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1. Introduction

Bessel functions occur naturally in the analysis of radial problems. The
simplest case is the analysis of structures on Rn which are invariant under
the action of the orthogonal group O(n). The starting point of the present
article is radiality on matrix spaces Mp,q = Mp,q(F) over one of the skew-
fields F = R,C or H. On a first level, we consider radiality on Mp,q as
invariance under the action of the unitary group Up = Up(F) from the left:

Up ×Mp,q →Mp,q, (u, x) 7→ ux.

The mapping Up.x 7→
√
x∗x establishes a homeomorphism between the

space of Up-orbits in Mp,q and the cone Πq = Πq(F) of positive-semidefinite
Hermitian q × q-matrices over F (x∗ = xt denotes the adjoint of x). Ra-
dial functions on Mp,q can thus be considered as functions on the cone Πq

and the Fourier transform of a radial function can be expressed in terms
of a generalized Hankel transform involving Bessel functions with matrix
argument. These ideas trace back to the fundamental work of C. Herz,
Ref. 6. In Refs. 2,4,5, Bessel functions and associated Hankel transforms
were put into the general framework of symmetric cones. The interest in
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Bessel functions of matrix argument is motivated to some extent by ques-
tions in number theory and multivariate statistics. For example, they occur
in non-central Wishart distributions which generalize non-central χ-squared
distributions to the higher rank case. Another interesting aspect is that they
can be imbedded into the theory of multivariable hypergeometric functions
of Dunkl-type. This fact is closely related to our second level of radial-
ity on Mp,q: Let G = U(p, q) denote the indefinite unitary group of index
(p, q) over F. Its maximal compact subgroup K is naturally isomorphic with
Up × Uq. We may identify Mp,q with the tangent space of the Riemannian
symmetric space G/K in the coset eK. This identification induces an action
of Up × Uq on Mp,q according to(

(u, v), x
)
7→ uxv−1, u ∈ Up, v ∈ Uq. (1)

The associated orbit space is canonically parametrized by the possible sin-
gular spectra of matrices from Mp,q and is homeomorphic to

Ξq = {ξ ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0}

which is a Weyl chamber of typeBq. The semidirect product (Up×Uq)nMp,q

is the Cartan motion group G0 associated with the Grassmann manifold
G/K. The Fourier transform of Up×Uq-invariant functions on Mp,q is there-
fore given by the spherical transform on the flat symmetric space G0/K,
and the spherical functions involved in this case are generalized Bessel func-
tions which can be imbedded into the class of Bessel functions associated
with root systems studied in Dunkl theory.

In this article, we present mainly results from Refs. 13,17. In Ref. 13,
the radial convolution algebras on the cone Πq associated with the orbit
spaces MUp

p,q are interpolated with respect to the dimension parameter p.
This gives a continuous class of commutative hypergroups on Πq having
matrix Bessel functions of continuous index as characters. These hyper-
group algebras extend the L2-harmonic analysis for the Hankel transform
on matrix cones as developed in Refs. 2,5. They have interesting and rich
automorphism groups which were studied in Ref. 17. Moreover, they can be
pushed down to the level of the spectra, leading to three continuous classes
of commutative hypergroups on the Weyl chamber Ξq (corresponding to
F = R,C,H). These hypergroups interpolate the convolution algebras of
the Gelfand pairs ((Up×Uq)nMp,q, Up×Uq) with respect to p. Their char-
acters are given by Dunkl-type Bessel functions associated with the root
system Bq, where the multiplicity on the short roots ±ei runs through a
continuous range, while the multiplicity on the roots ±ei ± ej remains re-
stricted to the values 1/2, 1 or 2 as in the geometric cases. It is conjectured
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that for arbitrary root systems and non-negative multiplicities, Dunkl-type
Bessel functions satisfy a positive product formula and can be characterized
as the characters of a commutative hypergroup structure on the underlying
Weyl chamber. Our three continuous series for Bq provide the first new
class of examples beyond the Cartan motion group cases.

