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By Margit Rösler and Michael Voit

There exist several multivariate extensions of the classical Sonine integral
representation for Bessel functions of some index μ+ ν with respect to such
functions of lower index μ. For Bessel functions on matrix cones, Sonine
formulas involve beta densities βμ,ν on the cone and trace already back
to Herz. The Sonine representations known so far on symmetric cones are
restricted to continuous ranges �μ,�ν > μ0, where the involved beta den-
sities are probability measures and the limiting index μ0 ≥ 0 depends on the
rank of the cone. It is zero only in the one-dimensional case, but larger than
zero in all multivariate cases. In this paper, we study the extension of Sonine
formulas for Bessel functions on symmetric cones to values of ν below the
critical limit μ0. This is achieved by an analytic extension of the involved
beta measures as tempered distributions. Following recent ideas by A. Sokal
for Riesz distributions on symmetric cones, we analyze for which indices
the obtained beta distributions are still measures. At the same time, we char-
acterize the indices for which a Sonine formula between the related Bessel
functions exists. As for Riesz distributions, there occur gaps in the admissi-
ble range of indices, which are determined by the so-called Wallach set.

1. Introduction

Consider the one-variable normalized Bessel functions

jα(z) := 0 F1(α + 1; −z2/4) (α ∈ C \ {−1,−2, . . .}),
which for α > −1/2 have the well-known Laplace integral representation
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jα(z) := �(α + 1)

�(α + 1/2)�(1/2)

∫ 1

−1
eizx (1 − x2)α−1/2 dx (z ∈ C). (1)

For half integers α = p/2 − 1 with p ≥ 2, formula (1) may be regarded
as a Harish-Chandra integral representation for the spherical functions of
the Euclidean space R

p with SO(p)-action. It is also well known that for
α > −1 and β > 0, jα+β can be expressed in terms of jα as a Sonine
integral (formula (3.4) in Askey [1]):

jα+β(z) = 2
�(α + β + 1)

�(α + 1)�(β)

∫ 1

0
jα(zx)x2α+1(1 − x2)β−1 dx . (2)

This follows easily by power series expansion of both sides and is a particu-
lar case of classical integral representations for one-variable hypergeometric
functions. Notice that for β = 0, formula (2) degenerates in a trivial way.
As j−1/2(z) = cos z, formula (1) is actually a special case of (2). For some
background on these classical formulas we also refer to the monograph [2].

We now ask for which indices α, β ∈ R with α > −1 and α + β > −1
there actually exists a Sonine integral representation

jα+β(z) =
∫ ∞

0
jα(zx)dμα,β(x)

with a positive measure μα,β . It is easily seen that this is only possible if
β ≥ 0. Indeed, if such a representation with β < 0 would exist, we could
combine it with (2) for the parameter pairs (α + β,−β) instead of (α, β).
This would lead to a Sonine integral representation of jα in terms of jα
with a measure different from the point measure δ1, which is impossible by
the injectivity of the Hankel transform of bounded measures. In particular,
a Laplace representation such as (1) with a positive representing measure
exists precisely for α ≥ −1/2.

In this paper we study extensions of Sonine-type integral representations
for Bessel functions of matrix argument and more generally, on Euclidean
Jordan algebras and the associated symmetric cones. The general Jordan
algebra setting includes the Jordan algebras of Hermitian matrices over
the (skew) fields R,C or the quaternions H as important special cases.
Bessel functions in this setting trace back to the fundamental work of Herz
[3], which was motivated by questions in number theory and multivariate
statistics. For example, Bessel functions of matrix argument occur naturally
in the explicit expression of noncentral Wishart distributions ([4, 5]). They
are imbedded in a theory of hypergeometric functions on Euclidean Jordan
algebras, which are defined as hypergeometric series in terms of so-called
spherical polynomials. Integral representations of Bessel functions play an
important role in the analysis on symmetric cones and are closely related to
Laplace transforms. For details and a general background see Refs. [3, 6, 7].
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For various aspects concerning the rich harmonic analysis associated with
Bessel functions on symmetric cones, we also refer to [8–12].

Let us now describe our results in more detail. To avoid abstract notation,
we restrict in this introduction to the case where the underlying Jordan
algebra is the space V = Hq(F) of q × q Hermitian matrices over F = R,C,
or H. The (real) dimension of V is

n = q + d

2
q(q − 1) with d = dimRF ∈ {1, 2, 4},

and V is associated with the symmetric cone � = �q(F) of positive definite
matrices over F. The Bessel functions on V are defined by

Jμ(x) := 0 F1(μ; −x) =
∑
λ≥0

(−1)|λ|

(μ)λ|λ|! Zλ(x), x ∈ V .

Here, the sum is over all partitions of length q, (μ)λ is a generalized
Pochhammer symbol, and the Zλ are the (renormalized) spherical polynomi-
als of �, see Section 2 for the details.

For indices μ, ν ∈ C with �μ,�ν > n/q − 1 =: μ0, the associated beta
measure on � is defined by

dβμ,ν(x) := 1

B�(μ, ν)
	(x)μ−n/q	(Iq − x)ν−n/q · 1�e (x)dx, (3)

where B�(μ, ν) is the beta function associated with �, 	 denotes the
determinant polynomial on V , and �e = {x ∈ � : x < Iq}. For real μ, ν >
μ0, βμ,ν is a probability measure. It is known for Hq(R) and easy to see
in the general Jordan setting (Theorem 1) that the Bessel functions Jμ
have the following integral representation of Sonine type generalizing the
one-variable case (2): For indices μ, ν ∈ C with �μ,�ν > μ0,

Jμ+ν(r ) =
∫
�e

Jμ(
√

rs
√

r )dβμ,ν(s) for all r ∈ � . (4)

Notice that μ0 = 0 if q = 1, but μ0 is larger than zero if q > 1, and in this
case formula (4) is not available in the range �ν > 0. This is to some extent
unexpected and makes the situation more interesting in higher dimension
than in the one-variable case.

Let us mention at this point that there is a broad literature on beta
probability distributions on matrix cones and their relevance in statistics,
in particular in relation with Wishart distributions, see [5, 13–16] as well
as the survey [17]. For some applications in mathematical physics and
representation theory, see, for example, the survey [18] and references
therein. To our knowledge, beta distributions have so far only rarely been
considered for indices beyond the critical value μ0. References in this case



4 M. Rösler and M. Voit

are [19] and [20], where certain discrete indices are considered for which
the associated beta measures become singular.

Our aim in this paper is to study the extendability of the Sonine
formula (4) to larger ranges of the index ν. This will be achieved by
analytic extension (with respect to ν) of the beta probability measures
as distributions, and a detailed analysis when these distributions are still
measures.

