with p(x) ≥ 0 for all x ∈RN .
Then alsoVkp(x)≥ 0 for all x ∈RN .

More detailed information aboutVk is then obtained by its extension to the algebras
Ar . This leads to the following theorem, which is the main result of this paper.

Theorem 1.2. Assume thatk ≥ 0. Then, for eachx ∈ RN , there exists a unique
probability measureµx on the Borel-σ -algebra ofRN such that

Vkf (x)=
∫
RN

f (ξ)dµx(ξ) for all f ∈ A|x|.(1.4)

The representing measuresµx are compactly supported withsuppµx ⊆ {ξ ∈ RN :
|ξ | ≤ |x|}. Moreover, they satisfy

µrx(B)= µx
(
r−1B

)
, µgx(B)= µx

(
g−1(B)

)
(1.5)

for eachr > 0, g ∈G, and each Borel setB ⊆RN .

An important consequence of Theorem 1.2 concerns the generalized exponential
kernelKG, which is defined by

KG(x,y) := Vk
(
e〈.,y〉

)
(x)

(
x,y ∈RN )

(1.6)

(see [D3]). The functionKG has a holomorphic extension toCN ×CN and is sym-
metric in its arguments. According to [O1], the functionx �→ KG(x,y)(y ∈ CN
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fixed) may be characterized as the unique analytic solution of the systemTξ (k)f =
〈ξ,y〉f (ξ ∈RN)with f (0)= 1. This makes it possible to translate invariance proper-
ties of the Dunkl operators to corresponding properties ofKG (see [dJ, Theorem 2.8]);
in particular,KG(x,λy)=KG(λx,y) for all λ ∈ C andx,y ∈ CN . Theorem 1.2 now
implies that, for fixedy ∈RN , the kernelKG(x, iy) is positive-definite as a function
of x onRN , and the same holds for the “generalized Bessel function”

JG(x, iy) := 1

|G|
∑
g∈G

KG(gx, iy)
(
x,y ∈RN )

.

As noted in [O1], the kernelJG allows in some cases (for Weyl groupsG and certain
discrete sets of multiplicity functions) an interpretation as the spherical function
for some Euclidean symmetric space; in these cases, positive-definiteness ofJG is
obvious. There are no similar interpretations known for the kernelKG. Nevertheless,
the conjecture that it should be positive-definite has been confirmed by several of its
properties (see [dJ]) and, in particular, by the fact thatKG(x,y) > 0 for all x,y ∈RN .
This was proved in [R] in connection with the study of a generalized heat semigroup
for Dunkl operators.
The main parts of Theorem 1.2 are obtained by a standard argumentation from

Theorem 1.1. The proof of Theorem 1.1, however, is much more involved. Its crucial
step is a reduction from theN -dimensional to a 1-dimensional problem, using semi-
group techniques for linear operators on spaces of polynomials. The generators of the
semigroups under consideration are certain differential-difference operators whose
common decisive property is that they are “degree-lowering.” This setting is intro-
duced in Section 2, together with a Hille-Yosida–type theorem, which characterizes
positivity of such semigroups by means of their generator. Theorem 1.1 is then proved
in Section 3. Section 4 is introduced with a short discussion of the algebrasAr and
their spectral properties, which is the basis for the subsequent proof of Theorem 1.2.
In the last section we discuss some implications of our results in the theory of Dunkl
operators and related applications.

2. Semigroups generated by degree-lowering operators on polynomials.We
start with some general notation. Let�N+ := {p ∈ �N : p(x) ≥ 0 for all x ∈ RN }
denote the cone of nonnegative polynomials onRN . Let�N

n :=
⊕n

k=0�N
k (n ∈ Z+)

denote the space of polynomials of (total) degree at mostn. The action of a subgroup
H ⊆O(N,R) on�N will always be the natural one, given byhp(x) := p(h−1x)(h ∈
H,p ∈ �N). Finally, for a locally compact Hausdorff spaceX,Mb(X) is the space
of all regular bounded Borel measures onX andM+b (X) is the subspace of those that
are nonnegative.

Definition 2.1. A linear operatorA on�N is calledpositiveif Ap ∈�N+ for each
p ∈�N+ anddegree-loweringif A

(
�N
n

)⊆�N
n−1 for all n ∈ Z+.
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Important examples of degree-lowering operators are linear operators that are ho-
mogeneous of some degree−n, n ≥ 1, on�N . This includes, in particular, usual
partial derivatives and Dunkl operators, as well as products and linear combinations
of those. IfA is degree-lowering on�N, then for every analytic functionf :R→ C
with power seriesf (x)=∑∞

k=0ckxk, there is a linear operatorf (A) on�N defined
by the terminating series

f (A)p(x) :=
∞∑
k=0

ckA
kp(x).