2. Bessel functions on matrix cones

Let Hq = {x ∈ Mq,q(F) : x = x∗} denote the space of Hermitian q × q-
matrices over F, d = dimRF ∈ {1, 2, 4} and Πq = {x2 : x ∈ Hq} the cone of
positive semidefinite Hermitian matrices as above. Let further Ωq ⊂ Πq be
the subset of strictly positive definite matrices. Hq is a Euclidean Jordan
algebra in the natural way, and Ωq is the associated symmetric cone, see
Ref. 4 for details. The Bessel functions associated with Ωq represent a class
of hypergeometric series of matrix argument which are defined in terms
of the spherical polynomials of Ωq. The latter are indexed by partitions
λ = (λ1 ≥ . . . ≥ λq) ∈ Nq0 (we write λ ≥ 0 for short) and defined by

Zλ(x) = cλ

∫
Uq

∆λ(uxu−1)du, x ∈ Hq

where du is the normalized Haar measure of Uq and ∆λ is the power function

∆λ(x) = ∆1(x)λ1−λ2∆2(x)λ2−λ3 · . . . ·∆q(x)λq .

The ∆i(x) are the principal minors of the determinant ∆(x) with respect
to an arbitrary, but fixed Jordan frame of Hq, see Ref. 4 for details. The
normalization constant cλ > 0 can be chosen such that for all x ∈ Hq and
k ∈ N0,

(trx)k =
∑

λ≥0,|λ|=k

Zλ(x).

The Zλ(x) are Uq-invariant and thus depend only on the eigenvalues of
x. As such, they are given by Jack polynomials. More precisely, let ξ =
(ξ1, . . . , ξq) ∈ Rq denote the set of eigenvalues of x ∈ Hq. Then

Zλ(x) = C
2/d
λ (ξ)

where the Cαλ are the (suitably normalized) Jack polynomials with index
α > 0 (c.f. Ref. 9). The identification of the spherical polynomials with Jack
polynomials follows from their common system of differential equations.
This was first observed by Macdonald, Ref. 11; see also Ref. 4. For arbitrary
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α > 0 and a parameter µ ∈ C with Reµ > 1
α (q − 1), the hypergeometric

function 0F
α
1 (µ; . ) on Rq is defined by

0F
α
1 (µ; ξ) =

∑
λ≥0

1
(µ)αλ |λ|!

Cαλ (ξ)

with the generalized Pochhammer symbol

(µ)αλ =
q∏
j=1

(
µ− 1

α
(j − 1)

)
λj
.

Later on, we shall also need the 0F1 with two arguments,

0F
α
1 (µ; ξ, η) =

∑
λ≥0

1
(µ)αλ |λ|!

Cαλ (ξ)Cαλ (η)
Cαλ (1)

, 1 = (1, . . . , 1).

The Bessel function associated with the cone Ωq is defined in a similar
way in terms of spherical functions,

Jµ(x) =
∑
λ≥0

(−1)|λ|

(µ)2/d
λ |λ|!

Zλ(x), x ∈ Hq.

Thus for x ∈ Hq with eigenvalues ξ = (ξ1, . . . , ξq), one has

Jµ(x) = 0F
2/d
1 (µ;−ξ).

If q = 1 then Jµ does not depend on d and is given by

Jµ
(x2

4
)

= jµ−1(x) (x ∈ R)

where jµ−1 is the one-variable Bessel function jµ−1(x) = 0F1(µ;−x2/4).

3. Radial analysis on matrix spaces, integral formulas, and
Hankel transforms

We consider the space Mp,q of p× q-matrices over F as a real vector space
with scalar product (x, y) = Re tr(x∗y) and norm ‖x‖ =

√
tr(x∗x). As

explained in the introduction, the space MUp
p,q of Up-orbits in Mp,q is natu-

rally identified with the cone Πq via Up.x 7→
√
x∗x. We recall from Ref. 4

the polar coordinates in Mp,q which are adapted to this setting: Define the
Stiefel manifold

Σp,q = {x ∈Mp,q : x∗x = I}.
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Then for f ∈ L1(Mp,q),∫
Mp,q

f(x)dx =
πdpq/2

ΓΩq (dp/2)

∫
Ωq

∫
Σp,q

f(σ
√
r)∆(r)γdrdσ

where ∆ denotes again the detminant on the space Hq

ΓΩq (z) = (2π)dq(q−1)/4

q∏
j=1

Γ
(
z − d

2
(j − 1)

)
is the gamma function of the cone Ωq. Further, dσ denotes the unique
Up-invariant measure on Σp,q normalized according to

∫
Σp,q

dσ = 1, and

γ =
d

2
(p− q + 1)− 1.

