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Abstract

These lecture notes are intended as an introduction to the theory of
rational Dunkl operators, the associated special functions and related
Markov processes with an emphasis on examples which are related to
Riemannian symmetric spaces of Euclidean type and Bessel hypergroups
on the matrix cones of positive semidefinite matrices.

We start with a comprehensive introduction into Dunkl theory: Dunkl
operators, the intertwining operator and its positivity, the Dunkl kernel
and the Dunkl transform, the Dunkl Laplacian and the associate heat
semigroup. We further give an outline of the connection with Calogero-
Moser-Sutherland models and generalized Hermite polynomials. More-
over, of central interest will be product formulas, generalized translations
and associated commutative hypergroup structures on closed Weyl cham-
bers. In particular, we explain how Dunkl theory for particular multi-
plicities is related to Riemannian symmetric spaces of Euclidean type and
Bessel hypergroups on the matrix cones, and how this leads to a bunch of
multiplicities for which the Weyl-group invariant Dunkl theory admits a
probability preserving translation and an associated commutative hyper-
group structure on the closed Weyl chamber. We finally discuss Markov
processes on RN which are related with Dunkl theory with an emphasis
on connections to random walk on groups and hypergroups. In particular
associated martingales, martingale characterizations, moment functions
and Appell characters are studied. Of particular interest are Dunkl pro-
cesses, i.e., diffusion-reflection processes with the Dunkl Laplacians as
generators.
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1 Introduction

Since their invention exactly twenty years ago, Dunkl operators have initiated an
intense development within the area of harmonic analysis and special functions
associated with root systems. A basic motivation for this subject comes from
the theory of Riemannian symmetric spaces whose spherical functions can be
considered as multi-variable special functions depending on certain discrete sets
of parameters. For spaces of rank one, they can be imbedded into classes of
one-variable hypergeometric functions.

Dunkl operators provide a tool to extend the theory of spherical functions to
a theory of multivariable hypergeometric functions. Roughly speaking, Dunkl
operators are commuting differential-reflection operators on a Euclidean space
which are associated with a finite reflection group and have a continuous set of
parameters, called the multiplicities. For fixed root system and multiplicities,
the associated Dunkl operators commute. They lead to commutative algebras
which generalize the algebras of invariant differerential operators on Riemannian
symmetric spaces. Actually, there are two levels of Dunkl operator theory: first
the full theory, involving operators with reflection parts. Second, the Weyl group
invariant theory (in probability, such as in [De] in this volume, sometimes called
“radial” ), where the associated special functions are Weyl group invariant and
include the spherical functions of Riemannian symmetric spaces for particular
multiplicity values.

The first class of Dunkl operators, nowadays often called “rational” Dunkl
operators, were introduced by C.F. Dunkl in a series of papers ([D1-5]), where he
built up the framework for a theory of special functions and integral transforms
in several variables related with reflection groups. The rational operators gener-
alize the theory of symmetric spaces of Euclidean type. Besides them, there are
now various further classes of Dunkl-type operators, in particular the trigono-
metric Dunkl operators of Heckman, Opdam and Cherednik, which generalize
the theory of Riemannian symmetric spaces of the compact and non-compact
type (see [He2] or [O3]), and the important q -analogues of Macdonald and
Cherednik. There are various kinds of limit transitions between these theories
and their special functions. Apart from the context of symmetric spaces, Dunkl
operators are also relevant in mathematical physics, namely for the analysis of
quantum many body systems of Calogero-Moser-Sutherland type. These de-
scribe algebraically integrable systems in one dimension; a good bibliography is
contained in [vDV].

In this article, we shall restrict ourselves to the rational case with multiplicity
function k ≥ 0 in which case the most satisfying results and applications in
analysis and probability are available. We give a general introduction to rational
Dunkl theory, discuss examples, and sketch the beginning of applications in
probability.

To be more precise, these lecture notes are organized as follows: We start
with a general introduction to rational Dunkl theory: Dunkl operators, the
intertwining operator and its positivity, the Dunkl kernel and the Dunkl trans-
form, as well as the Dunkl Laplacian and the associated heat semigroup. We
further give an outline of the connection with Calogero-Moser-Sutherland mod-
els and generalized Hermite polynomials, and we derive product formulas and
generalized translations which are positive and probability preserving in some
important cases. We also explain how Dunkl theory for particular multiplicities
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is related to Riemannian symmetric spaces of Euclidean type. Furthermore, we
present hypergroup convolution algebras on cones of positive semidefinite ma-
trices and show how these lead to a bunch of multiplicities for which the Weyl-
group invariant Dunkl theory admits probability preserving translations and
commutative hypergroup structures on the closed Weyl chambers of type BN .
In the final chapter, we discuss Markov processes related to Dunkl operators
with an emphasis on connections to random walks on groups and hypergroups.
We study associated martingales, martingale characterizations, moment func-
tions and Appell characters. Of particular interest are the Dunkl processes,
i.e., diffusion-reflection processes with the Dunkl Laplacians as generators, as
these processes share many well-known features of Brownian motions on RN .
For a more detailed discussion of these processes and their projections to Weyl
chambers in view of stochastic analysis we refer to the contributions [De] and
[CGY] in this volume.
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2 Dunkl theory

This section gives an introduction to the theory of rational Dunkl operators,
which we call Dunkl operators for short, and to the Dunkl transform. Main
references are [D2], [D4],[D5], [DX],[dJ1], [He1], [R2], [R3], [R6] and [R7]. For a
background on reflection groups and root systems the reader is referred to [Hu]
and [GB]. We can by far not be complete here. In particular, we do not touch
the field of rational Cherednik algebras, but rather focus on aspects which are
of interest in connection with stochastic analysis, such as Fourier analysis and
positivity results.

2.1 Root systems and reflection groups

The basic ingredient in the theory of Dunkl operators are root systems and finite
reflection groups, acting on some Euclidean space (E, 〈 ., . 〉) of finite dimension
N. It will be no restriction to assume that that E = RN with the standard
Euclidean inner product 〈x, y〉 =

∑N
j=1 xjyj . For α ∈ RN \ {0} , we denote by

σα the orthogonal reflection in the hyperplane 〈α〉⊥ perpendicular to α , i.e.

σα(x) = x− 2
〈α, x〉
|α|2

α ,

where |x| :=
√
〈x, x〉 . Each reflection σα is orthogonal with respect to the

standard inner product.

2.1 Definition. A finite subset R ⊂ RN \ {0} is called a root system, if

σα(R) = R for all α ∈ R.

The dimension of spanRR is called the rank of R . There are two possible
additional requirements: R is called

• reduced, if α ∈ R implies 2α /∈ R .
• crystallographic if R has full rank N and

2〈α, β〉
〈β, β〉

∈ Z for all α, β ∈ R.

The group W = W (R) ⊆ O(N,R) which is generated by the reflections
{σα, α ∈ R} is called the reflection group (or Coxeter group) associated with
R . The dimension of spanRR is called the rank of R .

If R is crystallographic, then spanZR forms a lattice in RN (called the
root-lattice) which is stabilized by the action of the associated reflection group.

In rational Dunkl theory, one usually works with reduced root systems which
are not necessarily crystallographic. On the other hand, the root systems oc-
curing in Lie theory and in geometric contexts associated with Riemannian
symmetric spaces are always crystallographic, and this requirement is also fun-
damental in the theory of trigonometric Dunkl operators.

2.2 Lemma. (1) If α is in R , then also −α is in R .
(2) For any root system R in RN , the reflection group W = W (R) is finite.
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(3) The set of reflections contained in W is exactly {σα , α ∈ R}.
(4) wσαw

−1 = σwα for all w ∈W and α ∈ R .

Proof. (1) This follows since σα(α) = −α . (2) As R is fixed under the action of
W , the assignment ϕ(w)(α) := wα defines a homomorphism ϕ : W → S(R) of
W into the symmetric group S(R) of R . This homomorphism is easily checked
to be injective. Thus W is naturally identified with a subgroup of S(R), which
is finite. Part (3) is slightly more involved. An elegant proof can be found in
Section 4.2 of [DX]. Part (4) is straight forward.

Properties (3) and (4) imply in particular that there is a bijective corre-
spondence between the conjugacy classes of reflections in W and the orbits in
R under the natural action of W . We shall need some more concepts: Each
root system can be written as a disjoint union R = R+ ∪ (−R+), where R+

and −R+ are separated by a hyperplane 〈{x ∈ RN : 〈β, x〉 = 0} with β /∈ R .
Such a set R+ is called a positive subsystem. The set of reflecting hyperplanes
{〈α〉⊥, α ∈ R} divides RN into connected open components, called the Weyl
chambers of R . It can be shown that the topological closure C of any chamber
C is a fundamental domain for W , i.e. C is naturally homeomorphic with the
space (RN )W of all W -orbits in RN , endowed with the quotient topology (see
Section 1.12 of [Hu]). W permutes the reflecting hyperplanes as well as the
chambers.

2.3 Examples. (1) I2(n), n ≥ 3: Root systems of the dihedral groups. De-
fine Dn to be the dihedral group of order 2n , consisting of the orthogonal
transformations in the Euclidean plane R2 which preserve a regular n -
sided polygon centered at the origin. It is generated by the reflection at
the x-axis and the reflection at the line through the origin which meets
the x-axis at the angle π/n . Root system I2(n) is crystallographic only
for n = 2, 3, 4, 6.

(2) AN−1. Let SN denote the symmetric group in N elements. It acts faith-
fully on RN by permuting the standard basis vectors e1, . . . , eN . Each
transposition (ij) acts as a reflection σij sending ei − ej to its negative.
Since SN is generated by transpositions, it is a finite reflection group. The
root system of SN is called AN−1 and is given by

AN−1 = {±(ei − ej), 1 ≤ i < j ≤ N}.

This root system is crystallographic. Its span is the orthogonal comple-
ment of the vector e1 + . . .+ eN , and thus the rank is N − 1.

(3) BN . Here W is the reflection group in RN generated by the transpositions
σij as above, as well as the sign changes σi : ei 7→ −ei , i = 1, . . . , N. The
group of sign changes is isomorphic to ZN2 , intersects SN trivially and
is normalized by SN , so W is isomorphic with the semidirect product
SN n ZN2 . The corresponding root system is called BN ; it is given by

BN = {±ei, 1 ≤ i ≤ N} ∪ {±(ei ± ej), 1 ≤ i < j ≤ N}.

BN is crystallographic and has rank N .
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(4) BCN . This is the root system in RN given by

BCN = {±ei, ±2ei, 1 ≤ i ≤ N} ∪ {±(ei ± ej), 1 ≤ i < j ≤ N}.

It is crystallographic, but not reduced.

A root system R is called irreducible, if it cannot be written as the orthogonal
disjoint union R = R1 ∪R2 of two root systems R1 , R2 . Any root system can
be uniquely written as an orthogonal disjoint union of irreducible root systems.
There exists a classification of all irreducible, reduced root systems in terms
of Coxeter graphs. There are 5 infinite series: AN , BN , CN , DN (which are
crystallographic), as well as the rank 2 root systems I2(n) corresponding to
the dihedral groups. Apart from those, there is a finite number of exceptional
root systems. The root systems BCN are the only irreducible crystallographic
root systems which are not reduced. We mention that the root system of a
complex semisimple Lie algebra is always crystallographic and reduced, and it
is irreducible exactly if the Lie algebra is simple. For further details on root
systems, the reader is referred to [Hu] and [Kn].

2.2 Dunkl operators

Let R be a reduced (not necessarily crystallographic) root system in RN and W
the associated reflection group. The Dunkl operators attached with R are mod-
ifications of the usual partial derivatives by reflection parts, which are coupled
by parameters. The parameters are given in terms of a so-called multiplicity
function:

2.4 Definition. A function k : R → C on the root system R is called a
multiplicity function, if it is invariant under the natural action of W on R .

The set of multiplicity functions forms a C -vector space whose dimension is
equal to the number of W -orbits in R .

2.5 Definition. Let k : R → C be a multiplicity function on R . Then for
ξ ∈ RN , the Dunkl operator Tξ := Tξ(k) is defined on C1(RN ) by

Tξf(x) := ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− f(σαx)
〈α, x〉

.

Here ∂ξ denotes the directional derivative corresponding to ξ , and R+ is a
fixed positive subsystem of R . For the i-th standard basis vector ξ = ei ∈ RN
we use the abbreviation Ti = Tei

.

The operators Tξ were introduced and first studied by C.F. Dunkl ([D1-5]).
By the W -invariance of k , their definition does not depend on the special choice
of R+ . Also, the length of the roots is irrelevant in the formula for Tξ . This
is the basic reason for the convention which requires reduced root systems: a
Dunkl operator with summation over a non-reduced root system can be replaced
by a counterpart with summation about an associated reduced counterpart, the
multiplicities being modified accordingly. Note further that the dependence
of Tξ on ξ is linear. In case k = 0, the Tξ(k) reduce to the corresponding
directional derivatives.
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Dunkl operators enjoy regularity properties similar to usual partial deriva-
tives on various spaces of functions. In order to formulate them, we introduce
some further standard notation. We denote by Π := C[RN ] the C -algebra of
polynomial functions on RN . It has a natural grading

Π =
⊕
n≥0

Pn ,

where Pn is the subspace of homogeneous polynomials of (total) degree n .
Further, S(RN ) denotes the Schwartz space of rapidly decreasing functions on
RN with the usual locally convex topology.

2.6 Lemma. (1) If f ∈ Cm(RN ) with m ≥ 1 , then Tξf ∈ Cm−1(RN ) .
(2) Tξ leaves C∞

c (RN ) and S(RN ) invariant.
(3) Tξ is homogeneous of degree −1 on P , that is, Tξ p ∈ Pn−1 for p ∈ Pn .

Proof. By the fundamental theorem of calculus, one obtains for α ∈ R the
representation

f(σαx)− f(x)
〈α, x〉

=
∫ 1

0

∂αf
(
x− 2t

〈α, x〉
〈α, α〉

α
)
dt.

¿From this, (1) (3) and the first part of (2) are immediate; the proof of (2) for
S(RN ) is also straightforward but more technical; it can be found in [dJ1].

The Dunkl operators Tξ(k) are W -equivariant, that is

wTξw
−1 = Twξ for all w ∈W (2.1)

where the action of W on functions f : RN → C is given by

w · f(x) := f(w−1x).

Relation (2.1) is obtained from the definition of the Dunkl operators and the
W -invariance of k . Similar, one obtains the following product rule:

2.7 Lemma. If f, g ∈ C1(RN ) and at least one of them is W -invariant, then

Tξ(fg) = Tξ(f) · g + f · Tξ(g). (2.2)

The most important property of the Dunkl operators, which is the basis for
rich analytic structures related with them, is the following Theorem of C.F.
Dunkl, [D2]:

2.8 Theorem. For fixed k, the Dunkl operators Tξ = Tξ(k), ξ ∈ RN commute.

This result was obtained in [D2] by a clever direct argumentation. There
are also alternative proofs. In [DJO], a proof relying on Koszul complex ideas is
given. Another, indirect method is to deduce the commutativity of the rational
Dunkl operators by a contraction limit from the corresponding result in the
trigonometric case, where the Dunkl (-Cherednik) operators are simultaneously
diagonalized by a certain family of trigonometric polynomials. See [O2] for the
Cherednik case and [dJ4] for the contraction limit.
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As a consequence of Theorem 2.8, the assignment

Φk : xi → Ti(k), 1 → id

extends to an algebra homomorphism Φ : Π → EndC(Π). For p ∈ Π we write

p(T (k)) := Φk(p)

for the Dunkl operator associated with p . The classical case k = 0 will be
distinguished by the notation Φ0(p) =: p(∂).

Let us denote by PW the subalgebra of P consisting of those polynomials
which are W -invariant. Suppose that p ∈ PW . Then it follows from the W -
equivariance of the Tξ that the associated Dunkl operator p(T ) = p(T (k)) is W -
invariant, that is w(p(T (k))w−1 = p(T (k)). We denote by Res p(T (k)) : PW →
PW the restriction of this operator to PW . It has been shown by Heckman
[He1] that this operator – as one expects – acts as a differential operator with
coefficients from PW .

Of particular importance is the Dunkl Laplacian, which is defined by

∆k := p(T (k)) with p(x) = |x|2.

As p is W -invariant, it follows that ∆k is W -invariant and

∆k =
N∑
i=1

T 2
ξi

for any orthonormal basis {ξ1, . . . , ξN} of RN . The Dunkl Laplacian can be
written explicitly as follows (see [D2] or [DX] for the proof):

2.9 Proposition.

∆k = ∆ + 2
∑
α∈R+

kαδα with δαf(x) =
∂αf(x)
〈α, x〉

− |α|2

2
f(x)− f(σαx)

〈α, x〉2
, (2.3)

where ∆ denotes the usual Laplacian on RN .

The restriction of ∆k is therefore given by

Res(∆k) = ∆ + 2
∑
α∈R+

kα
∂α
〈α, . 〉

.

Readers familiar with the theory of symmetric spaces will notice that this gen-
eralizes the radial part of the Laplace-Beltrami operator of a Riemannian sym-
metric space of Euclidean type, where R is always crystallographic and k takes
only certain values (essentially the multiplicities of restricted root spaces). We
shall return to this important aspect in Section 3.3.

2.10 Examples. (1) The rank-one case. If N = 1 then R = {±α} , which
is a root system of type A1 . The corresponding reflection group is W = {id, σ}
acting on R by σ(x) = −x . The Dunkl operator T = T1(k) with multiplicity
parameter k ∈ C is given by

Tf(x) = f ′(x) + k
f(x)− f(−x)

x
.
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The restriction of T 2 to even functions is a singular Sturm-Liouville operator,

ResT 2f(x) = f ′′(x) +
2k
x
· f ′(x) .

For k = (n−1)/2, this is just the radial part of the usual Laplacian on Rn with
respect to standard polar coordinates.

(2) Dunkl operators of type AN−1 . Consider W = SN acting on RN .
As all transpositions are conjugate in SN , the vector space of multiplicity func-
tions is one-dimensional. The Dunkl operators associated with the multiplicity
parameter k ∈ C are given by

Ti = ∂i + k ·
∑
j 6=i

1− σij
xi − xj

(i = 1, . . . , N)

with σij as in Example 2.3, and the Dunkl Laplacian is

∆k = ∆ + 2k
∑

1≤i<j≤N

1
xi − xj

[
(∂i − ∂j)−

1− σij
xi − xj

]
.

(3) Dunkl operators of type BN . There are two conjugacy classes of
reflections, leading to multiplicity functions of the form k = (k0, k1) with ki ∈
C . The associated Dunkl operators are given by

Ti = ∂i + k1
1− σi
xi

+ k0 ·
∑
j 6=i

[ 1− σij
xi − xj

+
1− τij
xi + xj

]
(i = 1, . . . , N),

where τij := σijσiσj .

In the following sections, we shall always require that the multiplicity is
non-negative, that is k(α) ≥ 0 for all α ∈ R . We write k ≥ 0 for short.

Parts of the theory extend to a larger range of multiplicities (depending on
R), but the condition k ≥ 0 is essential for positivity results and probability
theory.

2.3 A generalized Fischer pairing

In the classical theory of spherical harmonics, the following bilinear pairing on
Π, sometimes called Fischer product, plays an important role:

[p, q]0 :=
(
p(∂)q

)
(0), p, q ∈ P.

In his theory of generalized spherical harmonics, Dunkl [D4] introduced the
following analogue:

2.11 Definition. For p, q ∈ P,

[p, q]k :=
(
p(T (k))q

)
(0).

We collect some of its basic properties:

2.12 Lemma. (1) If p ∈ Pn and q ∈ Pm with n 6= m , then [p, q]k = 0.

10



(2) [xi p , q]k = [p, Ti q]k (p, q ∈ P, i = 1, . . . , N).
(3) [w · p , w · q]k = [p, q]k (p, q ∈ P, w ∈W ).

Proof. Parts (1) and (3) follows from the homogeneity and the W -equivariance
of the Dunkl operators, respectively. (2) is clear from the definition.

As before, we assume k ≥ 0. Let wk denote the weight function on RN
defined by

wk(x) =
∏
α∈R

|〈α, x〉|kα .

It is W -invariant and homogeneous of degree 2γ , where

γ = γ(k) :=
∑
α∈R+

k(α). (2.4)

(Notice that by W -invariance of k , we have k(−α) = k(α) for all α ∈ R .
Hence this definition does not depend on the special choice of R+ ). Further,
we define the constant

ck :=
∫

RN

e−|x|
2/2wk(x)DC,

called a Macdonald-Mehta-Selberg integral. There exists a closed form for it
which was conjectured and proved by Macdonald [M1] for the infinite series
of crystallographic root systems. An extension to arbitrary crystallographic
reflection groups is due to Opdam [O1], and there are computer-assisted proofs
for some non-crystallographic root systems. As far as we know, a general proof
for arbitrary root systems has not yet been found.
It is an important fact that the Dunkl operators are anti-symmetric with respect
to the weight wk :

2.13 Proposition. [D5] For f ∈ S(RN ) and g ∈ C1
b (RN ),∫

RN

Tξf(x)g(x)wk(x)dx = −
∫

RN

f(x)Tξg(x)wk(x)dx .

Proof. A short calculation. In order to have the appearing integrals well defined,
one has to assume k ≥ 1 first, and then extend the result to all k with Rek ≥ 0
by analytic continuation.

The paring [ . , . ]k is closely related to the inner product in L2(RN , e−|x|2wk).
More precisely, we have the following identity, which was first observed in the
classical case k = 0 by Macdonald [M2] and then generalized to the Dunkl
setting in [D4]:

2.14 Proposition. For all p, q ∈ P ,

[p, q]k = c−1
k

∫
RN

e−∆k/2p(x) e−∆k/2q(x) e−|x|
2/2 wk(x)dx. (2.5)

As the Dunkl Laplacian is homogeneous of degree −2, the operator e−∆k/2

is well-defined and bijective on P , and it preserves the (total) degree. An elegant
proof (on the basis of our present knowledge only) was given by M. de Jeu in
his thesis [dJ2]. It is published in [dJ4].

2.15 Corollary. The pairing [ . , . ]k on P is symmetric and non-degenerate.
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2.4 Dunkl’s intertwining operator

Besides commutativity of the Dunkl operators, the second important result in
rational Dunkl theory is the existence of an intertwining operator. This is an
isomorphism on Π which intertwines the commutative algebra of Dunkl opera-
tors with the algebra of partial differential operators with constant coefficients.
This operator was first constructed in [D4] for non-negative multiplicities. A
thorough analysis in [DJO] subsequently revealed that for general k, such an
intertwining operator exists if and only if the common kernel of the Tξ(k), con-
sidered as linear operators on P , contains no ”singular” polynomials besides the
constants. As we are only interested in non-negative multiplicities, we restrict
ourselves to the results of [D4].

2.16 Theorem. [D4]. Let k ≥ 0 . Then there exists a unique linear isomor-
phism (”intertwining operator”) Vk of P satisfying

Vk(Pn) = Pn , Vk |P0 = id and TξVk = Vk∂ξ ∀ ξ ∈ RN . (2.6)

The intertwining operator is defined recursively on the spaces Pn , as follows:
Let K be an extension field of Q containing the multiplicities kα, α ∈ R+ .
Consider the group algebra KW = {

∑
w∈W cww : cw ∈ K}. For w ∈ W and

0 < t ≤ 1 define the coefficient qw(t) = qw(k; t) ∈ K by∑
w∈W

qw(t)w = exp
(
ln t

∑
α∈R+

kα(1− σα)
)
,

which is a central element in KW. Let further

cn(w) :=
∫ 1

0

qw(t)tndt (n ∈ Z+).

Then Vk is defined recursively on the spaces Pn by Vk1 = 1 and

Vkp(x) :=
∑
w∈W

cn(w)
( N∑
i=1

(wx)iVk
(
(∂ip)(wx)

))
for p ∈ Pn.

For details on this construction, we refer the interested reader to [D4] or [DX].
In contrast to the definition of Vk itself, it is fairly easy to write down the
inverse Uk = V −1

k , namely

Ukp(x) :=
(
e〈x,T 〉p

)
(0) =

∞∑
ν∈Z+

xν

ν!
(T νp)(0).

Note that Uk is well-defined, because the Dunkl operators Ti are homogeneous
of degree −1, and therefore the series is always a finite sum. Moreover, it is
obvious that Uk1 = 1 and that Uk preserves the degree of homogeneity, that
is Uk(Pn) ⊆ Pn . Finally, we have ∂

∂xi
e〈x,T 〉 = e〈x,T 〉Ti on polynomials, and

therefore Uk satisfies the commutation relation

∂iUk = UkTi (i = 1, . . . , N).

As a consequence of the above representation of V −1
k one obtains the following

12



2.17 Corollary (Taylor Formula). Let f ∈ Cm(RN ) for some m ∈ N . Then

f(x) =
∑

ν∈ZN
+ ,|ν|≤m

Vk(xν)
ν!

(T νf)(0) + o(|x|m) for x→ 0.

Further, if f : RN → C is real-analytic in a ball B around 0 , then

f(x) =
∞∑
n=0

∑
|ν|=n

Vk(xν)
ν!

(T νf)(0)

where the series
∑∞
n=0 converges locally uniformly in B .

Proof. Assume first that f is a polynomial. Then V −1
k f(x) =

∑
ν
xν

ν! (T
νf)(0)

and therefore

f(x) =
∑
ν

Vk(xν)
ν!

(T νf)(0).

The assertions now follow from the corresponding results for the classical case.

2.18 Lemma. The intertwining operator Vk commutes with the action of W :

w−1Vkw = Vk (w ∈W ).

Proof. The operator Ṽk = w−1Vkw satisfies all the characteristic properties of
Vk .

Though the intertwining operator plays an important role in Dunkl’s theory,
an explicit representation for it is known so far only in some special cases. In
the rank-one case it is given by

Vk(xn) =

(
1
2

)
m(

k + 1
2

)
m

xn with m =
⌊n+ 1

2
⌋
. (2.7)

For k > 0, this can be written as an integral operator, namely

Vk p(x) =
Γ(k + 1/2)
Γ(1/2) Γ(k)

∫ 1

−1

p(xt) (1− t)k−1(1 + t)k dt, (2.8)

see [D4], Theorem 5.1. Besides this case, there are explicit integral formulas for
the A2 -case, treated in [D6], and the B2 -case under the additional requirement
k1 = k2 , treated in [D8]. They are both based on Harish-Chandra integral
representations which are available for a single value of the multiplicity only.

For the further development of the theory it is crucial to extend the domain
of Vk away from polynomials. The basic extension is to certain normed algebras
of homogeneous series. This goes back to [D4].

2.19 Definition. For r > 0, let Br := {x ∈ RN : |x| ≤ r} denote the closed
ball of radius r, and let Ar be the closure of P with respect to the norm

‖p‖Ar
:=

∞∑
n=0

‖pn‖∞,Br for p =
∞∑
n=0

pn , pn ∈ Pn.

13



Clearly Ar is a commutative Banach-∗ -algebra under the pointwise operations
and with complex conjugation as involution. Each f ∈ Ar has a unique repre-
sentation f =

∑∞
n=0 fn with fn ∈ Pn , and is continuous on the ball Br and

real-analytic in its interior. The topology of Ar is stronger than the topol-
ogy induced by the uniform norm on Br . Notice also that Ar ⊆ As with
‖ . ‖Ar ≥ ‖ . ‖As for s ≤ r .

2.20 Theorem. ‖Vkp‖∞,Br ≤ ‖p‖∞,Br for each p ∈ Pn .

The proof of this result is given in [D4] and can also be found in [DX].

2.21 Corollary. ‖Vkp‖Ar ≤ ‖p‖Ar for every p ∈ P , and Vk extends uniquely
to a bounded linear operator on Ar by

Vkf :=
∞∑
n=0

Vkfn for f =
∞∑
n=0

fn .