Notice thatf (A)(�N
n ) ⊆ �N

n for eachn ∈ Z+. This yields a natural restriction
of f (A) to a linear operator on the finite-dimensional vector space�N

n . In par-
ticular, the well-known product and exponential formulas for linear operators on
finite-dimensional vector spaces (see, for example, [Ka, §4.7]) imply corresponding
exponential formulas for degree-lowering operators on�N , where the topology may
be chosen to be the one of pointwise convergence. We note two results of this type,
which are used later on.

Lemma 2.2. LetA andB be degree-lowering linear operators on�N . Then, for
all p ∈�N andx ∈RN ,
(i) eAp(x)= limn→∞(I−A/n)−np(x).
(ii) eA+Bp(x)= limn→∞(eA/neB/n)np(x) (Trotter product formula).

Each degree-lowering operatorA on�N generates a semigroup(etA)t≥0 of linear
operators on�N and, in fact, on each of the�N

n . The generatorA is uniquely
determined from the semigroup by

Ap(x)= lim
t↓0 t

−1(etA−I)p(x) for all p ∈�N.

The following key result characterizes positive semigroups generated by degree-
lowering operators; it is an adaption of a well-known Hille-Yosida–type characteriza-
tion theorem for Feller-Markov semigroups onC(K),K being a compact Hausdorff
space (see, for example, [GS, Section 2.4]).

Theorem 2.3. LetA be a degree-lowering linear operator on�N . Then the fol-
lowing statements are equivalent:
(1) etA is positive on�N for all t ≥ 0;
(2) A satisfies the “positive minimum principle”

(M) for everyp ∈�N+ andx0 ∈RN , p(x0)= 0 impliesAp(x0)≥ 0.
Proof. (1) implies (2). Letp ∈�N+ with p(x0)= 0. Then,

Ap(x0)= lim
t↓0

etAp(x0)−p(x0)
t

= lim
t↓0
1

t
etAp(x0)≥ 0.

(2) implies (1). Notice first that for eachλ �= 0, the operatorλI−A is bijective on
�N. In fact, λI −A is injective on�N , because otherwise there would exist some
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p ∈�N, p �= 0, withAp = λp, in contradiction to the degree-lowering character of
A. As (λI−A)(�N

n )⊆�N
n , this already proves the bijectivity ofλI−A on each�N

n

and hence on�N as well. We next claim that for everyλ > 0, the resolvent operator
R(λ;A) := (λI −A)−1 is positive on�N . For this, letp ∈�N+ andq := R(λ;A)p.
If p is constant, thenq = (1/λ)p ≥ 0. We may therefore restrict ourselves to the case
that the total degreen of p (which must be even) is greater than zero. Suppose first
thatp(x)≥ c|x|n for all x ∈RN , with some constantc > 0. AsA lowers the degree,
we may writeq = (1/λ)p+r with a polynomialr of total degree less thann. Hence,
lim |x|→∞ q(x) =∞, which shows thatq takes an absolute minimum, let us say, in
x0 ∈RN . Putq̃(x) := q(x)−q(x0). Thenq̃ ∈�N+ with q̃(x0)= 0, and property (M)
assures thatAq(x0)= Aq̃(x0)≥ 0. Forλ > 0 andx ∈RN , we therefore obtain

λq(x)≥ λq(x0)= (λI−A)q(x0)+Aq(x0)≥ p(x0)≥ 0.
If p ∈�N+ is arbitrary, then consider the polynomialspε(x) := p(x)+ε|x|n for ε > 0,
wheren is the degree ofp. AsA is degree-lowering, by the above result, we obtain

R(λ;A)p(x)= lim
ε→0R(λ;A)pε(x)≥ 0 for all x ∈RN.

This proves the stated positivity ofR(λ;A) for λ > 0. Now let p ∈ �N+ and t > 0.
Then, according to Lemma 2.2(i),

etAp(x)= lim
n→∞

(
I− tA

n

)−n
p(x)= lim

n→∞

(
n

t
R

(
n

t
;A

))n
p(x)≥ 0

for all x ∈RN . This finishes the proof.
3. Positivity of Vk on polynomials. This section is devoted to the proof of The-

orem 1.1. The outline of this proof is as follows. In the first step, we consider the
(1-dimensional) differential-difference operators

3s := e−sD2δesD2, s ≥ 0,
on�1. HereD denotes the usual first derivative, that is,Dp(x) = p′(x) for x ∈ R,
andδ is the linear operator on�1 given by

δp(x) := p′(x)
x
− p(x)−p(−x)

2x2
= 1
2

∫ 1

−1
(
D2p

)
(tx)(1+ t)dt.(3.1)

This operator is related to the Dunkl operatorT (k) associated with the reflection
groupZ2 onR and the multiplicity parameterk ≥ 0 by

T (k)2=D2+2kδ.
As bothD2 andδ are homogeneous of degree−2 on�1, the operators3s are well
defined and degree-lowering on�1. We prove that they have the following decisive
property.
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Proposition 3.1. The operators3s, s ≥ 0, satisfy the positive minimum principle
(M) on�1.