Put µ = pd/2 and let ωµ denote the measure on Πq which is obtained as
the image measure of the normalized Lebesgue measure (2π)−dpq/2dx on
Mp,q under the mapping x 7→

√
x∗x. Calculation in polar coordinates gives

ωµ(f) =
2−µq

ΓΩq (µ)

∫
Ωq

f(
√
r)∆(r)γdr. (2)

Now suppose F ∈ L1(Mp,q) is radial with F (x) = f(
√
x∗x). Then the

Fourier transform of F is also radial and given by

F̂ (λ) =
1

(2π)dpq/2

∫
Mp,q

F (x)e−i(λ,x)dx =
∫

Πq

f(r)
(∫

Σp,q

e−i(λ,σr)dσ
)
dωµ(r).

The inner integral over the Stiefel manifold can be expressed in terms of
the Bessel function Jµ on Ωq with parameter µ = pd/2. Indeed, according
to Propos. XVI.2.2. of Ref. 4,∫

Σp,q

e−i(σ,x)dσ = Jµ
(1

4
x∗x

)
for all x ∈Mp,q.

For s, r ∈ Πq, define

ϕµs (r) = Jµ
(1

4
sr2s).

Note that ϕµs (r) = ϕµr (s), because Jµ depends only on the eigenvalues of
its argument and the eigenvalues of sr2s and rs2r are the same. Thus

F̂ (λ) =
∫

Πq

f(r)ϕµ|λ|(r)dωµ(r), µ = pd/2.

The Fourier transform of F is therefore given by a Hankel transform of
f . An L2-theory for Hankel transforms associated with Bessel functions of
general index µ was developed by Herz, Ref. 6 and Faraut and Travaglini,
Ref. 5. In our notation, the relevant result of Ref. 5 is as follows:
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Theorem 3.1 (Ref. 5, Theorem 1). Let µ > d
2 (q − 1) and define the

measure ωµ on Πq by

ωµ(f) =
2−µq

ΓΩq (µ)

∫
Ωq

f(
√
r)∆(r)γdr

with γ = µ− d
2 (q − 1)− 1. Put

ϕµs (r) := Jµ
(1

4
sr2s) = ϕµr (s).

Then the Hankel transform

f 7→ f̂µ, f̂µ(s) =
∫

Πq

f(r)ϕµs (r)dωµ(r)

is an isometric and self-dual isomorphism of L2(Πq, ωµ).

It is natural to define a generalized translation on L2(Πq, ωµ) by

f 7→ τsf, τsf(r) =
∫

Πq

f̂µ(t)ϕµs (t)ϕµr (t)dωµ(t); s ∈ Πq.

An Lp-theory for p ≥ 1 and general indices µ requires boundedness of
this translation with respect to ‖.‖p,ωµ and is provided by the underlying
hypergroup structure which will be described in Section 5.

Let us now turn to the action of Up × Uq on Mp,q given by (1). We
denote the singular spectrum of x ∈ Mp,q by σsing(x) = σ(

√
x∗x), where

for s ∈ Πq, σ(s) = (σ1, . . . , σq) ∈ Rq is the set of eigenvalues of s ordered
by size according to σ1 ≥ . . . ≥ σq ≥ 0. Two matrices x, y ∈Mp,q belong to
the same orbit under Up × Uq if and only if σsing(x) = σsing(y). The orbit
space is therefore naturally identified with the set

Ξq = {ξ ∈ Rq : ξ1 ≥ . . . ≥ ξq ≥ 0}

via UpxUq 7→ σsing(x). Again, this identification is also topological. Al-
ternatively, we may start on the level of the matrix cone Πq which was
obtained as the orbit space under the action of Up from the left. Action (1)
on Mp,q induces an action of Uq on Πq by conjugation:

(v, r) 7→ vrv−1.

The orbits under this action are parametrized by the possible eigenvalues
of matrices from Πq, which is again Ξq. The following integration formula
is a special case of Theorem VI.2.3 in Ref. 4: For integrable g : Πq → C,∫

Πq

g(r)dr = κq

∫
Ξq

∫
Uq

g(vξv−1) dv
∏
i<j

(ξi − ξj)d dξ (3)
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with a normalization constant κq > 0. Here dv denotes the normalized
Haar measure on Uq and ξ ∈ Ξq is identified with the diagonal matrix
diag(ξ1, . . . , ξq) ∈ Πq. Note that ξi−ξj ≥ 0 on Ξq for i < j, hence the density
in the integral is non-negative. Let us consider the canonical mapping

σ : Πq → Ξq, r 7→ σ(r)

which is continuous and surjective.

Lemma 3.1.