Our method is motivated by the theory of Gindikin for Riesz distributions
associated with symmetric cones (see [21, 22], chapter 7 of [6], and the
recent simplifications in [23]). Let us recall the basic facts, again for the
case V = Hq(F). For indices α ∈ C with �α > μ0 = n/q − 1, the Riesz
probability distributions Rα on V are defined by

Rα(ϕ) = 1

��(α)

∫
�

ϕ(x)	(x)α−n/q dx,

where �� is the gamma function associated with � and 	 denotes the
determinant on V . According to the results by Gindikin, the measures
Rα have a (weakly) analytic extension to distributions Rα ∈ D′(V ) for all
α ∈ C. This means that the mapping α 	→ Rα(ϕ) is analytic on C for each
ϕ ∈ D(V ). The distributions Rα are tempered and their support is contained
in the closed cone � ⊂ V . Moreover, Rα is a positive measure exactly if α
belongs to the Wallach set{

0,
d

2
, . . . , (q − 1)

d

2
= μ0

}
∪ ]μ0,∞[ . (5)

A simple proof for the necessity of this condition is given in [23].
We consider the beta measures βμ,ν in (3) also on measures on � or as

compactly supported distributions on V of order zero. Their extension to a
larger range of the index ν is more involved than in the Riesz case. Indeed,
the range of extension we are able to obtain depends on �μ. To become
precise, consider the open half planes

Ek := {ν ∈ C : �ν > μ0 − k}, k ∈ N0,

where E0 ⊂ Ek ⊂ Ek+1. It is easily checked that for fixed μ ∈ E0, the
mapping

E0 → D′(V ), ν 	→ βμ,ν (6)

is (weakly) analytic, i.e., ν 	→ βμ,ν(ϕ) is analytic for each test function
ϕ ∈ D(V ). Recall that compactly supported distributions on V extend
continuously to E(V ), the space C∞(V ) with its usual locally convex
topology. In Theorem 3, we prove the following:

THEOREM A. For k ∈ N0 and μ ∈ C with �μ > μ0 + kq + 1, the mapping
(6) has a unique analytic extension from E0 to Ek with values in D′(V ). The
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distributions βμ,ν obtained in this way are compactly supported with support
contained in �e. Moreover, the Bessel functions Jμ and Jμ+ν associated
with � are related by the Sonine formula

Jμ+ν(r ) = βμ,ν
(J r

μ

)
for all r ∈ �, (7)

where J r
μ(x) = Jμ(

√
r x

√
r ) ∈ E(V ).

We next ask when the distributions βμ,ν are actually complex Radon
measures or even probability measures. The latter requires that μ, ν ∈ R.
The following result is contained in Corollary 2:

THEOREM B. Let F = R,C, k ∈ N, and μ ∈ R with μ > μ0 + kq + 3/2.
Then for ν ∈ Ek , the following statements are equivalent:

(1) ν is contained in the Wallach set (5).
(2) The distribution βμ,ν is a positive measure.
(3) There exists a probability measure β ∈ M1(�) such that

Jμ+ν(r ) =
∫
�

Jμ(
√

rs
√

r )dβ(s) for all r ∈ �.

In this case, the measure β ∈ M1(�) in (3) is unique, and β = βμ,ν .

We prove this result, as well as a counterpart for complex measures,
actually in the more general setting of symmetric cones with Peirce constant
d = 1 or 2. This also includes the Lorentz cones in R × R

2 and R × R
3.

Without restriction on the Peirce constant d, our results (contained in
Theorem 5) are somewhat less complete, but still give interesting restrictions
on the indices, which are necessary to assure that βμ,ν is a measure. This in
particular concerns the case of quaternionic matrix cones.

We finally mention that the spherical polynomials and thus also the
Bessel functions on Euclidean Jordan algebras depend only on the eigenval-
ues of their argument. Considered as functions of the spectra, the spherical
polynomials can be identified with Jack polynomials whose index depends
on d; this was first observed by Macdonald [24]. There is a natural theory
of hypergeometric expansions in terms of Jack polynomials (see [25, 26]),
which encompasses the theory on symmetric cones and is closely related
with rational Dunkl theory, cf. [10] and Lemma 2. Riesz distributions in this
setting are Selberg densities, and their analytic extension and consequences
for integral representations of Bessel functions of Dunkl type will be studied
in a forthcoming paper.

The organization of this paper is as follows: The next section gives
a short survey about Bessel functions on Euclidean Jordan algebras. In
Section 3, we discuss several facts concerning the beta measures βμ,ν and
the Sonine formula for �μ,�ν > μ0. Section 4 contains the main results
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of this paper on the analytic extension of the beta measures and their
consequences for Sonine integral representations of the Bessel functions.

2. Bessel functions on Euclidean Jordan algebras

In this section, we present some basic facts and notions on symmetric cones
and associated Bessel functions. We illustrate the general notions by the
important example of matrix cones. For a background on symmetric cones
and Jordan algebras we refer to the monograph [6].

A real algebra V of finite dimension n is called a (real) Jordan algebra if
its multiplication (x, y) 	→ x · y = xy, satisfies

xy = yx and x(x2 y) = x2(xy) for all x, y ∈ V .

A real Jordan algebra is called Euclidean, if it has an identity e ∈ V and
a scalar product ( . | . ) such that (xy|z) = (y|xz) for all x, y, z ∈ V . It is
called simple if it contains no nontrivial ideals. Let V be a Euclidean
Jordan algebra. Then the topological interior � of the set {x2 : x ∈ V } is a
symmetric cone. We recall that a symmetric cone � in a Euclidean vector
space V is an open cone � ⊆ V , which is proper (i.e., � ∩ −� = {0}),
self-dual, and homogeneous, in the sense that the automorphism group of
� acts in a transitive way. Let G denote the identity component of this
automorphism group and K = G ∩ O(V ). Then already G is transitive on
�, and there exist points e ∈ � such that K is the stabilizer of e in G.
Thus, � ∼= G/K , which is a Riemannian symmetric space. With e fixed as
above, there is a natural product in V for which V becomes a Euclidean
Jordan algebra with identity element e and such that � = {x2 : x ∈ V } (see
Theorem III.3.1 of [6]). Every symmetric cone is a product of irreducible
ones, and in the above way, the simple Euclidean Jordan algebras correspond
to the irreducible symmetric cones.

EXAMPLE. Let F be one of the (skew) fields R,C or H with real dimension
d = 1, 2, or 4, respectively. The usual conjugation in F is denoted by t 	→ t
and the real part of t ∈ F by Rt = 1

2 (t + t). Let

Hq(F) := {
x ∈ Mq(F) : x = x∗}

be the space of Hermitian q × q-matrices over F, where x∗ = xt .
We consider Hq(F) as a Euclidean vector space with scalar product
〈x, y〉 = R Tr(xy), where Tr(x) = ∑q

i=1 xii denotes the usual trace. With
this scalar product and the Jordan product x · y = 1

2 (xy + yx), the space
Hq(F) becomes a simple Euclidean Jordan algebra with identity e = Iq . The
associated symmetric cone is given by

�q(F) = {x ∈ Hq(F) : x positive definite}.
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The pairs (G, K ) are in this case (GL+
q (R), SOq(R)), (GLq(C),Uq(C)), and

(GLq(H), Uq(H)), respectively, where the action of G on �q(F) is given by
r 	→ grg∗. Notice that this reduces to conjugation when restricted to K .

Let now V be a simple Euclidean Jordan algebra and � the associated
symmetric cone. A Jordan frame in V is a complete set c1, . . . , cq ∈ V of
orthogonal primitive idempotents, i.e.,

c2
i = ci , ci c j = 0 if i �= j, c1 + · · · cq = e.

