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1. OVERVIEW 
The working group discussed 15 papers on various aspects of stochastic thinking. We 
organized the papers into 4 sessions with the following titles: 

• The relationship between stochastic thinking & knowledge and external 
factors such as teaching methodologies, tools, tasks and setting 

• The role of computer-based tools, including microworlds, on stochastic 
thinking/knowledge 

• Research in primary school or preschool 

• Research on students’ understanding of different concepts 
The structure was a pragmatic one that tried to establish adequate discussion contexts 
between the papers. The papers often touched several dimensions such as when 
papers on teaching in primary school were also concerned with the use of technology. 
We will use a structure that is a little different from the original one for reporting on 
the session in order to enlighten four fundamental factors in educational context: 
teachers, curriculum, students and information technology. 

2. TEACHERS’ KNOWLEDGE AND BELIEFS 
Teachers’ knowledge and beliefs on statistics and probability influence how and what 
they teach in the classroom. Teachers are the most important agents of any 
educational reform. Andreas Eichler’s paper focuses on a research project that 
combined three aspects of a curriculum namely teachers’ planning, teachers’ 
classroom practice, and their students’ statistical knowledge. The planning and 
classroom practice of one “expert” statistics teacher (upper secondary level) was 
analyzed, as well as the knowledge and beliefs of some of his students by means of 
interviews. Findings indicate that this expert teacher had already developed a very 
detailed and broad individual view on stochastics during his yearlong teaching 
experience. This influenced and constrained the beliefs, as well as the content and 
structure of knowledge that students could develop in his classroom. On the other 
hand, the study showed how different students’ knowledge might be from the 
knowledge the teacher intends to impart. Educational change has to take this situation 
into account. Expert teachers’ knowledge and beliefs are difficult to change, and they 
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may reflect boundary conditions of teaching at school level, which also have to be 
taken into consideration. 
Efi Paparistodemou also studied (pre-primary) prospective teachers’ views of 
randomness as they are expressed in the tasks given to the students. We discussed the 
important role of pedagogical content knowledge that can bridge pedagogical and 
content related aspects of knowledge for prospective teachers.  

2. CURRICULAR INNOVATION AND CURRICULAR CONSTRAINTS 
The teacher is the most important mediator of the intended curriculum. Several 
papers also touched the question of what should be the content of stochastics 
curricula. These include most papers that are concerned with the use of technology 
and that considered new content besides discussing the role of new IT-media as a 
teaching tool, which generally are not neutral to the question of content. 
The paper by Marta Carles Fariña and Pedro Huerta is concerned with conditional 
probability and Bayes’ theorem as content. A systematic analysis was done to 
reconstruct the reference knowledge of this domain on which curricular decisions at 
the school level should be based. University text books and uses in various 
application contexts were regarded as a basis for constructing this reference 
knowledge. The results of the study showed the limited problem types and contexts 
that are currently in use at the school level in Spain. 
The discussion raised awareness of the different traditions in different European 
countries with regards to what is research in didactics of mathematics. In the tradition 
of Yves Chevallard’s “transposition didactique”, the construction of curricula has 
also to be based on scientific research on what is the knowledge to be taught. In other 
scientific traditions, this is not seen as an essential prerequisite. 
The discussions made us aware of how the different studies that were conducted on 
students’ understanding are, at least implicitly, based on certain implicit views of 
stochastics. The multinational group discussions were very good for coming to an 
increased awareness of this problem. Studies have to be judged differently based on 
whether they try to assess national curricula, in which case the test has to be 
curricular valid, or whether they start from a normative conception of mathematical 
and statistical knowledge that is to be assessed. This is the approach PISA adopted. 
The need for large scale tests that reflect the state of the art with regard to statistical 
literacy, thinking and reasoning was felt, however such studies cost a lot of money 
and state authorities as clients may have specific different interests. 
We discussed large scale studies with regard to their implicit conception of 
stochastical knowledge. Maria Meletiou & Carl Lee’s paper is concerned with 
students’ knowledge of graphs prior to an introductory statistics course. There was 
also an interesting discussion on assessing probability and statistics in the British 
National curriculum stimulated by input from Thekla Afantiti and Maria Pampaka.  
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A specific concern of the group was curricular innovation at the preschool, the 
primary and the lower secondary level. The papers discussed background research, 
conceptions, tools and working environments for students. Some studies were done at 
first in a laboratory context, where experimental conditions can be better controlled. 
The group agreed that long-term studies of innovations that Michele Cerulli and his 
group did are a very important next step, if we think of implementations of new tools 
and conceptions under normal classroom conditions. An innovation has to take the 
whole system into account, not only a new tool or conception, but also teacher 
education and development of the classroom culture. 
Laura Martignon’s paper provided a profound review of research in cognitive 
psychology concerning natural frequency representation formats that foster the 
development of stochastic thinking in relation to proportional thinking. Based on this 
research, new enactive working environments with tinker-cubes and transparent urns 
have been designed for primary education and tested in exploratory studies. Marta 
Carles Farina, Ma. Angeles Lonjedo and Pedro Huerta also discussed the topic of 
natural frequencies as a superior representational format in their studies with regard 
to the secondary level. 
The role of dynamic representation was also central in the computer-based 
environments that Michele Cerulli and Theodosia Prodromou studied in their papers. 
The co-ordination of two perspectives of distributions (frequentist and theoretical-
combinatorial) is a basic problem for young children. Simulations with adequately 
designed representations and interactional options for the children can help to build 
understanding. Conceptually this is also related to the problem of recognizing 
equivalent sample spaces, and of building bridges between probabilistic and causal-
deterministic thinking. 
Equivalence of sample spaces and its relation to outcomes of random experiments 
was also a central issue in the study of Zoi Nikiforidou and Jenny Pange with 
preschoolers. 
All studies suggest curricular innovations. Some of them still intend and need further 
careful testing under laboratory conditions. 
Curricular innovation using simulations was also discussed with regard to secondary 
and tertiary level with regard to topics such as modelling in elementary probability 
(Carmen Maxara & Rolf Biehler) and confidence intervals (Hermann Callaert). There 
was also an interesting discussion on using simulation to support resampling 
approaches to statistics stimulated by input from Manfred Borovcnik. In addition to 
using simulation, very careful considerations about the symbolic representations and 
tools used together with simulation were discussed. 

3. STUDENTS’ COMPETENCIES AND UNDERSTANDING 
Students’ understanding of specific domains of probability and statistics were 
discussed. This was partly done in the context of studying the effect of innovations 
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and interventions, partly as a general assessment of certain representative groups of 
students, partly related to theory driven experimental work under laboratory 
conditions. The studies were mostly related to topics that we also described in the 
preceding two sections.  
The topics include 

•  Studies on probability knowledge 
o relation between probability models, causal ideas, and experimental data 

with random devices (local and global meanings, informal inference) 
o events, sample spaces and random variables 
o conditional probability, Bayes’reasoning (different representation 

formats, natural frequencies) 
o simulation and resampling 
o confidence intervals 

• Studies on statistical knowledge 
o Graphs 
o Measures of center and spread  

Progress has been made on different approaches of identifying (conceptualising) and 
measuring students’ competencies; approaches are still very different and not yet 
related to a shared body of research knowledge and methodological standards. 
Different approaches include 

o Hermeneutics and case studies 
o Rasch scaled large written test 
 

A topic that reoccurred in many of our studies was the first topic of the relation 
between probability models, causal ideas, and experimental data with random devices 
(local and global meanings, informal inference). This includes studies on the use of 
simulated data from which students draw inferences to probabilities. Peter Johnston-
Wilder & Dave Pratt were concerned with how students develop local and global 
meaning of randomness, a study that was related to Theodosia Prodromou’s study on 
two notions of distribution, as well as to various other papers which discuss ways in 
which frequency representation formats can support the development of students’ 
stochastic thinking. 
The concept of probability is inherently very complex and very different from other 
mathematical concepts. Even if we take a simple device such as a die, we can 
determine probabilities by the classical approach as the quotient of the number of 
favourable outcomes to all possible outcomes. But we can also experiment and 
estimate probabilities by frequencies. These approaches have to be co-ordinated. The 
sequence of results is unpredictable but nevertheless displays certain patterns, and in 
the long run the relative frequencies stabilize. Moreover, the die is a physical 
deterministic device, but it can be treated as random at the same time. This ambiguity 
is difficult to understand even for adults. This complexity is one of the reasons for the 
large number of studies addressing aspects of this problem. 
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Some of the studies constructed special artificial worlds where students can 
experiment with idealized devices that are partly deterministic and partly stochastic, 
which is very difficult for instance to do in real situations such as changing the shape 
of a die or systematically varying the starting conditions of a ball whose movement is 
a mixture of the laws of physics and random noise. 

4. THE ROLE OF COMPUTER-BASED TOOLS, INCLUDING 
MICROWORLDS, ON STOCHASTIC THINKING & KNOWLEDGE 
The group discussed the implementation of various tools in a range of environments 
(software, task, settings…) 

• Tools: Fathom, Excel simulations 
• Environments: Toontalk based microworlds; Logo-based simulations; the 

ChanceMaker simulation;  
A range of qualitative methods were employed: 

• Recording of students’ and screen interactions 
• Whole classroom approaches 

We have worked on the task of relating the world of technology with the 
mathematical concepts and notations and generated new unresearched ideas about 
using technology rooted in a priori didactical analysis. 
As was mentioned in earlier sections, the experimental environments were 
constructed and studied with regard to the knowledge and conceptions that students 
develop when experimenting with the environments. The interface design was made 
as easy as possible so that young students can work with the technology using simple 
metaphors. The tool complexity and the difference between conceptions and 
technological implementations should be as narrow as possible.  
In contrast to this, studies related to complex tools such as EXCEL and FATHOM for 
secondary and tertiary students, were interested in the process of instrumental genesis 
through which the students begin to use the artefacts as instruments for solving 
problems. This process has to be supported by adequate measures. Carmen Maxara & 
Rolf Biehler report on using “simulation plans” for helping students to use FATHOM 
in modelling and simulation problems. In this context, it is not sufficient to only 
study the conceptual development of students, but also to examine how they use and 
learn to use the tools as an artefact. If we pay attention to the micro processes 
involved when students collaborate on using the technology, we can gain insight on 
these processes. 
This is one of the reasons why qualitative methodologies dominated in these studies 
as compared to quantitative comparative studies, where the global effect of one set of 
innovations is compared to traditional teaching.  
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5. CONCLUSIONS 
The group work was seen as very useful and efficient. In contrast to specializing 
sessions in large conferences, the papers in our small group were much more diverse 
in content, school level and methodological approach. Having the possibility to work 
over a long time period provided the opportunity for very intensive discussions on 
topics and research approaches that need not be very similar to each other but that 
may very much profit from the expertise of others working in different domains of 
stochastics education. We had introduced two “reactors” for each paper that we 
discussed. The reactors had the opportunity to prepare 5-minute statements on the 
respective paper. This turned out to be a very effective way to stimulate discussion, to 
get many participants involved, and to insure high quality papers to be published. 
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UNDERSTANDING CONFIDENCE INTERVALS 
Herman Callaert 

Center for Statistics, Hasselt University, Belgium 
herman.callaert@uhasselt.be

This paper addresses statistical reasoning at the level of a first course in statistics in 
higher education. It focuses on two major difficulties encountered by students when 
studying confidence intervals. The first difficulty relates to the randomness of 
intervals in repeated samples. Students’ understanding might be enhanced here by 
learning how to think backwards, the use of computer-supported tools and adherence 
to a specific notation. The second difficulty relates to the non-randomness of a 
confidence interval after the sample has been taken. Circumstantial evidence shows 
that a simple story about a Wheel of Fortune can vastly improve students’ insight. It 
might be worthwhile to investigate this evidence further and to find out whether this 
illuminating story can successfully be translated into a concrete tool. 