(a) The image measure ω̃µ of ωµ under σ is given by

ω̃µ = dµhµ(ξ)dξ with hµ(ξ) =
q∏
i=1

ξ2γ+1
i

∏
i<j

(ξ2
i − ξ2

j )d

and a constant dµ > 0.
(b) The measure ωµ on Πq is given by

dωµ(r) = d′µ ·
q∏
i=1

σ(r)2γ+1
i

∏
i<j

(
σ(r)i + σ(r)j

)d
dr

with the constant d′µ = κq/dµ.

Proof. Part (a) is shown in Ref. 13. For the proof of (b), let g(ξ) :=∏q
i=1 ξ

2γ+1
i

∏
i<j(ξi + ξj)d and consider g̃ := g ◦ σ. Let f : Ξq → C be

compactly supported. Then by formula (3) and part (a),∫
Πq

f̃(r)g̃(r)dr =κq

∫
Ξq

f(ξ)g(ξ)
∏
i<j

(ξi − ξj)ddξ

=κq
∫

Ξq

f(ξ)hµ(ξ)dξ =
κq
dµ

∫
Πq

f̃(r)dωµ(r).

This implies the assertion.

The measures ωµ and ω̃µ will become relevant as the Haar (and
Plancherel) measures of commutative hypergroups on the matrix cone Πq

and the chamber Ξq, respectively. The constant dµ is given by

dµ =
(∫

Ξq

hµ(x)e−|x|
2/2dx

)−1

.

This is a Selberg integral for the root system Bq and can be evaluated
explicitly; see Ref. 10.
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4. Hypergroups

Hypergroups generalize the convolution algebras of locally compact groups,
with the convolution product of two point measures δx and δy being in
general not a point measure again but a probability measure depending on
x and y. More precisely, a hypergroup is a locally compact Hausdorff space
X with a weakly continuous, associative convolution ∗ on the space Mb(X)
of regular bounded Borel measures on X, satisfying the following additional
properties:

(1) The convolution product δx ∗ δy of two point measures is a compactly
supported probability measure on X, and supp(δx ∗ δy) depends con-
tinuously on x and y with respect to a suitable Hausdorff topology on
the space of compact subsets of X (see Ref. 8).

(2) There is a neutral element δe satisfying δe ∗ δx = δx = δx ∗ δe for all
x ∈ X.

(3) There is a continuous involution x 7→ x̄ on X such that for all x, y ∈ X,
e ∈ supp(δx ∗ δy) is equivalent to x = ȳ, and δx̄ ∗ δȳ = (δy ∗ δx)−. Here
for µ ∈ Mb(X), the measure µ− is given by µ−(A) = µ(A−) for Borel
sets A ⊂ X.

Due to weak continuity, the convolution of measures on a hypergroup is
uniquely determined by the convolution of point measures.

We recapitulate some basic facts from hypergroup theory, see Ref. 8 for
details: If the convolution is commutative, then (Mb(X), ∗) becomes a com-
mutative Banach-∗-algebra with identity δe. As proven by Spector (Ref. 15),
there exists an (up to a multiplicative factor) unique Haar measure ω, that
is a positive Radon measure on X satisfying∫

X

f(x ∗ y)dω(y) =
∫
X

f(y)dω(y) for all x ∈ X, f ∈ Cc(X),

where f(x ∗ y) = (δx ∗ δy)(f). A decisive object for harmonic analysis on a
commutative hypergroup is its dual space which is defined by

X̂ := {ϕ ∈ Cb(X) : ϕ 6= 0, ϕ(x ∗ y) = ϕ(x)ϕ(y) ∀x, y ∈ X}.

The elements of X̂ are called characters. As in the case of LCA groups,
the dual of a commutative hypergroup is a locally compact Hausdorff
space with the topology of locally uniform convergence and can be iden-
tified with the symmetric part of the spectrum of the convolution algebra
L1(X,ω). Accordingly, the Fourier transform on L1(X,ω) is defined by
f̂(ϕ) :=

∫
X
fϕdω. The Fourier transform is injective, and there exists a
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unique positive Radon measure π on X̂, called the Plancherel measure of
(X, ∗), such that f 7→ f̂ extends to an isometric isomorphism from L2(X,ω)
onto L2(X̂, π). As for groups, there are convolutions between functions from
various classes of Lp-spaces (or measures) on a hypergroup with Haar mea-
sure ω. For example, if 1 ≤ p ≤ ∞ and f ∈ L1(X,ω), g ∈ Lp(X,ω), then
the convolution product

f ∗ g(x) =
∫
X

f(x ∗ y)g(y)dω(y)

belongs to Lp(X,ω) and satisfies ‖f ∗ g‖p,ω ≤ ‖f‖1,ω‖g‖p,ω.