The group K acts transitively on the set of Jordan frames, and their
common cardinality q is called the rank of V (or �). The rank of V is
related to its real dimension n via

n = q + d

2
q(q − 1),

where d is the so-called Peirce constant, see p. 71 of [6]. Each x ∈
V admits a decomposition x = k

∑n
i=1 ξi ci with k ∈ K and unique real

numbers ξ1 ≥ . . . ≥ ξq , which are called the eigenvalues of x (section VI.2.
of [6]). The Jordan trace and determinant of x are defined by

tr(x) =
∑

ξi , 	(x) =
∏

ξi .

Both functions are K -invariant.

EXAMPLE. In the Jordan algebras Hq(F), a natural Jordan frame consists
of the matrices ci = Eii , 1 ≤ i ≤ q (having entry 1 in position (i, i) and 0
else). The eigenvalues of x ∈ Hq(F) are the usual (right) eigenvalues, and 	
coincides with the usual determinant if F = R or C, while for F = H it is
given by the so-called Moore determinant, see [27].

The simple Euclidean Jordan algebras are classified. Up to isomorphism,
there are the series Hq(F) with F = R,C,H, the exceptional Jordan
algebra H3(O) over the octonions, as well as the Jordan algebras V = R ×
R

q−1, q ≥ 3, with Jordan product (λ, u) · (μ, v) = (λμ+ 〈u, v〉, λv + μu),
where 〈 . , . 〉 denotes the usual Euclidean scalar product on R

q−1. In this
case, � is the Lorentz cone

�q = {(λ, u) ∈ R × R
q−1 : λ2 − 〈u, u〉 > 0, λ > 0}.

The following table summarizes these Jordan algebras and their structure
data.
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V � Rank d n = dim V

Hq(R) �q(R) q 1 1
2q(q + 1)

Hq(C) �q(C) q 2 q2

Hq(H) �q(H) q 4 q(2q − 1)
H3(O) �3(O) 3 8 27

R × R
q−1 �q 2 q − 2 q

In this paper, we always assume that V is a simple Euclidean Jordan
algebra with associated symmetric cone � and that the scalar product of V
is given by

〈x, y〉 = tr (xy),

where xy denotes the Jordan product. (This is no loss of generality, cf.
Section III.4 of [6].) We need some further notation: On V we use the
partial orderings

x < y : ⇐⇒ y − x ∈ � and x ≤ y : ⇐⇒ y − x ∈ �.
The quadratic representation P of V is defined by

P(x) := 2L(x)2 − L(x2), x ∈ V,

where L(x) ∈ End(V ) denotes the left multiplication by x on V , i.e.,
L(x)y = xy. For the Jordan algebras Hq(F), the quadratic representation is
given by

P(x)y = xyx,

where on the right side, the product is the usual matrix product (see [6],
Section II.3). An element x ∈ V is invertible in V if and only if P(x)
is invertible, and in this case P(x−1) = P(x−1). We finally mention an
important invariance property: Let r, s ∈ �. Then, by Lemma XIV.1.2 of [6],
there exists k ∈ K such that

P(
√

r )s = k P(
√

s )r. (8)

For normalizations we need the gamma and beta function associated with
the cone � ([6], chapter VII.1). They are defined by

��(z) =
∫
�

e−tr(x)	(x)z−n/q dx,

B�(z, w) =
∫
�e

	(x)z−n/q	(e − x)w−n/qdx,
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where dx is the Lebesgue measure on V induced by the scalar product
〈 . , . 〉 and

�e = {x ∈ � : x < e}.
Both integrals are absolutely convergent for all z, w ∈ C with �z,�w > μ0,
where

μ0 := n

q
− 1 = d

2
(q − 1). (9)

By corollary VII.1.3 of [6], �� can be expressed in terms of the classical
gamma function as

��(z) = (2π )(n−q)/2
q∏

j=1

�

(
z − d

2
( j − 1)

)
. (10)

Moreover,

B�(z, w) = ��(z)��(w)

��(z + w)
,

see Theorem VII.1.7 of [6]. Notice that �� is meromorphic on C without
zeros, and its set of poles is{

0,
d

2
, . . . , (q − 1)

d

2
= μ0

}
− N0 .

The basic functions for the harmonic analysis on the cone � and
building blocks for related special functions are the so-called spherical
polynomials. For their definition, recall that a q-tuple (λ1, . . . , λq) ∈ N

q
0 is

called a partition if λ1 ≥ . . . ≥ λq . We write λ ≥ 0 for short. The spherical
polynomials associated with � are indexed by partitions λ = (λ1, . . . , λq) ∈
N

q
0 and are defined by

�λ(x) =
∫

K
	λ(kx)dk, x ∈ V,

where dk is the normalized Haar measure on K and 	λ is the generalized
power function on V ,

	λ(x) = 	1(x)λ1−λ2	2(x)λ2−λ3 · · · · ·	q(x)λq .

Here, the 	i (x) are the principal minors of 	(x), see Section VII.1 of [6]
for details. For the matrix algebras V = Hq(F), the 	i (x) are just the usual
principal minors. The power function 	λ is a homogeneous polynomial
of degree |λ| = λ1 + . . .+ λq , which is positive on �. For convenience,
we work with renormalized spherical polynomials Zλ = cλ�λ, where the
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constants cλ > 0 are such that

(tr x)k =
∑
|λ|=k

Zλ(x) for k ∈ N0 , (11)

see Section XI.5. of [6]. The Zλ are K -invariant and thus depend only on
the eigenvalues of their argument. In view of (8),

Zλ(P(
√

r )s) = Zλ(P(
√

s )r ) for all r, s ∈ �.
We mention that for each symmetric cone the associated spherical

polynomials are given in terms of Jack polynomials ([28]). More precisely,
it was observed by Macdonald in [24] that for x ∈ V with eigenvalues
ξ = (ξ1, . . . , ξq) ∈ R

q ,

Zλ(x) = Cα
λ (ξ ) with α = 2

d
, (12)

where the Cα
λ are the Jack polynomials of q variables and index α > 0,

normalized such that

(ξ1 + · · · + ξq)k =
∑
|λ|=k

Cα
λ (ξ ). (13)

The Cα
λ are homogeneous of degree |λ| and symmetric in their arguments.

For a simple Euclidean Jordan algebra with Peirce constant d, the
associated (J -) Bessel functions are defined on V C as

Jμ(z) =
∑
λ≥0

(−1)|λ|

(μ)λ |λ|! Zλ(z), (14)

with the generalized Pochhammer symbol

(μ)λ :=
q∏

j=1

(
μ− d

2
( j − 1)

)
λ j

,

cf. [6]. Here it is assumed that μ ∈ C with (μ)λ �= 0 for all λ ≥ 0, which is
for example satisfied if �μ > μ0. The function Jμ is analytic on V C.

In the rank one case q = 1, we have � = ]0,∞[, μ0 = 0, and with the
notation of the introduction, the Bessel function Jμ satisfies

Jμ
(

z2

4

)
= jμ−1(z).