INTRODUCTION
As a teacher of statistics, there is plenty of evidence from my own experience and 
from the experience of many colleagues, that the proper understanding of confidence 
intervals seems to be unusually difficult. This difficulty stems from two sources, 
namely the understanding of the variability of models and the understanding of the 
non-randomness of a sample result. 
A lot of classroom material (and several research papers) focus on the variability of 
the intervals in repeated sampling. The understanding of this variability is a major 
problem to many students and it relates to the observation made by R. Biehler 
(1997b) who writes: “… working with functions as entities is difficult for students… 
This difficulty may not be surprising because data distributions are usually not 
characterized as concepts in courses of elementary data analysis. Distributions are 
emphasized in probability theory but in an entirely different context that students find 
difficult to apply to data analysis.” 
Apart from the difficulty of thinking in global models there is another stumbling 
block that comes with confidence intervals. The problem has to do with the non-
randomness of the confidence interval after the sample has been taken. At that point 
in the statistical study (and in the formulation of the conclusion) there is nothing 
random any more. This fact is mentioned in many textbooks but rarely exemplified 
with concrete stories or tools. Mistakes appear frequently here, and students seem to 
need concrete examples they can easily and quickly relate to. Anecdotal evidence 
suggests that a story about a Wheel of Fortune might help in students’ understanding 
of the second part in the thought process surrounding confidence intervals. It might 
be of interest to further explore this evidence through systematic and formal research. 

Working Group 5

CERME 5 (2007) 692



A related question might be about the age and the level of maturity at which students 
are able to grasp this type of reasoning. Further research could be carried out for 
investigating to what extent our observations can be transferred in different settings, 
real or in mind, and in particular in a computational environment. 

THINKING BACKWARDS 
If you tell students that you are going to throw a honest die and you ask them what 
the result will be, their immediate answer is: “how can I know?”. It takes some time 
for discovering that they nevertheless know a lot about the outcome of a die. It will 
never be a seven. Indeed, they know what the possible outcomes are and even with 
what probability they will occur. This is a completely different way of thinking about 
the outcome of a die. It has to do with the probability model as an ideal mathematical 
construct for modelling outcomes in a physical world. If this is the kind of 
probabilistic thinking needed for a proper understanding of statistical inference, then 
we fully agree with Cobb and Moore (1997) who write: “What then, should be the 
place of probability in beginning instruction in statistics? Our position is not 
standard, though it is gaining adherents: first courses in statistics should contain 
essentially no formal probability theory. …. The concepts of statistical inference, 
starting with sampling distributions, are of course also quite tough. We ought to 
concentrate our attention, and ours students’ limited patience with hard ideas, on the 
essential ideas of statistics”. 
Research by Pratt (1998, 2000) nicely illustrates how children behave differently with 
respect to the interpretation of unexpected “outcomes” and with respect to their 
ability to manipulate “the underlying chance mechanism” (workings box). The 
insight that random outcomes can be modelled by a chance mechanism generating 
them, is an essential idea in statistics.  
At the time students enrol for a first course in statistics, they should be able to think 
backwards when observing random outcomes. They should have learned to always 
search for an underlying chance mechanism while realizing that the random outcomes 
do not perfectly coincide with the proposed model. A simple example is as follows. A 
physically honest die is thrown 450 times and one observes 148 ones, 155 twos, 69 
threes and 78 fours. If you know that Ann was allowed to write any number on any 
side of the die, as long as she choose from {1, 2, 3, 4, 5, 6} (repetitions allowed), 
what did she do? Remark that the observed proportions can’t coincide with the 
underlying chance mechanism if it has to be a die. 
Students who are familiar with some formal mathematical notation could benefit, in a 
first course on statistical concepts, from a systematic use of a specific notation. 
Population parameters like the population mean or proportion are denoted by the 
Greek letters /  and ( . Outcomes, based on observed results in a sample, are small 
letters. A universal convention is x  for the sample mean and one often encounters p̂
for the sample proportion. At this point again, the difference between an outcome and 
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the underlying chance mechanism is crucial and should be made clear through a 
distinct notation. In analogy to the use of capital letters for representing the chance 
model of a random variable, it is proposed to use capital letters for the chance 
mechanisms of outcomes based on samples. The underlying model for the sample 
mean is X  and  is the notation for the chance mechanism of the sample proportion. 
This convention is systematically ignored in almost all major textbooks in the United 
States. As examples, the books by Agresti & Franklin (2007), Yates, Moore & 
Starnes (2003), and Watkins, Scheaffer & Cobb (2004) all use capital letters for 
random variables but small letters in their discussion of “the behaviour” (often called 
“sampling distribution”) of the sample mean or the sample proportion. It might be an 
interesting research question to find out whether the use of a separate notation for 
underlying chance mechanisms helps in the better understanding of statistical ideas 
for the mathematical capable student. 

P̂

THE CHANCE MECHANISM OF RANDOM INTERVALS 
After realizing that random outcomes are generated by an underlying chance 
mechanisms, a further step is the observation that “an outcome” can be “an interval”. 
Understanding the underlying chance mechanism is a first step in the study of 
confidence intervals. 

Figure 1 
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Sometimes the explicit underlying model is not formally introduced but instead the 
variability of the calculated interval in repeated samples is illustrated through pictures 
and simulation (see e.g. Biehler (1997a) p. 184). Attention is drawn on the fact that, 
on average, 95 intervals out of 100 will capture the population parameter. If the 
research question is about a population proportion ( , a classical illustration is as in 
figure 1. This figure illustrates the behaviour of the underlying chance mechanism for 
generating intervals when the sample size is large and the normal approximation can 
be used. However, that figure might divert students’ attention from the fact that in 
their statistical study they will end up with just one out of all those pictured intervals. 

A STUMBLING BLOCK 
The difference between an underlying chance mechanism and a particular outcome 
seems hard to grasp in a somewhat complicated setting of the construction of 
confidence intervals. Sometimes students get away when they are allowed to write 
down conclusions “in words” where they can “talk around” the problem. But the 
more mathematically sophisticated students should also be asked to formulate their 
result in mathematical notation. One then encounters a variety of expressions where 
sample values are plugged in while keeping a probability statement about fixed 
numbers as seen in figure 2. 

Figure 2 
Another frequent type of error shows up when the student “mechanically” knows that 
he should switch from probability to confidence but where he keeps writing 
inequalities about a fixed but unknown population proportion (  as in figure 3. 

Figure 3 
These (and similar) types of error keep showing up over and over again. I have 
encountered them every year in my long experience as a teacher of statistics. 

THE WHEEL OF FORTUNE 
Anecdotal evidence suggests that the wheel of fortune (or a similar device) might be a 
crucial tool in student’s better understanding of what is really going on with 
confidence intervals. It might be of interest to carry out more extensive and more 
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formal research on the particular way in which this didactical tool is used in this 
context.
Contrary to devices that help in the understanding of sampling variability, the Wheel 
of Fortune confronts the student with the second step in the reasoning about 
confidence intervals. It is the step where the student has to formulate a conclusion 
after the sample is taken and after the confidence interval is constructed. In order to 
let the basic problem stand out clearly, no attempt is made here to also incorporate the 
(important) interplay between confidence, precision and sample size. 
A basic difference between a spinner and a Wheel of Fortune might lie in the purpose 
for using the device and especially in the emotional expectation about the outcome. A 
spinner focuses on (a.o.) randomness and on underlying models for random 
outcomes. On the other hand, when playing the Wheel of Fortune in a television 
show, people are not interested in long run properties of random outcomes. In a 
simplified version, their only question is: will the wheel stop and give me the ticket 
with the jackpot or will I be broke? The main emotional stress and attention goes to 
the single sector on the wheel (or the single ticket) where the wheel stops and the 
game is over.  
Let’s try to illustrate this concept assuming that a 95 % confidence interval is needed 
for a population proportion ( . Let’s also assume that the student knows how to set 
up the appropriate model. He also understands that the use of this model assures, as a 
long run property, that on average 95 out of 100 intervals will contain the population 
proportion ( . He learned this property through simulations with a spinner-like 
device.
He now has to play the Wheel of Fortune in a somewhat modified version. In this 
game he has several aspects under his own control. He can decide in how many 
sectors of equal size the wheel has to be partitioned. Since he wants to work with a 
procedure that produces “good” intervals (containing ( ) with probability 95 %  he 
asks for a division of the wheel into 100 sectors. If he would have decided to work 
with a 99.5 % confidence interval he then might have asked for 1000 sectors. 
The student then tells the quizmaster to firmly stick tickets on each of those 100 
sectors. On each ticket an interval of the form [ a ; b ] is written with a and b both 
numbers between zero and one. The student also tells the quizmaster that exactly 95 
of those tickets should have a “good” interval written on them. The quizmaster, who 
knows the value of ( , does exactly what is asked for. He doesn’t tell which tickets 
are the good ones. Then he leaves… forever. 
Now it’s the student’s turn. He spins the wheel and after some time it stops at one 
sector. The student has to take the ticket on that sector. With that ticket in his hand he 
now has his interval, with the fixed endpoints written on. Nothing is stochastic 
anymore. It could be [ 0.26 ; 0.32 ] like illustrated in figure 4. 

Working Group 5

CERME 5 (2007) 696



On the other hand, the student doesn’t know the value of (  and he cannot check 
whether his interval is a good one since the quizmaster is gone. But the student knows 
that there is nothing stochastic about (  either. It is a population parameter, unknown 
but fixed. 

Figure 4 
Combining these two deterministic facts leads to the straightforward conclusion that 
the student can be 100 % sure that his 95 % confidence interval either contains (  or 
doesn’t contain ( , and that he will never know. Stating the conclusion in such a 
blunt way is shocking to most students. It makes them think all over again, since this 
can’t be the purpose of constructing confidence intervals… or is it? 