We next turn to the generalN -dimensional setting: HereG is an arbitrary finite
reflection group onRN with multiplicity functionk ≥ 0. We consider the generalized
Laplacian associated withG andk, which is defined by

7k :=
N∑
i=1

Tξi (k)
2

with an arbitrary orthonormal basis(ξ1, . . . , ξN) of RN (see [D1]). It is homogeneous
of degree−2 on�N and (with our convention〈α,α〉 = 2 for all α ∈ R+) is given
explicitly by

7k =7+2
∑
α∈R+

k(α)δα with δαf (x)= 〈∇f (x),α〉〈α,x〉 − f (x)−f (σαx)〈α,x〉2 .(3.2)

Here7 and∇ denote the usual Laplacian and gradient, respectively. Theorem 2.3
is the key to infer from the 1-dimensional setting of Proposition 3.1 to a general
multivariable extension.

Proposition 3.2. LetLk :=7k−7. Then, fork ≥ 0, the operators

e−s7etLk es7 (s, t ≥ 0)
are positive on�N.

The statement of Theorem 1.1 is then finally reduced to the following consequence
of Proposition 3.2.

Corollary 3.3. The operatore−7/2e7k/2 is positive on�N .

Proof. Applying Trotter’s product formula of Lemma 2.2, we obtain

e−7/2e7k/2p(x)

= e−7/2e7/2+Lk/2p(x)= lim
n→∞e

−7/2(e7/2neLk/2n)np(x)
= lim

n→∞

n∏
j=1

(
e−(1−j/n)·7/2eLk/2ne(1−j/n)·7/2

)
p(x)

(
p ∈�N,x ∈RN )

.

By Proposition 3.2, each of then factors in the above product is a positive operator
on�N . Hence,e−7/2e7k/2 is also positive on�N .

We now turn to the proof of Proposition 3.1. We start with two elementary auxiliary
results.

Lemma 3.4. For eachp ∈�1 andc ∈R,

ecD
2(
xp(x)

)= xecD2p(x)+2cecD2p′(x).
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Proof. Power series expansion ofecD
2
yields

ecD
2(
xp(x)

)
=
∞∑
n=0

cn

n!D
2n(xp(x))= xp(x)+ ∞∑

n=1

cn

n!
(
xD2np(x)+2nD2n−1p(x))

= xecD2p(x)+2c
∞∑
n=1

cn−1

(n−1)!D
2n−1p(x)= xecD2p(x)+2cecD2p′(x).

Lemma 3.5. Letp ∈�12n+1, n ∈ Z+, be an odd polynomial. Then the differential
equation

cy′ −xy = p (c > 0)(3.3)

has exactly one polynomial solution (which belongs to�12n), namely,

yp(x)= 1
c
ex
2/2c

∫ x

−∞
e−t2/2cp(t)dt.

Proof. The general solution of (3.3) is

y(x)= aex2/2c+ 1
c
ex
2/2c

∫ x

−∞
e−t2/2cp(t)dt, a ∈R.

It therefore remains to prove that

x �→ ex
2/2c

∫ x

−∞
e−t2/2cp(t)dt(3.4)

is a polynomial. We use induction byn. For n = 0, the statement is obvious. For
n≥ 1, write p(x)=−c−1xr(x) with r ∈�N

2n. Partial integration then yields∫ x

−∞
e−t2/2cp(t)dt =−1

c

∫ x

−∞
te−t2/2cr(t)dt = e−x2/2cr(x)−

∫ x

−∞
e−t2/2cr ′(t)dt.

By our induction hypothesis, this equalse−x2/2c(r(x)− r̃(x)) with some polynomial
r̃ ∈�N

2n−2. This finishes the proof.
Proof of Proposition 3.1. The cases = 0 is easy and may be treated separately.