For the matrix cones �q(F), it is well known (see, e.g., [10] or [11]) that
for certain indices μ, the associated Bessel functions Jμ occur as spherical
functions of flat symmetric spaces. In fact, fix some integer p ≥ q and
denote by Mp,q = Mp,q(F) the space of p × q-matrices over F. Consider
the Gelfand pair (Mp,q � Up,Up), where the unitary group Up := Up(F)
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acts on Mp,q by left multiplication. The double coset space Mp,q � Up//Up

may be naturally identified with the orbit space M
Up
p,q , which is in turn

homeomorphic with the closed cone

�q(F) = {x ∈ Hq(F) : x positive semidefinite}
via the mapping

Up.x 	→ √
x∗x .

Considered as functions on the cone �q(F), the bounded spherical functions
of the Gelfand pair (Mp,q � Up,Up) are precisely given by the Bessel
functions

ϕμs (r ) = Jμ
(

1

4
rs2r

)
, s ∈ �q(F) with μ = pd/2.

As spherical functions, these Bessel functions have an integral representa-
tion of Harish-Chandra type. Analytic continuation with respect to μ leads
to the following integral representation, see [10], Section 3.3 as well as [3]
for F = R.

PROPOSITION 1. Let d = dimRF and μ ∈ C with �μ > d(q − 1/2). Then
for all x ∈ Hq(F), the Bessel function of index μ associated with Hq(F)
satisfies

Jμ(x2) = 1

κμ

∫
Bq (F)

e−2i〈v,x〉	(I − v∗v)μ−1−d(q−1/2)dv (15)

with Bq(F) = {v ∈ Mq(F) : v∗v < Iq}, the scalar product 〈x, y〉 =
� Tr(x∗y) on Mq(F), and

κμ =
∫

Bq (F)
	(I − v∗v)μ−1−d(q−1/2)dv.

Formula (15) generalizes the Laplace representation (1) to higher rank.

3. Beta measures and the Sonine formula on symmetric cones

Throughout this paper, Mb(X ) is the set of bounded, regular, complex Borel
measures on a locally compact Hausdorff space X and M1(X ) the set of all
probability measures in Mb(X ).

As before, let V be a simple Euclidean Jordan algebra and � the
associated symmetric cone. For μ, ν ∈ C with �μ,�ν > μ0 = n

q − 1, we
introduce the beta measures

dβμ,ν(x) := 1

B�(μ, ν)
	(x)μ−n/q	(e − x)ν−n/q · 1�e (x)dx ∈ Mb(�), (16)
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which we also consider as measures on V with compact support �e . The
βμ,ν are probability measures for μ, ν ∈]μ0,∞[. We here do not use the
notion “beta distributions,” as we study (tempered) distributions and want to
avoid any misunderstanding.

Our starting point is the following Sonine formula (2) for Bessel
functions on Euclidean Jordan algebras, which generalizes formula (4)
announced in the Introduction. For Hq(R) it goes already back to [3]
(formula (2.6’)).

THEOREM 1. Let V be a simple Euclidean Jordan algebra. Then for all
μ, ν ∈ C with �μ,�ν > μ0 and x ∈ V ,

Jμ+ν(x) =
∫
�e

Jμ(P(
√

r )x)dβμ,ν(r ).

Proof. For indices α, β1, β2 ∈ C with �α,�βi > μ0 consider the hyper-
geometric function

1 F2(α;β1, β2; z) :=
∑
λ≥0

(α)λ
(β1)λ(β2)λ |λ|! Zλ(z),

which is holomorphic on V C (Proposition XV.1.1. of [6]). Consider first
x ∈ �e. As G is transitive on �, there exists g ∈ G with x = ge. According
to Proposition XV.1.4 of [6],

1 F2(μ;β,μ+ ν; ge) = 1

B�(μ, ν)

∫
�e

0 F1(μ; gr )dβμ,ν(r ).

With β = μ, this becomes

Jμ+ν(−x) = 0 F1(μ+ ν; ge) = 1

B�(μ, ν)

∫
�e

Jμ(−gr )dβμ,ν(r ).

By Theorem III.5.1 of [6], g can be written in polar form as g =
P(s)k with s ∈ �, k ∈ K . Thus, x = ge = P(s)e = s2 and g = P(

√
x )k.

The measures βμ,ν and the function Jμ are K -invariant. Thus, in view
of (8),

Jμ+ν(−x) = c

∫
�e

Jμ(−P(
√

x)r )dβμ,ν(r ) = c

∫
�e

Jμ(−P(
√

r )x)dβμ,ν(r )

with c = B�(μ, ν)−1. The last formula extends analytically to all x ∈ V . �
We conclude with some remarks concerning the matrix cones �q(F).

Remark 1.

(1) It follows form the analysis in Section 3 of [10] that for μ > μ0

and ν = μ0, there exist degenerated beta probability measures βμ,ν on
�q(F)e such that the mapping ν 	→ βμ,ν becomes weakly continuous
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on [μ0,∞[. In this way, Theorem 1 extends to indices ν ≥ μ0 and
μ > μ0. In [19] and [20] some singular beta measures are studied for
F = R.

(2) Formula (15) may be regarded as a special case of Theorem 1 with
the parameters (qd/2, μ− qd/2) instead of (μ, ν). To check this, we
first recall from formula (3.4) of [10] that for x ∈ Hq(F),

Jqd/2(x∗x) =
∫

Uq

e−2i〈u,x〉 du, (17)

where du is the normalized Haar measure on Uq = Uq(F) and the
scalar product is that of Proposition 1. We also need the integral
formula for the polar decomposition of Mq(F) (see [8] or Section 3.1
of [10]):∫

Mq (F)
f (x)dx = C

∫
Uq

∫
�q (F)

f (u
√

r )	(r )qd/2−n/q drdu

with some constant C = Cq > 0. Let �μ > d(q − 1/2). Then identity
(15) becomes

Jμ(x∗x) = C

∫
Bq (F)

e−2i〈v,x〉	(I − v∗v)μ−1−d(q−1/2)dv

= C

∫
�q (F)e

(∫
Uq

e−2i〈u√
r ,x〉du

)
	(r )qd/2−n/q	(I − r )μ−1−d(q−1/2) dr

= C

∫
�q (F)e

Jqd/2(
√

r x∗x
√

r )	(r )qd/2−n/q	(I − r )μ−1−d(q−1/2)dr.

Put ν := μ− qd/2 and notice that �ν > μ0. In view of the normalization
Jμ(0) = 1 this is equivalent to

Jν+qd/2(s) =
∫
�q (F)e

Jqd/2(
√

r s
√

r ) dβqd/2,ν(r )

for all s ∈ �q(F), which is a special case of Theorem 1 as stated.

In the next section we construct an extension of Theorem 1 with
respect to the ranges of the indices μ, ν. Before that, we mention
a special case in the matrix cone setting, which follows from group
theory:



14 M. Rösler and M. Voit

PROPOSITION 2. Let μ = pd/2 and ν = p̃d/2 with integers p ≥ q and
p̃ ≥ 0. Then there exists a unique probability measure β̃μ,ν on the matrix
cone �q(F) such that for all r ∈ �q(F),

Jμ+ν(r ) =
∫
�q (F)

Jμ(
√

rs
√

r ) dβ̃μ,ν(s).