NEVER CERTAIN, SO WHAT? 
The shock effect of the perplexing conclusion usually generates a beneficial reaction 
with many students. They now go and search for a deeper understanding of what they 
thought they already understood. They are forced to think backwards, since that one 
ticket in their hand with that one confidence interval can’t be the whole story.
At this point, many students succeed in putting their ticket into the right context. 
They got it through a procedure where 95 tickets out of 100 were good ones. That 
means that before spinning the wheel there was a probability of 0.95 for getting a 
good ticket. After spinning the wheel, they hope for the best but they never can be 
sure. Realizing that this is the way they have to think about statistical inference is a 
big step forward in a deep understanding of statistical reasoning. 
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CONFIDENCE IS … 
The word confidence, as used in the context of confidence intervals, is strange and 
unnatural in Flemish, my native language. I assume that “I am 95 % confident” 
doesn’t belong to the daily vocabulary in English either. The same may be true in 
many other languages. Reading copies of AP exams (USA), the uniformity in the 
formulation of answers on confidence intervals is striking. Every student with a 
correct answer uses the above sentence, exactly as it stands there. Nobody dares an 
explanation “in his or hers own words”. Of course, those students have learned that 
the word “certainty” is not a good choice when talking about the interval catching the 
population proportion ( . They also have learned that the word “chance” is not a 
good choice, neither in combination with the parameter (  nor in combination with 
their calculated interval. So, there apparently is nothing left but “I am 95 % 
confident”, whatever that means. 
The problem is real, and it has probably nothing to do with language. The main point 
is that “95 % confidence” refers simultaneously to two crucial but quite different 
steps in the construction of confidence intervals. Reference to the Wheel of Fortune 
can be revealing here. 
The “95 %” refers to the underlying model for generating intervals or to the Wheel of 
Fortune where, before spinning the wheel, it was under the student’s control to decide 
how many good and how many bad tickets there should be. In this example, the 
student asked for 95 good ones out of 100 and the 95 % refers really to a probability 
of getting a good interval when you will spin that wheel. 
The word “confidence”, and not probability, refers to the fact that you already have 
played the game. After spinning the wheel you hold that single ticket in your hand. It 
can be a good one, it can be a bad one. 
“How should we proceed now?” is the common further question. The answer again 
reflects some deep statistical ideas. Indeed, the only information available comes 
from the sample together with the insight in how the confidence interval came about. 
So, for the rest of the study you can work with a value of (  that belongs to the values 
of your confidence interval. They are for you “plausible” values, based on your 
sample. You do not have anything better. You do not have certainty either. 

SOME FURTHER POINTS OF REFLECTION 
To start with, it should be repeated that this paper is about confidence intervals as 
they are usually taught in a first course in higher education, in a classical frequentist 
framework, where a population parameter does not have a (Bayesian) distribution 
associated with it but is a fixed number. The fact that the value of a population 
parameter is unknown doesn’t make it random. 
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The experience of statistics educators 
An interesting source of information is the AP Statistics EDG (Electronic Discussion 
Group) which is a monitored electronic discussion list accessible through 
http://apcentral.collegeboard.com/apc/public/homepage/7173.html . Teachers of AP 
statistics courses discuss the many problems encountered in class and the discussion 
is often joined by university professors in statistics. An AP statistics course is a 
course at the level of a first introductory statistics course in college (university) but 
the course is taught in high schools by high school teachers. Each year in May there 
is a central nationwide (USA) exam and an excellent performance by the student may 
lead to a credit for statistics when he/she enters college (university) in September. 
Explaining confidence intervals seems extremely difficult as exemplified in the many 
discussions during Januari-March 2007 on the AP Statistics EDG. Main stumbling 
blocks are illustrated in the following excerpts. 
Dave Bock (Jan 29 2007) points to the difference between “the underlying process” 
and “one particular realisation that has happened”. He gives precise rules to the 
students about what they “may” and “may not” say on the exam. 
"Things you MAY say: 
 (1) I'm 90% confident the population mean is between 20 and 30. (Interprets the 
interval)
 (2) If this study were conducted many, many times, I expect that 90% of all the 
intervals created from the various samples would contain the population mean. 
(Interprets the confidence level) 
 Things you may NOT say: 
 (3) The population mean is between 20 and 30 90% of the time. (Either it is in this 
particular interval or it isn't.) 
 (4) The probability the population mean is between 20 and 30 is 90%. (Slightly more 
sophisticated-sounding restatement of 3)” 
Daniel J. Teague (March 11 2007) warns about the use of  “I am confident..”. 
I strongly discourage you from letting your students say, "we are 95% confident in 
..."  I know that will be counted correct on the exam, but I simply don't believe kids 
can say "95% confident" without thinking "probability of 0.95".
Probability or confidence or what? 
Students have difficulty with the interpretation of a confidence interval. 
Kenneth D. Nilsen (AP Stat EDG, Feb 3 2007) states the problem very clearly. 
If  I'm asked to "interpret" the confidence interval, and I say "I'm 95%  confident that 
the true average is between 575 grams and  710 grams", I don't think I have 
"interpreted" anything.
The answer by Robert W. Hayden (Feb 3, 2007) might seem shocking, but it is 
certainly recognizable by many statistics teachers and students. 
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To me the "95% confident" phrase is one of those compromises that grows up 
between student and teacher. 
• Teachers like it because it's easy to present and isn't really wrong;
• students like it because it provides a nice mantra that the teacher will accept 
without any requirement for the student to know what's going on…..
I agree with you 100% that it is NOT an "interpretation" -- it is a mantra, in this 
case,…. a verbal veneer to hide lack of understanding.
Daniel J. Teague (March 11 2007) warns about the use of  the word “confident”. 
I strongly discourage you from letting your students say, "we are 95% confident ..."  I 
know that will be counted correct on the exam, but I simply don't believe kids can say 
"95% confident" without thinking "probability of 0.95".
A number doesn’t turn into a random variable just because you close your eyes 
Probability statements are about outcomes to be generated by a random process, not 
about a particular realisation of this process after it has happened. There are several 
ways teachers try to explain this difference. 
Kate Baker (AP Stat EDG, March 12 2007) starts with simple chance processes 
before turning to confidence intervals. Remark the difference between “probability of 
getting..” (which refers to the process) and “probability I got” (which refers to the 
particular realisation after performing the experiment). 
… Holding up deck of cards: What is the probability of getting a queen, if I draw 
card from the deck? Draw top card, the queen, show the class: What is the 
probability I got a queen? Draw next card, the not queen, show the class: What is the 
probability I got a queen? 
Draw next card, don't show class: What is the probability I got a queen? We discuss 
how it is the same as the previous two draws, 0 or 1, we just don't know. The 
probability is associated with the method of drawing cards, the experiment, not the 
result.
I make them take notes on this and refer back to it when introducing confidence 
intervals. At the time, they thought I was an idiot. But when we got to CI, they really 
seemed to get the idea better than ever before.

CONFIDENCE INTERVALS AND TESTS OF HYPOTHESIS 
The main problem in the exact formulation of the result after the sample has been 
taken is in essence the same for confidence intervals as it is for tests of hypothesis. 
To make this clear, assume that the student has no misunderstanding at all in setting 
up either of those procedures. For confidence intervals the student understands how 
the underlying process comes about, with the interplay between sample size, 
confidence and margin of error, and with the conditions needed in order to use the 
appropriate distribution. In a similar way, the student also understands the reasoning 
for setting up a statistical test, including the level of significance, the power, the 
sample size and the effect size, together with the necessary conditions and the 
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reasoning “under the null hypothesis”. All this is about “setting up the underlying 
chance mechanism”. Indeed, this is the task of the statistician, and this is, after all, 
why students learn statistics. They should realize that deciding “with which chance 
process one has to work” is a scientific investigation which is completely under the 
control of the statistician, and under his responsibility. 
Then comes the “use” of that model. A sample is taken (in the appropriate way) and 
“one particular realisation” of the model is computed. This is now a well-defined 
(fixed) interval or it is a quantity that, yes or no, falls in the rejection region. On the 
basis of this single result “a decision” is taken. At this point, there is nothing random 
anymore. The decision taken, after the result is seen, is either right or wrong. The 
statistician knows this and has to live with it. The fact that taking a decision based on 
a single outcome (of a chance process) is based on “science” and not on “mere 
guessing” stems from the procedure which has been set up “beforehand”. 
“Afterwards” there is only the outcome that came to you, and the decision you have 
to take based on that evidence. You can hope for the best, but you never know. 
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CONDITIONAL PROBABILITY PROBLEMS AND CONTEXTS. 
THE DIAGNOSTIC TEST CONTEXT 
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ABSTRACT

In this paper we present an analysis of didactic phenomenology (Freudenthal, 1983) 
of the conditional probability in a particular context. The analysis takes place in a 
specific setting - a health setting, and also in a particular teaching environment, 
namely, teaching upper levels of conditional probability in a secondary school. The 
main aim of this work is to analyze the phenomena that are present in ternary 
problems of conditional probability used in the aforementioned environment. The 
main purpose of this work is to provide teaching professionals with some didactical 
elements for reflection on the use of conditional problem solving in-context for 
teaching this topic to secondary school students, so that we can help to improve their 
conditional probability literacy and skills. 

INTRODUCTION

Problem solving and in particular probability and conditional probability problem 
solving are topics that are usually taught around the world with greater or lesser 
degrees of success. Some time ago Shaughnessy (1992) pointed out the difficulties of 
teaching probability by relating them to teaching problem-solving because teaching 
probability and statistics is teaching problem solving, he said. 

On the other hand, in our country (BOE, 2001; DOGV, 2002) and also in other 
countries (NCTM, 2000), curricular standards suggest that in general mathematics, 
and also probability and consequently probability problem solving, should be taught 
in context, including mathematical context and connecting school mathematics with 
experimental reality of students. 

Some types of conditional probability problems (for example P1 to P4 in the annex), 
those that Cerdán & Huerta (in press) call ternary problems of conditional 
probability1, can be theoretically classified in different problem types (Yáñez, 2001) 

                                                 
1 In short, Ternary Problems of Conditional Probability are problems in which in the text of the problem at least: 
 1. A conditional probability is involved, either as data or as a question or both. 
 2. Three quantities are known. 
 3. All quantities, both known and unknown, are related by means of ternary relationships such as these: P(A) + 
P(noA) =1; P(A*B) + P(A*noB) = P(A) (Additive relationships); and P(A0B) x P(B) = P(A*B)
 4. Question in problem is an unknown quantity that is related to other quantities by means of more than one the 
relationships above.
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depending on the data given in the text of the problems. Using this classification, it 
has been experimentally observed (Lonjedo, 2003; Lonjedo & Huerta, 2004; Huerta 
& Lonjedo, 2005) that through secondary school textbooks not all of these types of 
problems are being used in teaching. Therefore, teaching conditional probability is 
based on a few types of problems while ignoring others that could significantly 
improve the students’ understanding of this subject.  