We call a linear operator L positive on P , if it preserves the positive cone
P+ = {p ∈ P : p(x) ≥ 0 ∀ x ∈ RN}. Formula (2.8) shows that in the rank-one
case, the operator Vk is positive on polynomials. This is true for general R and
non-negative k . Indeed, the following was proved in [R3]:

2.22 Theorem. (1) The operator Vk is positive on P .
(2) For each x ∈ RN there exists a unique probability measure µkx on the

Borel-σ -algebra of RN such that

Vkf(x) =
∫

RN

f(ξ) dµkx(ξ) (2.9)

for all f ∈ Ar with r ≤ |x| . The representing measures µkx are compactly
supported with suppµkx ⊆ co(W.x), the convex hull of the orbit of x under
W . Moreover, they satisfy

µkrx(B) = µkx(r
−1B), µwx(B) = µkx(w

−1(B)) (2.10)

for each r > 0, w ∈W and each Borel set B in RN .

This result immediately allows to Vk to larger function spaces such as C(RN )
or L1

loc(RN ). We shall come back to extensions later.

In the following, we outline the proof of Theorem 2.22, for detail see [R3].
We begin with a lemma which is also of interest in its own.

2.23 Lemma. For all p, q ∈ P,

(1) [Vkp, q]k = [p, q]0 ;

(2) c−1
k

∫
RN

(Vkp)q e−|x|
2
wk(x)dx = c−1

0

∫
RN

p
(
e−∆/2e∆k/2q

)
e−|x|

2/2dx.

Proof. (1) Due to the orthogonality of the spaces Pn with respect to both
pairings it suffices to consider p, q ∈ Pn for some n . Then

[Vk p, q]k = [q, Vk p]k = q(T )(Vk p) = Vk(q(∂)p) = q(∂)(p) = [p, q]0 ;

14



here the characterizing properties of Vk and the fact that q(∂)(p) is a constant
have been used.

(2) Combining part (1) with the Macdonald-type identity (2.5), one obtains∫
RN

e−∆k/2(Vkp)e−∆k/2q e−|x|
2/2wk(x)dx =

ck
c0

∫
RN

e−∆/2p e−∆/2q e−|x|
2/2dx.

As e−∆k/2(Vk p) = Vk
(
e−∆/2p

)
, and as we may replace p by e∆/2p and q by

e∆k/2q, this implies the claimed identity.

Proof of Theorem 2.22 (Sketch). From part (2) of the above lemma it follows
by standard density arguments that (1) of the Theorem is equivalent to the
positivity of the operator

e−∆/2e∆k/2

on P . We consider ∆k as a perturbation of the usual Laplacian ∆,

∆k = ∆ + Lk with Lk = 2
∑
α∈R+

kαδα

as written in (2.3). An argument involving the Trotter product formula for
e∆k/2 = e∆/2+Lk/2 then shows that it suffices to verify positivity of the operators

e−∆etLke∆ (t ≥ 0)

on P. But
e−∆etLke∆ = etA with A = e−∆Lke

∆.

Thus, it is enough to show that the operator semigroup (etA)t≥0 is positive
on P . This can be achieved by verifying that its generator A satisfies the
positive minimum principle (M) stated in Lemma 2.24 below. Indeed, it is
easily checked that A is degree-lowering. Further, A decomposes as

A = 2
∑
α∈R+

kαe
−∂2

αδα e
∂2

α

(here it is used that δα acts in direction α only). Direct computation shows
that the one-dimensional operators e−∂

2
αδαe

∂2
α satisfy the minimum principle

(M). As the kα are non-negative, A also satisfies (M). By Lemma 2.24 below,
this finishes the proof.
(2) Part (1) implies that the mapping

Φx : f 7→ Vkf(x)

is a positive linear functional on the commutative Banach-*-algebra A|x| . The
Bochner representation theorem for positive functionals on commutative Banach-
∗ -algebras (see for instance Theorem 21.2 of [FD]) then implies an integral rep-
resentation for Φx with representing measures supported in the ball B|x| . The
sharper statement on the support is obtained by results of [dJ1]. The remaining
statements are easy.

2.24 Lemma. Let A be a degree-lowering linear operator on P , that is
deg(Ap) < deg(p) for all p ∈ P . Then the following statements are equivalent:
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(1) etA is positive on P for all t ≥ 0 .
(2) A satisfies the “positive minimum principle”

(M) For every p ∈ P+ and x0 ∈ RN , p(x0) = 0 implies Ap (x0) ≥ 0.

This principle is an adaption of a well-known criterion for generators of Feller
semigroups, see Section 2.6.

2.5 The Dunkl kernel and the Dunkl transform

Again we assume that k ≥ 0. As the Dunkl operators Tξ = Tξ(k) commute,
it is natural to consider their joint eigenvalue problem: for a fixed spectral
parameter y ∈ CN , we search for a function f solving

(E)

{
Tξf = 〈x, y〉f ∀ ξ ∈ RN

f(0) = 1.

Here 〈 . , . 〉 denotes the bilinear extension of the Euclidean inner product to
CN × CN . If k = 0, then a solution to this problem is of course given by
the exponential f(x) = e〈x,y〉. In the general case, we apply the intertwining
operator. Notice that for fixed y , the function x 7→ e〈x,y〉 belongs to each of
the algebras Ar , r > 0. This justifies the following

2.25 Definition. [D4] For y ∈ CN , define

Ek(x, y) := Vk
(
e〈 . ,y〉)(x), x ∈ RN .

Ek is called the Dunkl-kernel associated with W and k .

Let us check that f(x) = Ek(x, y) solves (E). We write

Ek(x, y) =
∞∑
n=0

E
(n)
k (x, y) with E

(n)
k (x, y) =

1
n!
Vk〈 . , y〉n(x). (2.11)

The homogeneity of Vk immediately implies that Ek(0, y) = 1. . Further, by
the intertwining property,

TξE
(n)
k ( . , y) =

1
n!
Vk ∂ξ〈 . , y〉n = 〈ξ, y〉E(n−1)

k ( . , y).

This shows that (E) is satisfied.

2.26 Remark. From the very definition, it follows that

Ek(x, y) =
∞∑
n=0

∑
|ν|=n

Vk(xν)yν

ν!
(2.12)

where the series
∑∞
n=0 converges absolutely and locally uniformly on RN .

2.27 Theorem. Let y ∈ CN . Then f = Ek( . , y) is the unique solution of the
system

Tξ f = 〈ξ, y〉f for all ξ ∈ RN (2.13)

which is real-analytic on RN and satisfies f(0) = 1. Moreover, Ek extends to
a holomorphic function on CN × CN .
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This is a weakened version of a result of Opdam ([O1], Prop. 6.7) which
includes complex multiplicities as well as meromorphic dependence of Ek on k .
The decisive part for the uniqueness proof is the observation that the joint kernel
of the Tξ(k), considered as linear operators on P , consists of the constants only.
Details can be found in [R7], see also [O1].

2.28 Proposition. For x, y ∈ CN , λ ∈ C and w ∈W,

(1) Ek(x, y) = Ek(y, x).
(2) Ek(λx, y) = Ek(x, λy) and Ek(wx,wy) = Ek(x, y).
(3) Ek(x, y) = Ek(x, y).

Proof. Part (1) is shown in [D4]. (2) is easily obtained from the definition
of Ek together with the homogeneity and equivariance properties of Vk . For
(3), notice that f := Ek( . , y), which is again real-analytic on RN , satisfies
Tξf = 〈ξ, y〉 f, f(0) = 1. By the uniqueness part of the above Theorem,
Ek(x, y) = Ek(x, y) for all real x . Now both x 7→ Ek(x, y) and x 7→ Ek(x, y)
are holomorphic on CN and agree on RN . Hence they coincide.

Just as with the intertwining operator, the kernel Ek is explicitly known for
some particular cases only. An important example is again the rank-one situa-
tion:

2.29 Example. In the rank-one case with Re k > 0, the integral representation
(2.8) for Vk implies that for all x, y ∈ C ,

Ek(x, y) =
Γ(k + 1/2)
Γ(1/2) Γ(k)

∫ 1

−1

etxy(1−t)k−1(1+t)k dt = exy ·1F1(k, 2k+1,−2xy).

This can also be written as

Ek(x, y) = jk−1/2(ixy) +
xy

2k + 1
jk+1/2(ixy) (2.14)

where for α ≥ −1/2, jα is the normalized spherical Bessel function

jα(z) = 0F1(α+ 1;−z2/4) = Γ(α+ 1) ·
∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ α+ 1)
. (2.15)

This motivates the following

2.30 Definition. [O1] The (Dunkl-type) Bessel function associated with R
and k is defined for x, y ∈ CN by

Jk(x, y) :=
1
|W |

∑
w∈W

Ek(wx, y). (2.16)

Thanks to Prop. 2.28 Jk is W -invariant in both arguments and therefore
naturally considered on Weyl chambers of W (or their complexifications). In
the rank-one case, we have

Jk(x, y) = jk−1/2(ixy).
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It is a well-known fact from classical analysis that for fixed y ∈ C , the function
f(x) = jk−1/2(ixy) is the unique analytic solution of the differential equation

f ′′ +
2k
x
f ′ = y2f

which is even and normalized by f(0) = 1. This fact generalizes to the multi-
variable case, as follows: Recall the algebra of W -invariant polynomials

PW = {p ∈ P : w · p = p for all w ∈W},

as well as the restriction Res p(T ) : PW → PW for p ∈ PW . For fixed spectral
parameter y ∈ CN , Jk( . , y) is a solution to the following Bessel system:

p(T )f = p(y)f for all p ∈ PW , f(0) = 1.

Actually, Opdam went the converse direction in [O1]. He first proved that the
Bessel system has a unique W -invariant analytic solution. From this solution,
the generalized Bessel function, he then constructed the Dunkl kernel. The
Bessel system generalizes the so-called system of invariant differential operators
on a Riemannian symmetric space of Euclidean type, and the Dunkl-type Bessel
functions Jk generalize the associated spherical functions. We shall explain this
connection in more detail in Section 3.3.

The following general Bochner-type integral representation of the Dunkl ker-
nel is an immediate consequence of Theorem 2.22.

2.31 Proposition. For each x ∈ RN , the Dunkl kernel Ek(x, . ) has the inte-
gral representation

Ek(x, y) =
∫

RN

e〈ξ, y〉dµkx(ξ) (2.17)

where the µkx are the representing measures from Theorem 2.22. A correspond-
ing integral representation holds for the Bessel function Jk .

2.32 Corollary. The Dunkl kernel satisfies

(1) Ek(x, y) > 0 for all x, y ∈ RN .
(2) For all x ∈ RN , y ∈ CN and α ∈ ZN+ ,

|∂αyEk(x, y)| ≤ |x||α| max
w∈W

eRe〈wx,y〉.

(3) |Ek(−ix, y)| ≤ 1 ∀ x, y ∈ RN .

2.33 Remarks. (1) M. de Jeu had already an estimate on Ek with slightly
weaker bounds in [dJ1], differing by an additional factor

√
|W |.

(2) In [RV2], a completely different proof of Proposition 2.31 is given under
the restriction that R is crystallographic. It is based on an asymptotic re-
lationship between the Opdam-Cherednik kernel (see [O2]) and the Dunkl
kernel observed in [dJ4] (see also [BO1]), as well as on positivity results
of S. Sahi for the Heckman-Opdam polynomials and their non-symmetric
counterparts. In contrast to the original approach described here, in [RV2]
the precise information on the support is obtained without using the expo-
nential bounds on Ek from [dJ1]. Theorem 2.22 was then, in the converse
way, obtained from the integral representation for Ek .
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We conclude this section with two important reproducing properties for the
Dunkl kernel proved in [D5]. The above estimate (3) on Ek assures the conver-
gence of the involved integrals.

2.34 Proposition. For all p ∈ P and y, z ∈ CN ,

(1)
∫

RN

e−∆k/2p (x)Ek(x, y) e−|x|
2/2wk(x)dx = ck e

〈y,y〉/2p(y).

(2)
∫

RN

Ek(x, y)Ek(x, z) e−|x|
2/2wk(x)dx = ck e

(〈y,y〉+〈z,z〉)/2Ek(y, z)

Proof. We use the Macdonald-type formula (2.5). First, we show that

[E(n)
k (x, . ), p]k = p(x) for all p ∈ Pn, x ∈ RN . (2.18)

Indeed, if p ∈ Pn then

p(x) =
〈x, ∂y〉n

n!
p(y) and V xk p(x) = E

(n)
k (x, ∂y)p(y).

Here the uppercase index in V xk denotes the relevant variable. Application of
V yk to both sides gives V xk p(x) = E

(n)
k (x, T y)V yk p(y). As Vk is bijective on Pn ,

this implies (2.18). For fixed y, let Ln(x) :=
∑n
j=0E

(j)
k (x, y). If n is larger

than the degree of p, it follows from (2.18) that [Ln, p]k = p(y). Thus in view
of the Macdonald formula,

c−1
k

∫
RN

e−∆k/2Ln(x)e−∆k/2p(x)e−|x|
2/2wk(x)dx = p(y).

On the other hand, it is easily checked that

lim
n→∞

e−∆k/2Ln(x) = e−〈y,y〉/2Ek(x, y).

This proves (1). Identity (2) follows from (1) by homogeneous expansion of
Ek .

The Dunkl kernel gives rise to an integral transform, the Dunkl transform,
which was introduced in [D5] for non-negative multiplicity functions and further
studied in [dJ1] in the more general case Re k ≥ 0. In this article, we again
restrict ourselves to k ≥ 0.

2.35 Definition. The Dunkl transform associated with R and k ≥ 0 is defined
on L1(RN , wk) by

f̂ k(ξ) := c−1
k

∫
RN

f(x)Ek(−iξ, x)wk(x)dx, ξ ∈ RN .

The inverse transform is given by f∨k(ξ) = f̂ k(−ξ).

Note that f̂ k is continuous and bounded.

2.36 Lemma. For f, g ∈ L1(RN , wk),∫
RN

f̂ k(x)g(x)wk(x)dx =
∫

RN

f(x)ĝk(x)wk(x)dx.

19



Proof. This follows from Proposition 2.28 and Fubini’s theorem.

The Dunkl transform maps Dunkl operators to multiplication operators, and
it therefore suggests itself to consider it on the Schwartz space S(RN ) of rapidly
decreasing functions on RN :

2.37 Lemma. Let f ∈ S(RN ). Then

(1) f̂ k ∈ C∞(RN ) and Tj(f̂ k) = −(ixjf)∧k for j = 1, . . . , N.

(2) (Tjf)∧k(ξ) = iξj f̂
k(ξ).

(3) The Dunkl transform leaves the Schwartz space S(RN ) invariant.

Proof. (1) is obvious from (2.13), and (2) follows from the anti-symmetry re-
lation (Prop. 2.13) for the Dunkl operators. For (3), it suffices to prove that
∂αξ (ξβ f̂ k(ξ)) is bounded for arbitrary multi-indices α, β. By part (2), we have
ξβ f̂ k(ξ) = ĝ k(ξ) for some g ∈ S(RN ). The assertion then follows from the
definition of the Dunkl transform and the growth bounds of Corollary 2.32 on
Ek

It is not hard to see that S(RN ) is dense in Lp(RN , wk) for 1 ≤ p < ∞ .
Indeed, the weighted case can be reduced to the unweighted one, see [dJ1]. This
immediately implies a Riemann-Lebesgue lemma for the Dunkl transform:

2.38 Corollary. For f ∈ L1(RN , wk), the Dunkl transform f̂ k belongs to
C0(RN ) , the space of continuous functions on RN which vanish at infinity.

Another simple consequence is the spectral resolution of the Dunkl Laplacian
in L2(RN , wk). Via the Dunkl transform, ∆k it is unitarily equivalent with the
multiplication operator M−|ξ|2 in L2(RN , wk), and this gives

2.39 Corollary. The Dunkl Laplacian ∆k with domain S(RN ) is essentially
self-adjoint in L2(RN , wk). The spectrum of its closure is σ(∆k) = (−∞, 0].

The following are the main results for the Dunkl transform; they are in complete
analogy to the corresponding results for the Fourier transform; for details the
reader is referred to [dJ1].

2.40 Theorem. (1) (L1 -Inversion) If f ∈ L1(RN , wk) with f̂ k ∈ L1(RN , wk),
then

f = (f̂ k )∨k a.e.

(2) The Dunkl transform is injective on L1(RN , wk) .
(3) The Dunkl transform is a homeomorphism of S(RN ) with period 4 .
(4) (Plancherel Theorem) The Dunkl transform has a unique extension to an

isometric isomorphism of L2(RN , wk) . The extension is also denoted by
f 7→ f̂ k .

Proof. (Sketch) The decisive part is the L1 -inversion. It is first proved for func-
tions of the form f(x) = p(x)e−|x|

2/2, p ∈ P , which form a dense subalgebra of
C0(RN ), and then extended to arbitrary f ∈ L1(RN , wk). Part (2) is immedi-
ate from (1). Together with Lemma 2.37(3), this easily implies that the Dunkl
transform is a bijection of S(RN ), and continuity in both directions follows
from the closed graph theorem. Part (4) is obtained by a standard procedure
(using Lemma 2.36) from the density of S(RN ) in L2(RN , wk).
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There have been various approaches to Paley-Wiener theorems for the Dunkl
transform, see [dJ1], [dJ2], [T2] and [AdJ]. For an open subset Ω ⊆ RN , we
denote by D(Ω) the space of compactly supported smooth functions on Ω with
the usual Fréchet-space topology. The most basic variant of the Paley-Wiener
theorem is as follows.

2.41 Theorem. For R > 0 consider the ball BR = {x ∈ RN : |x| ≤ 1}
and let HBR

denote the Paley-Wiener space of all entire functions f on CN
characterized by the property that for each M ∈ Z+ there exists a constant
γM > 0 such that

|f(λ)| ≤ γM (1 + |λ|)−MeR|Imλ| for all λ ∈ CN .

Then the Dunkl transform f 7→ f̂ k is an isomorphism from D(BR) onto HBR
.

For the original proof of this result see [dJ2] or [dJ4]. One consequence is
the following important extension of the intertwining operator:

2.42 Theorem. ([dJ2], [T2].) The intertwining operator Vk extends to a home-
omorphism of C∞(RN ) .

We conclude this section with an outlook on the dual of the intertwining
operator introduced in [T1]. The usual Fourier transform on RN will be denoted
by f 7→ f̂ , its inverse by f 7→ f∨ .

2.43 Definition. The dual of the intertwining operator Vk is defined by

tVk : S(RN ) → S(RN ), f 7→
(
f̂ k

)∨
.

By Theorem 2.40, tVk is a homeomorphism of S(RN ). It can be considered
as an analogue of the Abel transform on Riemannian symmetric spaces, with
the spherical transform being replaced by the Dunkl transform. Here are some
further properties of this operator, justifying also the terminology.

2.44 Proposition. (1) tVkTξ = ∂ξ
tVk on S(RN ).

(2) For f ∈ S(RN ) and polynomials p ∈ P ,∫
RN

Vkp(x)f(x)wk(x)dx =
∫

RN

p(x) tVk(f)(x)dx

(3) Put ψ(x) = e−|x|
2/2. Then for all q ∈ P ,

tVk(qψ) =
(
e−∆/2e∆k/2q

)
ψ.

Proof. (1) This is immediate from Lemma 2.37.
(2) (c.f. [T1]) By definition of tVk ,

1
c0

∫
RN

p(x) tVk(f)(x)dx =
(
p(f̂ k)∨

)∧(0) =
(
p(i∂)f̂ k

)
(0)

=
1
ck
p(i∂ξ)

(∫
RN

f(x)Ek(−ix, ξ)wk(x)dx
)∣∣
ξ=0

=
1
ck

∫
RN

f(x)
(
p(i∂ξ)Ek(−ix, ξ)

)∣∣
ξ=0

wk(x)dx.
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For a monomial p(x) = xα , we obtain from formula (2.12) the identity

p(i∂ξ)Ek(−ix, ξ)
∣∣
ξ=0

= (i∂ξ)α
∑
ν

V (xν)(−iξ)ν

ν!

∣∣
ξ=0

= Vk(xα) = Vkp(x).

By linearity, this extends to all p ∈ P , and the assertion follows.
(3) This results from part (2) with f = qψ and Lemma 2.23(2).

2.6 Heat kernel and heat semigroup

For a fixed root system R and multiplicity k ≥ 0, the Dunkl-type heat operator
is defined by

∆k − ∂t on Rn × R.

We consider the following initial-value problem for the generalized heat equation:

(IVP)

{
(∆k − ∂t)u = 0 on RN × (0,∞)
u( . , 0) = f

with initial data f ∈ Cb(RN ). We look for solutions u ∈ C2(RN × (0,∞)) ∩
C(RN , [0,∞)). We shall start with the more abstract aspect of this problem,
namely the associated operator semigroup, and then determine the heat kernel
and the solution of (IVP) in an explicit form. This approach will establish
positivity of the heat semigroup and the heat kernel by a standard approach.
As a consequence, it implies that

Ek(x, y) > 0 ∀ x, y ∈ RN

which is already known from the positive integral representation 2.31 for Ek .
This integral representation, however, is a much deeper result.

In the following, we consider the Dunkl Laplacian as a densely defined linear
operator on the Banach space (C0(Rn), ‖ . ‖∞) with domain S(RN ). In the
classical case k = 0, it is well known that ∆ = ∆0 (more precisely: its closure)
generates a Feller semigroup on C0(RN ), namely the heat semigroup

Htf(x) =
1

(4πt)N/2

∫
RN

f(y)e−|x−y|
2/4tdy.

Recall that for a locally compact Hausdorff space Ω, a strongly continuous semi-
group (Tt)t≥0 on (C0(Ω), ‖.‖∞) is called a Feller semigroup, if it is contractive
and positive, that is ‖Ttf‖∞ ≤ ‖f‖∞ and f ≥ 0 on Ω implies that Ttf ≥ 0
on Ω for all t ≥ 0.

In order to extend the above fact to general multiplicities k ≥ 0, we employ
the following useful variant of the Lumer-Phillips theorem, which characterizes
Feller semigroups in terms of a “positive maximum principle”, see e.g. [Kal],
Thm. 17.11. In fact, this Theorem motivated the positive minimum principle
2.24 in the positivity-proof for Vk .

2.45 Theorem. Let A be a densely defined linear operator in (C0(Ω), ‖.‖∞)
with domain D(A). Then A is closable, and its closure A generates a Feller
semigroup on C0(Ω), if and only if the following conditions are satisfied:

(i) If f ∈ D(A) then also f ∈ D(A) and A(f) = A(f).
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(ii) The range of λid−A is dense in C0(Ω) for some λ > 0 .
(iii) If f ∈ D(A) is real-valued with a non-negative maximum in x0 ∈ Ω , i.e.

0 ≤ f(x0) = maxx∈Ω f(x), then Af(x0) ≤ 0. (Positive maximum princi-
ple).

The following Lemma implies that (∆k,S(RN )) satisfies the positive maxi-
mum principle:

2.46 Lemma. Let Ω ⊆ RN be open and W -invariant. If a real-valued function
f ∈ C2(Ω) attains an absolute maximum at x0 ∈ Ω , i.e. f(x0) = supx∈Ω f(x) ,
then

∆kf(x0) ≤ 0 .

Proof. Recall the explicit expression (2.3) for ∆k . We assume first that 〈α, x0〉 6=
0 for all α ∈ R . The fact that f has a maximum at x0 implies that ∂αf(x0) = 0
for all α ∈ R and that ∆f(x0) ≤ 0. Moreover, f(x0) ≥ f(σαx0) for all α ∈ R .
Thus ∆kf(x0) ≤ 0. If 〈α, x0〉 = 0 for some α ∈ R , then one has to use a second
order Taylor expansion of f . For details see [R2].

2.47 Theorem. The operator (∆k,S(RN )) is closable, and its closure ∆k

generates a Feller semigroup (Ht)t≥0 on C0(RN ) which is called the generalized
heat semigroup.

Proof. We have to check the conditions of Theorem 2.45. Condition (i) is ob-
vious and (iii) is an immediate consequence of the previous lemma. (ii) is also
satisfied, because for each λ > 0, the operator λid −∆k leaves S(RN ) invari-
ant; this follows from the fact that the Dunkl transform is a homeomorphism of
S(RN ) and

(
(λI −∆k)f

)∧k(ξ) = (λ + |ξ|2)f̂ k(ξ). Theorem 2.45 now implies
the assertion.

We expect that the heat semigroup (Ht)t≥0 can be written explicitly in
terms of a generalized heat kernel. In order to find it, we consider first a slight
modification of the usual Gaussian kernel:

gk(x, t) :=
1

(2t) γ+N/2ck
e−|x|

2/4t (x ∈ RN , t > 0).

2.48 Lemma. (1) gk solves the Dunkl-type heat equation (∆k−∂t)u = 0 on
RN × (0,∞).

(2)
∫

RN

gk(x, t)wk(x)dx = 1 for all t > 0.

(3) ĝkk(ξ, t) = c−1
k e−t|ξ|

2
.

Proof. For (1), use the product rule (2.2) as well as the identity
∑N
i=1 Ti(xi) =

N + 2γ. Part (2) is immediate, and (3) results from the second reproducing
property in Proposition 2.34.

The Gaussian gk generalizes the fundamental solution for the classical heat
equation. In the classical case k = 0, the heat kernel is obtained by translation
from the fundamental solution. In the Dunkl setting, it is indeed also possi-
ble to define a generalized translation which matches the action of the Dunkl
transform, i.e. makes it a homomorphism on suitable function spaces. For our
present purposes, it will be sufficient to consider the Schwartz space.
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2.49 Definition. On the Schwartz space S(RN ), the Dunkl-type generalized
translation is defined by

τyf(x) :=
1
ck

∫
RN

f̂ k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ; y ∈ RN .

Note that for k = 0 our definition reduces to τyf(x) = f(x+y). In the rank
one case, our generalized translation determines the convolution of a so-called
signed hypergroup structure which was defined in [R1]; see also [Ros]. This will
be discussed in more detail in Section 2.8. Similar structures are conjectured
in higher-rank cases, but not established so far. Notice that τyf(x) = τxf(y);
moreover, the inversion theorem for the Dunkl transform assures that τ0f = f
and

(τyf)∧k(ξ) = Ek(iy, ξ)f̂ k(ξ). (2.19)

From this it is easy to see that τyf belongs to S(RN ) again.
Let us return to the Gaussian kernel gk . ¿From the definition of the gen-

eralized translation, part (3) of Lemma 2.48 and a further application of the
reproducing formula (2) of Proposition 2.34, we obtain

τ−yFk(x, t) =
1

(2t)γ+N/2ck
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
.

This motivates the following

2.50 Definition. The generalized heat kernel Γk is defined for x, y ∈ RN and
t > 0 by

Γk(t, x, y) :=
1

(2t)γ+N/2ck
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
. (2.20)

Thanks to Corollary 2.31, Γk is strictly positive. Moreover, y 7→ Γk(t, x, y)
belongs to S(RN ) for fixed x and t . We collect some further fundamental
properties of this kernel which are all more or less straightforward.

2.51 Lemma. The heat kernel Γk has the following properties:

(1) Γk(t, x, y) = c−2
k

∫
RN

e−t|ξ|
2
Ek(ix, ξ)Ek(−iy, ξ)wk(ξ)dξ .

(2)
∫

RN

Γk(t, x, y)wk(y)dy = 1.

(3) Γk(t, x, y) ≤
1

(2t)γ+N/2ck
max
w∈W

e−|wx−y|
2/4t .

(4) Γk(t+ s, x, y) =
∫

RN

Γk(t, x, z) Γk(s, y, z)wk(z)dz.

(5) For fixed y ∈ RN , the function u(x, t) := Γk(t, x, y) solves the generalized
heat equation ∆ku = ∂tu on RN × (0,∞) .