Proof. For brevity we omit F in the notation of the relevant matrix
spaces. Recall that the functions

ϕμs (r ) = Jμ
(

1

4
rs2r

)
s, r ∈ �q

can be naturally identified with the bounded spherical functions of the
Gelfand pair (Mp,q � Up,Up), and the ϕ

μ+ν
s with those of the pair

(Mp+ p̃,q � Up+ p̃,Up+ p̃). In Section 6 of [11] it is deduced from this
characterization by a positive definiteness argument that the functions φμ+ν

s

have a representation

ϕμ+ν
s (r ) =

∫
�q

ϕ
μ
t (r )dαμ,ν;s(t),

with a unique probability measure αμ,ν;s , see formula (6.1) of [11]. (There is
a misprint in [11]: the indices p1, p2 of the groups G p1,G p2 are mixed up).
With s = 2Iq this immediately yields our claim. �

4. Beta distributions and extension of the Sonine formula

In this section, we present an analytic extension of Theorem 1 with
respect to the parameters μ, ν by distributional methods. Let us first fix
some notation. For an open subset U of some finite dimensional vector
space V over R, denote by D(U ) the space of compactly supported C∞-
functions on U and by D′(U ) the space of distributions on U . We write
E(U ) for the space C∞(U ) with its usual Fréchet space topology; its
dual E ′(U ) coincides with the space of compactly supported distributions
on U . Further, D′k(U ) denotes the space of distributions of order ≤ k.
Recall that D′0(U ) consists of those distributions, which are given by a
(not necessarily bounded) complex Radon measure on U . In particular,
each locally integrable function f ∈ L1

loc(U ) defines a regular distribution
T f ∈ D′0(U ) via T f (ϕ) = ∫

U ϕ(x) f (x) dx .
We also consider regular distributions associated with functions fλ ∈

L1
loc(U ) where fλ depends analytically on some parameter λ ∈ D with some

open, connected set D ⊆ C. We ask for which parameters the associated
distributions Tλ := T fλ ∈ D′0(U ) admit extensions to distributions of order 0
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on V . We need the following observation from Sokal [23]; see Lemmas 2.1,
2.2, and Proposition 2.3 there.

LEMMA 1. Let U ⊆ V and D ⊆ C be as above, and let

F : U × D → C, (x, λ) → fλ(x) := F(x, λ)

be a continuous function such that F(x, .) is analytic in D for each x ∈ U.
Define Tλ ∈ D′0(U ) by

Tλ(ϕ) =
∫

U
ϕ(x) fλ(x)dx .

Then the following hold:

(1) The map λ 	→ Tλ , D → D′(U ) is (weakly) analytic in the sense that
λ 	→ Tλ(ϕ) is analytic for all ϕ ∈ D(U ).

(2) Let D0 ⊆ D be a nonempty open set, and let λ 	→ T̃λ, D → D′(V )
be an analytic map such that for each λ ∈ D0, the distribution T̃λ
extends the distribution Tλ from U to V . Then T̃λ extends Tλ for
each λ ∈ D. Moreover, for each λ ∈ D with T̃λ ∈ D′0(V ) one has
fλ ∈ L1

loc( U ), that is fλ is integrable over each sufficiently small
neighborhood in V of any point x ∈ U. In particular, if U is
compact, then fλ is the density of a bounded measure.

We start our considerations on symmetric cones with an injectivity result,
which is of interest on its own and will be of importance in the sequel.
Let again � be an irreducible symmetric cone and V the associated simple
Euclidean Jordan algebra. Following [9], we consider the Schwartz space of
the closed cone � ⊂ V ,

S(�) := {
f ∈ C∞(�) : ‖ f ‖α,β,� := ‖xβ∂α f ‖∞,� < ∞ for all α, β ∈ N

q
0

}
.

Here C∞(�) denotes the space of continuous functions on �, which are
smooth on � and whose partial derivatives extend continuously to �. We
note that each f ∈ C∞(�) can be extended to a smooth function on V .
This follows by the Whitney extension theorem (see [29], Theorem 2.6 and
Proposition 2.16), because � is a semialgebraic (and hence subanalytic)
subset of V with dense interior. Therefore,

S(�) = {
f
∣∣
�

: f ∈ C∞(V ), ‖ f ‖α,β,� < ∞ for all α, β ∈ N
q
0

}
.

The same approximation argument as for the density of D(Rn) in S(Rn) (see
for instance [30]) shows that the space

D(�) := { f
∣∣
�

: f ∈ D(V )}
is dense in S(�) with respect to the seminorms ‖.‖α,β,� . We denote by

S ′(�) the dual of the locally convex space S(�), i.e., the space of tempered
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distributions on �. Let �μ > d(q − 1) + 1 = 2μ0 + 1. Then, according to
Theorem 2.2. of [9], the Hankel transform

f 	→ f̂ μ, f̂ μ(r ) =
∫
�

f (s)Jμ(P(
√

s )r )	(s)μ−n/qds

is a homeomorphism of S(�). Actually, this is stated in [9] for �μ >
μ0, but the proof requires absolute convergence of the inverse Laplace
integral representing the Bessel function, which is guaranteed only for
�μ > d(q − 1) + 1, see [6], Proposition XV.2.2. The stated homeomorphism
property allows to deduce the following injectivity result.

THEOREM 2. Let μ ∈ C with �μ > 2μ0 + 1. For r ∈ � define

J r
μ(x) := Jμ(P(

√
r )x) ∈ E(V ).

Suppose that T ∈ E ′(V ) has compact support which is contained in �. Then
the following hold:

(1) If T (J r
μ) = 0 for all r ∈ �, then T = 0.

(2) Suppose that J r
μ is bounded for each r ∈ �, and that there is a

bounded measure β ∈ Mb(�) (also considered as a measure on V )
such that

T (J r
μ) =

∫
�

J r
μ(s) dβ(s) for all r ∈ � .

Then, T = β.

Proof. We first observe that T belongs to S ′(�). Indeed, choose a
compact, convex and connected subset K ⊂ � containing the support of T ,
and let k denote the order of T . Then, according to Theorem 2.3.10 of [31],
there exists a constant C > 0 such that for all ϕ ∈ E(V ),

|T (ϕ)| ≤ C
∑
|α|≤k

‖∂αϕ‖∞,K . (18)

This shows that T ∈ S ′(�) and that the inclusion

{T ∈ E ′(V ) : supp T ⊂ �} → S ′(�)

is injective. Now let ϕ ∈ D(�). It is easy to check that the mapping
r 	→ J r

μ , � → E(V ), is continuous. Therefore,∫
suppϕ

J r
μ ϕ(r )	(r )μ−n/qdr



Beta Distributions and Sonine Integrals 17

is well defined as an integral with values in E(V ) (see, e.g., Section 3 of
[30]), and we obtain

T (̂ϕ μ) = T

(∫
suppϕ

J r
μ ϕ(r )	(r )μ−n/qdr

)
=
∫

suppϕ
T
(J r

μ

)
ϕ(r )	(r )μ−n/qdr.