In this piece of paper we will show the first steps involved in a broader research 
project. More specifically, we will show an analysis of didactical phenomenology of 
problems formulated in non-mathematical settings. This is in order to better the 
students’ understanding and the meanings of the concepts related to conditional 
probability. 

How to carry a context-based teaching of conditional probability out should be 
another research question that must be answered in the future. 

BACKGROUNDS 

In other pieces of work (Huerta & Lonjedo, 2003; Cerdán & Huerta, in press) the 
subject of this study, i.e., conditional probability problems and ternary problems of 
conditional probability, have already been defined. A mathematical reading of these 
problems allows us to classify them by means of a three-component vector (x, y, z)
which represent the data in the text of the problems: x represents the number of 
absolute probabilities, y the number of intersection probabilities, and z the number of 
conditional probabilities and x+y+z=3. By choosing x, y and z in a suitable way we 
are theoretically able to identify 9 types of conditional probability problems. Only 
when one is competent with the algebraic register (Yáñez, 2001; Cerdán & Huerta, in 
press) is one capable of solving all of these different problem types. Huerta & 
Lonjedo (2005) showed that there are some types of problems that are not included in 
secondary school textbooks. Cerdán and Huerta (in press) use trinomial graphs 
(Fridman, 1990) in order to study ternary problems of conditional probability by 
means of the analysis and synthesis method. 

Evans and others (2000), Girotto and González (2001), Hoffrage and others (2002), 
Huerta and Lonjedo (2006), Lonjedo & Huerta, (2007), Maury (1984) and Ojeda 
(1996) study aspects that have an influence on students’ behavior in solving 
conditional probability problems. But, we do not know of any work in which the 
purpose of the research is focused on the study of contextual and phenomenological 
aspects of probability problems (according to Freudenthal, 1983). We think that this 
kind of study is necessary in order to find out if contextual factors also have an 
influence on problem solving processes or which contexts we should use in order to 
teach conditional probability to enhance students’ understanding of the subject. 
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OBJECTIVES AND METHOD 

The main objective of this paper is to show a phenomenological analysis of 
conditional probability problems as described above. More specifically, we will 
analyze the problems related to teaching–learning environments where conditional 
probability is being taught. These environments do not include secondary schools 
because in order to answer the question we put forward in the introduction, a positive 
reply will involve, among other reasons, the fact that secondary school students today 
will find this type of problems in their futures both in further education and working 
environments.  

All work we are reporting in the paper is made thinking in secondary school. If we 
think in preparing students in conditional probability in secondary school, at least, 
two questions can arise: why? and how? The answer to the first one takes in account 
students’ future, both as a student in a university and as a citizen. So, it is necessary 
to explore contexts and phenomena in which conditional probability is involved. If 
we do think in this way, we will determine not only what kind of competences 
secondary schools students must have with conditional probability, but also what type 
of problems they have to solve and in which contexts problems have to be stated. On 
the other hand, the answer to the second question can be found in a 
phenomenological and realistic approach to teaching conditional probability through 
problem solving. 

Due to the fact that we investigate problems in teaching-learning environments, our 
information comes from several sources. One of them is from textbooks in Colleges 
at Universitat Politècnica de València and Universitat de València and another one is 
from the Internet, introducing a word chain in a searcher as follows: Probability, 
Conditional Probability, Conditioned Probability, Bayes’ Theorem, and so on. In both 
cases, the main item in the search was conditional probability problems that have 
been used in teaching during the 2005-2006 school year. Furthermore, whenever 
possible, we interviewed professors from the aforementioned Universities or get into 
contact with specialist people in some topics related to ours, or sent e-mails to the 
other teachers and professors at the other information sources. Occasionally, through 
the use of the Internet we found papers, research projects or Doctoral Dissertations 
that used conditional probability in different contexts other than those related to the 
teaching of Mathematics. 

By analyzing the aforementioned documents we were able to classify them according 
to the following criteria: Context (in which the problem is formulated), Phenomena 
referring to events (that is to say, organized by means of events), Phenomena 
referring to probabilities (that is to say, organized by means of probabilities), Specific 
terminology, Classification (attending to the structure of the data in the text of the 
problem and the presentation format of the data) and Specific teaching environment 
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or reference. We then went on to define the aforementioned criteria as follows: 

Context: A particular situation in which problems are put forward. In a context, a 
particular concept such as conditional probability has a specific meaning or is used 
with a specific sense. For example, a Diagnostic Test is a context. 

Phenomena (referring to events): In a particular context, those statements that can 
be recognized as having an uncertain possible outcome are phenomena. These 
statements can be organized by means of references sets (Freudenthal, 1983, p.41) - 
events in a probabilistic and mathematical sense and operations between events. For 
example, “being ill”, “being ill and having a negative diagnostic”. Neither of these 
phenomena will be recognized as a “conditional event” even though it is possible to 
talk about them as if they were. For example, “knowing that he /she has a negative 
diagnostic, being ill”. 

Phenomena (referring to probabilities): In a particular context, a part from 
quantities, we refer to signs, words, sets of words and statements that express a 
measurement or the need for a measurement regarding the uncertainty of a 
phenomenon. For example, in the phrase risk of “false alarms”, false alarms could 
be recognized as an event but, mathematically, it is not an event. However, risk
indicates that something is probably wrong and has possible undesirable 
consequences. There a measurement of risk is related to it. In the Diagnostic Test 
context, risk of “false alarms” is sometimes called FPC or False Positive 
Coefficient. Prevalence of a disease is another example of phenomena we are 
referring to. The encyclopedic meaning of the word “prevalence” is not related to 
probabilities. But in some cases, when this word is used tied to a particular context, 
as we are considering it in this work, it acquires a particular meaning in a 
probabilistic sense. So, the phenomenon of prevalence of a disease can be organized 
by means of a probability and expressed in the way that it is usual: frequencies, 
percentages or number in [0, 1].

Dictionary of specific terms: In a particular context, and concerning a particular 
problem, signs, words, sets of words, statements and their meanings within the given 
context. Sometimes, most of these meanings are already familiar terms. 

Specific teaching environment or reference: College, University, or whatever other 
teaching Centres from which the problem has originated. 

RESULTS AND DISCUSION 

Taken into account the items for the analysis mentioned above, for the problems 
listed in the annex we have drawn up this table: 

Working Group 5

CERME 5 (2007) 705



Problem

C
on

te
xt

Ph
en

om
en

a
(E

ve
nt

s)

Ph
en

om
en

a
(C

on
di

tio
na

l 
pr

ob
ab

ili
ty

) 

Sp
ec

ifi
c

T
er

m
s

Pr
ob

le
m

C
la

ss
ifi

ca
ti

on
(K

no
w

n 
da

ta
 a

nd
 

qu
es

tio
n)

D
at

a
Fo

rm
at

.
Sp

ec
ifi

c 
te

ac
hi

ng
 

en
vi

ro
nm

en
t o

r 
re

fe
re

nc
e 

P1
D

ia
gn

os
tic

 T
es

t 
in

 h
ea

lth
 se

tti
ng

 

-T
ub

er
cu

la
r /

 N
on

- 
tu

be
rc

ul
ar

. 
-A

 tu
be

rc
ul

ar
 / 

N
on

-
tu

be
rc

ul
ar

 p
er

so
n 

ca
n 

gi
ve

 
po

si
tiv

e 
/ n

eg
at

iv
e 

in
 te

st
. 

-A
 p

os
iti

ve
 p

er
so

n 
te

st
ed

 
ca

n 
su

ff
er

 / 
no

t s
uf

fe
r f

ro
m

 
tu

be
rc

ul
os

is
.

R
el

ia
bi

lit
y 

of
 te

st
 

fo
r t

he
 d

is
ea

se
 

di
ag

no
st

ic
.

-T
o 

gi
ve

 p
os

iti
ve

 / 
ne

ga
tiv

e 
in

 te
st

. 
-T

o 
be

 / 
no

t t
o 

be
 

ill
.

-P
PV

 o
r P

os
iti

ve
 

Pr
ed

ic
tiv

e 
V

al
ue

(1
,0

,2
)

P(
D

|+
) 

R
at

e.
Pe

rc
en

ta
ge

s

H
os

pi
ta

l U
ni

ve
rs

ita
rio

 R
am

ón
 y

 
C

aj
al

 d
e 

M
ad

rid
. 

ht
tp

://
w

w
w

.h
rc

.e
s/

bi
oe

st
/P

ro
ba

bi
li

da
d_

18
.h

tm
l 

P2
D

ia
gn

os
tic

 T
es

t 
in

 h
ea

lth
 se

tti
ng

 

Th
e 

sa
m

e,
 c

ha
ng

in
g 

tu
be

rc
ul

ar
 p

er
so

n 
by

 
Pr

ev
al

en
ce

 o
f d

ia
be

te
s. 

R
el

ia
bi

lit
y 

of
 te

st
 

fo
r t

he
 d

is
ea

se
 

di
ag

no
st

ic
.

-F
PC

 o
r F

al
se

 
Po

si
tiv

e 
C

oe
fic

ie
nt

 
-F

N
C

 o
r F

al
se

 
N

eg
at

iv
e 

C
oe

fic
ie

nt
 

-P
PV

 o
r P

os
iti

ve
 

Pr
ed

ic
tiv

e 
V

al
ue

 
-N

PV
 o

r N
eg

at
iv

e 
Pr

ed
ic

tiv
e 

V
al

ue
 

(1
,0

,2
)

p(
D

|+
)

p(
no

 D
|-)

 
Pe

rc
en

ta
ge

s
H

os
pi

ta
l U

ni
ve

rs
ita

rio
 R

am
ón

 y
 

C
aj

al
 d

e 
M

ad
rid

. 
ht

tp
://

w
w

w
.h

rc
.e

s/
bi

oe
st

/P
ro

ba
bi

li
da

d_
18

.h
tm

l 

P3
D

ia
gn

os
tic

 T
es

t 
in

 h
ea

lth
 se

tti
ng

 
Th

e 
sa

m
e,

 u
te

rin
e 

ca
nc

er
R

el
ia

bi
lit

y 
of

 te
st

 
fo

r t
he

 d
is

ea
se

 
di

ag
no

st
ic

.

-F
al

se
 P

os
iti

ve
 

C
oe

ff
ic

ie
nt

 (F
PC

) 
-F

al
se

 N
eg

at
iv

e 
C

oe
ff

ic
ie

nt
 (F

N
C

) 
-P

re
-te

st
 

pr
ob

ab
ili

ty
 

-N
PV

 o
r N

eg
at

iv
e 

Pr
ed

ic
tiv

e 
V

al
ue

 

(1
,0

,2
)

P(
no

 D
|-)

 
Pr

ob
ab

ili
ty

H
os

pi
ta

l U
ni

ve
rs

ita
rio

 R
am

ón
 y

 
C

aj
al

 d
e 

M
ad

rid
. 

ht
tp

://
w

w
w

.h
rc

.e
s/

bi
oe

st
/P

ro
ba

bi
li

da
d_

18
.h

tm
l 

P4
D

ia
gn

os
tic

 T
es

t 
in

 h
ea

lth
 se

tti
ng

 
Pr

ev
al

en
ce

 o
f t

he
 

tu
be

rc
ul

os
is

R
el

ia
bi

lit
y 

of
 te

st
 

fo
r t

he
 d

is
ea

se
 

di
ag

no
st

ic
.