Let p ∈�1+ with p(x0)= 0. Thenp′(x0)= 0 andp′′(x0) ≥ 0. Thus, ifx0 �= 0, then
δp(x0)= p(−x0)/(2x20)≥ 0. In casex0= 0, it is seen from the integral representation
(3.1) thatδp(0)= p′′(0)≥ 0. From now on, we may therefore assume thats > 0.
We first derive an explicit representation of the operator3s(s > 0), which allows

us to check property (M) easily. We claim that

(3.5) 3sp(x)=− 1
2s
p(x)− 1

8s2
ex
2/4s

(∫ x

−∞
gp,x(t)dt−

∫ ∞
−x

gp,x(t)dt

)
,

for p ∈�1, with gp,x(t)= e−t2/4s(t+x)p(t).
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This of course, may be verified by a (tedious) direct computation of3s(x
k),k ∈ Z+,

and an explicit evaluation of the corresponding integrals on the right side by series
expansions of the involved exponentials.We prefer, however, to give amore instructive
proof.
Note first that the operatorsD2 andδ map even polynomials to even ones and odd

polynomials to odd ones, and

δp(x)=



1

x
p′(x) if p is even,(
1

x
p(x)

)′
if p is odd.

Now fix s > 0 and suppose thatp ∈ �1 is even. Then the polynomialsesD2p and
q :=3sp are also even, and we obtain the following equivalences:

q =3sp⇐⇒ δ
(
esD

2
p
)= esD2q⇐⇒ p′(x)= e−sD2(xesD2q)(x).

By use of Lemma 3.4, this becomes

p′(x)= xq(x)−2sq ′(x),(3.6)

which is a differential equation of type (3.3) forq. Lemma 3.5, together with a further
partial integration, now implies that

3sp(x)=− 1

2s
ex
2/4s

∫ x

−∞
e−t2/4sp′(t)dt

=− 1

2s
p(x)− 1

4s2
ex
2/4s

∫ x

−∞
e−t2/4s tp(t)dt (p even).(3.7)

In a similar way, we calculateq = 3sp for odd p ∈ �1. In this case,esD2p and
q =3sp are odd as well, and we have the equivalence

q =3sp⇐⇒ d

dx

(1
x
esD

2
p(x)

)
= esD2q(x).

Hence, there exists a constantc1 ∈R such that

esD
2
p(x)= x(c1+h(x)), with h(x)=

∫ x

0
esD

2
q(t)dt.

Applying Lemma 3.4 again, we obtain

p(x)= c1e−sD2(x)+xe−sD2h(x)−2se−sD2h′(x)
= c1x+xe−sD2h(x)−2sq(x).

(3.8)



454 MARGIT RÖSLER

In order to determinee−sD2h, note that
d

dx

(
e−sD2h(x)

)= e−sD2h′(x)= q(x).
Consequently, there exists a constantc2 ∈R such that

e−sD2h(x)= c2+
∫ x

0
q(t)dt.(3.9)

Now write p(x) = xP (x) andq(x) = xQ(x) with evenP,Q ∈ �1. Then, by (3.8)
and (3.9),

P(x)= c1+c2+
∫ x

0
t Q(t)dt−2sQ(x),

and therefore,

P ′(x)= xQ(x)−2sQ′(x).
This is exactly the same differential equation as we had in the even case before, and
the transfer of (3.7) gives

3sp(x)=− 1
2s
p(x)− 1

4s2
ex
2/4sx

∫ x

−∞
e−t2/4sp(t)dt (p odd).(3.10)

Finally, if p ∈ �1 is arbitrary, then writep = pe + po with even partpe(x) =
(p(x)+ p(−x))/2 and odd partpo(x) = (p(x)− p(−x))/2. The combination of
(3.7) forpe with (3.10) forpo then leads to

3sp(x)=− 1
2s
p(x)− 1

4s2
ex
2/4s

∫ x

−∞
e−t2/4s

( t+x
2

p(t)+ t−x
2

p(−t)
)
dt,

and an easy reformulation yields the stated representation (3.5).
In order to prove that3s satisfies the positive minimum principle (M), define

Fp(x) :=
∫ x

−∞
gp,x(t)dt−

∫ ∞
−x

gp,x(t)dt, for p ∈�1 andx ∈R.

Now letp ∈�1+ with p(x0)= 0. Then, in view of (3.5),

3sp(x0)=− 1

8s2
ex
2
0/4sFp(x0),

and it remains to check thatFp(x0)≤ 0. For this, we rewriteFp as

Fp(x)=
∫ −|x|
−∞

gp,x(t)dt−
∫ ∞
|x|

gp,x(t)dt.

As p is nonnegative, the sign ofgp,x(t) coincides with the sign of(x + t) for all
x, t ∈ R. This shows that, in fact,Fp(x) ≤ 0 for all x ∈ R, which completes the
proof.
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Proof of Proposition 3.2. For fixeds ≥ 0, the operators(e−s7et Lk es7)t≥0 form a
semigroup on�N with generatore−s7Lkes7. According to Theorem 2.3, it therefore
suffices to prove that this generator satisfies the positive minimum principle (M) on
�N . With the notation of (3.2), we have

Lk = 2
∑
α∈R+

k(α)δα with k(α)≥ 0, for all α ∈ R+.