(19)
In the situation of part (1), it follows that T (̂ϕ μ) = 0. As D(�) is dense in
S(�) and the Hankel transform is a homeomorphism of S(�), this implies
that T = 0 as an element of S ′(�), which yields assertion (1). In the
situation of part (2), identity (19) leads to

T (̂ϕ μ) =
∫
�

ϕ̂ μ(s) dβ(s),

and the same argument as above shows that T = β. �
The following estimate implies that already for �μ ≥ μ0 + 1/2, the

Bessel functions J r
μ with r ∈ � are indeed bounded on � as required in

part (2) of the above theorem.

LEMMA 2. Let �μ ≥ μ0 + 1/2. Then,

|Jμ(x)| ≤
√

2qq! for all x ∈ V .

For further bounds on J -Bessel functions see [12] and [32]; they do
however not cover Lemma 2 above. Our proof of this Lemma will be
based on the connection between Jμ and Bessel functions of Dunkl type
associated with the root system

Bq = {±ei , 1 ≤ i ≤ q} ∪ {±ei ± e j : 1 ≤ i < j ≤ q} ⊂ R
q

as established in [10]. The reflection group associated with Bq is the
hyperoctahedral group G = Sq � Z

q
2 . For a general background on Dunkl

theory see [33, 34] and the references cited there. Let E B
k : C

q × C
q → C

denote the Dunkl kernel associated with Bq and multiplicity k = (k1, k2),
where k1 and k2 are the values of k on the roots ±ei and ±ei ± e j ,
respectively. Here, k belongs to a regular multiplicity set K reg ⊂ C

2 which
contains those k with �k ≥ 0, i.e., �ki ≥ 0. The associated Bessel function
is given by

J B
k (z, w) = 1

|G|
∑
g∈G

E B
k (z, gw).

It is G-invariant in both arguments and satisfies J B
k (λz, w) = J B

k (z, λw) for
all λ ∈ C. If �k ≥ 0, then by [33],∣∣J B

k (iξ, η)
∣∣ ≤

√
|G| for all ξ, η ∈ R

q . (20)
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Proof of Lemma 2. Let x ∈ � with eigenvalues ξ = (ξ1, . . . , ξq) ∈ R
q

and suppose that �μ ≥ μ0 + 1/2. According to Corollary 4.6 of [10],

Jμ(x2) = J B
k (2iξ, 1) with k = (μ− μ0 − 1/2, d/2), 1 = (1, . . . , 1).

Estimate (20) implies the stated estimate of Jμ(x) with x ∈ �. By the
K -invariance of Jμ it extends to all x ∈ V . �

Theorem 2 together with the integral representation of Theorem 1 can be
used to derive the following composition result for beta measures.

LEMMA 3. Let μ, ν1, ν2 ∈ C with �μ > 2μ0 + 1 and �νi > μ0. Then, for
the mapping

C : �e ×�e → �e, (r, s) 	→ P(
√

s )r

the push forward (or image measure)

βμ,ν1 ◦ βμ+ν1,ν2 := C
(
βμ,ν1 ⊗ βμ+ν1,ν2

) ∈ Mb(�e)

satisfies

βμ,ν1 ◦ βμ+ν1,ν2 = βμ,ν1+ν2 .

Proof. We recall that for r ∈ �, P(r ) is a positive operator and contained
in G = G(�)0. (The latter follows from Proposition III.2.2. of [6] and the
continuity of P .) Thus, for r, s ∈ �e, we have 0 < P(

√
s )r < P(

√
s )e =

s < e, which confirms that C(r, s) ∈ �e. By Theorem 1 we obtain for
r ∈ �

Jμ+ν1+ν2 (r ) =
∫
�e

Jμ+ν1 (P(
√

s )r ) dβμ+ν1,ν2 (s)

=
∫
�e

∫
�e

Jμ(P(
√

t )P(
√

s )r )dβμ,ν1 (t)dβμ+ν1,ν2 (s).

On the other hand,∫
�e

Jμ(P(
√

r )y)dβμ,ν1 ◦ βμ+ν1,ν2 (y) =

=
∫
�e

∫
�e

Jμ(P(
√

r )P(
√

s)t)dβμ,ν1 (t)dβμ+ν1,ν2 (s).

Now consider the argument of Jμ. By the polar decomposition of
G (Theorem III.5.1 of [6]), there exist k ∈ K and x ∈ � such that
P(

√
r )P(

√
s)P(

√
t) = P(x)k and therefore

P(
√

r )P(
√

s)t = P(
√

r )P(
√

s)P(
√

t)e = P(x)ke = P(x)e = x2

and

P(
√

t)P(
√

s)r = P(
√

t)P(
√

s)P(
√

r )e = (P(x)k)∗e = k−1 P(x)e = k−1x2.
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As Jμ is K -invariant, we obtain

Jμ+ν1+ν2 (r ) =
∫
�e

Jμ(P(
√

r )y)dβμ,ν1 ◦ βμ+ν1,ν2 (y).

If we compare this with Theorem 1 and use Theorem 2(1), the result
follows. �

We now turn to the distributional extension of beta measures on
symmetric cones. We apply Lemma 1 to the Jordan algebra V , the relatively
compact set U := �e, λ = ν and the densities

fν(x) := ��(μ+ ν)

��(μ)��(ν)
	(x)μ−n/q	(e − x)ν−n/q (21)

of the beta measures βμ,ν from (16) on U , where the index μ is suppressed.
We consider the open half planes

Ek := {ν ∈ C : �ν > μ0 − k}, k ∈ N0.

Note that E0 ⊂ Ek ⊂ Ek+1. It is clear that for fixed μ with �μ >
max(μ0, k) and x ∈ U , the function ν 	→ fν(x) is analytic on Ek . Moreover,
by Lemma 1(1), the mapping

E0 → D′(V ), ν 	→ βμ,ν (22)

is analytic for fixed μ with �μ > μ0. To apply the approach of Sokal [23]
and Lemma 1(2), we construct distributions βμ,ν ∈ D′(V ) for ν ∈ Ek . We
here use ideas of Gindikin [21], [22] for Riesz distributions; see Chapter VII
of [6].

THEOREM 3. Fix k ∈ N0 and an index μ ∈ C with �μ > μ0 + kq + 1.

(1) For ν ∈ Ek there exists a unique distribution βμ,ν ∈ D′(V ) such that
the mapping

Ek → D′(V ), ν 	→ βμ,ν

is a (weakly) analytic extension of the mapping (22) from E0 to Ek.
(2) The distributions βμ,ν from part (1) belong to D′kq(V ) and have

compact support, which is contained in �e. In particular, βμ,ν(ϕ) is
well defined for each ϕ ∈ E(V ) and ν → βμ,ν(ϕ) is analytic on Ek for
fixed ϕ ∈ E(V ).