Proof. (1) is clear from the definition of generalized translations. For details
concerning (2) see [R2]. (3) follows from our estimates on Ek , (4) is obtained
by inserting (1) for one of the kernels in the integral, and (5) is immediate from
(1).
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2.52 Theorem. (1) The heat semigroup (Ht) on C0(RN ) is given explicitly
by

Htf(x) =
∫

RN

Γk(t, x, y)f(y)wk(y)dy for t > 0.

(2) The heat kernel Γk is strictly positive on RN × RN × (0,∞) .
(3) For f ∈ C0(RN ), the function u(x, t) = Htf(x) solves initial value prob-

lem (IVP).

Proof. Define uf on RN × [0,∞) by

uf (x, t) :=


∫

RN

Γk(t, x, y)f(y)wk(y)dy if t > 0,

f(x) if t = 0.

¿From part (5) of Lemma 2.51 it is immediate that uf solves the generalized
heat equation on RN × (0,∞). We proceed further in several steps.
Step 1. Consider first initial data f ∈ S(RN ). By Lemma 2.51 (1) and Fubini’s
theorem, we obtain that for t > 0,

uf (x, t) = c−1
k

∫
RN

e−t|ξ|
2
f̂ k(ξ)Ek(ix, ξ)wk(ξ)dξ. (2.21)

In view of the inversion theorem for the Dunkl transform, this identity also
extends to t = 0. This shows that x 7→ uf (x, t) ∈ S(RN ) for all t > 0 and
that ‖uf ( . , t)− f‖∞ → 0 as t ↓ 0. Thus if f ∈ S(RN ), then uf solves (IVP).
Next, we prove that uf (x, t) = Htf(x) for all x ∈ RN and t ≥ 0. For this,
recall from semigroup theory that the function t 7→ Htf is the unique solution
of the abstract Cauchy problem

d

dt
u(t) = ∆ku(t) for t > 0,

u(0) = f

within the class of all (strongly) continuously differentiable functions u on [0,∞)
with values in (C0(RN ), ‖.‖∞). On the other hand, if f ∈ S(RN ), then also
uf ( . , t) ∈ S(RN ) and from formula (2.21) it is easily deduced that t 7→ uf ( . , t)
also solves the abstract Cauchy problem. This proves parts (1) and (3) for initial
data from S(RN ).
Step 2. Part (2), which is of course also an immediate consequence of the
positive integral representation for the Dunkl kernel, can be directly deduced
from the positivity of the heat semigroup (Ht)t≥0 on S(RN ), which gives Γk ≥
0. Strict positivity then follows from formula (4) of Lemma 2.51.
Step 3. Consider now general initial data f ∈ C0(RN ). By the density of
S(RN ) in C0(RN ) and the positivity of Γk , a standard approximation argu-
ments yield that Htf(x) = uf (x, t) for all f ∈ C0(RN ) (and x ∈ RN , t ≥ 0.)
By the strong continuity of the semigroup (Ht) it further follows that uf solves
(IVP). This finishes the proof of the Theorem.
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The heat operators (Ht)t≥0 naturally extend to functions f ∈ C(RN ) which
satisfy the subexponential growth condition

∀ε > 0 ∃Cε > 0 : |f(x)| ≤ Cε · eε|x|
2
,

by

Htf(x) :=
∫

RN

Γk(t, x, y)f(y)wk(y)dy for t > 0.

This growth condition is in particular satisfied by functions from Cb(RN ) and
by polynomials. Based on the above results, it is checked by standard arguments
that for general initial data f ∈ Cb(RN ), (IVP) is solved by u(x, t) = Htf(x).
Uniqueness of the solution within classes of functions satisfying suitable expo-
nential growth conditions is established by means of a maximum principle, just
as with the classical heat equation. For details on this, the interested reader is
referred to [R2].

We conclude this section with a useful observation which will be important
later on:

2.53 Proposition. Let p ∈ P be a polynomial. Then

Htp = et∆kp.

Moreover, the function u(x, t) = et∆kp(x) is a polynomial solution of the initial
value problem (IVP) with initial data p .

The polynomial Htp is of the same degree as p . It is called the heat poly-
nomial associated with p .
For the proof of the proposition, the following scaling lemma is needed.

2.54 Lemma. Let p ∈ Pn . Then for c ∈ C and a ∈ C \ {0},(
ec∆kp

)
(ax) = an

(
ea
−2c∆k

)
p(x).

Proof. This is easily checked in terms of the exponential series for ec∆k .

Proof of Proposition 2.53. Part (1) of Proposition 2.34 can be written as

p(x) =
∫

RN

Γk
(
1/2, x, y

)
e−∆k/2p(y)wk(y)dy for p ∈ P.

Replacing p by e∆k/2p , one obtains the assertion for t = 1/2. The general case
t > 0 follows by rescaling.

2.7 Calogero-Moser-Sutherland models and generalized
Hermite polynomials

Quantum Calogero-Moser-Sutherland (CMS) models describe quantum mechan-
ical systems of identical particles on a circle or line which interact pairwise
through potentials of inverse square type. They have gained considerable in-
terest in mathematical physics due to their quantum-integrability. Among the
broad literature in this area, we refer to [BF1]-[BF3], [He1], [HS], [vD], [K],
[LV], [Pa], as well as the monograph [vDV].
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The Schrödinger operator of a CMS model for N particles on a line or circle
is given by

H = −∆ + g
∑

1≤i<j≤N

1
d(xi, xj)2

where g ≥ −1/2 is a coupling constant, xi is the position of particle i and
d(x, y) = |x − y| for the linear model, while d(x, y) = 1

π sin
(
π(x − y)

)
for a

model on a circle with circumference 1. The models on a line, initially studied
by Calogero in [Ca], are closely related to rational Dunkl operators of type
AN−1 , while those one a circle, going back to Sutherland [Su], are related to
the trigonometric Dunkl operators of Heckman and Opdam. In order to obtain a
discrete spectrum in the linear case, one has to add some external potential, the
most common one being of the form ω2|x|2 with ω > 0 (harmonic confinement).
Dealing with identical particles, one considers the linear CMS operator in the
so-called bosonic state space

B = {f ∈ L2(RN ) : σijf = f ∀ i, j}

where σij permutes the coordinates xi and xj . After explicit spectral resolu-
tions of CMS models had already been obtained by Calogero and Sutherland,
Moser [Mo] proved complete integrability of the associated classical Hamiltonian
systems. But the deeper algebraic structure of the quantum CMS models be-
came clear only in the nineteen-nineties by independent work of [Po] and [He1].
For the free linear model, the basic idea is to consider the modification

H̃ := −∆ + 2k
∑
i<j

1
(xi − xj)2

(k · id− σij)

acting in L2(RN ). When g = 2k(k − 1), then H̃|B = H. A short calculation,
using results from [D2], gives

w
−1/2
k H̃w1/2

k = −∆S
k

where ∆S
k denotes the Dunkl Laplacian associated with the symmetric group

SN , c.f. Example 2.10(2), and wk is the weight function of type SN ,

wk(x) =
∏
i<j

|xi − xj |2k.

Now consider the algebra PSN of SN -invariant polynomials on RN . It is gen-
erated by the N elementary symmetric polynomials

sj(x) =
∑

1≤i1<...<ij≤N

xi1 · . . . · xij , j = 1, . . . , N.

Let T stand for the Dunkl operators of type AN−1 with multiplicity k . Then

A := {Res p(T ) : p ∈ PSN }

is a commutative algebra of differential operators on PSN containing the oper-
ator

Res(∆S
k ) = −w−1/2

k Hw1/2
k ,
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c.f. Section 2.2. Up to conjugation with w
1/2
k , A is the so-called algebra of

quantum integrals for the CMS operator H . It is generated by the N alge-
braically independent elements Res(sj(T )), j = 1, . . . , N.

There exist obvious generalizations of the classical CMS models in the con-
text of abstract root systems: Suppose R is an arbitrary (reduced) root system
in RN and k a nonnegative multiplicity function, then the corresponding ab-
stract Calogero Hamiltonian is given by

H = −∆ + 2
∑
α∈R+

kα(kα − 1)
1

〈α, x〉2
.

For the classical root sytems, Olshanetsky and Perelomov proved quantum in-
tegrability of this model, following the method of Moser via Lax pairs. Again,
we consider a modification involving reflection terms:

H̃ = −∆ + 2
∑
α∈R+

kα
〈α, x〉2

(kα − σα) . (2.22)

In this case,
w
−1/2
k H̃w

1/2
k = −∆k ,

see [R4]. The quantum integrals for H are constructed just as in the SN case.
According to a classical theorem of Chevalley (see e.g. [Hu]), the algebra PW of
W -invariant polynomials is again generated by N homogeneous, algebraically
independent elements, providing a basis of quantum integrals in this case.

Let us now turn to the spectral analysis of abstract linear CMS operators
with harmonic potential ω2|x|2 . We follow [R2], [R5] and use the normalization
ω = 1/2. (Other normalizations lead to results which are equivalent up to
scaling). We work with the gauge-transformed version with reflection terms,

Hk := −∆k +
1
4
|x|2.

Due to the anti-symmetry of the first order Dunkl operators (Prop. 2.13), this
operator is symmetric and densely defined in L2(RN , wk) with domain S(RN ).
Note that in case k = 0, Hk is just the Hamiltonian of the N -dimensional
isotropic harmonic oscillator.

The next theorem contains a complete description of the spectral properties
of Hk and generalizes well-known facts for the classical harmonic oscillator.

2.55 Theorem. (Spectral Theorem for Hk ) L2(RN , wk) decomposes as an or-
thogonal Hilbert space sum according to

L2(RN , wk) =
⊕
n∈Z+

Vn

where
Vn := {e−∆k/2 p : p ∈ Pn} ⊂ S(RN )

is the eigenspace of Hk corresponding to the eigenvalue n+γ+N/2. In particu-
lar, Hk is essentially self-adjoint. The spectrum of its closure is purely discrete
and given by

σ(Hk) = {n+ γ +N/2, n ∈ Z+}.

28



For details on the proof, the reader is referred to [R2] or [R7]. It relies on
the sl(2)-commutation relations of the operators

E :=
1
2
|x|2, F := −1

2
∆k and H :=

N∑
i=1

xi∂i + (γ +N/2)

observed by Heckman [He1], namely[
H,E

]
= 2E,

[
H,F

]
= −2F,

[
E,F

]
= H.

The first two relations are immediate from the fact that the Euler operator

ρ :=
N∑
i=1

xi∂i (2.23)

satisfies ρ(p) = np for each homogeneous p ∈ Pn .

The eigenvalues of the CMS Hamiltonian Hk are highly degenerate if N > 1.
We are now going to construct natural orthogonal bases for them. They are
made up by generalizations of the classical N -variable Hermite polynomials and
Hermite functions to the Dunkl setting. The starting point for our construction
is the Macdonald-type identity: if p, q ∈ P , then

[p, q]k =
1
ck

∫
RN

e−∆k/2p(x)e−∆k/2q(x)e−|x|
2/2wk(x)dx. (2.24)

Notice that [ . , . ]k is a scalar product on the R - vector space PR of polynomials
with real coefficients. Let {ϕν , ν ∈ ZN+} be an orthonormal basis of PR with
respect to [. , .]k such that ϕν ∈ P|ν| . Write Pn,R = Pn ∩ PR. As homogeneous
polynomials of different (total) degrees are orthogonal, the ϕν with fixed |ν| = n
can for example be constructed by Gram-Schmidt orthogonalization within Pn,R
from an arbitrary ordered real-coefficient basis. If k = 0, the canonical choice
of the basis {ϕν} is just ϕν(x) := (ν!)−1/2xν .

2.56 Definition. The generalized Hermite polynomials {Hν} and Hermite
functions {hν} (ν ∈ ZN+ ) associated with the basis {ϕν} of PR are defined by

Hν(x) := e−∆k/2ϕν(x); hν(x) := e−|x|
2/4Hν(x).

Observe that Hν is a polynomial of degree |ν| . By the Macdonald identity
(2.24), the Hermite functions hν form an orthogonal basis of L2(RN , wk).

For k = 0 and the choice ϕν(x) = (ν!)−1/2xν , one obtains the classical
multivariable Hermite polynomials

Hν(x) =
1√
ν!

N∏
i=1

e−∂
2
i /2(xνi

i ) =
2−|ν|/2√

ν!

N∏
i=1

Ĥνi(xi/
√

2)

where the Ĥn denote the classical one-variable Hermite polynomials

Ĥn(x) = (−1)n ex
2 dn

dxn
e−x

2
.

More interesting examples are the following:
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2.57 Examples. (1) The one-dimensional case. Up to sign changes, there
exists only one orthonormal basis with respect to [ . , . ]k . The associated
generalized Hermite polynomials (Hk

n)n∈Z+ are orthogonal with respect
to the weight |x|2ke−|x|2 on R . They can be found in [Chi] and were
further studied in [Ros]. We mention that they can be written as{

Hk
2n(x) = (−1)n22nn!Lk−1/2

n (x2),
Hk

2n+1(x) = (−1)n22n+1n!xLk+1/2
n (x2);

where the Lαn are the usual Laguerre polynomials

Lαn(x) =
1
n!
x−αex

dn

dxn

(
xn+αe−x

)
.

(2) The AN−1 -case. There exists a natural orthogonal system {ϕν} made up
by the so-called non-symmetric Jack polynomials {Eν = Ekν , ν ∈ ZN+} .
They were introduced in [O2] for arbitrary root systems (see also [KS]),
and are characterized by the following conditions:

(i) Eν(x) = xν +
∑
µ<P ν

cν, µx
µ with cν,µ ∈ R ;

(ii) For all µ <P ν ,
(
Eν(x), xµ

)
k

= 0

Here <P is a dominance order defined within multi-indices of equal total
length (see [O2]), and the inner product (., .)k on PR is given by

(f, g)k :=
∫

TN

f(z)g(z)
∏
i<j

|zi − zj |2kdz

with T = {z ∈ C : |z| = 1} and dz being the Haar measure on TN . If f, g
have different degrees, then (f, g)k = 0. The set {Eν , |ν| = n} forms a
vector space basis of Pn,R. It can be shown (by use of AN−1 -type Chered-
nik operators) that the Jack polynomials Eν are also orthogonal with re-
spect to the Dunkl pairing [ . , . ]k ; for details see [R2]. The corresponding
generalized Hermite polynomials and their symmetric counterparts have
been studied in [La1], [La2], [vD], and in [BF1] - [BF3].

As an immediate consequence of Theorem 2.55 we obtain analogues of the
classical second order differential equations for generalized Hermite polynomials
and Hermite functions:

2.58 Corollary. (i)
(
−∆k +

N∑
i=1

xi∂i
)
Hν = |ν|Hν .

(ii)
(
−∆k +

1
4
|x|2

)
hν = (|ν|+ γ +N/2)hν .

Various further useful properties of the classical Hermite polynomials and
Hermite functions have extensions to our general setting. We conclude this
section with a list of them. The proofs can be found in [R2]. For further results
on generalized Hermite polynomials, one can also see for instance [vD].

2.59 Theorem. Let {Hν} be the Hermite polynomials and Hermite functions
associated with the basis {ϕν} on RN and let x, y ∈ RN . Then
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(1) Hν(x) = (−1)|ν|e|x|
2/2ϕν(T )e−|x|

2/2 (Rodrigues-Formula)

(2) e−|y|
2/2Ek(x, y) =

∑
ν∈ZN

+

Hν(x)ϕν(y) (Generating relation)

(3) (Mehler formula) For r ∈ C with |r| < 1,

∑
ν∈ZN

+

Hν(x)Hν(y) =
1

(1− r2)γ+N/2
exp

{
−r

2(|x|2 + |y|2)
2(1− r2)

}
Ek

( rx

1− r2
, y

)
.

The sums in (2) and (3) are absolutely convergent.

The Dunkl kernel Ek in (2) and (3) replaces the usual exponential function.
It comes in via the following relation with the (arbitrary!) basis {ϕν} :

Ek(x, y) =
∑
ν∈ZN

+

ϕν(x)ϕν(y).

2.60 Proposition. The generalized Hermite functions {hν , ν ∈ ZN+} are an
orthogonal basis of eigenfunctions for the Dunkl transform on L2(RN , wk) with

h∧kν = (−i)|ν|hν .

2.8 Generalized translation and spherical means

We recall the definition of the generalized translation on the Schwartz space
S(RN ) introduced by formula (2.25) of the previous section:

τyf(x) :=
1
ck

∫
RN

f̂ k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ; y ∈ RN . (2.25)

In addition to the properties already mentioned, we state the following relation
which follows from (2.19) and the Plancherel theorem for the Dunkl transform:
For all f, g ∈ S(RN ),∫

RN

f(x ∗k y)g(y)wk(y)dy =
∫

RN

f(y)g(−x ∗k y)wk(y)dy. (2.26)

In [T2], this translation was extended to C∞(RN ) via

τyf(x) := V xk V
y
k (V −1

k f)(x+ y)

where the superscripts denote the relevant variable. Indeed, it is shown in [T2]
that both definitions coincide on S(RN ). Note that by Theorem 2.42 τy is
continuous with respect to the usual Fréchet space topology, and that

τ0f = f, Tξτyf = τyTξf and τyf(x) = τxf(y) ∀ x, y ∈ RN .

We shall frequently use the more suggestive notion

f(x ∗k y) = τyf(x).
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For k = 0, one obtains the usual group translation: f(x ∗0 y) = f(x+ y). It is
also immediate from the definition that

Ek(x ∗k y, z) = Ek(x, z)Ek(y, z) ∀z ∈ CN . (2.27)

By the Plancherel theorem and the fact that |Ek(ix, ξ)| ≤ 1 for all x, ξ ∈
RN , the translation operator τy extends to a continuous linear operator on
L2(RN , wk) with ‖τy‖ ≤ 1. It is, however, an open question in general whether
τy is also bounded as a linear operator on the spaces Lp(RN , wk) with 1 ≤ p <
∞ , p 6= 2. Only in rank one, this is known to be true so far. Let us briefly
describe the situation in this case.

The rank-one case. Recall the explicit formula (2.14) for Ek in terms of
one-variable Bessel functions jα in this case. It is well-known (see e.g. [BH],
3.5.61) that the jα with α ≥ −1/2 satisfy the product formula

jα(xz)jα(yz) =
∫ ∞

0

jα(ξz)mα(x, y, z)z2α+1dz (2.28)

with the kernel

mα(x, y, z) =
Γ(α+ 1)

Γ(1/2)Γ(α+ 1/2)22α−1
· [(z2 − (x− y)2)((x+ y)2 − z2)]α−1/2

(xyz)2α
.

We remark that formula (2.28) induces a convolution of point measures on [0,∞)
according to

d(δx ∗α δy)(z) := mα(x, y, z)z2α+1dz.

This definition naturally extends to a weakly continuous, probability-preserving
convolution on the space Mb([0,∞)) of regular bounded Borel measures on
[0,∞). This convolution induces the structure of a so-called commutative hy-
pergroup on [0,∞) which is called the Bessel-Kingman hypergroup of index α .
There will be more on hypergroups and this important example in Section 3.

The Dunkl kernel Ek itself satisfies a similar product formula which was
proven in [R1], namely

Ek(x, z)Ek(y, z) =
∫

R
Ek(ξ, z)dµkx,y(ξ) ∀z ∈ C

with the measures

dµkx,y(z) = mk−1/2(|x|, |y|, |z|)|z|2k ·
1− σx,,y,z + σz,x,y + σz,y,x

2
dz

where

σz,x,t =

{
z2+x2−t2

2zx if z, x 6= 0,
0 else

.

Therefore the generalized translation on S(R) is given by

f(x ∗k y) =
∫

R
f(z)dµkx,y(z).

The measures µkx,y are not positive in the generic case, but uniformly bounded
with ‖µkx,y‖ ≤ 4 for all x, y ∈ R . The convolution of point measures defined by
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δx ∗k δy = µkx,y extends to a weakly continuous convolution on Mb(R) which
is however not positivity-preserving. It induces the structure of a signed hy-
pergroup on R , see [R1]. Due to the uniform boundedness of the measures
µkx,y, the generalized translation operators τy on the Schwartz space extend to
bounded linear operators on the spaces Lp(R, |x|2kdx) with ‖τyf‖p ≤ 4‖f‖p
for all indices p with 1 ≤ p <∞ . For details, the reader may see [R1] and the
references cited there.

Even if no result of this kind is available in the general case as far, there
is at least a useful partial result which states that the Dunkl-type generalized
translation is positivity-preserving and Lp -bounded when restricted to radial
functions. Moreover, there is a weakened form of positive product formula for
Ek available. The key for this is the positivity of the spherical mean operator
in the Dunkl-setting. This operator was first considered in [MT]. It is defined
for f ∈ C∞(RN ) by

Sf (x, t) :=
1
dk

∫
SN−1

f(x ∗k ty)wk(y)dσ(y) (x ∈ RN , t ≥ 0)

where SN−1 = {x ∈ RN : |x| = 1} is the unit sphere in RN with normalized
Lebesgue surface measure dσ and

dk =
∫
SN−1

wk(ξ)dσ(ξ).

It is easily seen from the continuity properties of the generalized translation
that Sf ∈ C∞(RN × [0,∞)). The following is the first main result of [R6].

2.61 Theorem. (1) The spherical mean operator f 7→ Sf is positive on
C∞(RN ) , that is f ≥ 0 on RN implies that Sf ≥ 0 on RN × [0,∞).

(2) For each x ∈ RN and t ≥ 0, there exists a unique compactly supported
probability measure σkx,t ∈M1(RN ) such that for all f ∈ C∞(RN ),

Sf (x, t) =
∫

RN

f(ξ)dσkx,t(ξ).

The measure σkx,t satisfies

suppσkx,t ⊆
⋃
w∈W

{ξ ∈ RN : |ξ − wx| ≤ t},

and the mapping (x, t) 7→ σkx,t is weakly continuous. Moreover, σkwx,t(A) =
σkx,t(w

−1(A)) and σkrx,rt(A) = σkx,t(rA) for all w ∈W, r > 0, and all Borel
sets A ⊂ RN .

The proof of this theorem involves, among other ingredients, the theory
of k -spherical harmonics which was initiated in [D1]. A good introduction to
this subject can be found in the monograph [DX]. The space of k -spherical
harmonics of degree n ≥ 0 is defined by

Hk
n = ker∆k ∩ Pn.
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As in the theory of ordinary spherical harmonics, the space L2(SN−1, wkdσ)
decomposes as an orthogonal Hilbert space sum

L2(SN−1, wkdσ) =
∞⊕
n=0

Hk
n.

A decisive ingredient in the proof of Theorem 2.61 is the following special case
of the Funk-Hecke formula for k -spherical harmonics which goes back to [X2].

2.62 Proposition. Let N ≥ 2 and put λ := γ+N/2−1. Then for all Y ∈ Hk
n

and x ∈ RN ,

1
dk

∫
SN−1

Ek(ix, ξ)Y (ξ)wk(ξ)dσ(ξ) =
Γ(λ+ 1)

2nΓ(n+ λ+ 1)
jn+λ(|x|)Y (ix). (2.29)

In particular,
1
dk

∫
SN−1

Ek(ix, ξ)wk(ξ)dσ(ξ) = jλ(|x|). (2.30)

Proof of Theorem 2.61 (Sketch). The proof of part (1) is achieved by a reduc-
tion to initial data of the form f(x) = Γk(s, x, y), where Γk is the Dunkl-type
heat kernel. Indeed, it is not hard to see by Dunkl transform methods that for
each f ∈ S(RN ) and (x, t) ∈ Rn × [0,∞),

Sf (x, t) = lim
s↓0

∫
RN

MΓk(s, . ,z)(x, t)f(z)wk(z)dz.

For the proof that SΓk(s, . ,z)(x, t) > 0 for all s, t ≥ 0 and x, z ∈ RN , the Funk-
Hecke formula (2.29), the positive integral representation of the intertwining
operator and the positive product formula for the one-variable Bessel functions
jλ are involved.

(2) The existence of representing measures σkx,t follows by standard methods
from (1). For the statement on their support, one observes that u(x, t) =
Sf (x, t) solves the initial value problem{(

∆k −Atλ
)
u = 0 in RN × (0,∞)

u(x, 0) = f(x), ut(x, 0) = 0

with the Bessel operator

Atλ = ∂2
t +

2λ+ 1
t

∂t .

The operator ∆k − Atλ is of Darboux-type and generalizes the classical wave
operator. A study of the domain of dependence of its solutions leads to the
claimed statement about the support of the σkx,t . Hereby the influence of the
reflection parts needs some care.

For the special choice f(x) = Ek(x, iz) with fixed z ∈ RN we obtain from
formulas (2.30) and (2.27) the simple form

Sf (x, t) = Ek(ix, y)jλ(t|y|).

Therefore the Dunkl kernel satisfies the following radial product formula:
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2.63 Corollary.

Ek(x, iz) jλ(t|z|) =
∫

RN

Ek(ξ, iz)dσkx,t(ξ) (x, z ∈ RN , t ≥ 0).

A function or measure on RN is called radial, if it is invariant under the
action of the orthogonal group O(N,R). We shall denote subsets consisting of
radial functions or measures by the subscript rad . As already announced, the
Dunkl-type generalized translation is positive when restricted to radial func-
tions. In fact, it can be written in a fairly simple explicit form by means of the
intertwining operator. This is proven in [R6] (proof of Theorem 5.1 there) and
can also be found in [DX] via a slightly different approach:

2.64 Theorem. If f ∈ C∞
rad(RN ) with f(x) = F (|x|) ≥ 0 ∀x ∈ RN , then also

τyf(x) ≥ 0 for all x, y ∈ RN . The translate τyf is given explicitly by

τyf(x) = Vk
(
F (

√
|x|2 + |y|2 + 2〈x, . 〉)

)
(y).

We mention that in [DX], this formula is established on the space Ak(RN ) =
{f ∈ L1(RN , wk) : f̂ k ∈ L1(RN , wk)}, which is a subspace of L2(RN , wk).
Let us now turn to the translation of radial measures.

2.65 Definition. For a subset M⊂Mb(RN ) we call

Mprad := {µ ∈M :
1
wk

µ is radial},

the space of pseudo-radial measures from M .

Important examples of bounded pseudo-radial measures, i.e. measures be-
longing to Mb,prad(RN ), are those of the form dµ(x) = f(x)wk(x)dx with
f ∈ L1

rad(RN , wk).
2.66 Proposition. 1. For µ ∈M1

prad(RN ), the assignment

δx ∗k µ(ϕ) :=
∫

RN

ϕ(x ∗k y)dµ(y), ϕ ∈ S(RN )

defines a probability measure δx ∗k µ ∈M1(RN ). Moreover, ∗k extends to
a probability-preserving and bilinear convolution

∗k : Mb(RN )×Mb,prad(RN ) →Mb(RN ),

µ ∗k ν(ϕ) :=
∫

RN

∫
RN

ϕ(x ∗k y)dµ(x)dν(y).

2. If µ, ν ∈Mb,rad(RN ), then also µ∗k ν ∈Mb,rad(RN ), and the convolution
∗k on Mb,rad(RN ) is commutative.

For the proof of these results, see [R6] (the extension away from probability
measures to bounded measures is straightforward).

In [TX], the authors extend the generalized translation τy to a positivity-
preserving and bounded linear operator

τy : Lprad(R
N , wk) → Lp(RN , wk)

for 1 ≤ p ≤ 2. This allows further to define the convolution between functions
between Lp -spaces such as f ∗k g for bounded g ∈ L1

rad(RN , wk) and f ∈
Lp(RN , wk) with 1 ≤ p ≤ 2. See [TX] for details and applications like the
maximal operator in the Dunkl setting.
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3 Gelfand pairs, Bessel functions, and hyper-
groups on matrix cones

3.1 Motivation

A basic motivation for the study of Dunkl operators is their close relation with
the theory of Riemannian symmetric spaces and their spherical functions. In-
deed, the algebra of invariant differential operators of a Riemannian symmetric
space G/K can be expressed in terms of the Weyl-group invariant parts of
Dunkl or Cherednik operator algebras. Hereby symmetric spaces of the non-
compact and compact type lead to Dunkl-Cheredenik operators, while rational
Dunkl operators correspond to symmetric spaces of Euclidean type. The latter
are associated with Cartan motion groups of non-compact symmetric spaces
G/K . They are of the form (KnV )/K , where V is a Euclidean space of finite
dimension which can be identified with the tangent space of G/K in the trivial
coset eK , and K is a compact Lie group acting on V by orthogonal transforma-
tions. If G/K is a Riemannian symmetric space of arbitrary type, then (G,K)
is always a Gelfand pair, which means that the subalgebra of K -biinvariant
functions within the convolution algebra L1(G) is commutative.