Example 4.1 (Orbit hypergroups). (Ref. 8, Chapt. 8) Let (G,+) be a
locally compact abelian group and K a compact subgroup of AutG. Then the
space GK = {K.x : x ∈ G} of K-orbits in G (equipped with the quotient
topology) becomes a commutative hypergroup with convolution

(δK.x ∗ δK.y)(f) =
∫
K

f(K.(x+ ky))dk.

The neutral element of the orbit hypergroup (GK , ∗) is 0 and the involution
is given by (K.x)− = K.(−x). For a Haar measure m on G, the image
measure of m under the the canonical map π : G → GK provides a Haar
measure of GK . The dual space of GK consists of the functions

ϕα(K.x) :=
∫
K

α(k.x)dk, α ∈ Ĝ

where ϕα = ϕα′ iff α and α′ are in the same orbit under the dual action
of K on Ĝ given by k.α(x) = α(k−1.x), see Ref. 13.

5. Bessel hypergroups on matrix cones

For each integer p ≥ q we interpret radial analysis on Mp,q in terms of a
commutative orbit hypergroup on the cone Πq which is derived from the
action of Up by multiplication from the left. The convolution and all further
data of this hypergroup can be calculated explicitly according to Example
4.1. We summarize the results obtained in Ref. 13:

Theorem 5.1. Let µ = pd/2. The convolution of the orbit hypergroup
M

Up
p,q
∼= Πq is given by

(δr ∗µ δs)(f) =
∫

Σp,q

f
(√

r2 + s2 + rσ̃s+ (rσ̃s)∗
)
dσ
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where σ̃ ∈ Mq is the truncated q × q-matrix whose rows are given by the
first q rows of σ. The neutral element of (Πq, ∗µ) is 0, and the involution
is the identity mapping. A Haar measure is given by the measure ωµ as
defined in (2), and the dual space consists of the Bessel functions ϕµs (r) =
Jµ
(

1
4sr

2s
)
, s ∈ Πq.

In the above convolution formula, the integrand does not depend on the
complete matrix σ but depends only the truncation σ̃, which is contained
in the closure of the matrix ball

Dq := {v ∈Mq,q : v∗v < I}

(r < s means that s−r is positive definite). By a corresponding splitting of
coordinates on the Stiefel manifold, one obtains the convolution formula in
a different form with Dq as domain of integration. The dimension parameter
p then occurs as an exponent in the density of the integral. Let

% := d
(
q − 1

2
)

+ 1 and κµ :=
∫
Dq

∆(I − v∗v)µ−%dv

for µ ∈ R with µ > %− 1. Then the result is as follows:

Proposition 5.1. Suppose that p ≥ 2q. Then the convolution ∗µ with µ =
pd/2 can be written as

(δr ∗µ δs)(f) =
1
κµ

∫
Dq

f
(√

r2 + s2 + rvs+ sv∗r
)

∆(I − v∗v)µ−% dv.

Notice that δr ∗µ δs defines a probability measure on Πq not only for the
discrete series µ = pd/2 but also for arbitrary µ > % − 1. For µ = % − 1 =
d
2 (2q−1), which corresponds to the orbit hypergroup MUp

p,q with p = 2q−1,
the integral becomes singular. The degenerate form of the formula in this
case can be calculated after a suitable change of coordinates; this is carried
out in Ref. 13.

Using the above reformulation of the convolution, the corresponding
product formula for the characters, i.e. the Bessel functions, as well as the
statements of Theorem 5.1 can be extended to the range µ > ρ−1. The basic
step for this is analytic continuation with respect to µ from the discrete set
of values µ = pd/2 into the full half-plane {µ ∈ C : Reµ > ρ − 1} by
use of Carlson’s Phragmen-Lindelöf-type Theorem (see e.g. Ref. 16, p.186).
This gives three continuous series of commutative hypergroup structures on
Πq (corresponding to d = 1, 2, 4) which interpolate those occuring as orbit
hypergroups for the indices µ = pd/2. The following theorem contains the
main results of Ref. 13:
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Theorem 5.2. Let µ ∈ R with µ > %− 1.

(a) The assignment

(δr ∗µ δs)(f) :=
1
κµ

∫
Dq

f
(√

r2 + s2 + rvs+ sv∗r
)

∆(I − v∗v)µ−% dv

defines a commutative hypergroup Xµ = (Πq , ∗µ) with neutral element
0 and the identity mapping as involution. The support of δr∗µδs satisfies

supp (δr ∗µ δs) ⊆ {t ∈ Πq : ‖t‖ ≤ ‖r‖+ ‖s‖}.