It is therefore enough to make sure that each of the operators

ρsα := e−s7δαes7
(
α ∈ R+

)
satisfies (M). (Here the assumptionk ≥ 0 is crucial!) Now fix α ∈ R+. An easy
calculation shows thatδα, and henceρsα, are rotation-equivariant, that is,

g ◦ρsα ◦g−1= ρsg(α) for g ∈ SO(N,R).

We may therefore assume thatα =√2e1= (
√
2,0, . . . ,0). As δ√2e1 obviously com-

mutes with each of the partial derivatives∂2, . . . ,∂N onRN , we obtain

ρs√
2e1
= e−s∂21δ√2e1es∂

2
1 .

But this operator acts on the first variable only, namely, via3s :

ρs√
2e1
p(x1, . . . ,xN)=3spx2,...,xN (x1),

wherepx2,...,xN (x1) := p(x1,x2, . . . ,xN) for p ∈�N.

The assertion now follows from Proposition 3.1.

In order to complete the proof of Theorem 1.1, we employ the following bilinear
form on�N associated withG andk, which was introduced in [D3] (for a further
discussion, see also [DJO]):

[p,q]k :=
(
p(Tk)q

)
(0) for p,q ∈�N.

Herep(Tk) is the differential-difference operator which is obtained fromp(x) by
replacing eachxi by the corresponding Dunkl operatorTei (k). The casek = 0 is
distinguished by the notationp(∂). Notice that[p,q]k = 0 for p ∈ �N

n andq ∈ �N
m

with n �=m. It was shown in [D3] that fork ≥ 0 and for allp,q ∈�N ,

[
p,q

]
k
= ck

∫
RN

e−7k/2p(x)e−7k/2q(x)e−|x|2/2wk(x)dx,(3.11)

wherewk is the weight function defined in (1.1) andck := (
∫
RN e

−|x|2/2wk(x)dx)−1.
We remark that (3.11) can also be proved in a completely independent way by us-
ing certain biorthogonal polynomial systems (Appell characters and cocharacters) in
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L2(RN,e−|x|2/2wk(x)dx); see [RV2]. Another useful identity for[. , .]k is
[Vkp,q]k = [p,q]0, for all p,q ∈�N.(3.12)

In fact, forp,q ∈ �N
n with n ∈ Z+, one obtains

[Vkp,q]k = [q,Vk p]k = q(Tk)(Vkp)= Vk
(
q(∂)p

)= q(∂)(p)= [p,q]0.
Here the characterizing properties ofVk and the fact thatq(∂)p is a constant have
been used. For generalp,q ∈�N , (3.12) then follows from the orthogonality of the
spaces�N

n , n ∈ Z+, with respect to both scalar products.
Finally, we need the following positivity criterion for polynomials.

Lemma 3.6. Letα > 0 and suppose thath ∈ Cb(RN) satisfies∫
RN

h(x)p(x)e−α|x|2wk(x)dx ≥ 0, for all p ∈�N+ .(3.13)

Thenh(x)≥ 0 for all x ∈RN .

Proof. For abbreviation, put

dmk(x) := e−α|x|2wk(x)dx ∈M+b
(
RN

)
.

We use that�N is dense inL2(RN,dmk). This is proved (withα = 1/2) in [D4,
Theorem 2.5] by referring to a well-known theorem of Hamburger for 1-dimensional
distributions, but it can also be seen directly as follows. Suppose that�N is not
dense inL2(RN,dmk). Then there exists somef ∈ L2(RN,dmk), f �= 0, with∫
RN fpdmk = 0 for all p ∈ �N . Now consider the measureν := fmk ∈ Mb(RN)
and its (classical) Fourier-Stieltjes transform

ν̂(λ)=
∫
RN

e−i〈λ,x〉 dν(x)=
∫
RN

f (x)e−i〈λ,x〉 dmk(x).

As x �→ e|λ||x| belongs toL2(RN,dmk) for all λ ∈ RN , the dominated convergence
theorem yields

ν̂(λ)=
∞∑
n=0

(−i)n
n!

∫
RN

f (x)〈λ,x〉n dmk(x)= 0.

By injectivity of the Fourier-Stieltjes transform onMb(RN), it follows that ν = 0,
and hencef = 0 a.e., a contradiction.
Now assume thath ∈ Cb(RN) satisfies (3.13). In order to proveh ≥ 0, it suffices

to check that ∫
RN

f hdmk ≥ 0, for all f ∈ C+c
(
RN

)
.(3.14)
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For this, letf ∈ C+c (RN) andε > 0. By density of�N in L2(RN,dmk), there exists
somep = pε ∈�N with ‖√f −p‖2,mk < ε. WithM := ‖h‖∞,RN , it follows that∣∣∣∣

∫
RN

f hdmk−
∫
RN

p2hdmk

∣∣∣∣≤M
∫
RN

∣∣f −p2∣∣dmk

≤M ·∥∥√
f −p∥∥

2,mk

∥∥√
f +p∥∥

2,mk
≤Mε ·(2∥∥√

f
∥∥
2,mk
+ε),

which tends to 0 withε→ 0. This proves (3.14) and yields the assertion.