Symmetric spaces provide many infinite discrete series of Gelfand pairs
(G,K) whose double coset spaces G//K := K \G/K can be identified with a
common locally compact space X . For symmetric spaces of rank one (where X
is one-dimensional) it has been well-known since a long time that their spherical
functions can be embedded into certain series of classical hypergeometric func-
tions. These are well defined for continuous parameters, but only for certain dis-
crete parameter values they have an interpretation as spherical functions. Nev-
ertheless, many nice properties known for spherical functions, like integral rep-
resentations and positive product formulas, extend to general parameter values,
and one still obtains associated commutative convolution algebras of bounded
Borel measures on X which have properties similar to group convolutions and
form so-called commutative hypergroups (X, ∗). In this way, commutative hy-
pergroups extend the theory of spherical functions in some respect, and the
theory of commutative hypergroups may help to understand results for families
of special functions with a continuous parameter range, which admit positive
product formulas, in a systematic way.

For symmetric spaces of higher rank, the theories of Dunkl- and Cherednik
operators provide a framework of hypergeometric functions in several variables
which again includes the spherical functions as particular cases. In the Euclidean
case, these are just Bessel functions of Dunkl type. They can be identified with
spherical functions for discrete parameter values which are determined by the
Cartan decomposition of the underlying Lie algebra.

One may conjecture that for arbitrary non-negative multiplicities always
positive integral representations and product formulas leading to hypergroup
convolutions exist. These questions are in general much harder than in rank
one and remain unsolved to a major extent. There are, however, some classes of
known examples which allow the extension of product formulas and commutative
hypergroup algebras beyond the geometric cases. They are related with Grass-
mann manifolds U(p, q; F)/Up(F)× Uq(F) over one of the skew-fields F = R, C
or H and will be presented in Section 3.4. For these classes, hypergroup analysis
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supplements the Weyl-group invariant Dunkl theory in a satisfactory way.
The basic guiding example, which corresponds to the rank-one case of the

above series of Grassmann manifolds, are the so-called Bessel-Kingman hyper-
groups on X = [0,∞). Their structure is precisely that of rank-one Dunkl
theory in the Weyl-group invariant case. Here one takes the groups K = O(d)
acting on Rd , and the spherical functions ϕλ can be expressed in terms of the
spherical Bessel functions jα(x) = 0F1(α + 1;−x2/4), c.f. (2.15), with index
α = d/2− 1, via ϕλ(x) = jα(λx), λ ∈ C . The spherical product formula reads

ϕλ(x)ϕλ(y) =
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ 1

−1

ϕλ
(√

r2 + s2 + 2rst
)
(1− t2)α−1/2 dt (3.1)

for α = d/2− 1 > −1/2. The case α = −1/2 is degenerate with

ϕλ(x)ϕλ(y) =
1
2
(ϕλ(|x− y|) + ϕλ(x+ y)).

We shall explain this in Examples 3.9 and 3.16. In fact, this product formula
extends by analytic continuation to Bessel functions of arbitrary real index
α > −1/2. It is known as Gegenbauer’s product formula for Bessel functions,
and (2.28) is just equivalent to (3.1). This product formula leads to a continuous
family of commutative hypergroup structures on [0,∞) with parameter α ≥
−1/2, called Bessel-Kingman hypergroups. The associated hypergroup Fourier
transforms are Hankel transforms which describe for half-integers α = d/2 − 1
just the radial Fourier transforms on Rd . One may thus for example investigate
radial random walks on Rd by considering their radial parts which form random
walks on Bessel-Kingman hypergroups, see [Ki].

This classical one-dimensional example was recently extended to Bessel-
type hypergroups on the cones Πq = Πq(F) of positive semidefinite matrices
over F = R,C or H in [R8] as follows: For p ≥ q , consider the matrix space
Mp,q = Mp,q(F) with inner product 〈x, y〉 = Re tr(x∗y), where x∗ = xt . The
unitary group Up = Up(F) acts by multiplication from the left, and these trans-
formations are orthogonal with respect to the given inner product. The map-
ping Upx 7→

√
x∗x then establishes a homeomorphism between the space of

Up -orbits in Mp,q and the cone Πq . The spherical functions of the Gelfand pair
(Up n Mp,q, Up) are given by Bessel functions of matrix argument (see [FK],
[Her] as standard references), and the Fourier transform of Up -invariant func-
tions on Mp,q can be expressed in terms of a Hankel transform on the cone
Πq . These discrete series of examples can be embedded into three continuous
series of matrix Bessel hypergroups on Πq . This completes the L2 -theory for
Hankel transforms on Πq as developed by [Her] and [FT] in the general frame-
work of symmetric cones. In a second step, the connection to Dunkl theory
is established, as follows: The group Uq acts as a compact group of hyper-
group automorphisms on Πq by conjugation, and the associated orbit space is
canonically parametrized by

Ξq = {ξ ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0},

the set of possible spectra of positive semidefinite matrices. This is a Weyl
chamber of type Bq . This gives three continuous series of commutative hy-
pergroups on Ξq whose hypergroup characters are Dunkl-type Bessel func-
tions of type Bq . They interpolate the convolutions of the Gelfand pairs
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((Up×Uq) nMp,q, Up×Uq ), and one obtains explicit positive product formulas
and hence commutative hypergroup structures on Ξq for these parameters.

In order to explain these connections and their stochastic implications more
precisely, we next give a short survey about Gelfand pairs of Euclidean type
and commutative hypergroups.

3.2 Gelfand pairs, Euclidean orbit spaces, and hypergroups

In this section we give a quick introduction to certain classes of Gelfand pairs
and commutative hypergroups. We do not include proofs and refer for details on
Gelfand pairs to the survey of [F], and for hypergroups mainly to [J] and [BH].
We first recapitulate some notions on Gelfand pairs. Let G be a locally compact
group and Mb(G) the Banach space of all regular bounded Borel measures on
G . Mb(G) becomes a Banach-∗ -algebra with convolution

µ ∗ ν(f) :=
∫
G

f(xy) dµ(x) dν(y)

for f ∈ Cb(G) and the involution µ∗(A) := µ(A−1) (A ⊂ G a Borel set). The
identity is δe , the point measure in the identity e of G . Recall also that there
is a (up to normalization) unique left Haar measure ωG ∈ M+(G), that is a
measure which is invariant under left translations f 7→ τxf, x ∈ G.

Now let K be a compact subgroup of G . The normalized Haar measure
ωK ∈M1(K) may be regarded as measure on G and satisfies ω∗K = ωK ∗ωK =
ωK . It is easily checked that the space of all K -biinvariant bounded measures

Mb(G‖K) : = {µ ∈Mb(G) : δx ∗ µ ∗ δy = µ for all x, y ∈ K}
= {ωK ∗ µ ∗ ωK : µ ∈Mb(G)} (3.2)

is a Banach-∗ -subalgebra of Mb(G).

3.1 Definition. The pair (G,K) is be called a Gelfand pair, if Mb(G‖K) is
commutative.

We mention that for a Gelfand pair (G,K), the group G is automatically
unimodular, i.e. ωG is also a right Haar measure. Further, the space L1(G,ωG)
is naturally identified with a subspace of Mb(G) and becomes a closed subalge-
bra of (Mb(G), ∗) with the convolution

f ∗ g(x) :=
∫
G

f(xy)g(y−1) dωG(y)

and involution f∗(x) := f(x−1). If (G,K) is a Gelfand pair, then the Banach-
∗ -algebra

L1(G‖K) := {f ∈ L1(G,ωG) : f(kxh) = f(x), x ∈ G, k, h ∈ K}

of all biinvariant L1 -functions on G is commutative.
There are several equivalent descriptions (e.g., using representation theory) of
Gelfand pairs among which we quote the following useful criterion, see [F].

3.2 Lemma. Let K be a compact subgroup of a locally compact group G .
Assume there exists a continuous involutive automorphism θ on G satisfying
x−1 ∈ Kθ(x)K for all x ∈ G . Then (G,K) is a Gelfand pair.
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We next introduce spherical functions and the spherical Fourier transform.

3.3 Definition. Let (G,K) be a Gelfand pair. Then a function ϕ ∈ C(G),
ϕ 6≡ 0, is called a spherical function of (G,K) if ϕ is K -biinvariant, i.e.,
ϕ(kxh) = ϕ(x) for k, h ∈ K and x ∈ G , and if ϕ satisfies the product formula∫

K

ϕ(xky) dωK(k) = ϕ(x)ϕ(y).

Spherical functions obviously satisfy ϕ(e) = 1. Denote the set of all spherical
functions of (G,K) by Σ.

The set Σb := Σ∩Cb(G) can be identified with the spectrum of the Banach-
∗ -algebra L1(G‖K) via ϕ 7→ Lϕ ∈ ∆(L1(G‖K)) with Lϕ(f) =

∫
G
ϕf dωG . It

becomes a locally compact space with the topology of locally-uniform conver-
gence, which corresponds to the Gelfand topology on the spectrum.

The spherical Fourier transforms of functions f ∈ L1(G‖K) and measures
µ ∈Mb(G‖K) are defined on Σ according to

f̂(ϕ) =
∫
G

f(x)ϕ(x−1) dωG(x) and µ̂(ϕ) =
∫
G

ϕ(x−1) dµ(x).

They satisfy f̂ ∈ C0(Σ) (“Riemann-Lebesgue-Lemma”) and µ̂ ∈ Cb(Σ).

3.4 Definition. A function ϕ ∈ Cb(G) is called positive definite if for all n ∈ N ,
x1, . . . , xn ∈ G and c1, . . . , cn ∈ C ,∑

i,j=1,...,n

cic̄j · ϕ(xix−1
j ) ≥ 0.

We denote by Ω ⊆ Σb the closed subspace of all positive definite spherical
functions.

We now list some major facts about the spherical Fourier transform:

3.5 Theorem. (1) The spherical Fourier transform is injective.
(2) Bochner Theorem: Ω is the set of extreme points in the set of positive

definite, biinvariant functions with ϕ(e) = 1 , and for each biinvariant
positive definite function f on G there is a unique measure µ ∈ M+

b (Ω)
with f(x) = µ̌(x) :=

∫
Ω
ϕ(x) dµ(ϕ).

(3) Plancherel’s Theorem: There is a unique measure π ∈ M+(Ω) such that
the spherical Fourier transform of biinvariant L1 -functions can be ex-
tended to an isometric isomorphism from the space L2(G‖K) of all biin-
variant L2 -functions onto L2(Ω, π) .

(4) Inversion formula: If f ∈ L1(G‖K) with f̂ ∈ L1(Ω, π) , then f = (f̂)∨ .
(5) Inverse Riemann-Lebesgue lemma: If f ∈ L1(Ω, π) , then f̌ ∈ C0(G) .

We note that supp π ⊂ Ω ⊂ Σb ⊂ Σ, and that equality may fail for certain
Gelfand pairs.

The theory of Gelfand pairs and the spherical Fourier transform can be
considered as the origin of Fourier analysis on commutative hypergroups:
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3.6 Definition. A hypergroup (X, ∗) is a locally compact Hausdorff space X
with a bilinear associative convolution ∗ on Mb(X) with the following proper-
ties:

(1) The map (µ, ν) 7→ µ ∗ ν is weakly continuous.
(2) For all x, y ∈ X , the product δx ∗ δy of point measures is a compactly

supported probability measure on X .
(3) The mapping (x, y) 7→ supp(δx ∗ δy) from X × X into the space of

nonempty compact subsets of X is continuous with respect to the Michael
topology, see [J].

(4) There is a neutral element e ∈ X , satisfying δe ∗ δx = δx ∗ δe = δx for all
x ∈ X .

(5) There is a continuous involutive automorphism x 7→ x on X such that
δx∗δy = (δy∗δx)− and x = y ⇐⇒ e ∈ supp(δx∗δy), where for µ ∈Mb(X),
the measure µ− is given by µ−(A) = µ(A) for Borel sets A ⊆ X .

A hypergroup (X, ∗) is called commutative if ∗ is commutative. In this
case, (Mb(X), ∗, .−) is a commutative Banach-∗ -algebra with identity δe .

Note that by weakly continuous, bilinear extension, the convolution of a
hypergroup is uniquely determined as soon as it is given for point measures.

3.7 Examples. (1) If G is a locally compact group, then (G, ∗) is a hyper-
group with the group convolution ∗ .

(2) Let K be a compact subgroup of a locally compact group G . Consider the
Banach-∗ -algebra Mb(G‖K) with identity ωK ∈M1(G), and the double
coset space

G//K := {KxK : x ∈ G}

which is a locally compact Hausdorff space w.r.t. the quotient topology.
The canonical projection p : G→ G//K induces a probability preserving,
isometric isomorphism p : Mb(G‖K) → Mb(G//K) of Banach spaces by
taking images of measures. The transfer of the convolution on Mb(G‖K)
to Mb(G//K) via p leads to a hypergroup structure (G//K, ∗) with iden-
tity K ∈ G//K and involution (KxK)− := Kx−1K , and p becomes a
probability preserving, isometric isomorphism of Banach-∗ -algebras. The
convolution of point measures on G//K is given explicitly by

δKxK ∗ δKyK =
∫
K

δKxkyK dωK(k) (x, y ∈ G).

This double coset hypergroup is clearly commutative if and only if (G,K)
is a Gelfand pair.

3.8 Example. Let (V,+) be a locally compact abelian group on which a com-
pact group K of automorphisms acts continuously via (k, v) 7→ k.v . Consider
the semidirect product G := K n V , and regard K as a compact subgroup of
G in the obvious way. Then (G,K) is a Gelfand pair (apply criterion 3.2 to
the automorphism θ(k, v) := (k,−v)). Moreover, the locally compact space

V K := {K.v : v ∈ V }
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of all K -orbits of V may be identified with the double coset space G//K via
K.v ∈ V K ' K(e, v)K ∈ G//K . Denoting the image measure of µ ∈ Mb(V )
under k ∈ K by k(µ), we see that the Banach-∗ -algebra Mb(G‖K) of all
biinvariant measures on G may be identified with the Banach-∗ -algebra

MK
b (V ) := {µ ∈Mb(V ) : k(µ) = µ for all k ∈ K}

of K -invariant measures on V . By lifting this structure to Mb(V K), one obtains
a so-called commutative orbit hypergroup structure on V K with the following
explicit convolution of point measures:

δK.v ∗ δK.w =
∫
K

δK.(v+k.w) dωK(k) (v, w ∈ V ).

The neutral element of this hypergroup is K.0 = {0} , the involution is given by
K.v = K.(−v).

The most frequent examples of this type arise from Gelfand pairs of Eu-
clidean type: Here V is a finite-dimensional Euclidean vector space and K is a
compact subgroup of the orthogonal group O(V ).

3.9 Example (Bessel-Kingman hypergroups). Let V = Rd and K = O(d),
acting by matrix multiplication from the left. Then the orbit space consists of
the spheres {x ∈ Rd : |x| = r} with r ≥ 0 and can be topologically identi-
fied with [0,∞). The convolution of the orbit hypergroup (Rd)O(d) ∼= [0,∞)
becomes

(δr ∗ δs)(f) =
∫
O(d)

f(|re1 + kse1|)dk =
∫
Sd−1

f(|re1 + sσ|)dσ (3.3)

where e1 = (1, 0, . . . , 0), dk denotes the normalized Haar measure of O(d), and
dσ is the normalized surface measure on the unit sphere Sd−1. For d > 1 we
use spherical polar coordinates and the cosine theorem, thus arriving at

(δr ∗ δs)(f) =
Γ(d/2)√

πΓ((d− 1)/2)

∫ 1

−1

f(
(√

r2 + s2 + 2rst
)
(1− t2)(d−3)/2dt.

For d = 1 the formula degenerates to

(δr ∗ δs)(f) =
1
2
(
f(r + s) + f(|r − s|)

)
.

The neutral element of each of these hypergroups is 0, and the involution is the
identity.

We next collect some notations and facts on commutative hypergroups (X, ∗).

(1) For a bounded Borel function f : X → C and x ∈ X define the translate

fx(y) := f(x ∗ y) :=
∫
X

f d(δx ∗ δy).

The spaces Cc(X), C0(X) and Cb(X) are preserved by such translations.
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(2) By a famous result of R. Spector, there exists a (up to normalization)
unique Haar measure ω ∈M+(X) which is characterized by ω(f) = ω(fx)
for all f ∈ Cc(X) and x ∈ X.

(3) The involution and convolution of measurable functions f, g on X are
given by f∗(x) := f(x̄) and, in case of convergence,

f ∗ g(x) =
∫
X

f(y) g(x ∗ ȳ) dω(y).

In particular, for f, g ∈ L1(X,ω) one has f∗, f ∗ g ∈ L1(X,ω), and
L1(X,ω) becomes a commutative Banach-∗ -algebra. There are also con-
volutions of functions from other Lp -spaces, just as with groups. For
example, if f ∈ L1(X,ω) and g ∈ Lp(X,ω), then f ∗ g ∈ Lp(X,ω) with
‖f ∗ g‖p ≤ ‖f‖1 · ‖g‖p.

(4) Similar to locally compact abelian groups, one defines the spaces

(a) χ(X) := {α ∈ C(X) : α 6= 0, α(x ∗ y) = α(x)α(y) for all x, y ∈ X} ;
(b) χb(X) := χ(X) ∩ Cb(B);
(c) X̂ := {α ∈ χb(X) : α(x̄) = α(x) for all x ∈ X} .

Elements of X̂ are called characters, and χb(X) and X̂ are locally com-
pact Hausdorff spaces w.r.t. the topology of compact-uniform convergence.

(5) The Fourier(-Stieltjes) transform of a function f ∈ L1(X,ω) and a mea-
sure µ ∈Mb(X) are defined by

f̂(α) :=
∫
X

f(x)α(x) dω(x) and µ̂(α) :=
∫
X

α(x)dµ(x) (α ∈ X̂).

(6) The hypergroup Fourier transform satisfies (µ∗ν)∧ = µ̂ · ν̂ and (µ∗)∧ = µ̂

with analogous formulas for L1 -functions. Moreover, µ̂ ∈ Cb(X̂) and
f̂ ∈ C0(X̂) for f ∈ L1(X,ω) (“Riemann-Lebesgue-Lemma”).

(7) A function ϕ ∈ Cb(X) is called positive definite if for all n ∈ N , x1, . . . , xn ∈
X and c1, . . . , cn ∈ C ,

∑
i,j=1,...,n cic̄j · ϕ(xi ∗ x̄j) ≥ 0.

The following results are analog to those in Theorem 3.5 for the spherical
Fourier transform. For proofs we refer to [J], [BH], and references therein.

3.10 Theorem. (1) The hypergroup Fourier transform is injective.

(2) Bochner Theorem: X̂ is the set of extreme points in the set of bounded
positive definite functions on X with normalization ϕ(e) = 1 , and for each
bounded positive definite function f on X there is a unique µ ∈M+

b (X̂)
such that f(x) = µ̌(x) :=

∫ bX ϕ(x) dµ(ϕ).

(3) Plancherel Theorem: There is a unique measure π ∈M+(X̂) such that the
hypergroup Fourier transform extends to an isometric isomorphism from
the space L2(X,ω) onto L2(X̂, π) .

(4) Inversion formula: If f ∈ L1(X) with f̂ ∈ L1(X̂, π) , then f = (f̂)∨ .
(5) Inverse Riemann-Lebesgue lemma: If f ∈ L1(Ω, π) , then f̌ ∈ C0(G) , and

the space {f̌ : f ∈ L1(X̂, π)} is ‖.‖∞ -dense in C0(X) .
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Similar to Gelfand pairs we have supp π ⊂ X̂ ⊂ χb(X) ⊂ χ(X) where
equality may always fail.

3.11 Examples. (1) Let (G,K) be a Gelfand pair and (X = G//K, ∗) the
associated double coset hypergroup. Then the canonical projection of the
Haar measure ωG of G onto X is a Haar measure of X . Moreover, we
may identify χ(X) and Σ by identification of biinvariant functions on G
with functions on X . When doing so, the Plancherel measures of (G,K)
and X are the same, and one has the inclusions

supp π ⊂ Ω ⊂ X̂ ⊂ χb(X) = Σb ⊂ χ(X) = Σ.

(2) For the Bessel-Kingman hypergroup X = (Rd)O(d) , the Haar measure (in
standard normalization) is the image measure of the normalized Lebesgue
measure (2π)−d/2dx on Rd under the mapping x 7→ |x| and is given by

dωα(r) =
2−d/2

Γ(d/2)
rd−1dr, α = d/2− 1.

In practice, for a given Gelfand pair (G,K) or commutative hypergroup
(X, ∗) there usually exists a natural way of constructing examples of spherical
or multiplicative functions, respectively. However some additional particular
techniques then often have to be employed to prove that these examples really
form ALL of them. If there exists for example a sufficiently large class of un-
derlying invariant differential operators, then one has to show that spherical
(or multiplicative) functions are eigenfunctions of these operators which then
leads to a complete description of these objects. This is for instance the case
for Gelfand pairs associated with Riemannian symmetric spaces (see [Hel2])
and also for so-called one-dimensional Sturm-Liouville hypergroups (see Section
3.5.23 of [BH]). In some cases, there exists a further method to determine Ω and
X̂ , which seems to be not well-known and which is as follows: Often it is possi-
ble to write down the Plancherel measure π explicitly, i.e., suppπ is known. On
the other hand there exists a growth criterion which ensures that in the Gelfand
pair setting supp π = Ω and for commutative hypergroups supp π = X̂ holds.

3.12 Definition. A hypergroup (X, ∗) with left Haar measure ω has subexpo-
nential growth, if for each compact subset K ⊂ X and its powers Kn (n ∈ N),
which are recursively defined by K1 = K and

Kn+1 := K ∗Kn :=
⋃

x∈K, y∈Kn

supp(δx ∗ δy),

and for each a > 1, the growth rate ω(Kn) = o(an) holds.

3.13 Theorem. (1) Let (X, ∗) be a commutative hypergroup with subexpo-
nential growth. Then supp π = X̂ = χb(X).

2) Let (G,K) be a Gelfand pair where G has subexponential growth. Then
supp π = Ω = Σb .

Proof. Part (1) is due to [Vog] and [V0]; see Theorem 2.5.12 of [BH] as a stan-
dard reference. In the case of a Gelfand pair (G,H), we note that G has subex-
ponential growth if and only if so has the double coset hypergroup (G//K, ∗)
such that (2) is an obvious consequence of (1).
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3.14 Example. Consider the Gelfand pair (K n V,K) for a locally compact
abelian group V as above. Then V is polynomially growing (see [Gr]), and
thus K n V as well. Theorem 3.13 therefore implies supp π = Ω = Σb .

We now turn to Gelfand pairs of Euclidean type. We shall in particular
determine the dual space of the Bessel Kingman orbit hypergroups.

Let (V, 〈 . , . 〉) be a finite-dimensional Euclidean vector space and K ⊂ O(V )
a compact subgroup. Then by Example 3.8, (G = K n V,K) is a Gelfand pair,
G/K may be identified with V , and G//K with the orbit space X := V K in
the obvious way. We thus have canonical projections

G −→ G/K ' V −→ G//K ' V K = X.

A precise description of the spherical functions can be found in the recent paper
of Wolf [Wo]. We introduce the complexification VC of V equipped with the
extension of the scalar product as well as the complexification KC := K ·K0

C ⊂
O(n,C) where K0

C is the identity component of KC that corresponds to the
complexified Lie algebra of the Lie algebra of the compact Lie group K .

The relevant results about the spherical functions of (G,K) or, in different
language, the characters of the double coset hypergroup (X, ∗) are as follows:

3.15 Theorem. (1) For λ ∈ VC , the means

ϕλ(x) :=
∫
K

e−i〈k.x,λ〉 dωK(k) =
∫
K

e−i〈x,k.λ〉dωK(k) (x ∈ V )

are continuous, K -invariant functions on V , and thus may be regarded as
biinvariant functions ϕλ ∈ C(G‖K) on G as well as functions ϕλ ∈ C(X)
on the orbit space X . If doing so,

{ϕλ : λ ∈ VC} = Σ = χ(X). (3.4)

(2) For λ, λ̃ ∈ VC , the equality ϕλ = ϕλ̃ holds if and only if the orbit closures
of λ, λ̃ under KC satisfy cl KC(λ) ∩ cl KC(λ̃) 6= ∅ .
Moreover, for λ, λ̃ ∈ V , ϕλ = ϕλ̃ holds if and only if K(λ) = K(λ̃) .

(3) {ϕλ : λ ∈ V } = supp π = Ω = X̂ = Σb = χb(X) .

Proof. It can be easily checked by computation that the ϕλ are spherical func-
tions; see e.g. [F] or [Wo]. For equality in (3.4) as well as for part (2) we also
refer to [Wo]. For a proof of (3) we also can refer to [Wo], but we here prefer the
following argument: Note first that obviously {ϕλ : λ ∈ V } ⊂ Ω holds, and that
the quotient topology on V K agrees with the topology of local-uniform conver-
gence on Ω after a suitable identification. Moreover, the L2 -isometry of the
Fourier transform on V immediately implies that the projection π ∈M+(V K)
of the suitably normalized Lebesgue measure on V is in fact the Plancherel
measure on Ω. Theorem 3.13 and Example 3.14 now yield the equality.

3.16 Example (Bessel-Kingman hypergroups). Let V = Rd and K =
O(d) as in Example 3.9. Then we may realize the associated orbit hypergroup
as (X := [0,∞), ∗) with the convolution there. Moreover, we have the Haar
measure ωα ∈M b([0,∞)) from Example 3.11(2).
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By taking spherical polar coordinates in the integrals of part (1) of the pre-
ceding theorem and a well-known integral representation of the Bessel functions
jα of Eq. (2.15) (see e.g. Eq. (1.71.6) of [Sz]), we see that the spherical functions
are given by

ϕλ(x) =
Γ(α+ 1)

Γ(α+ 1)/2)
√
π

∫ 1

−1

eiλxt(1− t2)α−1/2 dt = jα(λx) (3.5)

for λ ∈ C , x ≥ 0, α = d/2−1. Here, ϕλ = ϕλ̃ is equivalent to λ2 = λ̃2 , and we
conclude that X̂ = χb(X) = {ϕλ : λ ∈ [0,∞)} where we may identify X̂ with
[0,∞) in this way topologically. The construction of the Plancherel measure π
in the proof above shows that π ∈ M+([0,∞)) is also the spherical projection
of the Lebesgue measure up to normalization and agrees thus with the Haar
measure above up to normalization. This is no accident, as it might be derived
easily from the symmetry of the functions ϕλ(x) in the variables λ, x that the
Bessel-Kingman hypergroups are self-dual like the underlying groups Rd .

We next observe that the Bessel functions jα and the associated function
ϕλ(x) = ϕαλ(x) depend analytically on α and that by a kind of analytical
extension (see Section 3.4 where a more general case is treated), the product
formula (3.3) as well as the positive integral representation (3.5) remain valid
for all α ∈ R with α > −1/2 (with the degenerated case α = −1/2). These
formulas then imply that for each α ≥ 1/2, there exists a unique so-called
Bessel-Kingman hypergroup on [0,∞) with the dual space {ϕαλ : λ ∈ [0,∞)} ,
with 0 as identity, and the identity as involution. This hypergroups are also self
dual, the Haar measure ωα is given as in 3.11(2), and the Plancherel measure
is equal to ωα up to normalization.