(b) A Haar measure of Xµ is given by the measure ωµ from Theorem 3.1.

(c) X̂µ = {ϕµs (r) = Jµ
(1

4
sr2s

)
: s ∈ Πq}.

Part (c) is based on the analytic extension of the product formula for
the Bessel functions, but one also has to make sure that there are no fur-
ther characters apart from the Bessel functions ϕµs , s ∈ Πq. For this, the
Plancherel Theorem 3.1 as well as subexponential growth of the hypergroup
are needed.

Theorem 5.2 implies in particular a positivity-preserving generalized
translation and a full Lp-theory beyond the L2-theory established earlier in
Refs. 5,6.

As ϕµs (r) = ϕµr (s), the convolution ∗µ determines a dual hypergroup
convolution on X̂µ by

ϕµr (t)ϕµs (t) =
∫

Πq

ϕµw(t)d(δr ∗µ δs)(w).

The mapping Xµ 7→ X̂µ, r 7→ ϕµr is an isomorphism of hypergroups in
the sense of the definition below. When Xµ and its dual are identified in
this way, the Plancherel measure of Xµ coincides with the Haar measure
ωµ of X̂µ (the normalization of ωµ is chosen appropriately). Commutative
hypergroups with these properties are called self-dual.

Definition 5.1. Let X,Y be hypergroups. A homeomorphism T : X → Y

is called a hypergroup isomorphism, if T (δx∗δy) = δT (x)∗δT (y)
∀x, y ∈ X,

where the mapping T is extended to bounded Borel measures by taking
image measures. An automorphism of the hypergroup X is an isomorphism
T : X → X. We denote the group of automorphisms of X by Aut(X).

The hypergroups Xµ = (Πq, ∗µ) have interesting algebraic properties.
In particular, they have rich groups of automorphisms, which are closely
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related to the automorphisms of the underlying symmetric cone. The auto-
morphisms, as well as subhypergroups and quotients, were studied in detail
in Ref. 17. For the following, we recall that GLq = GLq(F) acts on Πq as a
group of homeomorphisms via

Ta(r) :=
√
ar2a∗ for a ∈ GLq, r ∈ Πq.

Proposition 5.2 (Ref. 17). {Ta : a ∈ GLq} is a subgroup of Aut(Xµ).

If q = 1, then Πq = [0,∞) and the hypergroups Xµ are the same for all
values of d. They are just the well-known Bessel-Kingman hypergroups. In
this case, the automorphism group of Xµ for µ > 1

2 was determined already
by Zeuner in Ref. 18; it consists of the mappings Ta with a > 0.

If F = R, then the Ta constitute the full automorphism group Aut(Xµ)
also in higher dimensions. If F = C, one has to add one further generating
element: in fact, it is easily seen from the explicit form of the hypergroup
convolution on Xµ that for F = C, the transposition τ : x 7→ xt is also an
automorphism of Xµ.

Theorem 5.3 (Ref.17). Let µ > ρ− 1.

(1) If F = R, then Aut (Xµ) = {Ta : a ∈ GLq}.
(2) If F = C, then Aut (Xµ) = {σ ◦ Ta : a ∈ GLq, σ = id, τ}.

A similar result is expected for F = H, but so far, the full classification
of the automorphism group is still open in this case. The classification of
automorphisms of Xµ is closely related to the structure of the possible sub-
hypergroups, which are also completely classified in Ref. 17. For arbitrary
F and µ > d(q − 1

2 ), they are given by

Xk,v
µ =

{
v

(
r 0
0 0

)
v−1 : r ∈ Πk

}
with 0 ≤ k ≤ q and a unitary matrix v ∈ Uq.

6. Wishart-distributions and probabilistic aspects.

The standard (squared) Wishart distribution on the cone Πq with shape
parameter µ > ρ− 1 is the probability measure

dWµ(r) = (2π)−qµe−tr(r
2)/2dωµ(r).

If µ = pd/2 with p ≥ q, then this is just the image measure of the Gaussian
distribution (2π)−dpq/2e−‖x‖

2/2dx on Mp,q under the mapping x 7→
√
x∗x.
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In this way, a non-centered Gaussian (2π)−dpq/2e−‖x−a‖
2/2dx leads to the

non-centered Wishart distribution W
√
a∗a

µ with µ = pd/2, where

dW s
µ(r) = (2π)−qµJµ

(
−1

4
sr2s

)
e−tr(r

2+s2)/2dωµ(r)

for s ∈ Πq and µ > ρ − 1. With the theorem above, non-centered Wishart
distributions with arbitrary shape parameter µ > ρ − 1 can be written as
hypergroup translates of the non-centered one:

W s
µ = δs ∗µWµ .