Se
ns

iti
vi

ty
 

Sp
ec

ifi
ci

ty
Fa

ls
e 

po
si

tiv
e 

To
 b

e 
ill

 

(0
,0

,3
)

P(
D

)
Pr

ob
ab

ili
ty

Fa
cu

lty
 o

f M
at

he
m

at
ic

s, 
U

ni
ve

rs
ita

t d
e 

V
al

èn
ci

a.
 

Pr
ob

ab
ili

ty
 a

nd
 st

oc
ha

st
ic

 
pr

oc
es

se
s. 

T
ab

le
 1

:S
om

e 
re

su
lts

 o
f t

he
 p

he
no

m
en

ol
og

ic
al

 a
na

ly
sis

 o
f p

ro
bl

em
s 1

 to
 4

.

W
or

ki
ng

 G
ro

up
 5

C
E

R
M

E
 5

 (2
00

7)
70

6



In the Diagnostic Test context we can also highlight several situations in which 
conditional probabilities are used, depending on the purpose the test is to be used  
for: diagnosis of diseases, diagnosis of faulty articles or products in manufacturing, 
diagnosis in legal Biology, and so on. In particular, problems 1 to 4 are stated in a 
Diagnostic Test context in a health setting.

Let Mi be, i= 1, 2; the two possible values for the mistakes produced in disease 
diagnostic, and Si, i=1, 2 the two possible values for the successes in the disease 
diagnostic (or predictive values). We have the following expressions to calculate 
the aforementioned values: M1= probability of one kind of mistake induced by a 
test (the FPC), M2= probability of the other kind of mistake induced by a test (the 
FNC). S1= probability of one kind of success produced by a test (the sensitivity), 
S2= probability of the other kind of success produced by test (the specificity). 

And also the following relationships: M1= FPC x (1-prevalence), M2=FNC x 
(prevalence), S1= sensitivity x prevalence / (sensitivity x prevalence + FPC x (1- 
prevalence)), S2= specificity x (1-prevalence)/ (specificity x (1 – prevalence) + 
NFC x prevalence) 

Sensitivity

We have been able to make a reading of the mistakes and success using 
probabilities. Therefore, in this sense, we have 8 conditional probabilities and 4 
absolute or marginal probabilities, complementary in pairs. Some of these 
complementary relationships are important in this context:  FPC + specificity = 1; 
FNC + sensitivity = 1 The next graph represents the world of ternary problems of 
conditional probability (Cerdán & Huerta, in press) in the context we are 
considering in this paper. The graph shows all relationships between events and 
quantities that give sense to both of them. 

CFP

CFN

Specificity

False negative

Prevalence of disease

1 or 100 if probabilities
N if natural frequencies

Prevalence test’s
negative

NPV

PPV

False positive

Prevalence of disease and
 test ’s positive

Prevalence of no disease

Prevalence test’s
positive

Prevalence of d isease and
 test’s negative

Prevalence of no disease and
 test’s positive

Prevalence of no disease and
 test’s negative

 

Graph 1. Graph of the World of ternary problems concerning conditional 
probability in the Diagnostic test in Health settings. 
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Consequently, in terms of ternary problems in conditional probability, and in this 
context, as there are no intersection probabilities, we can reasonably state 
problems organized by vectors (x, 0, z) with x+z= 3, x being the number of 
absolute probabilities and z the number of conditional probabilities in the text of 
the problem, and choosing them in an appropriate way.These types of problems are 
(1, 0, 2), (2, 0, 1) and (0, 0, 3). Problems 1 to 3 in the annex belong to the first type 
and they ask about mistakes or successes in disease diagnostics. Apart from the 
third type, all of these problems have arithmetical resolutions (Yañez, 2001; 
Lonjedo & Huerta 2004; Huerta & Lonjedo, 2005). Type (0, 0, 3), however, 
organizes problems that have an algebraical solution using explicitly FPC (FNC), 
Sensitivity (Specificity) and a Mistake (Success) as data in the text of the problems 
and they must ask about an absolute probability (prevalence of a disease or 
positive test result). 

Finally, let us suppose a particular situation organized by (2, 0, 1). Let x% be the 
sensitivity of test, a the prevalence of the disease and b the prevalence of the test’s 
positive results. We suppose S1 is the question. The following proportion is the 
answer: S1/x=a/b, S1=xa/b, expressed necessarily by a percentage. 

It is possible to make a similar analysis of the requirements for data and the 
relationships between data for the other types of problems. In general, but 
depending on the question in the problem, it could be stated that when the number 
of conditional probabilities in the text of the problem increases, the number of 
relationships also increases, thereby making the problems more complex in 
structure.

CONCLUSIONS 

The problems that we are considering in this study may be considered as problems 
of application for conditional probability, that is to say, problems that are solved 
after formal teaching of the concept of conditional probability have been carried 
out. But, teaching of this topic based on an exploration of the phenomena, that 
involves its uses in different contexts, is precisely the opposite point of view from 
formal teaching. Hence, as Freudenthal (1983) suggests, teaching the topic of 
conditional probability in secondary school might begin with solving problems that 
let students make an exploration of the phenomena involved with the topic and 
which could then be followed by teaching the formal topic of the conditional 
probability as a means of organizing those phenomena. The problems we have 
analyzed in this paper could be an example of this. These problems should be dealt 
with in secondary school education including contexts as far as possible. And only 
College level students should be taught about the formal concepts of conditional 
probability as a means of modeling the concepts within a context. 

One of the most commonly used contexts has been analyzed in this work. We 
termed it as the Diagnostic Test. It can be recognized in several different settings: 
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in textbooks, in research on students’ behavior in solving conditional probability 
problems and so on. Generally, data and the relationships between data are not 
previously analyzed in relation to the context. But, if, when we think about 
teaching conditional probability we previously analyze problems as we suggest in 
this work, we can determine what type of problems can be reasonably proposed to 
our students at every level of education that the subject matter is taught and in 
which context those problems must be stated in order to improve students’ 
understanding of conditional probability. 
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ANNEX  

P1. It is known that in a certain city one out of every 100 citizens is a tubercular 
person. A test was administered to a citizen. When a person is tubercular the test 
gives a positive result in 97% of cases. When he/she is not tubercular, only 0.01% 
of the cases give positive results. If the test is positive for these people, what is the 
probability that he/she is tubercular? 

P2. A diagnostic test for diabetes has an FPC of 4% and an FNC of 5%. If the 
prevalence of diabetes in a town is 7%, what is the probability that a person is 
diabetic if his/her test was positive? What is the probability that a person is not 
diabetic if his/her test was negative? 

P3. A diagnostic test for uterine cancer has a false positive coefficient of 0.05 and 
false negative of 0.01. A woman with a pre-test probability of 0.15 of having the 
disease has a negative result in her test. Calculate the probability that she is not ill? 

P4. The tuberculin test can test whether a person is infected by tuberculosis or not. 
The sensitivity and specificity of the test is very high, 0.97 and 0.98 respectively. 
If in a certain town there is a very high proportion of false positives, exactly 0.9, 
calculate the prevalence of the disease. 
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A MICROWORLD TO IMPLANT A GERM OF PROBABILITY 
Cerulli Michele, Chioccariello Augusto, Lemut Enrica 

Istituto Tecnologie Didattiche - C.N.R. di Genova 
This paper reports on the third part of a long term experiment concerning the 
introduction of 12-13 years old pupils to the concept of randomness and probability. 
In the first parts, the pupils analysed the concept of randomness, in daily life and with 
LEGO-RCX robots. The third part is based on the Random Garden Game (within the 
programming environment ToonTalk). The pupils are guided towards the concepts of 
equivalence of sample spaces and of classical probability, through temporary and 
personal meanings, corresponding to an evolution by means of class discussions.

INTRODUCTION
This paper accounts of some findings of a long term experiment [1] based on 
technological tools to introduce pupils to the concepts of randomness and probability. 
The experiment is composed of three phases: the first two concern pupil’s 
introduction to the concept of randomness (Cerulli et al., 2006). The third phase 
focused on the concept of probability, with particular attention to: a) Pupils’ 
development of the concept of sample space and of “equivalence” with respect to the 
events involved; b) Pupils’ construction of theories for comparing sample spaces; c)
Pupils’ construction of the concepts of frequency, relative frequency and probability.
The focus of this paper is mainly on how we used the computer programming 
environment ToonTalk (Kahn, 2004) to approach issue a).

THEORETICAL ASSUMPTIONS 
Research literature shows difficulties related to pupils’ introduction to probability 
(Fischbein, 1975; Pratt, 1998; Wilensky, 1993; and Truran, 2001), witnessing the 
failures of standard approaches. One of these difficulties concerns pupils’ capability 
of interpreting different random phenomena according to a unifying perspective 
(Pratt et al., 2002; Nisbett, 1983 via Pratt). In order to avoid this difficulty, our 
experiment is based on the idea of presenting pupils with different random 
phenomena that teachers and pupils can recognize and consider as belonging to a 
sector, unitary and homogeneous, of the human culture, that we can identify as 
experience field of aleatory phenomena (Boero et. Al., 1995). A unifying perspective 
is partly achieved in the first phases of the experiment, where phenomena such as the 
tossing of a coin, and one-dimensional random walk, were represented by means of 
unique robot, the Drunk Bot (Cerulli et al., 2005). However, according to Pratt (1998) 
the construction of meaning within this subject lies in connecting its formal and 
informal views. A formal view according to Noss and Hoyles (1995) can be achieved 
thanks to the introduction of suitable computer microworlds in the school practice. 
The activity we are presenting is based on a specific microworld, the Random Garden 
that we built ad hoc in ToonTalk. The key idea is that the microworld can be used as 
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a unifying model for representing and manipulating random phenomena. This model 
is unifying in the sense that each random phenomenon is represented as a sample 
space with a random extraction process, and different phenomena’s representations 
are structurally the same. Moreover, the analysis and manipulations of the 
phenomena, within the microworld, are also qualitatively identical.
According to socio-constructivism, our experiment assumes that learning can be the 
result of active participation in both practical and social activities. However, such 
kinds of activities do not guarantee that the meanings constructed by the pupils are 
coherent with mathematics or with the teacher’s educational goals. Such coherence 
can be achieved by means of mathematical class discussions orchestrated by the 
teacher (Mariotti, 2002; Bartolini Bussi, 1996). 