We finally recapitulate that if K is a compact group of automorphisms acting
continuously on some locally compact abelian group V , then the orbit space
V K becomes a commutative orbit hypergroup. This can be easily extended to
the case where K is a compact group of automorphisms acting continuously
on some commutative hypergroup (X, ∗). This generalization will be crucial to
explain how the Bessel hypergroup structures on matrix cones lead to continuous
series of commutative hypergroup structures on Weyl chambers associated with
Dunkl operators of type BN in Section section-matrix-cones. We here collect
some facts without proofs. For further details we refer to [J], where this concept
is embedded in the more general context of orbital morphisms.

3.17 Remark. Let (X, ∗) be a commutative hypergroup with dual space X̂ .

(1) A homeomorphism k : X → X is called a hypergroup automorphism if
δk(x) ∗ δk(y) = k(δx ∗ δy) for all x, y ∈ X .

It follows readily for such an automorphism, that k(e) = e and k(x̄) =
k(x) for x ∈ K . Moreover, k(µ ∗ ν) = k(µ) ∗ k(ν) for all µ, ν ∈ Mb(X).
Furthermore, if k1, k2 are hypergroup automorphisms of (X, ∗), then so
are k−1

1 and k1k2 .

(2) Now assume that K is a compact group of hypergroup automorphisms
acting continuously on (X, ∗). Then we may form the orbit space XK :=
{K.x : x ∈ X} which is locally compact w.r.t. the quotient topology. It
can be easily checked that

Mb(X|K) := {µ ∈Mb(X) : k(µ) = µ for all k ∈ K}
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is a Banach-∗ -subalgebra of Mb(X) which is isometrically isomorphic as
a Banach space with the Banach space Mb(XK) by taking images of
measures w.r.t. the canonical projection from X onto XK . A transfer
of the convolution on Mb(X|K) to Mb(XK) then leads to a probability
preserving convolution ∗ on Mb(XK), and it can be easily checked that
with this convolution, (XK , ∗) becomes a commutative hypergroup with
identity {e} and involution K.x := K.x̄ for x ∈ X . Furthermore, if we
define for ϕ ∈ X̂ the K -invariant function ϕK(x) :=

∫
K
ϕ(k.x) dωK(k)

for x ∈ X , one obtains readily that {ϕK : ϕ ∈ X̂} ⊂ (XK)∧. Moreover,
if X has subexponential growth, then so also has XK , and the Plancherel
measure π of XK satisfies supp π = (XK)∧ . This implies that similar as
above in the group case the equality

{ϕK : ϕ ∈ X̂} = (XK)∧

holds; see Section 13 of [J] or the proof of Theorem 4.1 of [R8].

3.3 Bessel functions associated with root systems and sym-
metric spaces of Euclidean type

The radial parts of invariant differential operators on a Riemannian symmetric
space can be expressed in terms of commuting algebras of Dunkl or Dunkl-
Cherednik operators. The rational Dunkl operators are hereby related to sym-
metric spaces of the Euclidean type, and their spherical functions appear as
Dunkl-type Bessel functions with certain discrete multiplicity values.

To explain this connection, let us start with the underlying concepts. For
more background and detail the reader may consult the monographs [Hel1],
[Hel2], or also [Ko], Chapt. I, II, III.

Let g be a real semisimple Lie algebra, i.e., a Lie algebra over R on which
the Killing form B is nondegenerate. An involutive automorphism θ of g
is called a Cartan involution and the corresponding eigenspace decomposition
g = k ⊕ p into +1 and −1 eigenspaces of θ is called a Cartan decomposition
of g if B is negative definite on k and positive definite on p . In particular,
(p, B) is a finite-dimensional Euclidean vector space. Cartan involutions exist
and are all conjugate under inner automorphisms. Let G be a connected Lie
group with Lie algebra g . Such a Lie group is called semisimple. It can be
shown that the Cartan involution on g is the differential of a unique involutive
automorphism of G , also denoted by θ , and that the fixed point subgroup
K := {g ∈ G : θ(g) = g} is just the connected Lie subgroup of G with Lie
algebra k. K is compact iff G has finite center; such a choice of G is always
possible. If G has finite center and p 6= {0} then G/K is called a Riemannian
symmetric space of the non-compact type.

3.18 Remark. The (irreducible) Riemannian symmetric spaces of non-compact
type are completely classified, see Chapter X of [Hel1]. There are ten infi-
nite classes of simply connected symmetric spaces, namely SL(n,C)/SU(n),
SL(n,R)/SO(n), SL(n,H)/SP (n), SO(n,C)/SO(n), Sp(n,C)/Sp(n), the
Grassmann manifolds SO0(p, q)/SO(p)×SO(q), SU(p, q)/S(U(p)×U(q)) and
Sp(p, q)/Sp(p)× Sp(q), as well as Sp(n,R)/U(n) and SO∗(2n)/U(n).
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In the situation described above, K acts on g via the adjoint representation
Ad . We denote this action with Ad(k)X = k.X. Recall that

exp(k.X) = k exp(X)k−1 for X ∈ g, k ∈ K.

As [k, p] ⊆ p , K leaves p invariant, and acts via orthogonal transformations
(with respect to the Killing form) on p. The semidirect product G0 := Kn p is
called the Cartan motion group associated with G/K , and G0/K ∼= p is called
a symmetric space of Euclidean type.

Choose now a maximal abelian subspace a of p . All such subspaces have
the same dimension which is called the rank of G/K . For each α in the dual
space a∗ of a let

gα = {X ∈ g : [H,X] = α(H)X ∀H ∈ a}.

Those α with α 6= 0 and gα 6= {0} are called the (restricted) roots of g w.r.t.
a . The simultanous diagonalization of the commuting operators adH, H ∈ a
leads to the root space decomposition

g = g0 +
∑
α∈Σ

gα

where Σ is the set of restricted roots. The spaces gα are called root spaces,
and mα := dimRgα is called the multiplicity of α . We consider Σ as a subset
of a , identifying a with its dual space via the Killing form. The set Σ is
a crystallographic, but not neccesarily reduced root system in the Euclidean
space (a, B) ∼= (RN , 〈 . , . 〉). Denote by W the associated Weyl group. The
action of W on a is obtained from the action of K on p , as follows: Consider
the centralizer and the normalizer of a in K ,

ZK(a) := {k ∈ K : k.H = H ∀H ∈ a}
NK(a) := {k ∈ K : k.a = a}

Then W is realized as the quotient NK(a)/ZK(a). Each K -orbit in p meets
a , and the orbit space pK is homeomorphic to the closure of the Weyl chamber
a+ corresponding to some fixed positive subsytem of Σ,

pK ∼= a+

(see for instance [Hel2], Prop. I.5.18).
The spherical functions of the Euclidean symmetric space G0/K are de-

fined as the spherical functions of the Gelfand pair (G0 = K n p,K). Equiv-
alently, they can be characterized as follows: Denote by S(p)K the algebra of
K -invariant polynomials on p , and by p(∂) the constant coefficient differeren-
tial operator corresponding to p ∈ S(p). Then a function ϕ : p → C is spherical
if and only if it is smooth and satisfies ϕ(0) = 1 as well as

p(∂)ϕ = p(λ)ϕ ∀p ∈ S(p)K

with some λ ∈ aC. This just means that ϕ is a joint eigenfunction of all K -
invariant constant coefficient differential operators on p . Being K -invariant, ϕ
can also be considered a W -invariant function on a which is a joint eigenfunction
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of the K -radial parts of the operators from the commutative algebra D =
{p(∂), p ∈ S(p)K} . An important member of D is the Laplacian ∆p . Its radial
part can be calculated as

Rad(∆p) = ∆a +
∑
α∈Σ+

mα
1

〈α, . 〉
∂α (3.6)

see [Hel2], Chapter II.

3.19 Example. For d ≥ 2 consider the Lorentz group G = SO0(d, 1) with
maximal compact subgroup K = SO(d). The symmetric space G/K is a real
hyperbolic space which can be topologically identified with the hyperboloid

Hd = {x ∈ Rd+1 : x2
1 + . . .+ x2

d − x2
d+1 = 1, xd+1 > 0}.

In this case, G0 = SO(d)nRd is the Euclidean motion group, where K = SO(d)
acts in the subspace perpendicular to the xd+1 -axis. The symmetric space
G0/K is naturally identified with the vector space Rd which is just the tangent
space of G/K in the base point eK ∼= (0, . . . , 0, 1) ∈ Hn . Moreover, a ∼= R
and the rank of G/K is 1. The K -invariant differential operators are in this
case exactly those which are algebraically generated by the Laplacian ∆ on Rd .
When considered as functions on R , the spherical functions are characterized as
the smooth and even eigenfunctions of the radial part of ∆. These are precisely
the Bessel functions ϕλ(x) = jd/2−1(λx) with λ ∈ [0,∞), c.f. Section 2.5.

The spherical functions of a Euclidean symmetric space G0/K can be writ-
ten down explicitly in terms of an integral representation of Harish-Chandra
type (see [Hel2], Chap. IV). In fact, this is also an immediate consequence of
Theorem 3.15:

3.20 Theorem. The spherical functions of the Euclidean symmetric space
G0/K are (as functions on a) given by

ϕλ(x) =
∫
K

eiB(λ,k.x)dk

where λ ∈ aC (the complexification of a) and ϕλ = ϕeλ iff λ and λ̃ are in the
same W -orbit in aC .

By a convexity theorem of Kostant, this integral formula can be written in
the form

ϕλ(x) =
∫
co(W.x)

eiB(λ,ξ)dνx(ξ)

with a probability measure νx on the convex hull co(W.x) of the Weyl group
orbit of x . This generalizes the Mehler integral representation (3.5) in rank one.

Let us now proceed to the interpretation of the spherical functions ϕλ as
Bessel functions of Dunkl type. We follow the expositions in [dJ4], [R6].

3.21 Definition. Let R denote the reduced root system obtained from Σ by
normalizing all roots to unit length (so some roots in a component BCn of Σ
will coincide in R). Define the multiplicity k on R by kα := 1

2

∑
β∈Rα∩Σ+

mβ .
Data(R, k) obtained in this way from a symmetric space are called geometric.
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Consider the Dunkl operators associated with R and k . Comparison of the
radial part (3.6) with the W -invariant restriction of ∆k shows that

Rad(∆p) = Res(∆k).

More general, there is a restriction isomorphism (the generalized Harish-Chandra
isomorphism)

Φ : S(p)K −→ S(a)W

where S(a)W denotes the algebra of W -invariant polynomials on a (called PW
in Section 2.5). It can now be shown (see [dJ4] for the details) that for each
p ∈ S(p)K ,

Rad(p(∂)) = Φ(p)(T (k)).

From this and the uniqueness of the solution to both differential systems, it is
not hard to see that as funtions on a ∼= RN , the spherical functions of the flat
symmetric space G0/K are given by the Dunkl-type Bessel functions associated
with R and k . That is

{ϕ : RN → C : ϕ spherical for G0/K} = {Jk( . , λ), λ ∈ RN}.

Thus, the positive integral representation of Theorem 2.31 for Bessel func-
tions associated with arbitrary non-negative multiplicites generalizes the Harish-
Chandra integral for spherical functions of Euclidean symmetric spaces.

To obtain a generalized translation with nice properties in Dunkl theory,
product formulas for the Dunkl kernel and the Bessel function would be most
desireable. Indeed, for the geometric cases, a positive product formula is guar-
anteed by the interpretation of Bessel functions as spherical functions. Let us
briefly describe these matters.

Consider as above the Euclidean symmetric space G0/K associated with
G/K and the Bessel functions Jk with corresponding geometric data (R, k).
As described in Section 3.2, the convolution of K -biinvariant functions on G0

can be interpreted as the convolution of the commutative orbit hypergroup pK

which is given by

δK.x ∗ δK.y =
∫
K

δK.(x+K.y)dk, x, y ∈ p.

Recall that each orbit K.x contains a unique element x+ ∈ a+ and that the
mapping pK → a+, x 7→ x+ is a homeomorphism. The above convolution
therefore transfers to a hypergroup convolution on the closed Weyl chamber a+

which we consider as a subset of RN . It is given by

δx ∗ δy =
∫
K

δ(x+k.y)+dk.

The neutral element of the hypergroup X = (a+, ∗) is 0 and the involution is
given by x+ = (−x)+ . Further, the space χ(X) of continuous multiplicative
functions and the dual space of X are

χ(X) = {Jk( . , λ), λ ∈ aC}; X̂ = χb(X) = {Jk( . , iλ), λ ∈ a+},

c.f. Theorem 3.15. A Haar measure is given by the Dunkl-type weight function
wk . The restriction of the Dunkl transfrom to Weyl group invariant functions
therefore coincides with the Fourier transform on the hypergroup X .
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3.22 Example (SL(N,C)/SU(N)). Consider the semisimple connected Lie
group G = SL(N,C) with Lie algebra g = sl(N,C) = {x ∈MN (C) : trx = 0}.
The mapping θ(x) = −x∗ with x∗ = xt is a Cartan involution on g , and the
corresponding Cartan decompositon is g = k⊕ p with

k ={x ∈ g : x∗ = −x} (skew-Hermitian matrices)
p ={x ∈ g : x∗ = x} =: HN (Hermitian matrices).

A possible choice for a maximal abelian subalgebra are the diagonal matrices

a = {x = diag(ξ1, . . . , ξN ) : ξi ∈ R,
N∑
i=1

ξi = 0}

which we identify with a subspace of RN . The adjoint action of the maximal
compact subgroup K = expk = SU(N) on p = HN is given by conjugation,
(u, x) 7→ uxu−1. Each matrix x ∈ HN is unitarily equivalent to a unique
diagonal matrix with the eigenvalues of x being ordered by size. Therefore the
orbit HK

N can be (actually topologically) identified with the closed set

C := {ξ = (ξ1, . . . , ξN ) ∈ RN : ξ1 ≥ . . . ≥ ξN ,

N∑
i=1

ξi = 0}.

Notice that C is a closed Weyl chamber of the symmetric groupSN , which is the
Weyl group of the Riemannian symmetric space G/K . Indeed, the restriction
of the K -action on HN to a is realized by permutations of the diagonal en-
tries. According to our general results, the spherical fucntions of the Euclidean
symmetric space (K nHN )/K are given by the functions

{ξ 7→ JA1 (ξ, λ), λ ∈ aC}

where JA1 denotes the Bessel function associated with root system AN−1 and
multiplicity k = 1. The value of k = 1 results from the fact that SL(N,C) is a
complex Lie group and therefore the real dimensions of all root spaces are equal
to 2. The Bessel function JA1 is given explicitly by

J1(ξ, λ) = c
∑
w∈SN

sign(w)
π(ξ)π(λ)

e〈ξ,wλ〉

where c ∈ C is a constant, 〈 . , . 〉 denotes the usual inner product in RN and
π is the fundamental alternating polynomial

π(ξ) =
∏
i<j

(ξi − ξj).

Indeed, this alternating sum representation for JA1 follows from the explicit
formula for the spherical functions of G/K in [Hel2], but it is also a special
case of a general result for the Dunkl Bessel functions for arbitrary root systems
with multiplicity k = 1. For a proof see Prop. 1.4. of [D6].
Let us finally take a look at the convolution of the orbit hypergroup HK

N
∼= C .

It is given by

δξ ∗ δη =
∫
SU(N)

δσ(ξ+uηu−1)du (ξ, η ∈ C)
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where ξ and η are identified with the corresponding diagonal matrices, and σ(x)
denotes the eigenvalues of x ordered by size. The convolution product describes
the distribution of the spectra of the possible sums x+ y of Hermitian matrices
x, y with given spectra σ(x) = ξ, σ(y) = η . The precise description of the
support of the measure δξ ∗δη had been a long-standing problem, formulated as
Horn’s conjecture, until it was completely solved only ten years ago by Klyachko,
Knutson and Tao ([Kl], [KT]).

The following is a natural conjecture, which is however open so far in general:

3.23 Remark. Let R be a reduced root system in RN and k ≥ 0 a non-
negative multiplicity function. Choose a closed Weyl chamber C of R . Then
it is conjectured that the Bessel function Jk associated with R and k satisfies
a product formula of the form

Jk(x, λ)Jk(y, λ) =
∫
C

Jk(ξ, λ)dµkx,y(ξ) ∀λ ∈ CN

with probability measures µkx,y ∈ M1(C), and that this product formula leads
to a commutative hypergroup structure on C with the functions x 7→ Jk(x, iλ)
as characters.

In Section 3.5 we shall present three continuous series of Dunkl structures
where this conjecture is true, and where the convolution can be written in an
explicite form. These examples are of type B and are obtained by interpolation
of three discrete series of orbit hypergroup convolutions related to the Cartan
motion groups of Grassmann manifolds over R,C and H . We shall derive them
from hypergroup algebras on cones of positive semidefinite matrices which have
matrix Bessel fucntions as characters. These are the topic of the next following
section.

3.4 Bessel hypergroups on matrix cones

In this section, we construct three series of Bessel hypergroups on cones of
positive semidefinite matrices over one of the skew-fields F = R,C or H . Each
of them is obtained from a discrete series of orbit hypergroup convolutions
derived from radial analysis on matrix spaces with varying dimension. The
main references for this section are [R8] and [FT]. For an introduction into the
analysis on symmeric cones, we refer the reader to the monograph [FK]. We
start with a geometric situation which generalizes the action of the orthogonal
group in Rd to a higher rank setting:

For natural numbers p ≥ q , consider the matrix space Mp,q = Mp,q(F)
of p× q matrices over F . We regard Mp,q as a real vector space of dimension
d = dimRF , equipped with the inner product 〈x, y〉 = Re tr(x∗y) (where x∗ = xt

denotes the conjugate transpose) and the norm ‖x‖ =
√
tr(x∗x). Let further

Hq = Hq(F) = {x ∈ Mq,q(F) : x = x∗} denote the space of Hermitian q × q -
matrices and

Πq = Πq(F) := {x2 : x ∈ Hq} ⊂ Hq

the closed cone of positive semidefinite matrices over F . Its interior Ωq , con-
sisting of the strictly positve matrices, is a symmetric cone in the sense of [FK].
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The unitary group Up = U(p,F) over F acts on Mp,q by multiplication from
the left as a closed subgroup of the orthogonal group of Mp,q ,

Up ×Mp,q →Mp,q, (u, x) 7→ ux.

It is easy to see that the orbit space M
Up
p,q for this action can be topologically

identified with the cone Πq via Up.x 7→
√
x∗x =: |x|. Here for r ∈ Πq ,

√
r

denotes the unique positive semidefinite square root of r .
The additive group structure on Mp,q induces an orbit hypergroup con-

volution on Πq . To obtain the convolution, Haar measure and dual space of
this hypergroup, we apply the results of Section 3.2. The calculation of the
convolution is similar as for (Rd)O(d) in Example 3.9. For r, s ∈ Πq we obtain

(δr ∗ δs)(f) =
∫
Up

f
(
|σ0r + uσ0s|

)
du

with the block matrix σ0 :=
(
Iq
0

)
∈ Mp,q. The orbit of σ0 is the Stiefel

manifold
Σp,q = {x ∈Mp,q : x∗x = Iq}

and one obtains

(δr ∗ δs)(f) =
∫

Σp,q

f
(√

r2 + s2 + rσ̃s+ (rσ̃s)∗
)
dσ (3.7)

where dσ is the normalized surface measure on Σp,q and σ̃ = σ∗0σ is the q× q -
matrix whose rows are given by the first q rows of σ . The neutral element of
the orbit hypergroup (Πq, ∗) is 0, and the involution is the identity mapping
(because x ∈ Mp,q and −x are in the same Up -orbit). A Haar measure is
provided by the image measure of the Lebesgue measure on Mp,q under the
mapping x 7→ |x| . Calculation in polar coordinates gives

ω(f) = c

∫
Πq

f(
√
r)∆(r)γdr

where c > 0 is a constant, ∆(r) is the determinant of r (in case F = R , the
Dieudonne determinant), and γ = d

2 (p− q+1)−1. The dual space turns out to
consist of Bessel functions associated with the symmetric cone Ωq . These are
hypergeometric funtions of matrix argument defined in terms of the spherical
functions of Ωq , see [FT]. The spherical polynomials of Ωq are parameterized
by partitions λ = (λ1 ≥ . . . ≥ λq) ∈ Zq+ , for which we write λ ≥ 0 for short.
They are given, up to normalization, by

Zλ(x) = cλ

∫
Uq

∆λ(uxu−1)du, x ∈ Hq

with the power functions

∆λ(x) = ∆1(x)λ1−λ2∆2(x)λ2−λ3 · . . . ·∆q(x)λq .

The ∆i(x) are the principal minors of ∆(x), and the constant cλ > 0 can be
chosen such that

(trx)k =
∑

λ≥0,|λ|=k

Zλ(x).
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The polynomial Zλ is homogeneous of degree |λ| and invariant under conjuga-
tion by Uq . It therefore depends only on the eigenvalues of its argument.

3.24 Definition. The Bessel functions Jµ associated with Ωq are defined on
Hq by

Jµ(x) = 0F1(µ;−x) :=
∑
λ≥0

(−1)|λ|

(µ)λ|λ|!
Zλ(x)

where µ ∈ C is an index with Reµ > d
2 (q−1) and (µ)λ denotes the generalized

Pochhammer symbol

(µ)λ :=
q∏
j=1

(
µ− d

2
(j − 1)

)
λj
.

If q = 1 then Jµ does not depend on d and is given by

Jµ
(x2

4
)

= jµ−1(x) (x ∈ R).

3.25 Lemma. The dual space of the orbit hypergroup M
Up
p,q

∼= Πq consists of
the Bessel functions

ϕs(r) = Jµ
(1
4
sr2s

)
, s ∈ Πq,

with index µ = pd/2.

Proof. According to Theorem 3.15, the dual space is given by the functions
ϕs, s ∈ Πq with

ϕs(r) =
∫
Up

e−i(uσ0r|σ0s)du =
∫

Σp,q

e−i(σ|σ0sr)dσ. (3.8)

By Propos. XVI.2.2 of [FK] they coincide with the stated Bessel functions.

The hypergroup Fourier transform on M
Up
p,q is a Hankel transform involving

the Bessel function Jµ with µ = pd/2. It coincides with the (group) Fourier
transform of Up -radial functions on Mp,q . An L2 -theory for the Hankel trans-
form with a continuous range of real indices µ was established in [FT] in the
general setting of symmetric cones. (In [Her], this had been done for F = R .)
In our setting, the result is as follows:

3.26 Theorem. Let µ > d
2 (q − 1) and define the measure ωµ on Πq by

ωµ(f) =
2−µq

ΓΩq (µ)

∫
Ωq

f(
√
r)∆(r)γdr

where γ = µ− d
2 (q−1)−1 and ΓΩq is the gamma function of the cone Ωq (see

[FK]). Put

ϕµs (r) := Jµ
(1
4
sr2s) = ϕµr (s).

Then the Hankel transform

f 7→ f̂µ, f̂µ(s) =
∫

Πq

f(r)ϕµs (r)dωµ(r)

is an isometric and self-dual isomorphism of L2(Πq, ωµ) .
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We shall now complement this result by a hypergroup structure within a
slightly smaller range of indices. The decisive obeservation is that the integrand
in convolution formula (3.7) does not depend on the complete matrix σ but
depends only the truncation σ̃ . This matrix is contained in the closure of the
matrix ball

Dq := {v ∈Mq,q : v∗v < I}

(r < s means that s − r is positive definite). By a corresponding splitting of
coordinates on the Stiefel manifold, one obtains the convolution formula in a
different form with Dq as domain of integration. The dimension parameter p
then occurs as an exponent in the density of the integral. Let

% := d
(
q − 1

2
)

+ 1 and κµ :=
∫
Dq

∆(I − v∗v)µ−%dv

for µ ∈ R with µ > %−1. The decisive splitting lemma, which requires p ≥ 2q ,
is as follows:

3.27 Lemma. Let p ≥ 2q and put µ := pd/2. Then for f ∈ C(Σp,q) of the
form

f(σ) = F (σ̃), σ̃ = σ∗0σ

one has ∫
Σp,q

fdσ =
1
κµ

∫
Dq

F (v) ∆(I − v∗v)µ−%dv.

with an (explicitly known) normalization constant κµ > 0.

Rewriting the convolution formula of the orbit hypergroups on Πq in this way
allows to extend the product formula of the Bessel functions and the associated
hypergroup structure to a continuous range of indices µ . The basic technique for
this is analytic continuation with respect to µ from the discrete values µ = pd/2
into the full half-plane {µ ∈ C : Reµ > ρ − 1} by use of Carlson’s Phragmen-
Lindelöf-type Theorem (see [Ti], p.186). This gives three continuous series of
commutative hypergroup structures on Πq (corresponding to d = 1, 2, 4) which
interpolate those occuring as orbit hypergroups for the indices µ = pd/2. The
following theorem contains the main results of [R8]:

3.28 Theorem. Let µ ∈ R with µ > %− 1.

(a) The assignment

(δr ∗µ δs)(f) :=
1
κµ

∫
Dq

f
(√

r2 + s2 + rvs+ sv∗r
)
∆(I − v∗v)µ−% dv

defines a commutative hypergroup Xµ = (Πq , ∗µ) with neutral element 0
and the identity mapping as involution. For µ = pd/2 with p ≥ 2q , Xµ

is the orbit hypergroup M
Up
p,q . The support of δr ∗µ δs satisfies

supp (δr ∗µ δs) ⊆ {t ∈ Πq : ‖t‖ ≤ ‖r‖+ ‖s‖}.

(b) A Haar measure of Xµ is given by the measure ωµ from Theorem 3.26.

(c) The dual space is given by X̂µ = {ϕµs (r) = Jµ
(1
4
sr2s

)
: s ∈ Πq}.

54



(d) When identifying Xµ with its dual via s 7→ ϕµs , the Plancherel measure
of Xµ coincides with ωµ .

Part (c) is based on the analytic extension of the product formula for the
Bessel functions, but one also has to make sure that there are no further char-
acters apart from the Bessel functions ϕµs , s ∈ Πq . For this, the Plancherel
Theorem 3.26 as well as subexponential growth of the hypergroup are needed.
For details, see [R8].

For µ = %− 1 = d
2 (2q− 1), which corresponds to the orbit hypergroup M

Up
p,q

with p = 2q−1, the integral defining the convolution ∗µ becomes singular. The
degenerate version of the convolution formula can be calculated after a suitable
change of coordinates; this is carried out in [R8].

3.5 Hypergroups for Dunkl-type Bessel functions of type
B

In the last section we saw that the cone Πq carries a continuously parametrized
family of commutative hypergroup structures ∗µ with µ > % − 1, as well as
additional orbit hypergroup structures for µ = pd/2, p ≥ q an integer. Let

Mq :=
{pd

2
, p = q, q + 1, . . .

}
∪ (ρ− 1,∞) .

In this section we study structures depending only on the matrix spectra. Un-
der the mapping r 7→ spec(r), the hypergroup convolutions ∗µ on the matrix
cone Πq induce a (in part) continuous series of hypergroup convolutions on a
Weyl chamber of type Bq . The characters turn out to be Dunkl-type Bessel
functions. These hypergroups extend the harmonic analysis for Cartan motion
groups associated with the Grassmann manifolds U(p, q)/Up × Uq .