The proof of Theorem 1.1 is now easily accomplished.

Proof of Theorem 1.1.Combining formulas (3.12) and (3.11), we obtain for all
p,q ∈�N the identity

ck

∫
RN

e−7k/2(Vkp)(x)e
−7k/2q(x)e−|x|2/2wk(x)dx

= c0
∫
RN

e−7/2p(x)e−7/2q(x)e−|x|2/2dx.

As e−7k/2(Vkp) = Vk(e
−7/2p) and as we may also replacep by e7/2p andq by

e7k/2q in the above identity, it follows that for allp,q ∈�N ,

ck

∫
RN

Vkp(x)q(x)e
−|x|2/2wk(x)dx = c0

∫
RN

p(x)e−7/2e7k/2q(x)e−|x|2/2dx.

Corollary 3.3 now implies that∫
RN

Vkp(x)q(x)e
−|x|2/2wk(x)dx ≥ 0, for all p,q ∈�N+ .

For fixedp ∈ �N+ , we may therefore apply Lemma 3.6 with, let us say,α = 1/4 to
the functionh(x) := e−|x|2/4Vkp(x) ∈ Cb(RN). This shows thatVkp(x) ≥ 0 for all
x ∈RN and yields the assertion.
4. Proof of the main result. We start this section with a short discussion of

the algebrasAr (r > 0) introduced in (1.3). We should first point out that these
are complex algebras, whereas in [D3] only series of real-valued polynomials are
considered. It is easily checked thatAr is a subalgebra of the space of functions
that are continuous on the ballKr and real-analytic in its interior. In fact, for real-
valuedp ∈ �N

n andi = 1, . . . ,N , the inequality‖∂ip‖∞,K1 ≤ n‖p‖∞,K1 holds as a
consequence of the Van der Corput–Schaake inequality (see [D3]). This allows us to
differentiatef =∑∞

n=0fn ∈ Ar termwise and arbitrarily often. The topology ofAr
is stronger than the topology induced by the uniform norm onKr . Notice also that
Ar is not closed with respect to‖ ·‖∞,Kr and thatAr ⊆ As with ‖ ·‖Ar ≥ ‖·‖As for
s ≤ r. The following observation is straightforward.
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Lemma 4.1. (Ar,‖ · ‖Ar ) is a commutative Banach-∗-algebra with the pointwise
multiplication of functions, complex conjugation as involution, and unit1.

Proof. To show completeness, let(f m)m∈Z+ be a Cauchy sequence inAr . Then
for ε > 0 there exists an indexm(ε) ∈ Z+ such that

∞∑
n=0

∥∥f mn −f m′n ∥∥∞,Kr < ε, for m,m′ >m(ε).(4.1)

In particular, for each degreen, the homogeneous parts(f mn )m∈Z+ converge uniformly
onKr and hence within�N

n to somegn ∈ �N
n . It further follows from (4.1) that

∞∑
n=0

∥∥gn−f mn ∥∥∞,Kr < ε, for m>m(ε).

Therefore,g := ∑∞
n=0gn belongs toAr with ‖g − f m‖Ar → 0 for m → ∞. It

is also easily checked by a Cauchy-product argument thatAr is an algebra with
‖fg‖Ar ≤ ‖f ‖Ar ·‖g‖Ar for all f,g ∈ Ar . The rest is clear.
We next determine the symmetric spectrum ofAr, that is, the subspace of the

spectrum7(Ar) given by

7S(Ar) :=
{
ϕ ∈7(Ar) : ϕ(f )= ϕ(f ) for all f ∈ Ar

}
.

As usual,7S(Ar) is equipped with the Gelfand topology. Forx ∈Kr , the evaluation
homomorphism atx is defined byϕx : Ar → C, ϕx(f ) := f (x).
Lemma 4.2. 7S(Ar) = {ϕx : x ∈ Kr}, and the mappingx �→ ϕx is a homeomor-

phism fromKr onto7S(Ar).

Proof. It is obvious thatϕx belongs to7S(Ar) for eachx ∈Kr , with ϕx �= ϕy for
x �= y, and that the mappingx �→ ϕx is continuous onKr . It remains to show that
eachϕ ∈ 7S(Ar) is of the formϕλ with someλ ∈ Kr . To this end, putλi := ϕ(xi)
for i = 1, . . . ,N . By symmetry ofϕ, we haveλ := (λ1, . . . ,λN) ∈RN. Moreover,

|λ|2= ϕ(|x|2)≤ ∥∥|x|2∥∥
Ar
= r2.