THE RANDOM GARDEN TOOLS 
The Random Garden is a microworld, for representing random extraction processes. 
The tool consists of a sample space (the Garden) a Bird and a Nest. [2] When the user 
gives a number to the Bird, a corresponding number of objects is extracted (with 
repetitions) from the Garden and deposited in the Nest (Figure 1).

Figure 1. A number is given to the N-bird to request a random extraction of N objects. 
A new bird comes out and drops extracted objects in the output nest.

Figure 2. Eight extractions are collected in a box containing a nest (left); only the first 
element is clearly visible. The nest can be converted into a box with eight holes 
showing the ordered sequence of extracted objects (right). 

Figure 3. The Bar Graph (left) and the Counters (right), show respectively the 
proportions and the exact numbers of elements extracted for each kind of object. 

The user can modify the garden by adding or removing objects which can be 
numbers, text, or images of any kind. It implies that this simple device can be used as 
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a means for representing any kind of random phenomena. The elements extracted 
from the Random Garden are collected in a box containing a nest (Figures 1 and 2).
In order to visualize the whole sequence of extractions, it is possible to convert the 
nest into a new box with as many holes as the number of extracted objects (Figure 2). 
Hence, a rough qualitative view of the sequence and of its properties can be seen at a 
glance. If the number of extractions is large, and/or if one needs a more detailed 
qualitative/quantitative analysis of the data, other tools are required and provided: 
Bar Graph and Counters (Figure 3). These are dynamic tools, in fact numbers and 
bars change while the extraction is in progress. In particular, the bars oscillate at the 
beginning of the extraction process, and stabilize after a large number of extractions. 

THE GUESS MY GARDEN GAME 
If one is given a nest, or a box of extractions (see Figure 2), it is possible to address 
the question of what a possible composition of the Random Garden that generated the 
given sequence is. This key question is at the core of the Guess my Garden game [3] 
which is conducted as follows. One team of pupils, namely a small group, creates a 
Random Garden (using at most 12 objects), thus defining a sample space; then 
produces a set of boxes containing increasing numbers of extractions, for example, 2 
boxes with 100 extractions and 2 boxes with 1000 extractions, and so on.
All the boxes, containing the data generated by the pupils’ team, are included in a 
ToonTalk notebook named like team, and the notebook is published on the web, as a 
challenge for other players. Another team can then download the notebook and 
analyse the data it contains in order to try to guess the makeup of the Random Garden 
produced by the challenging team. The team can either simply observe the sequences 
of extractions, or study them using the Bar Graph and Counters tools. Once they 
make a conjecture concerning the garden to be guessed, they can produce a new 
corresponding garden and use it to produce a number of extractions that may be 
compared to those provided by the challenging team. Once the team is satisfied with 
the conjectured garden, they can publish it on the web and wait for their counterparts 
to validate or invalidate their answer. Finally, the challenging team checks the 
published answer and posts a comment to inform the other team whether they have 
guessed their garden correctly or not. If the garden has not been guessed, then the 
exchange between the pupils can continue until an agreement is reached. 

THE EPISODE 
The first two phases of experiment involved reflective and practical activities aiming 
at exploration and consolidation of some key issues related to randomness (eg. 
unpredictability, fairness, indeterminism, random walks, etc.). In the first phase 
pupils collected, proposed, and analysed sentences, talks, and episodes related to 
randomness. Pupils had to write individual reports and to discuss some of the 
emerging items with the rest of the class. Each considered item was discussed in 

Working Group 5

CERME 5 (2007) 714



terms of key questions such as “is it random or not?”, or “is it predictable or not”. 
The results of the discussions were reported in a shared class document, called 
Encicloaedia of Randomness. The second phase was based on the interaction with 
some LEGO robots that incorporated different aspects of the concept of randomness 
(see Cerulli & al. 2006, for more details). Each robot was discussed and classified as 
random or not random: the same questions used in phase one functioned as pivots for 
the teacher’s orchestration of the discussions. After these phases, the pupils were very 
familiar with the concept of randomness and were about to be introduced to 
probability starting from the Guess my Garden game.  
A class of 21 pupils from Milan starts the game by making public a set of challenges, 
and receiving answers from Swedish and Portuguese opponents. The first 
protagonists of the episode are the members of Jeka’s team: Jeka (Jk), Jè (Je) and 
Rossana (R). They have to build a garden to be used to publish a difficult challenge 
as required by the task (Italian dialogues translated by the authors): 

Jk:  we could do…the same number…of flowers and trees 
Jk  and Rossana: three times this one, three times this one, three times this one 

and three times this one (pointing to the objects in the random garden)

The girls build their garden and ask the software to produce 100 extractions from the 
garden, and then comment on the results: 

Jk:  yellow flower 25 extracted times… 
R:  …but they are all the same?! (looks surprised)…more or less…25, 24, 25 

and 26 …ah, yes, of course, we put (in the garden) all the same numbers  
(of flowers and tree)…(she looks around to stress that she is stating 
something obvious and her pals nod).

The girls take note of the obtained result and a researcher (M) intervenes to 
investigate what strategy the pupils are using to build a difficult challenge: 

R:  we multiplied each object of the garden by 3 (pointing to the monitor)…we
tripled

M:  Why do you think this is difficult to be guessed? (reads one of the written 
questions pupils are supposed to answer in order to accomplish their task)

R:  no, it is not difficult, we just tried… 
M:  but it is not easy to guess this …(he is promptly interrupted by Jeka) 
Jk:  exactly! Because…one may think of two (objects) maybe…  
R:  …yes…. (thoughtful)
Jk:  I would think of two (objects of each kind in the garden)  

The original idea (to triplicate the numbers of flowers) of Jeka begins to be clearer 
and becomes more explicit when the teacher (A) asks them for an explanation: 

A:  why do you think this garden is difficult…? 
Jk:  maybe because with the resulting numbers (after the extraction) one 

may…one may get confused 
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A:  why? What answer could you get? 
Jk:  maybe two 
M:  you mean two… 
Jk:  I mean, if one sees 20 
A:   2, 2, 2, 2? (meaning a garden with 2 objects of each kind; Jk, Jè and R nod) 

After some reflections and discussions, the girls decide to publish the garden they had 
produced, made of 3 objects of each kind (Figure 4). They believe that their 
opponents may think that the garden is made of 1 object (or 2 objects) of each kind. 

Figure 4. On the left it is possible to see the garden defined by Jeka’s team, while on 
the right it is possible to see the attempt of guess sent by a Swedish team. 

The following week the class goes back in the computer laboratory and each team 
finds an answer from a Swedish team. Jeka’s team finds the answer given by 
Amelie’s team (Figure 4), who conjectured that the garden contained 1 object for 
each kind, instead of 3, as expected by Jeka’s team. The answer is considered wrong 
by Jeka’s team, as they write in the message they send to the Swedish opponents.

Figure 5. The results of 1200 extractions from M’s challenge. 

After responding to their Swedish pals, the Italian pupils are required to discuss how 
to respond to M’s challenge. Such challenge is analysed by two teams who obtain the 
graph of Figure 5 using the Bar Graph tool.

Figure 6. On the right: Lollo’s team’s garden; on the left Jeka’s team’s garden. 

The two teams that answer to M’s challenge give different guesses: a) 2 red flowers, 
4 pink flowers and 6 yellow flowers (Jeka’s team); b) 1 red flower, 2 pink flowers 
and 3 yellow flowers (Lollo’s team). 
Which of these two answers is correct? The teacher poses this question a couple of 
weeks later within a class discussion where the pupils couldn’t access the computers 
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and the Random Garden tools. In order to support the class discussion, the teacher 
provides a set of cards representing the gardens proposed by the two teams, as shown 
in Figure 6. 
The teacher recalls the two teams’ different answers and asks the class which of them 
is right or wrong, or if they are both wrong or right. A brief discussion follows where 
pupils agree that the chances to get a red flower from garden A or from garden B are 
the same, as expressed by C1:  

C1:  they are the same; in fact they are all doubled (meaning that the number of 
flowers in garden B is twice the number of flowers in garden A)

The gardens are now regarded as objects and their constitutive properties are 
compared, and garden B is now regarded as a sort of “double” of garden A. This idea 
reminds Jeka of the challenge they proposed to their Swedish pals.  
Now the terrain seems to be ready for planting the seed of equivalence and the 
teacher takes this occasion to introduce explicitly the word “equivalent”: 

A:  […] thus these two gardens, in theory, are equivalent? 
C1:  yes, they are equiv… 
A:  [or] Are they equal? 
C2:  they are equal 
A:  [or] Are they identical? 
C1:  they are equal 
Jk:  they are equivalent 
C1:  they are equiv… 

A noise of chat among pupils follows which ends with C1 stating: 
C1:  equivalent! 
Jk:  they are equivalent! (Someone in the background says “equal”)
C1:  equiva…equivalent…(seems to be doubting)
A:  will you explain me what you mean by equivalent? 
Jè:  not equal because there are not the same elements in the two gardens 
A:  Thus M surely had one or the other (meaning that if M had one of the 

proposed gardens, he couldn’t have both of them but only one)
Jè:  equivalent because they have the same values….in practice…we can say 

so!

After a while, the position expressed by Jè (when she states that the two gardens are 
not equal because they have different elements) opens the space for discussing new 
criteria (different from pure “equality”) for comparing gardens. Jè introduces her 
criterion of equivalence, based on the “values” [4] of the gardens. At this point it is 
not clear what is meant by the word “values”, but from the context we deduce that Jè 
refers to some kind of result produced by the gardens that it could be the graphs, the 
numbers in the Counters, or the sets of extractions. In the meantime, other pupils, like 
Bo, propose their interpretation or alternative “definition” of equivalence: 
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Bo:  the percentages are the same…I believe it is because the percentage is more 
or less the same. 

A:  the same of what? 
Bo:  of…of twelve…of all the flowers…for instance 
A:  give me an example 
Bo:  in the first garden, the garden A, the percentage is 6…in the first garden the 

percentage is 6, six is …it is … 
A:  the percentage? The total? 
Bo:  yes, the total, the 6 is like the 100, and the red is 1, thus it is ….the red is 1 

over 6…oh god! 
A:  1 over 6 
Bo:  1 over 6 and the second (garden) is 2 over 12 which is like 1 over 6 
A:  uhm, thus you say “they are equivalent as the two fractions” that you said? 
Bo:  yes 
A:  right? 
A:  but they are not the same, so we can say that these two answers are 

equivalent […] but without knowing Michele’s garden we cannot give a 
definite verdict, ok? 

Bo:  because even if we could make the extraction….surely the numbers would 
not be the same, they would be almost the same! 