(3) For each ν ∈ Ek, the Bessel function Jμ+ν satisfies

Jμ+ν(r ) = βμ,ν(J r
μ ) for all r ∈ �. (23)
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Proof. We first note that for m ∈ N0 and α ∈ C with �α > μ0 + m +
1 = m + n/q, the function on V defined by

gα(x) :=
{
	(x)α−n/q for x ∈ �

0 otherwise

is contained in Cm(V ). Moreover, by Proposition VII.1.4 and the arguments
on p. 133 of [6], the functions gα are related to the linear differential
operator 	( ∂

∂x ) of order q via

	

(
∂

∂x

)
gα = ��(α)

��(α − 1)
gα−1 . (24)

This leads to part (1) as follows: The case k = 0 is trivial. For k ≥ 1 and
ν ∈ Ek we define a distribution βμ,ν ∈ D′(V ) by

βμ,ν(ϕ) := ��(μ+ ν)

��(μ)��(ν + k)

∫
V
	

(
∂

∂x

)k (
ϕ(x)gμ(x)

) · gν+k(e − x) dx .

(25)
Notice for this definition that gμ ∈ Ckq(V ) by our assumptions. Moreover,
the above expression is analytic in ν ∈ Ek . It is now easy to see from
(24) that definition (25) is consistent with (22). Indeed, for �ν + k >
μ0 + qk + 1 we may carry out integration by parts. As

	

(
− ∂

∂x

)k

gν+k(e − x) = ��(ν + k)

��(ν)
gν(e − x), (26)

we obtain that (25) coincides with the beta measure βμ,ν for such ν, and
by analyticity with respect to ν, it coincides for all ν ∈ E0. Part (2) is
clear from formula (25). Finally, identity (23) holds for all ν ∈ E0 according
to Theorem 1, and as both sides are analytic in ν ∈ Ek , it extends to all
ν ∈ Ek . This proves part (3). �

Similar to Riesz distributions in Theorem VII.2.2 of [6], one can extend
analytic relations for the beta measures (16) to distributions with parameters
μ, ν as in Theorem 3. For instance, (16) immediately leads to:

LEMMA 4. Let μ, ν ∈ C be as in Theorem 3 for some k ∈ N0. Then

	(e − x) · βμ,ν =
⎛⎝q−1∏

j=0

ν − jd/2

μ+ ν − jd/2

⎞⎠ · βμ,ν+1 , (27)

	(x) · βμ,ν =
⎛⎝q−1∏

j=0

μ− jd/2

μ+ ν − jd/2

⎞⎠ · βμ+1,ν .
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The following result concerning the existence of Sonine representations is
an immediate consequence of Theorem 2, Lemma 2, and Theorem 3(3).

COROLLARY 1. Let k ∈ N0 and �μ > max(μ0 + kq + 1, 2μ0 + 1). Then
for ν ∈ Ek, the following are equivalent:

(1) The distribution βμ,ν is a complex measure.
(2) There exists a bounded complex measure β ∈ Mb(�) such that Jμ+ν

has the Sonine representation

Jμ+ν(r ) =
∫
�

Jμ(P
√

s) r )dβ(s) for all r ∈ �.

In this case, the measure β in (2) is unique and given by β = βμ,ν .

We now investigate for which ν ∈ Ek the distribution βμ,ν (with �μ >
μ0 + kq + 1) is actually a complex measure, i.e., contained in D′0(V ), or
even a positive measure.

It is well known (see Section VII.3 of [6]) that the Riesz distributions,
which are given for �α > μ0 by

Rα(ϕ) = 1

��(α)

∫
V
ϕ(x)gα(x) dx,

have a (weakly) analytic extension with respect to α to distributions Rα for
all α ∈ C. These distributions are tempered and supported in �. Moreover,
Rα is a positive measure exactly if α belongs to the Wallach set{

0,
d

2
, . . . , (q − 1)

d

2
= μ0

}
∪ ]μ0,∞[ .

A simple proof for the necessity of this condition is given in [23]. By the
same method, it is also shown there that Rα is a locally finite complex Borel
measure exactly if α belongs to the set

Wq,d :=
{

0,
d

2
, . . . , (q − 1)

d

2

}
∪ E0.

The following sufficient condition for beta distributions is a consequence of
the known results for Riesz distributions.

THEOREM 4. Let k ∈ N0, �μ > μ0 + kq + 1, and let ν ∈ Ek ∩ Wq,d .
Then βμ,ν belongs to D′0(V ), i.e., βμ,ν is a compactly supported complex
Borel measure. In particular, βμ,0 = δe, provided that 0 ∈ Ek.

If in addition μ and ν are real, then βμ,ν is a probability measure.

Proof. For the normalization, recall from Theorem 3 that ν → βμ,ν(1) is
analytic on Ek . Therefore, βμ,ν(1) = 1 for all ν ∈ Ek .
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Now let ν ∈ Ek ∩ Wq,d . Then the distribution

	

(
∂

∂x

)k

gν+k = ��(ν + k)Rν

is a locally finite complex Borel measure. We claim that for ϕ ∈ D(V ),

βμ,ν(ϕ) = ��(μ+ ν)

��(μ)
· Rθν (ϕgμ), (28)

where Rθν denotes the image measure (pushforward) of the Riesz measure
Rν under the mapping θ : V → V, x 	→ e − x . Indeed, for ψ ∈ D(V ) we
have

��(ν + k)Rθν (ψ) =
(
	

(
∂

∂x

)k

gν+k

)
(ψ ◦ θ )

=
∫

V
	

(
∂

∂x

)k

ψ(x) · gν+k(e − x)dx .

An approximation argument shows that this identity also holds for ψ ∈
Ckq

c (V ), as we may approximate ψ by a net (ψε)ε>0 ⊆ D(V ) such that
∂αψε → ∂αψ uniformly on V for all |α| ≤ kq and the supports of the
ψε stay in a fixed relatively compact neighborhood of suppψ . Putting
ψ = ϕgμ ∈ Ckq

c (V ) and using formula (25), we thus obtain (28). From
identity (28) it is now obvious that βμ,ν is a complex measure, which
is even positive if μ, ν are real. As R0 = δ0, it is also immediate that
βμ,0 = δe. �

Remark 2.

(1) The supports of the Riesz measures Rν with ν ∈ Wq,d , are known
(see Propositions VII.2.3 of [6]). Identity (28) then easily gives the
supports of the corresponding measures βμ,ν . In particular, βμ,ν is a
point measure only if ν = 0.

(2) Theorem 4 is in accordance with Proposition 2 in the group cases
for μ sufficiently large. It is not clear whether for small parameters
μ = pd/2 and ν = p̃d/2, the probability measures β̃μ,ν from Propo-
sition 2 can be obtained as distributions via analytic extension as
above. Nevertheless, we from now on denote β̃μ,ν by βμ,ν .

We are now aiming at necessary conditions on the indices under which
the beta distributions βμ,ν on a symmetric cone are actually measures. Such
conditions will also imply that the existence of an integral representation
as in the above corollary requires nontrivial restrictions on the indices of
the Bessel functions involved. As a first step, we extend Lemma 3 for
beta measures to a larger set of parameters for which the involved beta



Beta Distributions and Sonine Integrals 23

distributions are measures according to Theorem 4 or Proposition 2. The
same proof as in Lemma 3 implies:

LEMMA 5. Let �μ > 2μ0 + 1 and ν1, ν2 ∈ C be such that the beta
measures βμ,ν1 ,βμ+ν1,ν2, βμ,ν1+ν2 exist. Then, in notation of Lemma 3,

βμ,ν1 ◦ βμ+ν1,ν2 := C
(
βμ,ν1 ⊗ βμ+ν1,ν2

) = βμ,ν1+ν2 .