We start with the geometric setting. Let G = U(p, q) denote the indefinite
unitary group of index (p, q) over F with p ≥ q . Its maximal compact subgroup
K is naturally isomorphic with Up × Uq . We may identify Mp,q with the
tangent space of the Riemannian symmetric space G/K in the coset eK . This
identification induces an action of Up × Uq on Mp,q according to(

(u, v), x
)
7→ uxv−1, u ∈ Up, v ∈ Uq. (3.9)

The associated orbit space is canonically parametrized by the possible singular
spectra of matrices from Mp,q and is homeomorphic to

Ξq = {ξ ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0}

which is a closed Weyl chamber of type Bq . The action 3.9 induces an action of
Uq on the cone Πq = {x∗x : x ∈ Mp,q} by conjugation (v, r) 7→ vrv−1 , which
again leads to the chamber Ξq orbit space. From the explicit formula for the
hypergroup convolution ∗µ on Πq one readily sees that the mapping r 7→ vrv−1

is a hypergroup automorphism in the sense of Remark 3.17. Therefore each
convolution ∗µ with µ ∈M induces a commutative hypergroup convolution ◦µ
on Ξq by taking image measures under the canonical mapping

σ : Πq → Ξq, r 7→ σ(r),
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where σ(r) denotes the set of eigenvalues of r ordered by size. In the next
theorem, we summarize the results obtained in [R8]; for convenience of notation,
ξ ∈ Ξq will be identified with the associated diagonal matrix from Πq .

3.29 Theorem. (1) For fixed d ∈ {1, 2, 4} and each µ ∈ Mq the chamber
Ξq carries a commutative hypergroup structure Yµ = (Ξq, ◦µ) with convo-
lution

(δξ ◦µ δη)(f) =
∫
Uq

(f ◦ σ)(ξ ∗µ vηv−1)dv.

The neutral element is 0 and the involution is given by the identity map-
ping.

(2) A Haar measure on Yµ is given by

ω̃µ = dµhµ(ξ)dξ with hµ(ξ) =
q∏
i=1

ξ2γ+1
i

∏
i<j

(ξ2i − ξ2j )
d

It is the image measure of ωµ under the mapping σ : r 7→ σ(r).

(3) The dual space Ŷµ is parametrized by the chamber Ξq and consists of the
functions

ψµξ (η) =
∫
Uq

ϕµξ (vηv
−1)dv = JBk (ξ, iη), ξ ∈ Ξq

where JBk is the Dunkl-type Bessel function associated with R = Bq and
the multiplicity k is given by k = (k1, k2) =

(
µ − d

2 (q − 1) − 1
2 ,

d
2

)
. Here

k1 and k2 are the parameters on the roots ±ei and ±ei±ej , respectively.
(4) Under the identifictation of Yµ with its dual via µ 7→ ψµξ , the Plancherel

measure of Yµ coincides with the Haar measure ω̃µ .

In particular, the Bessel function JBk in this case satisfies the positive prod-
uct formula

JBk (ξ, z)JBk (η, z) =
∫

Ξq

JBk (ζ, z) d(δξ ◦µ δη)(ζ) ∀ ξ, η ∈ Ξq, z ∈ Cq.

Let us briefly comment on the proof of the second identity in part (3), that
is the identification of the characters of Yµ with Dunkl-type Bessel functions of
type Bq . Firstly, one needs the fact that the spherical polynomials Zλ in the
series representation of Jµ satisfy the product formula

Zλ(r)Zλ(s)
Zλ(I)

=
∫
Uq

Zλ(
√
rusu−1

√
r)du ∀ r, s ∈ Πq ,

see [FK], Cor. XI.3.2. This leads to an expresssion of ψµξ as a hypergometric
series of tpye 0F1 of two arguments. Secondly, the obtained series can be
identified, by a result of [BF1], as a Dunkl-type Bessel function. For details see
[R8].

In the geometric cases µ = pd/2, the convolution of the hypergroup Yµ
coincides with the convolution of the Gelfand pair (Up×Uq) nMp,q/(Up×Uq),
and the support of the probability measure δξ ◦µ δη on Ξq describes the set of
possible singular spectra of sums x+ y with matrices x, y ∈Mp,q having given
singular spectra ξ and η .
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4 Markov processes

The main object of this chapter are Markov processes on RN and closed Weyl
chambers C̄ ⊂ RN whose transition probabilities are related with Dunkl the-
ory. The most prominent examples are the so-called Dunkl processes on RN
which are generated by the Dunkl-Laplacians ∆k as well as their symmetrized
counterparts on C̄ which are diffusions and called Dunkl-Bessel processes.

The concept of general Markov processes on RN related with Dunkl theory
in [RV1] is motivated by random walks on groups which can be studied via
group representations, characters and the Fourier transform, as well as random
walks on hypergroups. These topics are connected in several respects.

First, under suitable symmetry assumptions and up to projections, the same
processes appear as random walks on groups, as random walks on hypergroups,
and as processes on Weyl chambers C̄ on different levels after taking projections.
These relations on the level are caused in fact by the algebraic relations between
the underlying state spaces explained in the preceding Chapter.

Second, the very concept of Markov processes on RN related with Dunkl
theory as well as the concept of random walks on hypergroups may be regarded
within a common frame, namely Markov processes on a state space which ad-
mits an integral transform. In Dunkl theory, this transform will be the Dunkl
transform, and in case of commutative hypergroups, the hypergroup Fourier
transform. This concept of an integral transform allows somehow a common
diagonalization of all associated transition operators. We develop this concept
in Section 4.2 and show in the further sections how this concept leads to inter-
esting martingales and martingale characterizations. The main emphasis will
be on Markov processes on RN related with Dunkl theory and Dunkl processes.

4.1 Random walks on groups and hypergroups

In this section we briefly recall the concepts of random walks on groups and
hypergroups.

4.1 Definition. Let G be a locally compact group with identity e .
Let (Yn)n≥1 be a sequence of G -valued independent random variables with

laws µn ∈ M1(G). Then we form the right random walk (Xn := Y1 . . . Yn)n≥1

(with the convention X0 = e). This process is a Markov process on G starting
in e with transition probabilities

P (Xn+1 ∈ A|Xn = x) = (δx ∗ µn+1)(A) (n ≥ 0, x ∈ G, A ∈ B(G)).

In continuous time, we proceed as follows: A G -valued process (Xt)t≥0 is
called a random walk in continuous time (or a process with right-independent
increments), if for all n ∈ N , 0 = t0 < t1 < . . . < tn , the random variables
Xt0 , X

−1
t0 Xt1 , . . . , X

−1
tn−1

Xtn are independent. Denoting the laws of X−1
s Xt by

µs,t for 0 ≤ s ≤ t , we obtain that (Xt)t≥0 is a Markov process on G with
initial distribution PX0 and transition probabilities

P (Xt ∈ A|Xs = x) = (δx ∗ µs,t)(A) (0 ≤ s ≤ t, x ∈ G, A ∈ B(G)).

This characterization of random walks on groups in discrete or continuous
time as Markov process with translation invariant transition kernels motivates:
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4.2 Definition. Let (X, ∗) be a (always second countable) hypergroup, and let
I = Z+ or I = [0,∞). A X -valued Markov process (Xt)t∈I is called a random
walk on X , if for all s ≤ t ∈ I ,x ∈ X , and A ∈ B(X),

P (Xt ∈ A|Xs = x) = (δx ∗ µs,t)(A)

for a suitable family (µs,t)s≤t∈I of probability measures on X .

It can be easily checked that the µs,t form a so-called hemigroup, i.e., for
s ≤ t ≤ u ∈ I , we have µs,t ∗ µt,u = µs,u . Moreover, for t ∈ I , the law of Xt is
given by PX0 ∗ µ0,t as in the group case. Moreover, standard arguments on the
construction of Markov processes ensure that for a given initial law and a given
hemigroup (µs,t)s≤t∈I ⊂M1(X) there always exists an associated random walk
on a suitable probability space.

We next turn to relations between random walks on different groups or
hypergroups.

4.3 Example. Let (G,K) be a Gelfand pair and (Xt)t∈I a random walk on G
starting in e such that all transition probabilities µs,t are K -biinvariant, i.e.,
contained in M1(G||K). We then say that (Xt)t∈I is a K -biinvariant random
walk on G . It is well-known that K -biinvariant random walks on G may be
analyzed via spherical Fourier transform. In particular, central limit theorems
are often derived in this way similar to the classical approach on the group RN .

We may regard this approach also as follows: Consider the double coset
hypergroup (X = G//K, ∗) and the canonical projection p : G→ G//K . It can
be easily checked (see below) that the process (p(Xt))t∈I then is a random walk
on the commutative hypergroup (X = G//K, ∗). In this way, an investigation
of this random walk on (X = G//K, ∗) via the hypergroup Fourier transform
corresponds precisely to the study of K -biinvariant random walks on G via the
spherical Fourier transform.

4.4 Lemma. In the preceding setting, (p(Xt))t∈I is a random walk on the com-
mutative hypergroup (X = G//K, ∗) associated with the hemigroup (p(µs,t))s≤t∈I .

Proof. Let (F)t∈I be the canonical filtration of the Markov process (Xt)t∈I on
G defined on some probability space (Ω,A, P ), and let (F̃)t∈I be the canonical
filtration of (p(Xt))t∈I . Fix s ≤ t ∈ I and A ∈ B(X). We first note that the
function x 7−→ (δx ∗ µs,t)(p−1(A)) on G is K -biinvariant. This implies

(δx ∗ µs,t)(p−1(A)) = (δp(x) ∗ p(µs,t))(A) for all x ∈ G.

Therefore, by the Markov property of (Xt)t∈I ,

P (p(Xt) ∈ A| Fs) = P (Xt ∈ p−1(A)|Xs) = (δXs ∗ µs,t)(p−1(A))
= (δp(Xs) ∗ p(µs,t))(A)

a.s.. This implies that

P (p(Xt) ∈ A| F̃s) = P (p(Xt) ∈ A| p(Xs)) = (δp(Xs) ∗ p(µs,t))(A)

a.s. as claimed.

There exists the following variant of the preceding example:
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4.5 Example. Let V be a locally compact abelian group on which a compact
group K of automorphisms acts continuously. Let (Xt)t∈I be a random walk
on V starting in the identity e such that its transition probabilities are K -
invariant, i.e., for all 0 ≤ s ≤ t and k ∈ K , k(µs,t) = µs,t . We then say that
(Xt)t∈I is K -invariant.

Consider the commutative orbit hypergroup (V K , ∗) and the associated
canonical projection p : V → V K . In the same way as in the preceding lemma
it may be checked that then (p(Xt))t∈I is a random walk on (V K , ∗) starting
in the identity with transition probabilities (p(µs,t))s≤t∈I ⊂M1(V K).

4.6 Examples. (1) Let V = RN and K = O(N). Then V k ' [0,∞), and
the radial parts of O(N)-invariant random walks on RN are random walks
on the Bessel-Kingman hypergroup of index α = N/2− 1. In particular,
this holds for Bessel processes as radial parts of Brownian motions.

(2) Let V = Mp,q(F) with p, q ∈ N and F = R,C,H . Let K := Up(F) act on
V from the left. Then, by Section 3.4 ), V K ' Πq , where the canonical
projection p : V → V K is given by p(x) = (x∗x)1/2 . Therefore, if (Xt)t∈I
is an K -invariant random walk on Mp,q(F), then ((X∗

tXt)1/2)t∈I is a
random walk on the matrix Bessel hypergroup (Mp,q(F), ∗) with index
µ = pd/2. In particular, Wishart processes with these shape parame-
ters may be regarded as random walks on these hypergroups. The reader
should be careful with a different norming of these processes in the liter-
ature; see [B] and [V2].

(3) Let V = Hn(F) the space of all Hermitian matrices on which K = Un(F)
acts by conjugation. Then V K may be identified with the Weyl cham-
ber C̄n of type An−1 by taking the ordered spectrum. If (Xt)t∈I is an
Un(F)-conjugation invariant random walk on Hn(F), then its spectral part
forms a random walk on the associated orbit hypergroup (C̄n, ∗) which is
associated with Dunkl theory of type An−1 with multiplicity k = 1.

Similar interpretations exist for the root systems Bn, Cn, Dn .

The concept of Example 4.5 may be easily transfered to the case where V is
a commutative hypergroup: Let (X, ∗) be a commutative hypergroup on which
a compact group of hypergroup automorphisms acts continuously. Let (Xt)t∈I
be a random walk on (X, ∗) starting in the identity e such that its transition
probabilities are K -invariant, i.e., for all 0 ≤ s ≤ t and k ∈ K , k(µs,t) = µs,t .
We then say that (Xt)t∈I is K -invariant. Consider the commutative orbit
hypergroup (XK , ∗) and the associated canonical projection p : X → XK . As
above, (p(Xt))t∈I then is a random walk on (V K , ∗) starting in the identity
with transition probabilities (p(µs,t))s≤t∈I ⊂M1(V K).

4.7 Example. Consider the matrix Bessel hypergroup (Πq(F), ∗) of some ad-
missable index µ as in Section 3.4. As explained there, the group Uq(F) acts
on Πq(F) by conjugation as a group of hypergroup automorphisms, and the
associated orbit space can be identified with the Weyl chamber C̄q of type Bq .
Therefore, the spectrum of Uq(F)-conjugation invariant random walks on the
Bessel hypergroup (Πq(F), ∗) are random walks on the associated orbit hyper-
group structures on C̄q which belong, by Section 3.4, to Dunkl theory with
multiplicities k1 = µ− d(q − 1)/2− 1/2 and k2 = d/2 with d = dimRF .
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In summary, projections of sufficiently symmetric classical random walks on
the Euclidean space Mp,q(F) appear as random walks on different levels: As
random walks on the matrix Bessel hypergroup (Πq(F), ∗) of index µ = pd/2,
as random walks on the commutative hypergroup on the Weyl chamber C̄q of
type Bq which is associated with Dunkl theory with the multiplicities above,
and finally as random walks on the one-dimensional Bessel-Kingman hypergroup
[0,∞) of index α = dpq/2− 1.

4.2 Markov processes related with integral transforms

In this section we introduce a concept which allows to study many features of
random walks on commutative hypergroups as well as of Markov processes on
RN , which are related with the Dunkl transform, within of a common frame.
The concept is that of processes related with an abstract integral transform
on the underlying state space. This transform will be either the Dunkl trans-
form or the Fourier transform on a commutative hypergroup. Further integral
transforms related with suitable families of special functions are also possible.

The following definition is suitable for our purposes:

4.8 Definition. Let X be a second countable, locally compact space, and
(ϕλ)λ∈ bX a family of functions in Cb(X) labeled by some further locally compact
space X̂ with |ϕλ(x)| ≤ 1 for x ∈ X,λ ∈ X̂ . The triple T = (X, X̂, (ϕλ)λ∈ bX)
will be called an abstract integral transform, if the following holds:

(1) The mapping λ 7→ ϕλ is continuous w.r.t. compact-uniform topology on
Cb(X).

(2) There exists e ∈ X with ϕλ(e) = 1 for all λ ∈ X̂ , and ê ∈ X̂ with
ϕbe(x) = 1 for all x ∈ X .

(3) Riemann-Lebesgue Lemma: There exists π ∈ M+(X̂) such that for all
f ∈ L1(X̂, π), the function f̌(x) :=

∫ bX f(λ)ϕλ(x) dπ(λ) satisfies f̌ ∈
C0(X), and {f̌ : f ∈ L1(X̂, π)} is ‖.‖∞ -dense in C0(X).

4.9 Examples. (1) Let X = X̂ = RN , e = ê = 0, dπ(x) = wk(x)dx , and
ϕλ(x) := Ek(−ix, λ) the Dunkl kernel for some multiplicity k ≥ 0. Then
all axioms above are satisfied by Section 2.5.

(2) Let X be a (from now on always second countable) commutative hyper-
group with neutral element e , dual space X̂ , and Plancherel measure π .
Taking ϕλ(x) := λ(x) for λ ∈ X̂ , x ∈ X and ê ≡ 1, we obtain all axioms
above from Section 3.2.

(3) By interchanging the roles of the commutative hypergroup X and its
dual X̂ and taking the Haar measure instead of π , one also obtains also
all axioms above from Section 3.2.

We collect a few obvious properties of abstract integral transforms:

4.10 Proposition. (1) The integral transform Mb(X) → Cb(X̂) , µ 7→ µ̂
with µ̂(λ) =

∫
X
ϕλ(x) dµ(x) is injective.

(2) For µ ∈Mb(X) and f ∈ L1(X̂, π) ,
∫
X
f̌ dµ =

∫ bX fµ̂ dπ .
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(3) The ϕλ separate points of X , and e is unique.

Proof. (2) is clear and leads together with 4.8(1) and 4.8(3) to (1). Part (3) is
then clear.

Up to a further technical restriction, the axioms are also strong enough in
order to yield Lévy’s continuity theorem in a strong version:

4.11 Theorem. Let (µn)n∈N ⊂M+
b (X) .

(1) If (µn)n∈N converges weakly to µ ∈ M+
b (X) , then (µ̂n)n∈N converges to

µ̂ pointwise.

(2) If (µ̂n)n∈N tends pointwise to a C-valued function ϕ on X̂ continuous
at ê and if ê ∈ supp π holds, then there is a unique µ ∈ M+

b (X) with
µ̂ = ϕ , and (µn)n∈N tends weakly to µ .

Notice that the additional condition in (2) holds in the Dunkl setting and
precisely for the commutative hypergroups where the identity character is con-
tained in supp π . This is the case for all commutative hypergroups with subex-
ponential growth and in particular for all double coset hypergroups of Euclidean
type in Chapter 3.2 as well as for all Bessel hypergroups on matrix cones.

Proof. Part (1) is obvious. For the proof of (2) we use the well-known approach
of Siebert which works for commutative groups and hypergroups; see e.g. Section
4.2 of [BH]: By the assumptions, limn ‖µn‖ = limn µ̂n(ê) = ϕ(ê). Therefore, by
a compactness argument, there is a σ(Mb(X), C0(X))-convergent subsequence
(µnk

)k with some limit µ ∈ M+
b (X). Therefore, by Proposition 4.10(2), we

obtain for all g ∈ L1(X̂, π) that limk

∫ bX gµ̂nk
dπ =

∫ bX gµ̂ dπ . Moreover, as
‖µ̂n‖∞ remains bounded, this limit is also equal to

∫ bX gϕ dπ . As ϕ and µ̂
are continuous at ê ∈ supp π , we conclude that ϕ(ê) = µ̂(ê). This shows that
limk ‖µnk

‖ = ‖µ‖ , i.e., (µnk
)k tends weakly to µ . Therefore, µ̂ = ϕ , i.e., µ is

determined uniquely and independent of the subsequence. As the closed unit
ball in M+

b (X) is compact and metrizable w.r.t. σ(M+
b (X), C0(X)), we readily

obtain that (µn)n converges to µ .

We notice that for commutative hypergroups X the following weaker con-
tinuity result holds (see Section 4.2 of [BH]): If for measures µn, µ ∈ M+

b (X),
µ̂n tends pointwise to µ̂ on X̂ , then µn tends weakly to µ .

In any case, all versions of Lévy’s continuity theorem are strong enough for
application in probability, e.g., in order to derive CLTs. We do not go into
details and refer to [BH] for applications to random walks on hypergroups.

We next turn to Markov kernels associated with abstract integral transforms.
For this we fix an abstract integral transform T = (X, X̂, (ϕλ)λ∈ bX).

4.12 Definition. A Markov kernel P : X×B(X) → [0, 1] is called related with
T if

P (x, .)∧(λ) = P (e, .)∧(λ) · ϕλ(x) for all x ∈ X,λ ∈ X̂. (4.1)

4.13 Examples. (1) Let X be a commutative hypergroup with dual X̂ . Let
µ ∈M1(X). It can be easily checked that Pµ(x,A) := µ∗δx(A) establishes
a “translationinvariant” Markov kernel on X . This kernel is obviously
related with the hypergroup Fourier transform.
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(2) For X = X̂ = RN and the Dunkl transform, condition (4.1) can be
translated easily. We then obtain the notion of a kernel P related with
the Dunkl transform. For multiplicity k = 0, i.e., the group case, this
notion agrees by the injectivity of the classical Fourier transform with the
usual notion of translation invariant kernels on RN . We notice that it is
an open problem, for which probability measures µ ∈ M1(RN ) precisely
there exists a Markov kernel P on RN with µ = P (0, .). On the other
hand there exist many examples like all pseudo-radial probability measures
on RN in the sense of Section 2.8, which in particular includes the Dunkl
Gaussians.

We next collect basic properties of such Markov kernels.

4.14 Lemma. Let P and Q be Markov kernels related with the abstract integral
transform as above.

(1) Pf(x) :=
∫
X
f(y) P (x, dy) defines a bounded linear operator on C0(X) .

(2) The composition P ◦Q with P ◦Q(x,A) =
∫
X
Q(z,A)P (x, dz) is a Markov

kernel on X related with T , and

((P ◦Q)(x, .))∧(λ) = Q(e, .)∧(λ) · P (e, .)∧(λ) · ϕλ(x) for x ∈ X,λ ∈ X̂.
(4.2)

In particular, P ◦Q = Q ◦ P .

Proof. For (1), it suffices to check Pf ∈ C0(X) for f ∈ C0(X). As {ǧ : g ∈
L1(X̂, π)} is ‖.‖∞ -dense in C0(X), it suffices by an ε -estimate, to do this for
f = ǧ , g ∈ L1(X̂, π). In this case we obtain from Proposition 4.10(2)

Pf(x) =
∫
X

ǧ(y) P (x, dy) =
∫

bX g(λ) · P (x, .)∧(λ) dπ(λ)

=
∫

bX g(y) · ϕλ(x)P (e, .)∧(λ) dπ(λ) = (g · P (e, .)∧)∨(x)

which is a function in C0(X) by our axioms. This implies (1). (2) is easy to
check; compare e.g. with Lemma 4.2 of [RV1].

We now turn to families of Markov kernels on X and associated Markov
processes related to an abstract integral transform T . For this fix a time area
I = [0,∞) or I = Z+ , and put S := {(s, t) : s, t ∈ I, s ≤ t} .

4.15 Definition. A family (Ps,t)s≤t∈I of Markov kernels on X related to T
is called a (continuous) hemigroup of Markov kernels related with T , if

(1) for all s ≤ t ≤ u ∈ I , Ps,t ◦ Pt,u = Ps,u ,

(2) Pt,t is the trivial kernel for t ∈ I , and

(3) the mapping S →M1(X), (s, t) 7→ Ps,t(0, .), is weakly continuous.

In particular, if in addition Ps,t = Ps+u,t+u for all (s, t) ∈ S and u ∈ I , then
we may put Pt := P0,t for t ∈ I and obtain a continuous semigroup (Pt)t∈I of
Markov kernels related with T .
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Assume that a hemigroup (Ps,t)s≤t∈I of Markov kernels on X related to T
as well as a starting probability µ ∈M1(X) are given. Then we can construct
in a canonical way an associated Markov process on X . Such processes will
be called Markov processes on X related with the integral transform T . In
the case of a semigroup we obtain time-homgoeneous Markov processes on X
related with T ; they are analogs of Lévy processes.

4.16 Examples. (1) Let (µt)t≥0 ⊂M1(X) be a convolution semigroup on a
commutative hypergroup X , i.e., µs∗µt = µs+t for s, t ≥ 0 with µ0 = δe ,
and [0,∞) → M1(X), t 7→ µt is weakly continuous. Then the kernels
Pt(x,A) := µt ∗ δx(A) (x ∈ X , A ∈ B(X)) form a semigroup of Markov
kernels related to the hypergroup Fourier transform.

(2) For any root system and any multiplicity k ≥ 0, the Dunkl heat kernels
Pt(x, dy) = Γk(t, x, y)wk(y)dy on RN of Chapter 2.6 with

Γk(t, x, y) :=
1

(2t)γ+N/2ck
e−(|x|2+|y|2)/4tEk

( x√
2t
,
y√
2t

)
, x, y ∈ RN ,

and t > 0 form (together with the trivial kernel P0 ) a semigroup of
Markov kernels related to the Dunkl transform.

4.17 Remark. If X̂ is connected (which is for instance the case in Dunkl
theory), then condition (2) of Definition 4.15 holds automatically. In fact, Pt,t =
Pt,t ◦Pt,t and Lemma 4.14(2) ensure that Pt,t(e, .)∧ is a {0, 1} -valued function
with Pt,t(e, .)∧(ê) = 1, and hence Pt,t(e, .)∧ ≡ 1 which implies together with
the injectivity of the integral transform the assertion.

4.18 Lemma. Let (Ps,t)s≤t∈[0,∞) be a hemigroup of Markov kernels on X

related with T . Then for all (s, t) ∈ S and λ ∈ X̂ , Ps,t(e, .)∧(λ) 6= 0 .

Proof. For λ ∈ X̂ , the mapping (s, t) 7→ Ps,t(e, .)∧(λ) 6= 0 is continuous with
Pt,t(e, .)∧(λ) = 1 and Ps,t(e, .)∧(λ) · Pt,u(e, .)∧(λ) = Ps,u(e, .)∧(λ). Therefore,
Ps,t(e, .)∧(λ) = 0 immediately would lead to a contradiction.

We now restrict our attention to the time-homogeneous case.

4.19 Remark. The arguments of the proof of 4.18 imply for a semigroup
(Pt)t≥0 of Markov kernels on X that there exists a function ψ : X̂ → C with
Pt(e, .)∧(λ) = e−tψ(λ) for t ≥ 0, λ ∈ X̂ . The function ψ satisfies Reψ ≥ 0 and

ψ(λ) = lim
t↓0

1
t
(1− Pt(0, .)∧(λ)) (λ ∈ X̂). (4.3)

Moreover, ψ is continuous because of(∫ ∞

0

e−t Pt(e, .) dt
)∧

(λ) =
∫ ∞

0

e−t e−tψ(λ) dt = (1 + ψ(λ))−1.

ψ is called the negative definite function associated with (Pt)t≥0 .

4.20 Proposition. Each semigroup (Pt)t≥0 of kernels on X related to T is a
Feller semigroup, i.e., for f ∈ C0(X) and t ≥ 0 , Ptf ∈ C0(X) , and

lim
t→0

‖Ptf − f‖∞ = 0 for f ∈ C0(X). (4.4)
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Proof. It suffices to check (4.4). Taking f = ǧ , g ∈ L1(X̂, π), we have

|Ptf(x)− f(x)| =
∣∣∣∫ bX g(λ)

(
Pt(e, 0)∧(λ)− 1

)
ψλ(x) dπ(λ)

∣∣∣
≤

∫
bX |g(λ)| |Pt(e, 0)∧(λ)− 1| dπ(λ)

which tends for t → 0 to 0 independent of x . In other words, (4.4) holds
for f = ǧ , g ∈ L1(X̂, π). As the space of these functions is ‖.‖∞ -dense in
C0(X), and the operators Pt on C0(X) satisfy ‖Pt‖ ≤ 1, (4.4) follows by an
ε -argument for f ∈ C0(X).

Proposition 4.20 together with the theorem of Dynkin-Kinney-Blumenthal
(see, e.g., [Dy]) imply:

4.21 Corollary. Each time-homogeneous Markov process related with an ab-
stract integral transform admits a càdlàg modification, i.e. a modification with
right continuous paths and left limits.

Let (Pt)t≥0 be a semigroup of Markov kernels on X related to some abstract
integral transform T . As this semigroup forms a positive contraction semigroup
on C0(X), we introduce the generator

Lf := lim
t→0

1
t
(Ptf − f)

which is a closed operator with a ‖.‖∞ -dense domain in C0(X) by the Hille-
Yoshida theory. We also define the following extended domains:

D(L) := {f ∈ C(X) :
1
t
(Ptf − f) converges uniformly on X for t→ 0},

and
Db(L) := D(L) ∩ Cb(X), D0(L) := D(L) ∩ C0(X).

D0(L) is the domain of L on C0(X), and Lf ∈ C0(X) for f ∈ D0(L).
Moreover, for t > 0, x ∈ X and λ ∈ X̂ ,

Ptϕλ(x) = Pt(x, .)∧(λ) = Pt(e, .)∧(λ)ϕλ(x) = Ptϕλ(e) · ϕλ(x)

and hence
lim
t→0

1
t
(Ptϕλ(x)− ϕλ(x)) = −ψ(λ)ϕλ(x)

uniformly with the negative definite function ψ of Remark 4.19. In particular,
we have {ϕλ : λ ∈ X̂} ⊂ Db(L) with Lϕλ = −ψ · ϕλ.