A:  almost the same, and the colums [of the graphs]? 
Bo:  equ….with the same heights I think 
A:  in the two gardens? 
Bo:  in the two gardens the heights of the columns would be the same but the 

values different 

Bo’s idea of equivalence, different from Jè’s, is based on an analysis of the 
constitutive elements of the garden, and he tries to formalize it by associating 
fractions to the garden. The fractions are only by chance coherent with the classical 
definition of probability which at this stage is not known to these pupils [5]. 
However, Bo also agrees that the two gardens would produce the same graph.  
The class needs to establish criteria to validate responses to challenges. This leads 
them to introducing some idea of equivalence. Such idea is still fuzzy, but 
nevertheless it turns out to be useful in the following excerpt where the class 
discusses the case of Jeka’s team and their Swedish opponents. According to Jeka, 
the strategy used by M is the same as the one used by her team. They both produced a 
garden whose results were “the same” as the results of other gardens, so that their 
opponents’ chances to guess are low. This issue relates to the idea of equivalence of 
gardens, so the teacher approaches it just after the discussion of M’s challenge, and 
puts it in terms of validation of the Swedish answer: 

A:  they [Jeka’s team] answered to the Swedish pupils “you did not guess”, are 
we leaving this answer or are we going to write to them again? 

C:  I think it is better to re-write it and state that they did well but the values… 
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Jk:  they did wrong 
C:  they did wrong but with respect to the values…they did wrong but they 

were right because the original value was 3, 3, 3 and 3, the one they had to 
guess, and they put 1, 1, 1, 1 but it is not their fault because… 

Jk:  they did wrong 
C:  they did right, it is only that the bars were the same, so they could put any 

number 
Jk:  I think we should re-write it stating that they did wrong, but that the two 

gardens are equivalent like the other one (referring to M’s challenge) 

According to C, the Swedish team’s answer should be considered correct because 
their garden produces the same graph as Jeka’s team garden. This idea is re-
formulated by Jeka in terms of equivalence between the two gardens, thus the word 
“equivalent” (ita. “equivalente”) begins to be used by the pupils as a tool for 
validating responses to the challenges. However, the meaning associated to the word 
“equivalent” needs some more clarification: 

A: what is the phrase you would write to explain them…? 
C:  I would write, you did wrong…should I say also the solution? 
A:  suppose that what you say is going to be sent to the Swedish pupils 
C:  you did…you did wrong…you didn’t guess our garden but you found 

another one that has the same value of the one we did, apart from… 

The words “values” (ita.: “valori”) and “equivalent” appears as strictly tied, and their 
relationship is definitely cleared by C in the following excerpt: 

A:  what do you mean by “value”? 
C:  I mean that the graphs of the extractions are equal to the graphs of our 

garden
A:  perfect 
C:  only, our garden had different quantities of objects 
A:  so, if they give the same extractions they are equivalent 
C:  there are 3 equivalent gardens…there are 2 equivalent gardens…there is our 

garden, 3 red flowers, 3 yellows, 3 pinks and 3 trees, your garden, one for 
each object, and a third one containing to elements for each object .

Finally, the meanings of the words “values” and “equivalent” are cleared and the 
class agrees on the following criterion for validating answers to responses: the answer 
is correct if the garden proposed by the responder is equal to the original garden; the 
answer is almost correct if the garden of the responder is equivalent to the original 
garden, in the sense that they produce the same graph. 
What we find interesting in this story is that the “germ” of the idea of equivalence 
appeared in the form of the strategy employed by Jeka’s team for winning the game. 
It then reappears in the discussion of M’s challenge which was designed on purpose 
to exploit the ambiguities related to the equivalence of gardens; in this case the idea 
of equivalence appears in the form of a criterion for deciding which of the two 
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proposed answers is correct. Each of these steps corresponded to an evolution of 
pupils’ idea of equivalence of gardens by means of reflections and class discussions 
that are clearly motivated and driven by the needs of the game. The two needs that 
drive such evolution are basically: the need for finding a principle to validate 
answers; the need to produce “difficult” challenges. 

CONCLUSIONS
In this paper we show how the third phase of the long experiment contributed to 
pupils’ development of an idea of equivalence of sample spaces, which we assume to 
be basic for developing a definition of probability. We observe also that in this kind 
of activity pupils implicitly cope with matters related to the law of large numbers. 
The experiment continued by involving the pupils in tasks of comparisons of sample 
spaces, questioning on how easy (probable) it was to pick a given flower from a given 
Random Garden. Starting from these tasks, new class discussions were set up, which 
led pupils to define their own operative strategies for comparing sample spaces, in 
terms of choosing the sample space which would more likely generate a specific 
event. All of these strategies consisted in some kind of computation associating a 
“result” to each sample space: the comparison of such results would help choosing 
the “best” sample space. One of the strategies proposed by pupils was consistent with 
the classic definition of probability. This made room for introducing the classic 
definition as a means for studying and comparing random phenomena.  
The strategies proposed by pupils are, as a matter of fact, not dependent on the 
context, in the sense that the flowers of the random garden can be substituted with 
other objects/symbols. Thus the Random Garden becomes a unifying model to 
represent random phenomena, as suggested by the final activities of the project, 
where pupils used the Random Garden tools to reproduce on the screen the 
behaviours of the LEGO robots they experienced in the first phases of the long 
experiment. 

NOTES
1. We acknowledge the support European Union. Grant IST-2001-32200, for the project “WebLabs: new 
representational infrastructures for e-learning” (see http://www.weblabs.eu.com/).

2. See a tutorial: http://www.weblabs.org.uk/wlplone/Members/augusto/my_reports/Report.2004-06-21.4151

3. Rules and data: http://www.weblabs.org.uk/wlplone/Members/augusto/my_reports/Report.2005-01-04.5407

4. Consider that the Italian “valori” (used by Jeka and here translated with “values”) can have several meanings, among 
which it can represent either the values of the parameters of the input of a process or the results of the same process. 

5. We should mention that the class had previously discussed on what strategies can be employed to decide, given two 
gardens, which of them is more likely to extract a certain kind of flower. The strategies proposed by pupils include 
“measure” of “chances to extract” of various kinds among which we find the fractions employed in this case by Bo. 
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THE IMPACT OF A TYPICAL CLASSROOM PRACTICE ON 
STUDENTS’ STATISTICAL KNOWLEDGE 

Andreas Eichler
Universität Münster 

This report focuses on a research project that combines three aspects of a curriculum 
concerning teachers’ planning, teachers’ classroom practice, and their students’ 
statistical knowledge. Firstly, the theoretical framework and methodology will be 
sketched. Afterwards, the planning and classroom practice of one statistics teacher 
will be outlined. Finally, the report stresses the structure of statistical knowledge and 
beliefs with regard to statistics of five of the teacher’s students. 

INTRODUCTION
In recent years, statistical reasoning (SR, Garfield, 2003), statistical literacy (SL, Gal, 
2004) and statistical thinking (ST, Pfannkuch and Wild, 1999) have been declared as 
the three overarching goals of a modern statistics teaching. Since these three goals 
require a change of statistics teachers’ instructional practice (e.g. Garfield, 2002), 
there is an increasing number of proposals from statistics educators as to how 
teachers can promote students’ SR, SL and ST (e.g. Chance, 2002). In contrast, there 
are few research approaches that focus on SR, SL or ST concerning the classroom 
practice of “conventional” mathematics teachers (e.g. Watson, 2006). 
The latter type of research approach is the basis for a qualitative research project that 
focuses on teachers’ planning of statistics instruction (teachers’ individual curricula),
teachers’ classroom practice (teachers’ factual curricula), and the knowledge and 
beliefs students attained after statistics courses (students’ implemented curricula).
The motivation for the research project is the assumption that the nature of 
mathematics teachers’ thinking is the key factor in any movement towards changing 
mathematics teaching (Chapman, 1999). Further, there is strong evidence that the 
knowledge and beliefs students attain are determined by their teachers’ beliefs and 
their teachers’ instructional practice (Calderhead, 1996). In this report a part of the 
larger research approach will be discussed, i.e. the individual curriculum and the 
factual curriculum of one statistics teacher, and the implemented curricula of five of 
the teacher’s students. The report stresses the students’ implemented curricula 
concerning the structure of the students’ knowledge and beliefs regarding statistical 
concepts.

THEORETICAL FRAMEWORK 
The distinction between three levels of a curriculum, i.e. the teachers’ individual 
curricula, the teachers’ factual curricula, and the students’ implemented curricula is 
oriented to a model developed by Vollstädt, Tillmann, Rauin, Höhmann and 
Terbrügge (1999). Teachers’ individual curricula, teachers’ factual curricula, and 
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students’ implemented curricula are understood as part of an action in a 
psychological sense, which Erickson (1986, p. 126) defines as the "the physical 
behavior plus the meaning interpretations held by the actor".  
In order to describe and structure the three levels of the curriculum, the psychological 
construct of subjective theories (Groben, Scheele, Schlee and Wahl, 1988) is used. 
Subjective theories are defined as a complex system of cognitions  containing a 
rationale which is, at least, implicit. Hence, individual cognitions are connected in an 
argumentative mode. Subjective theories contain subjective concepts, subjective 
definitions of these concepts, and relations between these concepts that constitute the 
argumentative structure of the system of cognitions. 
The teachers’ individual curricula are understood as an argumentative system 
(subjective theory) comprising instructional contents, and instructional goals linked 
with these contents (Eichler, 2006). The teachers’ instructional planning, i.e. the 
teachers’ individual curricula, are non-observable intentions of action, which need to 
be reconstructed qualitatively by interpretation. 
A teacher’s factual curriculum is the observable part of his curriculum. It gives 
evidence for the appropriateness of the reconstruction of the teacher’s individual 
curriculum. In other words, the teacher’s factual curriculum provides evidence, if the 
teacher actually do what they say they intend to do. 
The students’ implemented curricula, i.e. the statistical knowledge and beliefs 
students attain due to the classroom practice, can be understood as a subjective 
peculiarity of SL, SR or ST. To structure the students’ knowledge the construct of 
statistical knowledge will be used, which Broers (2006) describes as the core of SL, 
SR and ST. Furthermore Broers’ distinction of declarative knowledge, procedural 
knowledge, and conceptual knowledge is used following the description of these 
three aspects of knowledge proposed by Hiebert and Carpenter (1992). In addition to 
the knowledge, the students’ implemented curricula comprise beliefs concerning 
statistics or mathematics (Broers, 2006). As well as the teachers’ individual curricula, 
the students’ implemented curricula are non-observable and need to be reconstructed 
qualitatively by interpretation. The teachers’ individual curricula comprise the 
teachers’ conviction that their instructional practice yields their intended goals. 
Hence, the students’ implemented curricula may yield evidence for the 
appropriateness of the teachers’ convictions concerning their instructional goals.