This shows thatλ ∈ Kr . By definition of λ, the identityp(λ) = ϕ(p) holds for
all polynomialsp ∈ �N . The assertion now follows from the density of�N in
(Ar,‖·‖Ar ).

Proof of Theorem 1.2.Fix x ∈RN and putr = |x|. Then the mapping
Cx : f �→ Vkf (x)

is a bounded linear functional onAr , and Theorem 1.1 implies that it is positive on
the dense subalgebra�N of Ar , that is,Cx(|p|2)≥ 0 for all p ∈�N . Consequently,
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Cx is a positive functional on the whole Banach-∗-algebraAr . Now, by a well-
known Bochner-type representation theorem for positive functionals on commutative
Banach-∗-algebras (see, for example, [FD, Theorem 21.2]), there exists a unique
measureνx ∈M+b (7S(Ar)) such that

Cx(f )=
∫
7S(Ar )

f̂ (ϕ)dνx(ϕ), for all f ∈ Ar(4.2)

with f̂ the Gelfand transform off . Denote byµx the image measure ofνx under the
homeomorphism7S(Ar)→Kr , ϕx→ x. Equation (4.2) then becomes

Vkf (x)=
∫
{|ξ |≤|x|}

f (ξ)dµx(ξ), for allf ∈ A|x|.

The normalizationVk1 = 1 implies thatµx is a probability measure on{ξ ∈ RN :
|ξ | ≤ |x|}. The uniqueness ofµx among the representing probability measures on
RN is clear, because identity (1.4) in particular determines the (classical) Fourier-
Stieltjes transform ofµx . Finally, the transformation properties (1.5) follow imme-
diately from the homogeneity-preserving character ofVk on�N and the invariance
propertyVk ◦g = g◦Vk for all g ∈G (see [D3, Theorem 2.3]). This finishes the proof
of Theorem 1.2.

5. Some consequences and applications.In this final section, we discuss only a
short selection of implications that arise from the positivity of Dunkl’s intertwining
operator. We expect that several more useful applications can be found, and it would
also be of interest to have an explicit form forVk for larger classes of reflection groups.
In what follows, it is always assumed thatk ≥ 0. The most prominent consequence
of Theorem 1.2, as already mentioned in the introduction, is positive-definiteness of
Dunkl’s generalized exponential kernel. Up to now, this has been known only in the
special cases where positivity ofVk is visible from an explicit integral representation.
In particular, for the reflection groupG= Z2 onR and multiplicity parameterk > 0,
formula (1.2) shows that

KG(x, iy)= ck
∫ 1

−1
eitxy(1− t)k−1(1+ t)kdt = eixy 1F1

(
k,2k+1,−2ixy).

The following general result is an immediate consequence of Theorem 1.2 with
f (x)= e〈x,z〉 and Bochner’s theorem.
Proposition 5.1. For eachz ∈ CN , the functionx �→KG(x,z) has the Bochner-

type representation

KG(x,z)=
∫
RN

e〈ξ,z〉dµx(ξ);(5.1)
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here theµx are the representing measures from Theorem 1.2. In particular,KG(x,y)

> 0 for all x,y ∈RN, and for eachx ∈RN the functiony �→KG(x, iy) is positive-
definite onRN .

Corollary 5.2. For eachx ∈RN , the generalized Bessel functiony �→ JG(x, iy)

is positive-definite onRN .

We mention that for the groupG = S3, this corollary follows from the integral
representations in [D5]. From the integral representation (5.1), together with [dJ,
Corollary 3.3], we obtain further knowledge about the support of the representing
measuresµx .

Corollary 5.3. The measuresµx, x ∈RN, satisfy
(i) suppµx is contained inco{gx, g ∈G}, the convex hull of the orbit ofx under

G;
(ii) suppµx ∩{gx, g ∈G} �= ∅.
Proof. The proof of (i) follows from [dJ, Corollary 3.3]. For the proof of (ii), it is

therefore enough to show that

suppµx ∩
{
ξ ∈RN : |ξ | = |x|} �= ∅.

Suppose, to the contrary, that suppµx ∩{ξ ∈ RN : |ξ | = |x|} = ∅ for somex ∈ RN .
Then there exists a constantσ ∈]0,1[ such that suppµx ⊆ {ξ ∈ RN : |ξ | ≤ σ |x|}.
This leads to the estimation

KG(x,y)=
∫
{|ξ |≤σ |x|}

e〈ξ,y〉dµx(ξ)≤ eσ |x||y|

for all y ∈RN . On the other hand, [D3, Theorem 3.2] withz= 0 says that

ck

∫
RN

KG(x,y)e
−(|x|2+|y|2)/2wk(y)dy = 1.