We do not know whether it is possible to derive a converse statement of
Theorem 4 by following the approach of Gindikin for Riesz distributions;
see Section VII.3 of [6]. We use a different approach by Sokal [23]
(specifically, Lemma 1), by which we easily obtain the following result:

THEOREM 5. Let k ∈ N0, �μ > μ0 + kq + 1, and ν ∈ Ek. If βμ,ν ∈
D′0(V ), i.e., βμ,ν is a complex measure, then

ν ∈
({

0,
d

2
, . . . , (q − 1)

d

2

}
− N0

)
∪ E0 .

In particular, ν + l ∈ Wq,d for some l ∈ N0.

Proof. We apply Lemma 1(2) to D0 := E0, D := Ek and U = �e and
obtain that the beta density fν given by (21) belongs to L1

loc(�e). It is well
known that

x 	→ 	(x)μ−n/q	(e − x)ν−n/q

is contained in L1
loc(�e) precisely for ν ∈ E0; see, for instance, Lemma 3.4

of [23]. Therefore, either ν ∈ E0 or

��(μ+ ν)

��(μ)��(ν)
= 0,

where the latter just means that �� has a pole in ν. �
We conjecture that under the conditions of Theorem 5, it should be even

true, similar as for Riesz distributions, that ν ∈ Wq,d . Our next statement
confirms this conjecture under the assumption that d ∈ {1, 2}. This covers
the important case of the matrix cones �q(F) over F = R or C, as well as
the Lorentz cones �3 and �4.

THEOREM 6. Suppose that d ∈ {1, 2}. Let k ∈ N, �μ > μ0 + kq + 3/2,
and ν ∈ Ek. If βμ,ν is a complex measure, then �ν ≥ 0. If in addition μ is
real and βμ,ν is a positive measure, then ν ∈ [0,∞[.

Proof. Notice first in the present situation, μ0 + kq + 3/2 > 2μ0 + 1.
Now, suppose that βμ,ν is a complex measure. In view of Theorem 5
it suffices to consider ν = rd/2 − l with r = 0, . . . , q − 1 and l > 0 an
integer. We may also assume that μ0 − k < ν ≤ μ0 − k + 1, and therefore
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ν = μ0 − k + α with α ∈ {1/2, 1}. We now assume that ν < 0 and claim
that βμ+ν,−ν is a complex measure. In fact, our assumptions imply that

�(μ+ ν) > (μ0 + kq + 3/2) + (μ0 − k + 1/2) = 2μ0 + k(q − 1) + 2 > μ0 .

If −ν > μ0, our claim is obvious. Let us consider the case −ν ≤ μ0. Then
−ν ∈ E2μ0+2−k with 2μ0 + 2 − k ∈ N. As ν < 0 and μ0, ν ∈ 1

2N0, it follows
that k ≥ μ0 + 1 and, therefore

�(μ+ ν) > 2μ0 + k(q − 1) + 2 ≥ 2μ0 + (μ0 + 1)(q − 1) + 2 ≥ μ0

+ q(2μ0 + 2 − k) + 1 .

Moreover, as 0 < −ν ≤ μ0 = (q − 1)d/2 and d = 1 or d = 2, we conclude
that −ν ∈ {d/2, . . . , (q − 1)d/2} ⊂ Wq,d . (Here the assumption d ∈ {1, 2}
has been used for the first time.) We may now apply Theorem 4 to the
pair (μ+ ν,−ν) and obtain again that βμ+ν,−ν is a complex measure.
Notice also that βμ,0 is a complex measure because 0 ∈ Ek according to our
assumptions. Thus, by Lemma 5,

βμ,ν ◦ βμ+ν,−ν = βμ,0 = δe . (29)

On the other hand, the support of the measure βμ,ν ◦ βμ+ν,−ν is given by

{P(
√

s )r : r ∈ suppβμ+ν,−ν , s ∈ suppβμ,ν}.
If P(

√
s)r = e with 0 ≤ r, s ≤ e, then r = s = e. Identity (29) therefore

implies that suppβμ,ν = suppβμ+ν,−ν = {e}, which is possible only if
ν = 0. This contradicts our assumption and proves the first statement.

If in addition μ is real and βμ,ν is a positive measure, then it is clear
from Theorem 3(3) that ν is real. This shows the second statement. �

The argument above relies on the condition d ∈ {1, 2}, and we do
not know whether Theorem 6 extends to larger Peirce constants. Let us
summarize our results for d ∈ {1, 2}.

COROLLARY 2. Suppose d ∈ {1, 2}. Let k ∈ N and �μ > μ0 + kq + 3/2.
Then, for ν ∈ Ek, the following statements are equivalent:

(1) βμ,ν is a complex measure;
(2) ν ∈ Wq,d;
(3) There exists a bounded complex measure β ∈ Mb(�) such that

Jμ+ν(r ) =
∫
�

Jμ(rs)dβ(s) for all r ∈ � .

If μ is real with μ > μ0 + kq + 3/2, then for ν ∈ Ek the following are
equivalent:

(1) βμ,ν is a positive measure;
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(2) ν is contained in the Wallach set{
0,

d

2
, . . . , (q − 1)

d

2
= μ0

}
∪ ]μ0,∞[ ;

(3) There exists a probability measure β ∈ M1(�) such that

Jμ+ν(r ) =
∫
�

Jμ(rs)dβ(s) for all r ∈ � .

In both cases, the measure β in (3) is unique and given by βμ,ν .

Proof. In both cases, implication (1)⇒(2) follows from Theorem 5 in
combination with Theorem 6. The remaining parts are immediate from
Corollary 1, Theorem 4 and Theorem 2(2). �

Corollary 2 implies in particular that for q > 1 and sufficiently large
μ > 0, there exist indices ν > 0 such that Jμ+ν admits no positive integral
representation with respect to Jμ. So there exists no Sonine-type formula in
these cases. This is a surprising contrast compared to the one-variable case.

Remark 3. The Jack polynomials Cα
λ have nonnegative coefficients in

their expansion with respect to the monomial symmetric functions ([35]). In
view of formula (14), this implies that

Jμ(−r ) > 0 for μ > μ0 and all r ∈ �. (30)

Similar to an argument in the appendix of [23], this observation together
with Theorem 3(3) and identity (27) leads for d = 2 to an alternative proof
that for μ > μ0 + kq + 1 and indices ν ∈ [0,∞[, which do not belong to
the Wallach set, the distribution βμ,ν cannot be a positive measure. In fact,
otherwise identity (27) would imply that βμ,ν+l is a negative measure for
l = 1 or l = 2, because the product on the right side of formula (27) will be
negative for either ν or ν + 1. (Here d = 2 is relevant.) On the other hand,
Theorem 3(3) immediately implies that

Jμ+ν+l(−r ) =
∫
�e

Jμ
(−P(

√
s)r
)

dβμ,ν+l(s)

for all r ∈ �, in contradiction to (30).
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