For a proof we refer to Ref. 17, where Wishart distributions and their prob-
abilistic properties are discussed from this new point of view. A central
limit theorem with Wishart distributions as limits is obtained, as well as
strong laws of large numbers for random walks on Xµ. In Ref. 14, we con-
sider the situation where the dimension parameter p (or, more general, the
index µ) tends to infinity, while q is fixed. In particular, we obtain a strong
law of large numbers. An essential ingredient is the following estimate for
the Bessel functions Jµ with large indices µ:

Theorem 6.1 (Ref. 14). There exists a constant C depending on d and
q such that for all µ > 2ρ and r ∈ Πq,∣∣Jµ(µr)− e−tr(r)

∣∣ ≤ C

µ
·min (1, tr(r)2).

7. Bessel functions associated with root system Bq

Bessel functions associated with root systems are part of the theory of
rational Dunkl operators which was initiated by C.F. Dunkl in the late
nineteen-eighties, see Ref. 3. They include the usual one-variable Bessel
functions (rank one case), and the spherical functions of Cartan motion
groups. The general framework is as follows:

Let G be a finite reflection group on Rq with the usual Euclidean scalar
product 〈 . , . 〉, and let R be the reduced root system of G. A G-invariant
function k : R → C is called a multiplicity function on R. In the present
context, we shall be concerned with root system Bq = {±ei, 1 ≤ i ≤
q} ∪ {±ei ± ej , 1 ≤ i < j ≤ q}. Each multiplicity on Bq is of the form
k = (k1, k2) where k1 is the value on the roots ±ei and k2 is the value on
the roots ±ei ± ej .
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For a fixed multiplicity k, the associated (rational) Dunkl operators are
given by

Tξ(k) = ∂ξ +
∑
α∈R+

kα〈α, ξ〉
1
〈α, . 〉

(1− σα), ξ ∈ Rq.

Here R+ is a positive subsystem of R, σα denotes the reflection in the
hyperplane perpendicular to α and the action of G is extended to functions
on Rq in the usual way. The Tξ(k) commute (Ref. 3) and therefore generate
a commutative algebra of differential-reflection operators on Rq. For k ≥ 0
and spectral parameter η ∈ Cq, consider the so-called Bessel system

p(T (k))f = p(η)f ∀ p ∈ PG; f(0) = 1.

PG denotes the subalgebra of G-invariant polynomials in P, and p(T (k))
is the Dunkl operator associated with the polynomial p(x) = p(x1, . . . , xn)
which is obtained by replacing xi by Tei(k). When restricted to G-invariant
functions, p(T (k)) as a differential operator. As proven in Ref. 12, the Bessel
system has a unique analytic G-invariant solution ξ 7→ Jk(ξ, η) which is
called the Bessel function associated with R. In rank one, one obtains the
one-variable Bessel functions Jk(ξ, η) = jk−1/2(iξη). In the general case,
Jk satisfies Jk(ξ, η) = Jk(η, ξ) and is G-invariant in both arguments. It is
known that the algebra of invariant differential operators of a flat symmetric
space is (essentially) given by the operators p(T (k)) where R and k are
determined by the underlying root space data. The spherical functions are
then given by the corresponding Bessel functions Jk( . , η).

Let Ξ denote the closed Weyl chamber associated with R+. The Bessel
function Jk gives rise to an integral transform on Ξ which is a symmetrized
version of the Dunkl transform (see Ref. 7 for a detailed study) and gener-
alizes the usual Hankel transform to higher rank. Let wk denote the weight
function

wk(ξ) =
∏
α∈R+

|〈α, ξ〉|2kα

on Ξ. Then the symmetric Dunkl transform on L1(Ξ, wk) is defined by

f̂ k(η) =
∫

Ξ

f(ξ)Jk(−iξ, η)wk(ξ)dξ, η ∈ Ξ.