We next introduce a notion of Gaussian semigroups analog to locally compact
groups, which also works for commutative hypergroups.

4.22 Definition. Let (Pt)t≥0 be a semigroup of Markov kernels on X related
with some abstract integral transform with the generator L on C0(X).

(1) (Pt)t≥0 is called Gaussian if

lim
t→0

1
t
Pt(e,X \ U) = 0 for all open subsets U ⊂ X with e ∈ U.
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(2) L is called of local type if supp(Lf) ⊂ supp f for all f ∈ Dc(L).

It is well-known from the theory of Feller processes (see e.g. [Dy]) that its
generatorL is of local type if and only if each associated Feller process admits
an a.s. continuous modification. Moreover, the following characterization of
Gaussian processes on commutative hypergroups, which is analog to the group
case, can be found in [ReV].

4.23 Theorem. Let (µt)t≥0 ⊂ M1(X) be a convolution semigroup on a com-
mutative hypergroup X . Then the following are equivalent:

(1) (µt)t≥0 is Gaussian, i.e., the associated semigroup of kernels is Gaussian.

(2) L is of local type.

(3) Each Lévy process on X associated with (µt)t≥0 admits an a.s. continuous
modification.

This equivalence is not longer valid for time-homogeneous Markov processes
related with abstract integral transforms. In fact, for multiplicities k ≥ 0, the
heat kernels of Dunkl type satisfy

Pt(0, dy) =
1

(2t)γ+N/2ck
e−|y|

2/4twk(y) dy,

i.e., like classical Gaussian kernels they are Gaussian in the sense of 4.22(1). On
the other hand, the generator of this heat semigroup is the Dunkl Laplacian,
which is obviously of local type if and only if k ≡ 0 holds. Therefore, taking
Theorem 4.23 into account, we conclude:

4.24 Corollary. For any root system and any multiplicity k ≥ 0 with k 6≡
0 , there exists no commutative hypergroup structure on RN with the Dunkl
transform as hypergroup Fourier transform.

We notice that for N = 1, explicit formulas for the Dunkl convolution are
known ([R1] and [Ros]; see Chapter 2.8), which immediately show that this
convolution is not positivity preserving.

4.3 Martingales associated with integral transforms

Let T = (X, X̂, (ϕλ)λ∈ bX) be an abstract integral transform as introduced in the
preceding section. We here construct martingales related to Markov processes
on X related with T in a canonical way by using the functions ϕλ which play
the role of characters.

For the classical Brownian motion on the group RN , the following martingale
characterization can be found in many textbooks on stochastic analysis as a
preparation to the Lévy characterization of Brownian motion. Extensions of this
characterization to Lévy processes on locally compact groups or commutative
hypergroups can be found e.g. in [ReV], [V1], [HP]. Moreover, a version for
processes on RN related with the Dunkl transform, can be found in [RV1].
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4.25 Theorem. Let I = [0,∞) or I = Z+ . Let (Ps,t)s≤t∈I a hemigroup of
Markov kernels on X related to T . Then an arbitrary stochastic process (Xt)t∈I
on X is a Markov process related with the hemigroup (Ps,t)s≤t∈I if and only if( 1

P0,t(e, .)∧(λ)
· ϕλ(Xt)

)
t≥0

(4.5)

is a martingale for each λ ∈ X̂ w.r.t. the canonical filtration (Ft)t∈I of (Xt)t∈I .

Proof. Notice first that Ps,t(x, .)∧(λ) 6= 0 for all t ≥ s ≥ 0, x ∈ X , λ ∈ X̂
by Lemma 4.18. This ensures that the processes above are well-defined. Let
(Ω,A, P ) be the probability space on which the process (Xt)t∈I is defined.

To check the only-if-part, take s, t ∈ I and λ ∈ X̂ . Then for a.e. ω ∈ Ω,

E(ϕλ(Xs+t)|Fs)(ω) = E(ϕλ(Xs+t)|Xs)(ω) =
∫
X

ϕλ(x) Ps,s+t(Xs(ω), dx)

= ϕλ(Xs(ω)) · Ps,s+t(e, .)∧(λ).

Hence, as P0,s+t(e, .)∧ = P0,s(e, .)∧ · Ps,s+t(e, .)∧ , the process (4.5) is a martin-
gale.

To check the if-part, take again s, t ∈ I and λ ∈ X̂ . Then, by our assump-
tion and the preceding equation,

E(ϕλ(Xs+t)|Fs) = ϕλ(Xs) · Ps,s+t(e, .)∧(λ). a.s..

Now take F ∈ Fs with P (F ) > 0. Define the probability measure PF on
(Ω,A) by PF (A) := P (A∩F )

P (F ) . The distributions µFs , µ
F
s+t ∈ M1(X) of Xs and

Xs+t w.r.t. PF satisfy

(µFs+t)
∧(λ) =

∫
X

ϕλ(y) dµFs+t(y) =
1

P (F )

∫
F

ϕλ(Xs+t) dP

=
1

P (F )

∫
F

E(ϕλ(Xs+t)|Fs) dP

=
1

P (F )

∫
F

Ps,s+t(e, .)∧(λ) · ϕλ(Xs) dP

= Ps,s+t(e, .)∧(λ) · (µFs )∧(λ) = (Ps,s+t ◦ µFs )∧(λ).

As this holds for all λ ∈ X̂ , the injectivity of our integral transform yields that
µFs+t = Ps,s+t ◦ µFs . Hence, for each Borel set B ⊂ X and each F ∈ Fs ,∫

F

1{Xs+t∈B} dP = P ({Xs+t ∈ B} ∩ F ) = P (F ) · µFs+t(B)

= P (F ) · (Ps,s+t ◦ µFs )(B) =
∫
F

Ps,s+t(Xs(ω), B) dP (ω).

As ω 7→ Pt(Xs(ω), B) is σ(Xs)-measurable and Fs ⊃ σ(Xs), we obtain

P (Xs+t ∈ B|Fs) = P (Xs+t ∈ B|Xs) = Ps,s+t(Xs, B) a.s.

for Borel sets B ⊂ RN . Hence, (Xt)t∈I is a Markov process associated with
the hemigroup (Ps,t) as claimed.
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We next rewrite Theorem 4.25 in the time-homogeneous case, where we
shall employ the negative definite function ψ ∈ C(X̂) of a semigroup (Pt)t≥0

of kernels related to the integral transform T .

4.26 Lemma. Let (Pt)t≥0 be a semigroup of Markov kernels on X related
with the integral transform (X, X̂, (ϕλ)λ∈ bX) and with negative definite function
ψ ∈ C(X̂) . Let (Xt)t≥0 be a càdlàg process on X . Then, for each λ ∈ X̂ ,(

1
Pt(e,.)∧(λ) · ϕλ(Xt)

)
t≥0

is a martingale if and only if so is

(
Xλ
t := ϕλ(Xt) + ψ(λ) ·

∫ t

0

ϕλ(Xs) ds
)
t≥0

.

Proof. By a boundedness argument, both processes are martingales if and only
if the are local L2 –martingale.

Assume now that
(
(Pt(e, .)∧(−λ))−1 · ϕλ(Xt)

)
t≥0

is a local L2 -martingale.
Then (ϕλ(Xt))t≥0 is a semimartingale, and Ito integration yields

d(ϕλ(Xt)etψ(λ)) = etψ(λ)dϕλ(Xt) + ϕλ(Xt−)detψ(λ)

= etψ(λ) · (dϕλ(Xt) + ψ(λ)ϕλ(Xt)dt). (4.6)

Therefore, dϕλ(Xt)+ψ(λ)ϕλ(Xt)dt = e−tψ(λ)·d(ϕλ(Xt)etψ(λ)) is the differential
of a local L2 -martingale as claimed.

The converse direction is similar.

We next give a martingale characterization of time-homogeneous Markov
processes (Xt)t≥0 on X associated with a specific semigroup (Pt)t≥0 with gen-
erator L in the spirit of the martingale problem of Stroock and Varadhan [SV].
For this, we define for any càdlàg process (Xt)t≥0 on X and f ∈ D(L) the
C–valued process

ΠL,f
X =

(
f(Xt)− f(X0)−

∫ t

0

L(f)(Xs)ds
)
t≥0

. (4.7)

4.27 Theorem. Let (Pt)t≥0 be a semigroup of Markov kernels on X related
with (X, X̂, (ϕλ)λ∈ bX) and with negative definite function ψ and generator L .
Then the following are equivalent for any càdlàg process (Xt)t≥0 on X .

(1) (Xt)t≥0 is Markov process associated with the semigroup (Pt)t≥0 .

(2) For each λ ∈ X̂ , the process ( 1
Pt(e,.)∧(−λ) · ϕλ(Xt))t≥0 is a martingale.

(3)
(
ϕλ(Xt) + ψ(λ) ·

∫ t
0
ϕλ(Xs) ds

)
t≥0

is a martingale for each λ ∈ X̂ .

(4) ΠL,ϕλ

X is a martingale for each λ ∈ X̂ .

(5) ΠL,f
X is a martingale for each f ∈ Db(L) .

Proof. The equivalence of (1), (2) and (3) follows from 4.25 and 4.26. Moreover,
(3) ⇔ (4) ⇐ (5) is obvious, and (1) ⇒ (5) is just the well-known Dynkin
formula, see e.g. Prop. 4.1.7 of [EK].
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Now consider a arbitrary root system on RN with multiplicity k ≥ 0, and
the generator ∆k of the heat semigroup (Pt)t≥0 of Dunkl type on RN . As ∆k

is a second-order differential-difference operator, it is more convenient here to
restrict our attention to the subspaces C2

0 (RN ), C2
b (RN ), and C2(RN ) instead

of the domains D0(∆k), Db(∆k) and D(∆k). Moreover, it is possible to take
test functions f above which depend on the time. If we define

Π∆k,f
X =

(
f(Xt, t)− f(X0, 0)−

∫ t

0

( ∂
∂s

+ ∆k

)
f(Xs, s) ds

)
t≥0

for f ∈ C2,1(RN × [0,∞)), the characterization above may be rewritten as
follows by using standard techniques (see Theorem 6.4 of [RV1]):

4.28 Theorem. Let (Pt)t≥0 be the heat semigroup of Dunkl type on RN with
generator ∆k . Then the following statements are equivalent for any càdlàg
process (Xt)t≥0 on RN whose radial part (|Xt|)t≥0 is continuous.

(1) X is a Markov process associated with (Pt)t≥0 .

(5) Π∆k,f
X is a martingale for each f ∈ C2

c (RN ) .

(5′) Π∆k,f
X is a martingale for each f ∈ C2,1

c (RN × [0,∞)) .

(6) Π∆k,f
X is a local martingale for each f ∈ C2(RN ) .

(6′) Π∆k,f
X is a local martingale for each f ∈ C2,1(RN × [0,∞)) .

For a detailed discussion of Dunkl processes, i.e., Markov processes on RN
associated with the Dunkl heat semigroup (Pt)t≥0 , we refer to [Chy], [GY1],
[GY2], [GY3], and to the surveys [CGY],[De] in this volume.

We finally note that a similar result is available for Gaussian processes on
Sturm-Liouville hypergroups, see [ReV].

4.4 Moment functions

In this section we consider a further approach to functions f ∈ C(X) which
lead to martingales for Markov processes on X related to abstract integral
transforms. Remember, that in Theorem 4.25 we used the functions ϕλ which
have multiplicative properties and which replace exponentials on the group RN .
We now introduce analogs of polynomials, i.e. functions with additive properties.
We begin with an example:

4.29 Example. Consider the usual group X = RN with characters ϕλ(x) =
e−i<λ,x> , λ ∈ Rn = X̂ . Then for ν ∈ Z+ , the monomials mν(x) := xν satisfy

mν(x) = i|ν| · ∂νλϕλ(x)
∣∣
λ=0

and ϕλ(x) =
∑
ν∈Z+

(−i)|ν|mν(x)
ν!

λν

as well as the Leibniz rule

mν(x+ y) =
∑

ρ∈Z+,ρ≤ν

(
ν

ρ

)
mρ(x) ·mν−ρ(y).
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The Leibniz rule can be used to introduce so-called moment functions on
commutative hypergroups; see, e.g., [Z1], [Z2], [ReV], and Ch. 7.2 of [BH]:

4.30 Definition. Let X be a commutative hypergroup. Define m0 :≡ 1.

(1) A finite sequence (mi)i=1,...,n ⊂ C(X) is called a sequence of moment
functions of length n ∈ N if

(δx ∗ δy)(mi) =
i∑

j=0

(
i

j

)
mj(x)mi−j(y) (i = 1, . . . , n; x, y ∈ X). (4.8)

(2) For a fixed sequence (mi)i=1,...,n of moment functions, define the space

M1
n(X) := {µ ∈M1(X) : mi ∈ L1(X,µ) for all 0 ≤ i ≤ n}

of probability measures for which all moments up to the n -th exist.

We collect a few basic results for moment functions on commutative hyper-
groups X from [ReV]:

4.31 Remark. (1) If (mi)i=1,...,n is a sequence of measurable, locally bounded
functions on X satisfying (4.8), then all mi are continuous.

(2) By induction, moment functions satisfy mi(e) = 0 for i = 1, . . . , n .

(3) If µ, ν ∈M1
n(X), then µ ∗ ν ∈M1

n(X) and

µ ∗ ν(mi) =
i∑

j=0

(
i

j

)
µ(mj) · ν(mi−j) for 0 ≤ i ≤ n. (4.9)

(4) If (µt)t≥0 ⊂M1
n(X) is a convolution semigroup on X , then the functions

fi : [0,∞) → R , t 7→
∫
X
mi dµt satisfy

fi(s+ t) =
i∑

j=0

(
i

j

)
fj(s) · fi−j(t) (0 ≤ i ≤ n, s, t ≥ 0). (4.10)

Moreover, if the fi are continuous at t = 0, induction yields that the fi
are polynomials with

fi(t) =
i∑

j=1

ci,jt
i+1−j (1 ≤ i ≤ n, t ≥ 0)

for unique ci,j ∈ R . Moreover, the generator L of the reflected semigroup
(µ−t )t≥0 satisfies

Lmi(x) =
i−1∑
j=0

mj(x)
(
i

j

)
ci−j,i−j for 1 ≤ i ≤ n, x ∈ X.
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In practice, first and second moments play the most prominent role. Un-
der the conditions of Remark 4.31(4) we have for m1,m2 and a convolution
semigroup (µ−t )t≥0 with limt→0

∫
X
mi dµt = 0 for i = 1, 2 that∫

X

m1 dµt = c1t

∫
X

m2 dµt = c21t
2 + c2t (t ≥ 0), and (4.11)

Lm1(x) = c1, Lm2(x) = 2c1m1(x) + c2 for x ∈ X. (4.12)

Moreover, we can construct martingales from moment functions. Here is a result
for the first and second moments due to [Z2] which can be easily checked:

4.32 Lemma. Let (Xt)t≥0 be a Lévy process on X associated with (µt)t≥0 ⊂
M1

2 (X) in the setting above. Then (m1(Xt)− E(m1(Xt))t≥0 and(
m2(Xt)− 2m1(Xt) · E(m1(Xt))− E(m2(Xt)) + 2E(m1(Xt))2

)
t≥0

are martingales.

Clearly, these result may be extended to higher moments. We mention that
Lemma 4.32 together with martingale convergence theorems can be used to
derive strong limit theorems for the processes (Xt)t≥0 for t → ∞ . For details
see the monograph [BH].

We next turn to the question, how we can construct examples moment func-
tions on given hypergroups, and how the concept of moment functions can be
lifted to abstract integral transforms. Motivated by the observations for the
group RN in 4.29, we introduce the following notion:

4.33 Definition. An abstract integral transform T = (X, X̂, (ϕλ)λ∈ bX) is called
differentiable, if the following holds:

(1) X̂ is a closed subset on RN with ê = 0 ∈ X̂ .

(2) There exist ζ1, . . . , ζN ∈ RN and ε > 0 with t1ζ1 + . . . + tNζN ∈ X̂ for
t1, . . . , tN ∈ [0, ε] .

(3) For ν ∈ Zn+ and x ∈ X the directional derivatives w.r.t. λ

mν(x) := i|ν| · ∂νζϕλ(x)
∣∣
λ=0

:= i|ν| · ∂ν1ζ1 . . . ∂
νN

ζN
ϕλ(x)

∣∣
λ=0

exist, and mν is continuous on X .

For an abstract integral transform, the functions (mν)ν∈Zn
+

are called moment
functions.

4.34 Examples. (1) For the group RN , we have ϕλ(x) = e−i<λ,x> , λ ∈
Rn = X̂ . Taking the ζk as unit vectors ek , we obtain mν(x) = xν .

(2) Consider the Bessel-Kingman hypergroup on X = [0,∞) of index α ≥
−1/2 with X̂ = [0,∞) and the characters ϕλ(x) := jα(λx) with the
normalized Bessel function

jα(z) =
∞∑
k=0

(−1)k
Γ(α+ 1)

22kk! Γ(α+ k + 1)
z2k (z ∈ C). (4.13)
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Then we obtain the moment functions m2n+1 ≡ 0 and

m2n(x) :=
Γ(α+ 1)(2n)!

22nn! Γ(α+ n+ 1)
x2n (4.14)

for n ∈ Z+ in the sense of the preceding definition.

(3) Consider the Bessel hypergroups on the matrix cones Πq introduced in
Chapter 3.4. A complete system of moment functions is given here in [V2].
Moreover, applications to strong laws of large numbers for random walks
in this setting are also given there.

Before turning to moment functions associated with Dunkl kernels, we notice
that the Leibniz rule for partial derivatives leads to:

4.35 Lemma. Let X be a commutative hypergroup with dual X̂ such that
the hypergroup Fourier transform is differentiable in the sense of 4.33. Then,
for any nonnegative linear combination ζ of the vectors ζ1, . . . , ζN ∈ RN in
4.33(2), the functions mn(x) := ∂nζ ϕλ|λ=0 (n ∈ Z+ ) with partial derivatives
w.r.t. λ form moment functions in the sense of Definition 4.30(1).

For Markov kernels associated with a differentiable integral transform, this
additivity reads as follows:

4.36 Lemma. Let P,Q be Markov kernels on X related with the differentiable
integral transform (X, X̂, (ϕλ)λ∈ bX) . Assume that for some n ∈ N and all
x ∈ X , the measures P (x, .), Q(x, .), Q ◦ P (x, .) are contained in

M1
n(X) := {µ ∈M1(X) : ν ∈ L1(X,µ) for |ν| ≤ n}. (4.15)

Then, for all x ∈ X and ν ∈ ZN+ with |ν| ≤ n and with the notion mν(µ) :=∫
X
mν dµ ,

(1) mν(P (x, .)) =
∑
ρ≤ν

(
ν

ρ

)
mρ(P (e, .)) ·mν−ρ(x) ,

(2) mν(Q ◦ P (x, .)) =
∑
ρ≤ν

(
ν

ρ

)
mρ(P (x, .)) ·mν−ρ(Q(e, .)) .

Proof. (1) follows from the Leibniz rule; in fact, as we may interchange differ-
entiation and integration, we observe by differentiation w.r.t. λ that

mν(P (x, .)) = i|ν| · ∂νζ
(
P (e, .)∧(λ) · ϕλ(x))

)∣∣∣
λ=0

=
∑
ρ≤ν

(
ν

ρ

)
i|ρ| · ∂ρζ (P (e, .)∧(λ))|λ=0 · i|ν|−|ρ| · ∂ν−ρζ ϕλ(x)|λ=0

=
∑
ρ≤ν

(
ν

ρ

)
mρ(P (e, .)) ·mν−ρ(x).

Part (2) can be checked in the same way by using Lemma 4.14(2).

As in Lemma 4.32, we can construct martingales:

71



4.37 Proposition. Let (Pt)t≥0 be a semigroup of Markov kernels related with
the differentiable integral transform (X, X̂, (ϕλ)λ∈ bX) with negative definite func-
tion ψ , and let (Xt)t≥0 be an associated Markov process on X with canonical
filtration on the underlying probability space (Ω,A, P ) . Then the moment func-
tions of Section 4.33 satisfy:

(1) If the measures PX0 and Pt(x, .) are contained in M1
1 (X) for t > 0

and x ∈ X in the sense of (4.15), then for l = 1, . . . , N , the process
(mel

(Xt)− E(mel
(Xt)))t≥0 is a martingale with

E(mel
(Xt)) = E(mel

(X0))− it · ∂ζl
ψ(0) for t ≥ 0.

(2) If the measures PX0 and Pt(x, .) are contained in M1
2 (X) for t > 0 and

x ∈ X , then for l, j = 1, . . . , N ,(
mel+ej (Xt)−mel

(Xt) E(mej (Xt))−mej (Xt) E(mel
(Xt))

+ E(mel
(Xt)) E(mej (Xt))− E(mel+ej (Xt))

)
t≥0

is a martingale. In particular, the “modified variances”

V l(Xt) := E(m2el
(Xt))− E(mel

(Xt))2

satisfy V lk(Xt) = V lk(X0) + t · ∂2
ζl
ψ(0) for t ≥ 0.

Proof. (1) We have ψ(0) = 0 and Pt(e, .)∧ = e−tψ for t ≥ 0. Therefore, by
the dominated convergence theorem,

mel
(Pt(e, .)) = i · ∂ζl

(Pt(e, .)∧)(0) = −it ∂ζl
ψ(0).

Now take s, t ≥ 0. The preceding lemma ensures that for a.a. ω ∈ Ω,

E(mel
(Xs+t)| Ft)(ω) =

∫
X

mel
dPt(Xs(ω), .)

= mel
(Pt(e, .)) +mel

(Xs(ω))
= −it · ∂lψ(0) +mel

(Xs(ω)). (4.16)

If we take the usual expectation of both sides with s = 0, we obtain the
claimed formula for E(mel

(Xt)), and that (mel
(Xt)−E(mel

(Xt)))t≥0 is
a martingale.

(2) can be shown in a similar way; c.f. Proposition 7.5 of [RV1].

We now turn to moment functions in the sense of 4.33 for the Dunkl trans-
form. Recall that the Dunkl kernel Ek is analytic on CN×N , i.e., there there
exist unique analytic functions mν (ν ∈ ZN+ ) with

Ek(x, y) =
∑
ν∈ZN

+

mν(x)
ν!

yν (x, y ∈ CN ) (4.17)

with
mν(x) = (∂νyEk(x, y))|y=0 = i|ν| (∂νyEk(x,−iy))|y=0. (4.18)
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Therefore, the mν are moment functions in the sense of 4.33.
We denote the j -th unit vector by ej ∈ ZN+ . and the the moment functions

of order 1 and 2 by mej and mej+ek
(j, k = 1, . . . , N ).

¿From the description of the Dunkl kernel Ek via the intertwiner Vk (see
the definition of the Dunkl kernel!) we immediately obtain

mν(x) = Vk(xν) for ν ∈ ZN+ . (4.19)

In particular, for each n ∈ Z+ the moment functions mν with |ν| = n form
a basis of the space Pn of all homogeneous polynomials of degree n . This in
particular implies that a measure µ ∈ M1(RN ) is contained in M1

n(RN ) (i.e.,
it has moments up to order n in the meaning above) if and only if it has usual
moments up to order n .

Moreover, via the recurrence relation for Vk in the beginning of Chapter 2.4
(see [D4],[DX]) it is possible to compute the moment functions mν .

4.38 Examples. (1) If k = 0, then Ek(x, y) = e<x,y> and mν(x) = xν .

(2) If N = 1, W = Z2 and k ≥ 0, then the explicit form of Ek in terms of
Bessel functions (see Example 2.29 and compare with (2.7)) implies

m2n(x) =
Γ(k + 1/2) (2n)!

Γ(n+ k + 1/2) 22n n!
x2n

m2n+1(x) =
Γ(k + 1/2) (2n+ 1)!

Γ(n+ k + 3/2) 22n+1 n!
x2n+1.

(3) The AN−1 -case: For the symmetric group W = SN and multiplicity
k ∈ [0,∞), some computation with the intertwiner yields

mel
(x) = Vkxl =

1
1 + kN

(
xl + k

N∑
i=1

xi

)
. (4.20)

for the moment functions of first order and similar formulas for that of
second order; see Section 7.1 of [RV1] for details.

(4) The BN -case: Here the multiplicity consists of two parameters k0, k1 ≥
0, and it follows (see [D7] and [RV1]) that for l, j ∈ {1, . . . , N} ,

mel
(x) = Vkxl =

xl
1 + 2k1 + 2k0(N − 1)

,

mel+ej = Vk(xlxj) =
xlxj

1 + 2k1 + 2k0(N − 1)
, for l 6= j,

m2el
(x) = Vkx

2
l =

x2
l + k0

∑N
i=1 x

2
i

(1 +Nk0)(1 + 2(N − 1)k0 + 2k1)
.

We next collect some properties of moment functions. We mention that
similar results are also available for Sturm-Liouville hypergroups on [0,∞); see
[BH], [ReV], [Z1], [Z2].

4.39 Proposition. For all x ∈ RN , ν ∈ ZN+ , and l ∈ {1, . . . , N} :

(1) Tlmν+el
= (νl + 1) ·mν .

73



(2) |mν(x)| ≤ |x||ν| and 0 ≤ mν(x)2 ≤ m2ν(x) .

(3) Taylor formula: If f ∈ C(n)(RN ) for n ∈ N , then

f(y) =
∑

ν∈ZN
+ , |ν|≤n

mν(y)
ν!

T νf(0) + o(|y|n) for y → 0.

Moreover, if f : CN → C is analytic in a neighborhood of 0, then

f(y) =
∞∑
n=0

∑
|ν|=n

mν(y)
ν!

T νf(0)

where the series converges absolutely and locally uniformly.

Proof. (1) The properties of Vk and (4.19) yield

Tlmν+el
= TlVkx

ν+el = Vk∂lx
ν+el = (νl + 1) · Vkxl = (νl + 1) ·mν .

(2) The positive integral representation of Ek in Theorem 2.22 together with
(4.18) imply that for x ∈ RN there exists µx ∈M1(RN ) with supp µx ⊂
{z ∈ RN : |z| ≤ |x|} and

mν(x) =
∫

RN

yν dµx(y) for all ν ∈ ZN+ , x ∈ RN .

The first inequality is now clear from the support condition on µx while
the second one follows from Jensen’s inequality.

(3) See Corollary 2.17.

4.40 Example. Let (Xt)t≥0 be a Dunkl process on RN with X0 = 0 associated
with the Dunkl heat semigroup (PΓ

t )t≥0 . In this case, all moments exists, and

PΓ
t (0, .)∧(y) = e−t|y|

2
=

∑
ν∈ZN

+

(−t)|ν|

ν!
y2ν for t ≥ 0, y ∈ RN .

This yields that

E(m2ν(Xt)) = m2ν(PΓ
t (0, .)) =

(2ν)!
ν!

t|ν| (ν ∈ ZN+ , t ≥ 0) (4.21)

and E(mν(Xt)) = 0 whenever at least one component of ν is odd.
Proposition 4.37(1) now implies that the processes (mel

(Xt))t≥0 are mar-
tingales for l ∈ {1, . . . , N} . Moreover, as the mel

form a basis of the space P1

of all homogeneous polynomials of degree 1, (Xt)t≥0 itself is an N -dimensional
martingale.

Moreover, Proposition 4.37(2) and E(mel
(Xt)) = 0 show that

(mel+ej (Xt)− E(mel+ej (Xt)))t≥0

is a martingale for l, j ∈ {1, . . . , N} . As the moment functions mej+el
form a

basis of P2 , it follows that for all l, j ∈ {1, . . . , N} , the processes

(X l
t ·X

j
t − E(X l

t ·X
j
t ))t≥0

are martingales. For higher moments, results of this type are more complicated
and will be considered in the next section.
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4.5 General Appell characters

Let (Xt)t≥0 be time-homogeneous Markov process on X associated with some
abstract integral transform as above. Based on concept of moment functions and
certain generating functions, we construct a system (Rν)ν∈ZN

+
of functions on

R×X associated with (Xt)t≥0 such that the processes (Rν(t,Xt))t≥0 become
martingales. These systems, called Appell characters, generalize the well-known
heat polynomials, which are connected with Brownian motion and given in terms
of classical Hermite polynomials.