Now let r > 0. As both formulas above remain valid ifx is replaced byrx, it follows
that

1≤ ck
∫
RN

e−(|rx|2+|y|2)/2eσ |rx||y|wk(y)dy ≤ ck
∫
RN

e(σ−1)(r2|x|2+|y|2)/2wk(y)dy,

which tends to 0 withr→∞, a contradiction.
This result implies useful estimates forKG and its derivatives, which partially

sharpen those of [dJ].

Corollary 5.4. Let ν ∈ ZN+ and |ν| = ν1+·· ·+ νN . Then, for allx ∈ RN and
z ∈ CN, ∣∣∂νz KG(x,z)

∣∣≤ |x||ν| ·emaxg∈G〈gx,Rez〉.
In particular, |KG(x, iy)| ≤ 1 for all x,y ∈RN .
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Proof. This is immediate by differentiation under the integral in (5.1) and the fact
that, forξ ∈ co{gx, g ∈G} andz ∈ CN , the estimation Re〈ξ,z〉 ≤maxg∈G〈gx,Rez〉
holds.

Remark. Our proof of Theorem 1.2 did not involve any results from [dJ]. Without
referring to [dJ], the following weaker estimates forKG and its derivatives are an
immediate consequence of (5.1). Letν ∈ ZN+ . Then, for allx ∈RN andz ∈ CN ,∣∣∂νz KG(x,z)

∣∣≤ |x||ν| ·e|x|·|Rez|.
We give two further applications of our positivity results. The first one concerns

a question from approximation theory stated in [X1], namely, the summability of
orthogonal series in generalized spherical harmonics. In fact, the study of general-
ized spherical harmonics associated with a finite reflection group and a multiplicity
function k ≥ 0 was one of the starting points of Dunkl’s theory in [D3] and has
been extended in [X1] and [X3]. Many results for classical spherical harmonics carry
over to these sphericalk-harmonics, where harmonizity is now meant with respect
to 7k. In particular, there is a natural decomposition of�N

n |SN−1 into subspaces of
k-spherical harmonics, which are orthogonal inL2(SN−1,wk(x)dx). In [X1], Xu
studies the Cesàro summability of generalized Fourier expansions with respect to an
orthonormal basis of sphericalk-harmonics. Recall that a sequence{sn}n∈Z+ is called
Cesàro-summable of orderδ to s, ((C,δ)-summable tos, for short) if

1(
n+δ
n

) n∑
k=0

(
n−k+δ−1

n−k
)
sk −→ s with n→∞.

The following result is proven in [X1] under the requirement that the intertwining
operatorVk is positive on�N . Theorem 1.1 now assures its validity for allk ≥ 0.
Theorem 5.5. Letf : SN−1→ C be continuous, and let{sn} denote the sequence

of partial sums in the expansion off as a Fourier series with respect to a fixed
orthonormal basis of sphericalk-harmonics. Then{sn} is uniformly(C,δ)-summable
overSN−1 to f , providedδ > γ +N/2−1 with γ =∑

α∈R+ k(α).
Another application of our positivity result is related with probabilistic aspects of

Dunkl’s theory and concerns generalizations of the classical moment functions to the
Dunkl setting. The definition of the classical moments of probability measures on
RN is based on the monomial “moment functions”mν(x)= xν = xν11 xν22 · · ·xνNN , x ∈
RN, ν ∈ ZN+ . They have many applications in the study of sums of independent
random variables. Recently, a concept of Markov kernels and Markov processes that
are homogeneous with respect to a given Dunkl transform was developed in [RV1].
In this context, generalized moment functions onRN provide a useful tool. They
generalize the classical monomial moment functionsmν(x) and are defined as the
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unique analytic coefficients in the expansion

KG(x,y)=
∑
ν∈ZN+

mk,ν(x)

ν! yν
(
x ∈RN,y ∈ CN )

.

From the definition ofKG, it follows that

mk,ν(x)= Vk
(
xν

)
, for ν ∈ ZN+ .

Theorem 1.2, in particular, implies the following useful relations for the generalized
moment functions, which are obvious only in the classical case (again, we assume
k ≥ 0):∣∣mk,ν(x)

∣∣≤ |x||ν| and 0≤mk,ν(x)
2 ≤mk,2ν(x), for all x ∈RN, ν ∈ ZN+ .

The first inequality is clear from the support properties of the measuresµx , while
the second one follows from Jensen’s inequality. Among the applications of these
moments, we mention the construction of martingales from Dunkl-type Markov pro-
cesses (for details, refer to [RV1]).
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