This transform has many properties in common with the usual Fourier
transform. In particular, there are Plancherel and Paley-Wiener theorems
available. However, there is so far no bounded generalized translation
matching the Dunkl transform in general. In Ref. 13, interpolations of the
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orbit hypergroup convolutions associated with (Up×Uq)nMp,q are obtained,
which build three continuous series of hypergroups with Bessel functions of
type Bq as characters. The results, which will be described in the next sec-
tion, are based on the following representation of the Bq-Dunkl-type Bessel
function as a hypergeometric function 0F1 of two arguments:

Proposition 7.1. [Refs. 1,13] Let k = (k1, k2) ≥ 0 and k2 > 0. Let JBk
denote the Dunkl-type Bessel function of type Bq and with multiplicity k.
For ξ = (ξ1, . . . , ξq) ∈ Cq put ξ2 = (ξ2

1 , . . . , ξ
2
q ). Then for all ξ, η ∈ Cq,

JBk (ξ, η) = 0F
α
1

(
µ;
ξ2

2
,
η2

2
)

with α =
1
k2
, µ = k1 + (q − 1)k2 +

1
2
.

8. Hypergroups on the Weyl chamber

In Section 5 we saw that the cone Πq carries a continuously parametrized
family of commutative hypergroup structures ∗µ with µ > %− 1, as well as
additional orbit hypergroup structures for µ = pd/2, p ≥ q an integer. Let

Mq :=
{pd

2
, p = q, q + 1, . . .

}
∪ (ρ− 1,∞) .

Under the action of Uq on Πq by conjugation (v, r) 7→ vrv−1 , each convo-
lution ∗µ with µ ∈ M induces a commutative hypergroup convolution ◦µ
on Ξq which is obtained by the technique of orbital hypergroup morphisms
(see Ref. 8). For this it is important that the mapping r 7→ vrv−1 is an
automorphism of Xµ. As before, we identify ξ ∈ Ξq with the associated
diagonal matrix from Πq and denote by σ the canonical mapping r 7→ σ(r)
on Πq. The following is proven in Ref. 13:

Theorem 8.1.

(1) For fixed d ∈ {1, 2, 4} and each µ ∈ Mq the chamber Ξq carries a
commutative hypergroup structure Yµ = (Ξq, ◦µ) with convolution

(δξ ◦µ δη)(f) =
∫
Uq

(f ◦ σ)(ξ ∗µ vηv−1)dv.

The neutral element is 0 and the involution is given by the identity
mapping.

(2) A Haar measure on Yµ is given by

ω̃µ = dµhµ(ξ)dξ with hµ(ξ) =
q∏
i=1

ξ2γ+1
i

∏
i<j

(ξ2
i − ξ2

j )d

as in Lemma 3.1.
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(3) The dual space of Yµ is parametrized by Ξq and consists of the functions

ψµξ (η) =
∫
Uq

ϕµξ (vηv−1)dv = JBk (ξ, iη), ξ ∈ Ξq

where the multiplicity k is given by k = k(µ, d) =
(
µ− d

2 (q−1)− 1
2 ,

d
2

)
.

In particular, the Bessel function JBk with k = k(µ, d) satisfies the pos-
itive product formula

JBk (ξ, z)JBk (η, z) =
∫

Ξq

JBk (ζ, z) d(δξ ◦µ δη)(ζ) ∀ ξ, η ∈ Ξq, z ∈ Cq.

Parts (1), (2) and the first identity of (3) are proven by hypergroup tech-
niques as indicated above. For the second identity of (3), one needs the
product formula

Zλ(r)Zλ(s)
Zλ(I)

=
∫
Uq

Zλ(
√
rusu−1

√
r)du ∀ r, s ∈ Πq

see Ref. 4, Cor. XI.3.2. Together with Proposition 7.1 this shows that

Ψµ
ξ (η) =

∑
λ≥0

(−1)|λ|

(µ)2/d
λ |λ|!

Zλ
(
ξ2

2

)
Zλ
(
η2

2

)
Zλ(I)

= 0F
2/d
1

(
µ;
ξ2

2
,−η

2

2
)

= JBk (ξ, iη)

with the stated value of k.

The hypergroups Yµ are again self-dual via the homeomorphism Yµ →
Ŷµ, ξ 7→ ψµξ . Under this identification, the Plancherel measure of Yµ coin-
cides with the Haar measure ω̃µ.

In the geometric cases µ = pd/2, the convolution of the hypergroup Yµ
coincides with the convolution of the Gelfand pair (Up ×Uq) nMp,q/(Up ×
Uq), and the support of the probability measure δξ ◦µ δη on Ξq describes
the set of possible singular spectra of sums x+ y with matrices x, y ∈Mp,q

having given singular spectra ξ and η.
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