The concept of Appell characters is quite old and has its origin in umbral
calculus; see for instance [FS], [Rom].

We begin with a general definition. Later we shall restrict our attention
mainly to Dunkl processes.

4.41 Definition. Let (Pt)t≥0 be a semigroup of Markov kernels related with the
differentiable integral transform (X, X̂, (ϕλ)λ∈ bX) with negative definite func-
tion ψ ∈ C(X̂): we use the notions of 4.33 and assume that Pt(x, .) ∈ M1

n(X)
for t ≥ 0 and x ∈ X , i.e., that all moments up to order n ≥ 1 exist. We know
from the preceding section that Pt(e, .)∧ = e−tψ ∈ Cn(X̂) for t ≥ 0. Therefore,

λ 7−→ ϕλ(x)
Pt(e, .)∧(λ)

= ϕλ(x) · etψ(λ)

is n -times continuously differentiable for t ≥ 0, x ∈ X . By Taylor’s formula,

ϕλ(x) · etψ(λ) =
∑

ν∈ZN
+ , |ν|≤n

(−iλ)ν

ν!
Rν(t, x) + o(|λ|n) for y → 0; (4.22)

with unique functions

Rν(t, x) = i|ν|∂νζ

(
ϕλ(x) · etψ(λ)

)∣∣∣
ζ=0

= i|ν|
∑

ρ∈ZN
+ , ρ≤ν

(
ν

ρ

)
∂ρζ (ϕλ(x))

∣∣∣
λ=0

· ∂ν−ρζ (etψ(λ))
∣∣∣
y=0

=
∑

ρ∈ZN
+ , ρ≤ν

(
ν

ρ

)
mρ(x) · aψν−ρ(t) (4.23)

by Definition 4.33 with the polynomials

aψρ (t) := i|ρ| · ∂ρζ (e
tψ(y))

∣∣
λ=0

(ρ ∈ ZN+ , |ρ| ≤ n) (4.24)

in t of degree at most |ρ| . Note that aψν (−t) = mν(Pt(e, .)) ∈ R holds for
t ≥ 0. The functions Rν will be called Appell characters associated with the
semigroup (Pt)t≥0 .

We next collect some basic properties of Appell characters:

4.42 Lemma. In the setting above, the following holds for ν ∈ ZN+ with |ν| ≤ n :

(1) Inversion formula: For all x ∈ X and t ∈ R ,

mν(x) =
∑

ρ∈ZN
+ , ρ≤ν

(
ν

ρ

)
Rρ(t, x) · aψν−ρ(−t).
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(2) For x ∈ X and t ≥ 0 ,
∫
X

Rν(t, y) dPt(x, dy) = mν(x).

Proof. (1) Write down the Taylor expansion of order n of

ϕλ(x) = e−tψ(λ) · (ϕλ(x) · etψ(λ))

as above in two ways and compare the coefficients; see Lemma 8.1 of [RV1].

(2) Recall that aψν (−t) = mν(Pt(e, .)). Eq. (4.23) and Lemma 4.36(1) yield∫
X

Rν(t, y) dPt(x, dy) =
∑
ρ≤ν

(
ν

ρ

)
aψν−ρ(t) ·

∫
X

mρ(y) dPt(dy)

=
∑
ρ≤ν

(
ν

ρ

)
aψν−ρ(t) ·

(∑
ϕ≤ρ

(
ρ

ϕ

)
mϕ(Pt(e, .)) ·mρ−ϕ(x)

)
=

∑
ρ≤ν

(
ν

ρ

)
aψν−ρ(t) ·

(∑
ϕ≤ρ

(
ρ

ϕ

)
aϕψ(−t) ·mρ−ϕ(x)

)
.

The assertion now follows from Part (1).

4.43 Remark. For Dunkl theory on X = RN , part (1) of the preceding result
implies that for t ∈ R and suitable l ∈ N , the (Rν(t, .))ν∈ZN

+ , |ν|≤l form a basis

of the space
⊕l

j=0 Pj of all polynomials of degree at most l .
Moreover, for all x ∈ RN , t ∈ R , and j ∈ {1, . . . , N} ,

TjRν+ej
(t, x) = (νj + 1) ·Rν(t, x) (4.25)

where Tj acts with respect to the variable x .
In fact, the expansion of Rν and Proposition 4.39(1) yield

TjRν+ej =
∑

ρ≤ν+ej

(
ν + ej
ρ

)
Tjmρ · aψν+ej−ρ =

∑
ρ≤ν

(
ν + ej
ρ+ ej

)
(ρj + 1)mρ · aψν−ρ

= (νj + 1) ·
∑
ρ≤ν

(
ν

ρ

)
mρ · aψν−ρ = (νj + 1) ·Rν .

We return to the general setting:

4.44 Theorem. Let n ≥ 1 and (Pt)t≥0 a semigroup of Markov kernels on X
as in Definition 4.41 above. Let (Xt)t≥0 be an associated Markov process with
the following property:

(*) There exists ε > 0 with ζ =
∑n
j=1 tjζj ∈ X̂ for all 0 ≤ tj ≤ ε (j =

1, . . . , N ) and the directions ζ1, . . . , ζN ∈ Rn in 4.33, and for all ν ∈ ZN+
with |ν| ≤ n , the functions

x 7→ sup
λ=

Pn
j=1 tjζj ,0≤tj≤ε

|∂νζϕλ(x)|

are integrable w.r.t. the distributions PXt of all random variables Xt .

76



Then for each ν ∈ ZN+ with |ν| ≤ n , (Rν(t,Xt))t≥0 is a martingale.

Proof. We prove more generally by induction on |ν| that for each λ ∈ X̂ and
ν ∈ ZN+ with |ν| ≤ n , the process(

W ν,λ
t := ∂νζ (ϕλ(Xt) · etϕ(λ))

)
t≥0

(4.26)

is a martingale for λ =
∑n
j=1 tiζi with 0 ≤ tj < ε . The theorem then follows

for λ = 0.
In fact, the case ν = 0 follows from Proposition 4.25. For the induction

step, consider some direction ζj as in Definition and assume that W ν,λ
t is a

martingale for all λ ∈ RN as above and some ν ∈ ZN+ with |ν| ≤ n . To prove
that (W ν+ej , λ

t )t≥0 is a martingale for these λ , we observe that for t ≥ 0,

lim
h→0

1
h

(
W ν, λ
t −W

ν, λ+h·ζj

t

)
= W

ν+ej ,y
t pointwise.

Moreover, by the mean value theorem, we find r ∈ [0, h] with∣∣∣ 1
h

(
W ν, λ
t −W

ν, λ+h·ζj

t

)∣∣∣ =
∣∣W ν+ej , λ+r·ζj

t

∣∣. (4.27)

Condition (*) ensures that the dominated convergence theorem may be applied
to the limit above, and hence

lim
h→0

∥∥∥ 1
h

(
W ν, λ
t −W

ν, λ+h·ζj

t

)
−W

ν+ej , λ
t

∥∥∥
1

= 0 for all t ≥ 0.

It follows for the canonical filtration (Ft)t≥0 of (Xt)t≥0 that for s, t ≥ 0,

E
( 1
h

(
W ν, λ
s+t −W

ν, λ+h·ζj

s+t

)∣∣∣Ft) −→ E(W ν+ej , λ
s+t |Ft) a.s

Hence, (W ν+ej ,λ
t )t≥0 is a martingale.

4.45 Remarks. (1) For concrete abstract integral transforms, condition (*)
above can be simplified considerably.

For instance, using bounds for derivatives of Dunkl kernels (see Corollary
2.32), it can be easily checked that in the Dunkl setting condition (*) holds
if and only if all distributions PXt

of the process admit moments up to
order n ; c.f. also the proof of Theorem 8.2 of [RV1].

Moreover, for Sturm-Liouville hypergroups on [0,∞), an analog result is
available; we refer to [Z1], [Z2], [ReV], and Section 7.2 of [BH]. In partic-
ular, for the Bessel hypergroups on [0,∞), the same result is available as
in the Dunkl setting; see also below.

(2) For |ν| = 1, 2, the martingales Rν(t,Xt) of the theorem above agree with
the martingales of Proposition 4.37.

(3) Consider the Dunkl setting. Then for each polynomial f ∈ P , the poly-
nomial function u(x, t) := et∆kf(x) satisfies ut = ∆ku on RN × R (see
e.g. Theorem 3.1(2) of [RV1]). This fact together with Proposition 4.55
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below thus imply that the Appell characters RΓ
ν for the Dunkl heat semi-

group satisfy
(∂t + ∆k)RΓ

ν = 0,

i.e., they form so-called heat polynomials for the Dunkl heat semigroup.
This again reflects the close connection between Theorems 4.44 and 4.27.

(4) In the Dunkl setting there is a close connection between general Appell
characters Rν and the intertwiner Vk : Let n ≥ 0 and (P kt )t≥0 a semi-
group of Dunkl-Markov kernels on RN such that P kt (x, .) ∈ M1

n(RN )
for t ≥ 0 and x ∈ RN . Let Rkν be the associated Appell charac-
ters for |ν| ≤ n . By Theorem 2.22(2), there exist probability measures
µx ∈M1(RN ) such that the negative definite function ψ associated with
(P kt )t≥0 satisfies

e−tψ(λ) = P kt (0, .)∧(λ) =
∫

RN

∫
RN

e〈z,−iλ〉 dµx(z) dP kt (0, .)(x)

for t ≥ 0, λ ∈ RN . Hence, the e−tψ are positive definite in the classical
sense, and by Bochner’s theorem, there is a semigroup (P 0

t )t≥0 of group-
translation invariant Markov kernels. If the associated Appell characters
are denoted by R0

ν , we obtain

Rkν(t, x) =
∑
ρ≤ν

(
ν

ρ

)
mρ(x) a

ψ
ν−ρ(t) =

∑
ρ≤ν

(
ν

ρ

)
(Vkxρ) a

ψ
ν−ρ(t) = VkR

0
ν(t, x).

We next discuss Theorem 4.44 for Bessel processes on [0,∞):

4.46 Example. For α ≥ −1/2, consider the Bessel hypergroup on [0,∞).
On this hypergroup there exists up to time normalization a unique Gaussian
convolution semigroup in the sense of Theorem 4.23, namely

dραt (x) =
1

Γ(α+ 1)
2α

tα+1
x2α+1 e−x

2/(2t) dx on [0,∞) for t > 0 (4.28)

with generator Lf := 1
2

(
f ′′ + 2α+1

x f ′
)
. The associated Markov processes are

Bessel processes (Xα
t )t≥0 of order α . In particular, for the N -dimensional

Brownian motion (Bt)t≥0 , (|Bt|)t≥0 is a Bessel process of index α = N/2− 1.
Using the moment functions of Example 4.34(2) and Theorem 4.44, we obtain
the following well-known martingale connection between Bessel processes and
the Laguerre polynomials

L(α)
n (x) =

1
n!
x−αex · d

n

dxn
(
xn+αe−x

)
=

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
(n ≥ 0) (4.29)

of index α ≥ 0 (see [Sz]).

4.47 Lemma. If R(α)
n (t, x) := tnL(α−1/2)

n (x2/(2t)) (t, x ∈ R, n ≥ 0) is the
”n-th heat polynomial of Laguerre-type”, then for n ≥ 0 , (R(α)

n (t,Xt))t≥0 is a
martingale.

This observation was the motivation in Section 7.2 of [ReV] for the following
Lévy-type characterizations of Bessel processes:
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4.48 Theorem. Let α ≥ −1/2 . Then an a.s. continuous process X on [0,∞)
is a Bessel process of order α if and only if (X2

t − 2(α + 1)t)t≥0 and (X4
t −

4(α+ 2)tX2
t + 4(α+ 1)(α+ 2)t2)t≥0 are martingales (or local martingales).

Proof. By the (local) martingale conditions it is possible to compute the quadratic
variation [X2

t − 2(α + 1)t]t which allows to verify one of the conditions of the
martingale characterization 4.27.

4.49 Theorem. For α ≥ −1/2 , let (Xt)t≥0 be an arbitrary process on [0,∞)
such that (R(α)

n (t,Xt))t≥0 is a martingale for n = 1, 2, 3, 4 . Then (Xt)t≥0 is a
Bessel process of index α .

Proof. A straightforward calculation yields

E((X2
t −X2

s )
4) = 16(α+ 1)(α+ 2)(t− s)2 · gα(s, t) (4.30)

for some concrete polynomial gα . Kolmogorov’s criterion now ensures that
(X2

t )t≥0 , and hence (Xt)t≥0 , admits an a.s. continuous modification. Theorem
4.48 completes the proof.

A similar result for Brownian motion on R and Hermite polynomials can
be found in Wesolowski [We], and for Brownian motions on compact Lie groups
in [V1]. For further polynomial martingale relations of concrete processes we
also refer to [Scho]. An extension to one-dimensional Dunkl processes is given
below.

We finally notice that the characterizations 4.48 and 4.48 can be also ex-
tended to the (a.s. continuous) Dunkl-Bessel processes on Weyl chambers as
well as to Wishart processes on the matrix cones Πq , which are the Gaussian
processes on the Bessel-type hypergroups on Πq ; see [V2].

4.6 Appell characters associated with Dunkl processes

In this section we restrict our attention to the Dunkl Gaussian semigroup
(PΓ
t )t≥0 for some multiplicity k ≥ 0. Here, all moments exist, and the Taylor

expansion (4.22) actually becomes a power series. The coefficients aΓ
ν (t) of the

associated Appell characters RΓ
ν satisfy aΓ

ν (−t) = mν(PΓ
t (0, .)) for t ≥ 0. It

follows from 4.40 that for all t ∈ R ,

aΓ
2ν(t) =

(2ν)!
ν!

· (−t)|ν| and aΓ
λ(t) = 0 otherwise,

i.e., if at least one component of λ ∈ ZN+ is odd. Therefore,

RΓ
ν (t, x) =

∑
ρ∈ZN

+ , 2ρ≤ν

ν!
(ν − 2ρ)! ρ!

(−t)|ρ| mν−2ρ(x) for ν ∈ RN+ . (4.31)

In particular the homogeneity of the mν yields that

RΓ
ν (t, x) =

√
t
|ν|
·RΓ

ν (1, x/
√
t) (x ∈ RN , t > 0). (4.32)
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4.50 Examples. (1) In the group case k = 0 with mν(x) := xν , Eq. (4.31)

implies RΓ
ν (t, x) =

√
t
|ν|
· H̃ν

( x

2
√
t

)
for x ∈ RN , ν ∈ ZN+ , t ∈ R with the

classical N -dimensional Hermite polynomials

H̃ν(x) =
N∏
i=1

Hνi(xi) with Hn(y) =
bn/2c∑
j=0

(−1)j n!
j! (n− 2j)!

(2y)n−2j ;

cf. Section 5.5 of [Sz] for N = 1.

(2) For N = 1, W = Z2 and k ≥ 0, Example 4.38(2) shows

RΓ,k
2n (t, x) = (−1)n22nn! tn L(k−1/2)

n (x2/4t),

RΓ,k
2n+1(t, x) = (−1)n22n+1n! tn x L(k+1/2)

n (x2/4t) (n ∈ Z+), (4.33)

with the Laguerre polynomials in (4.29). The (RΓ,k
n )n≥0 are called often

generalized Hermite or heat polynomials (see e.g. [Ros]). For each t > 0
the (RΓ,k

n (t, .))n≥0 are orthogonal w.r.t.

dPΓ
t (0, .)(x) =

Γ(k + 1/2)
(4t)k+1/2

|x|2k e−x
2/4t dx.

Theorem 4.44 implies that for an one-dimensional Dunkl process (Xt)t≥0

associated with the Dunkl heat semigroup of index k ≥ 0 the (RΓ,k
n (t,Xt))t≥0

are martingales for n ∈ N . We can generalize the Lévy-type characterization
4.49 of Bessel processes as follows:

4.51 Theorem. For k ≥ 0 , let (Xt)t≥0 be an arbitrary process on R such that
(RΓ,k

n (t,Xt))t≥0 is a martingale for n = 1, 2, 4, 6, 8 . Then (Xt)t≥0 is a Dunkl
process of index k .

Proof. The process (X2
t )t≥0 satisfies the conditions of Theorem 4.49, i.e., it is

a Bessel process in distribution and a submartingale. On the other hand, as
(Xt)t≥0 is a martingale, Theorem 3 of [CGY] yields the claim.

One might suggest from the examples in 4.50 that the RΓ
ν (t, .) are always

orthogonal w.r.t. dPΓ
t (0, .) for t > 0. We shall see below that this is not correct

in many cases. For this we introduce so-called Appell cocharacters, which turn
out to form a biorthogonal system for the Appell characters.

4.52 Definition. Consider the quotient

θt(x, y) :=
Γk(t, x, y)
Γk(t, 0, y)

= e−|x|
2/4t Ek(x, y/2t) =

∑
ν∈Zn

+

mν(x)
ν!

SΓ
ν (t, y) (4.34)

where, by Proposition 4.39(3), the coefficients satisfy

SΓ
ν (t, y) = T νx

(
e−|x|

2/4t Ek(x, y/2t)
)∣∣
x=0

.

The SΓ
ν (t, .) are also polynomials of degree |ν| and will be called the Appell

cocharacters of the Dunkl heat semigroup.
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Using the homogeneity of mν , we obtain

SΓ
ν (t, y) =

( 1√
t

)|ν|
· SΓ

ν (1, y/
√
t ) (y ∈ RN , t > 0). (4.35)

A comparison of the homogeneous parts of degree n in the expansions (4.34) and
(4.22) shows that the linear spaces generated by (SΓ

ν (t, .))|ν|=n and (RΓ
ν (t, .))|ν|=n

are equal for t > 0. Hence, (SΓ
ν (t, .))|ν|≤n is also a basis of

⊕n
j=0 Pj .

The SΓ
ν (t, .) and RΓ

ν (t, .) are related by the following biorthogonality:

4.53 Theorem. Let t > 0 , ν, ρ ∈ ZN+ , and p ∈ P with deg p < |ν| . Then:

(1)
∫

RN

RΓ
ν (t, y) · SΓ

ρ (t, y) dPΓ
t (0, .)(y) = ν! δν, ρ;

(2)
∫

RN

p(y) · SΓ
ν (t, y) dPΓ

t (0, .)(y) =
∫

RN

p(y) ·RΓ
ν (t, y) dPΓ

t (0, .)(y) = 0 .

Proof. The definition of θt and Lemma 4.42(2) yield

mν(x) =
∫

RN

RΓ
ν (t, y)θt(x, y) dPΓ

t (0, .)(y) (4.36)

=
∫

RN

∞∑
n=0

∑
|ρ|=n

RΓ
ν (t, y)SΓ

ρ (t, y)
mρ(x)
ρ!

dPΓ
t (0, .)(y)

=
∞∑
n=0

∑
|ρ|=n

mρ(x)
ρ!

∫
RN

RΓ
ν (t, y) SΓ

ρ (t, y) dPΓ
t (0, .)(y)

where we must justify that summation and integration commute. For this, we
may restrict our attention to the case t = 1/4 by normalization and decompose
θ1/4(x, y) into its x-homogeneous parts

θ1/4(x, y) =
∞∑
n=0

Ln(y, x) with Ln(y, x) =
∑
|ν|=n

mν(x)
ν!

SΓ
ν (1/4, y).

The estimations of Corollary 2.32 imply

|L2n(y, x)| ≤
|x|2n

n!
· (1 + 2|y|2)n for n ∈ Z+ ,

and a similar estimation for odd indices (see the proof of 3.8 in [R2]). Therefore,

∞∑
n=0

∫
RN

|Ln(y, x)|RΓ
ν (1/4, y) dPΓ

1/4(0, .)(y) <∞.

The dominated convergence theorem now justifies the last step in the equation
above for t = 1/4, which yields Part (1). Part (2) follows from Part (1).

4.54 Remark. For t = 1/2, the preceding result shows that (RΓ
ν (1/2, .))ν∈ZN

+

is orthogonal w.r.t dPΓ
1/2(0, .) if and only if RΓ

ν (1/2, x) = cνS
Γ
ν (1/2, x) with

suitable constants cν . A comparison of (4.34) and (4.22) shows that this is
equivalent to mν(x) = cνx

ν which holds for the examples in 4.50. On the other
hand, this is not correct for the AN−1 - and the BN -cases for N ≥ 3.
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The following result reflects the dual nature of Appell characters and cochar-
acters.

4.55 Proposition. Let t ∈ R , x ∈ RN , and ν ∈ ZN+ . Then

RΓ
ν (t, x) = e−t∆kmν(x) and SΓ

ν (t, x) =
( 1
2t

)|ν| · e−t∆kxν .

Proof. By Proposition 2.53, ∆k is also the generator of the heat semigroup
acting on P (instead of C0(RN )). Therefore, by Lemma 4.42(2), et∆kRΓ

ν (t, x) =
mν(x) for t ≥ 0. This yields the first statement for t ≥ 0. As both sides are
polynomials in t , this holds in general.

Let ∆y
k be the Dunkl Laplacian acting on the variable y , and Vx be the

intertwiner w.r.t. x . Then

et∆
y
k

(
e−|x|

2/4tEk(x, y/2t)
)

= e−|x|
2/4t · e|x|

2/4tEk(x, y/2t)

= Ek(x, y/2t) = Vx(e〈x, y/2t〉).

Consider on both sides the homogeneous part Wn of degree n in the variable
x . Using the left hand side, we obtain from (4.34) that

Wn = et∆
y
k

( ∑
|ν|=n

mν(x)
ν!

SΓ
ν (t, y)

)
=

∑
|ν|=n

mν(x)
ν!

et∆
y
k SΓ

ν (t, y).

Moreover, using the right hand side, we conclude from Section 2.2 and Vx(xν) =
mν(x) that

Wn = Vx

( ∑
|ν|=n

xν

ν!
(y/2t)ν

)
=

∑
|ν|=n

mν(x)
ν!

(y/2t)ν .

A comparison of the coefficients leads to the second statement.

We give a further application of Theorem 4.53 for t = 1/2. For this, we
employ the adjoint operator T ∗j of the Dunkl operator Tj (j = 1, . . . , N ) in
L2(RN , dPΓ

1/2(0, .)) which is given by

T ∗j f(x) = xjf(x)− Tjf(x) = −e|x|
2/2 · Tj

(
e−|x|

2/2 f(x)
)

(f ∈ P); (4.37)

see Lemma 3.7 of [D4] and use for the second equation the product rule 2.7.)

4.56 Corollary. For ν ∈ ZN+ , j = 1, . . . , N , x ∈ RN , and t > 0 ,

(1) SΓ
ν+ej

(1/2, x) = T ∗j S
Γ
ν (1/2, x) ;

(2) Rodriguez formula: SΓ
ν (t, x) = (−1)|ν| e|x|

2/4t T ν
(
e−|x|

2/4t
)
.

Proof. For simplicity, we suppress the time parameter t = 1/2 in (1). Theorem
4.53(1) and Remark 4.43 yield that for all ρ ∈ ZN+ ,∫

RN

RΓ
ρ+ej

· T ∗j SΓ
ν dPΓ =

∫
RN

TjR
Γ
ρ+ej

· SΓ
ν dPΓ

= (ρj + 1)
∫

RN

RΓ
ρ · SΓ

ν dPΓ = δρ, ν · (ρ+ ej)!

=
∫

RN

RΓ
ρ+ej

· SΓ
ν+ej

dPΓ.
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As P is dense in L2(RN , dPΓ
1/2(0, .)), Part (1) is clear. Part (2) for t = 1/2 fol-

lows now from (4.37), and the general case is a consequence of the homogeneity
of the SΓ

ν .

Theorem 4.53 and orthogonalization within the spaces

Vn := e−∆k/2Pn ⊂ P

leads to systems of orthogonal polynomials on RN w.r.t PΓ
1/2(0, .), namely

the generalized Hermite polynomials (Hν)ν∈ZN
+

from Definition 2.56. In this
way results for generalized Hermite polynomials can be transfered to Appell
characters and cocharacters and conversely. Here is a list of a few facts in this
direction:

4.57 Proposition. For all t ∈ R , x, y ∈ RN , n ∈ N , and ν ∈ ZN+ :

(1) RΓ
ν (t, x) = e−t∆kmν(x) and SΓ

ν (t, x) =
( 1
2t

)|ν|
e−t∆kxν ;

(2) Rodriguez formula for RΓ
ν : Let mν(T ) denote the operators which is ob-

tained from mν(x), ϕν(x) by replacing the xj by the Dunkl operators Tj .
Then

RΓ
ν (t, x) = (−2t)|ν|e|x|

2/4tmν(T )e−|x|
2/4t.

(3) Eigenfunctions of a CMS-type Schrödinger operator: RΓ
ν (t, .) and SΓ

ν (t, .)
satisfy (

2t∆k −
N∑
l=1

xl∂l
)
f = −|ν| · f.

(4) The functions e−|x|
2/8tRΓ

ν (t, x) and e−|x|
2/8t Sν(t, x) satisfy

(4t∆k − |x|2)f = −(2|ν|+ 2γ +N)f.

(5) Mehler formula: For r ∈ C with |r| < 1 ,∑
ν∈ZN

+

RΓ
ν (t, x)SΓ

ν (t, y)
ν!

r|ν|

=
1

(1− r2) γ+N/2
exp

{
− tr

2(|x|2 + |y|2)
1− r2

}
Ek

(
2trx

1− r2
, y

)
.

Proof. (1) is Proposition 4.55 and (2) follows from Corollary 4.56. Moreover, the
generalized Hermite polynomials satisfy the equations in (3) and (4) for t = 1/2
(see Corollary 2.58) where this equation only depends on the degree |ν| . There-
fore, (3) and (4) hold for RΓ

ν (t, .) and SΓ
ν (t, .) for t = 1/2. Renormalization by

Eq. (4.32) and (4.35) then leads to the case t > 0 and analytic continuation to
the general case. For (5) we may again assume t = 1/2 by (4.32) and (4.35).
In this case, we first note that for any orthonormal basis {ϕν , ν ∈ ZN+} of PR
with respect to [. , .]k with ϕν ∈ P|ν| , we have∑

ν

ϕν(x)ϕν(y) = Ek(x, y) =
∑
ν

mν(x)yν

ν!
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where the second equation follows from the definition of moment functions.
Therefore, by Proposition 4.55 and the definition of the Hν ,∑

ν

Hν(x)Hν(y) =
∑
ν

RΓ
ν (1/2, x)SΓ

ν (1/2, y)
ν!

,

which leads together with Theorem 2.59 to (6) for t = 1/2.
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5 Notation

We denote by Z, R and C the sets of integer, real and complex numbers re-
spectively. Further, Z+ = {n ∈ Z : n ≥ 0}. For a locally compact Haus-
dorff space X, we denote by C(X), Cb(X), Cc(X), C0(X) the spaces of con-
tinuous complex-valued functions on X, those which are bounded, those with
compact support, and those which vanish at infinity, respectively. Further,
Mb(X), M+

b (X), M1(X) are the spaces of regular bounded Borel measures on
X, those which are positive, and those which are probability-measures, respec-
tively. Finally, B(X) stands for the σ -algebra of Borel sets on X . Moreover
P stands for the vector space of all poynomials in N variables, and Pn is the
subspace of those, which are homogeneous of degree n . Finally, S(RN ) is the
Schwartz space of rapidly decreasing functions on RN .
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[T1] Trimèche, K., The Dunkl intertwining operator on spaces of functions

and distributions and integral representations of its dual. Integral Trans-
form. Spec. Funct. 12 (2001), 349–374.
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