METHODOLOGY
The methodology is based on case studies. One case is defined as the individual 
teacher plus five of his students. Cases are selected according to theoretical sampling. 
Data were collected with semi-structured interviews comprising several clusters of 
questions concerning the subjects shown in table 1.
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An in-depth interview with one of the teachers took about two hours. The students 
were interviewed (about 30 minutes) one week after the teachers finished their 
statistics course. Interpreting transcribed interviews adheres to the principles of 
classical hermeneutics (Danner, 1998). The objective of this first phase of 
reconstruction is to identify subjective concepts and to see how they are defined. The 
second phase concerns the construction of argumentative systems of knowledge and 
beliefs, i.e. teachers' individual curricula or rather students' implemented curricula. 

Interview with the teachers Interview with the students 
Contents of instruction 
Goals of mathematics instruction 
The nature of (school) mathematics 
Teaching and learning mathematics 
Institutional boundaries 

Stochastic concepts 
Uses of mathematics instruction 
The nature of mathematics 
Teaching and learning mathematics 
Students' self-efficacy 

Table 1: Clusters of the semi-structured interview 

The classroom practice of the teachers was observed and recorded (in writing), for 
about four months during the time they taught statistics. Observing the teachers’ 
factual curricula facilitates both evaluating the reconstruction of the teachers’ 
individual curricula, and preparing prompts for the interviews with the students.  

THE INDIVIDUAL AND FACTUAL CURRICULUM OF MR. D 
Mr. D teaches stochastics in a special course of mathematics in grade 12 at a 
“Gymnasium” (a secondary high school). Many researchers (e.g. Helmke, 2007) 
provide criteria of a “good” classroom practice. Judging by these criteria, Mr. D can 
be described as a “good” teacher. Also, the students of Mr. D rate him as “good” 
teacher. His individual curriculum and factual curriculum will be outlined in brief.  
Mr. D's curriculum concerning the instructional contents is traditional in Germany. 
The structure of the contents (reconstructed as individual curriculum and observed in 
the classroom practice of Mr. D) is shown in figure 1. 

Hypothesis testing,  
confidence intervalls

Bernoulli experiments, binomial 
distribution, expected value, 

standard deviation

Figure 1: Instructional contents in the curriculum of Mr. D 

Mr. D’s curriculum concerning probability theory includes the concepts of chance, 
random experiments, probability, combinatorics, and binomial distribution. Mr. D 
primarily uses the statistical approach to probability, and teaches Laplacean 

Basic concepts: random,event 

Multilevel random experiments, 
combinatorics

Frequencies, Mean 
Statistical probability, 
Laplacean probability

2x2 tables, Fisher’s exact test 
Conditional probability,  

Bayesian theorem, 2x2 tables, 
(in)dependence 
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probability as a second possibility. Besides this traditional curriculum, Mr. D teaches 
the concepts of conditional probabilitiy, of Bayesian theorem, and of (in)dependence 
as a digression from the main subject matter. This means that Mr. D spent a lot of 
time dealing with these concepts. However, these contents have no function 
concerning the other contents of Mr. D’s curriculum. 
Mr. D wishes to develop statistical methods while teaching applications. The central 
goal of Mr. D is to develop these methods in a process, the result of which will be 
both the possibility to cope with real stochastical problems and the ability to criticise. 
Likewise, the central goal of the mathematics curriculum is to prepare students to 
cope with real-life mathematical problems. To attain these goals, Mr. D poses 
identical realistic problems at several times in his statistics course. Hence, Mr. D’s 
students examine one realistic problem with several statistical methods. For example, 
one of Mr. D’s central and recurrent problems is concerned with elections.   
Another goal of Mr. D is to establish a network of mathematical or statistical 
concepts. Regarding this goal, there is a break between Mr. D’s individual curriculum 
and Mr. D’s factual curriculum. So, Mr. D seldom shows relationships between 
statistical concepts explicitly, and he never uses concept-maps or similar strategies to 
emphasise the idea of a network of statistical concepts. 

THE IMPLEMENTED CURRICULA OF FIVE OF MR D'S STUDENTS 
The discussion of the implemented curricula of five of Mr. D’s students comprises 
aspects like statistical knowledge and beliefs about the relevance of statistics. The 
discussion starts with Friederike. Additionally, the knowledge and beliefs of the other 
four students will be mentioned. 
Statistical knowledge 
According to Mr. D, Friederike is a (female) student with high aptitude. Friederike’s 
statistical knowledge is shown in figure 2. The single statistical concepts (bold font) 
are understood as the students declarative knowledge. Friederike remembers the 
quoted concepts and is able to explain these concepts (except those in double 
brackets, e.g. conditional probability). The four concepts on the right side (italics), 
e.g. probability trees, are understood as the procedural knowledge of Friederike. The 
conceptual knowledge of Friederike is represented in three ways: 
1. The clusters of concepts represent the students knowledge concerning relationships 

between statistical concepts within a representation form (Hiebert and Carpenter 
1992), e.g. the relationship between the concepts Bernoulli experiment, binomial 
distribution and random variable: 
Friederike:  As far as the Bernoulli experiments are concerned, they can be calculated 

by using binomial distribution. And we can do this for certain values of X, 
which is the random variable. 
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2. Another aspect of the conceptual knowledge comprises the connections of different 
representation forms. Such relationships exist between statistical concepts and 
applications of the statistical concepts (in angled brackets), e.g. the relationship 
between the concept of hypothesis testing and the application of hypothesis testing, 
for example the extrapolation concerning elections. Most of  the applications of the 
statistical concepts emanate from the classroom practice of Mr. D (if not, the 
examples are underlined).

3. The third aspect of the conceptual knowledge is the relationship between several 
clusters of statistical concepts, which is represented by arrows. The dashed arrows 
are used if the relationship is vague.

Probability:
Certainty (circular definition) 
Statistical approach [weather, elections, marketing, insurance industry]
Classical approach [lotto, dice] 

Chance [] 

Repeated random events [] Combinatorics, strategy to count
[dice, lotto] 

Probability tree

2x2 table, strategy to organise 
[Sex-financial status, medication 
testing]  

Hypothesis testing (algorithm)

(In)Dependence [Sex-financial
status, confession-preference for a 
party]
((conditional probability,  
Bayesian theorem))

Hypothesis testing [campaign 
against smoking, elections]
Alpha error, beta error []

Confidence intervalls
[childbirth, marketing (cars)] 

Expected value, variance, 
standard deviation []  

Bernoulli experiment, random 
variable, binomial distribution 
[dice]

Figure 2: Statistical knowledge of Friederike 

One example concerning the third aspect of the conceptual knowledge is illustrated 
by the relationships between the statistical concepts of (in)dependence and the 
statistical procedures of the probability tree and the 2x2 table. Friederike remembers 
the 2x2 table as a strategy to handle the Fisher exact test: 

Friederike: Yes, a 2x2 table, it’s much easier to grasp. At first we had that with much 
smaller numbers, for example medical tests, and then we simply transposed 
it into the 2x2 table. 

Although Friederike remembers the relation between the 2x2 table and the Fisher 
exact test, she is not able to explain the algorithm of the Fisher exact test. Instead, she 
uses the 2x2 table in a descriptive way, mentioning an example that represents the 
subject matter of (in)dependence, i.e. the relationship between sex and financial 
status:

Friederike: So, for example, you could calculate the relative frequency of something, 
for example the relative frequency of women or men, and the relative 
frequency with which a certain criterion [rich or poor] applies to them. 
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The relationship between the concept of (in)dependence and the procedure of the 2x2 
table is vague because to explain the concept of (in)dependence, Friederike uses only 
the procedure of the probability tree: 

Friederike: So, if something is independent, then the branches on the tree, their 
probabilities are the same [...] and if it’s dependent, then there are different 
probabilities, as with male and female, and then the probabilities that follow 
on are not the same. 

Regarding the declarative knowledge, Friederike is able to explain most of the 
statistical concepts that are contained in the factual curriculum of Mr. D, except for 
the statistical concepts which Mr. D teaches as a relatively long digression, i.e. 
conditional probability and the theorem of Bayes. The lack of knowledge regarding 
these two statistical concepts is symptomatic for the students of Mr. D. Regarding all 
the statistical concepts, Friederike’s declarative knowledge is wider than the 
declarative knowledge of the other four students of Mr. D (see table 2): 

Student Concepts that the students could not remember or could not explain 

Gina (in)dependence, conditional probability, Bayesian theorem, binomial distribution 

Hans (in)dependence, conditional probability, Bayesian theorem, random variable, combinatorics 

Ingo Conditional probability, Bayesian theorem 

Janine conditional probability, Bayesian theorem, random variable, Bernoulli experiment, binomial 
distribution, combinatorics, alpha error, beta error 

Table 2: Declarative knowledge of Mr. D’s students 

Regarding the procedural knowledge, Friederike is able to handle graphical 
procedures like the probability tree or the 2x2 table. However, she is only able to use 
the tree in an appropriate way and not the other. Furthermore, Friederike explains the 
algorithm of hypothesis testing in a sophisticated way. Although Friederike is able to 
explain most of the statistical concepts, she is not able to mention formulas, expect 
the formula of the expected value concerning the binomial distribution (n times p). 
Regarding all five students of Mr. D, it is symptomatic that the students are able (1) 
to use only the probability tree in an appropriate way, (2) to use the 2x2 table to 
tabulate frequencies (probabilities), (3) to explain the algorithm of hypothesis testing. 
Finally, the students are not able to remember formulas. 
Regarding the conceptual knowledge, Friederike has only a vague idea of how to 
connect statistical concepts. Although she is able to perceive both the relationships 
concerning several clusters of statistical concepts, and the relationships between 
statistical concepts and their applications, the clusters of statistical concepts are often 
unrelated. Friederike remembers the clusters of statistical concepts as isolated book 
chapters. For example, she explains the cluster Bernoulli experiment – binomial 
distribution – random variable. However, she does not perceive the relation between 
this cluster and the concept of hypothesis testing, which is based on the binomial 
distribution in the factual curriculum of Mr. D. Nevertheless, Friederike’s network of 
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knowledge has more interconnections then the conceptual knowledge of the other 
students. The following table shows the relationship between concept clusters of the 
students of Mr. D, except for the concept of probability, which is interconnected to all 
the other statistical concepts in the network of knowledge that all students have. 

Student Relationship between concept clusters 
Gina (1) Expected value, standard deviation � hypothesis testing 1 algorithm of hypothesis testing 

(2) Bernoulli-Experiment � Expected value, standard deviation (vague) 
(3) Probability tree � Repeated random events � Bernoulli-Experiment 
(4) 2x2 table � hypothesis testing 

Hans (1) algorithm of hypothesis testing � hypothesis testing  
(2) Repeated random events � Bernoulli-Experiment 
(3) 2x2 table � hypothesis testing 

Ingo (1) algorithm of hypothesis testing � hypothesis testing  
(2) combinatorics � Repeated random events � Bernoulli-Experiment 
(3) Probability tree � (in)dependence 
(4) 2x2 table � hypothesis testing 

Janine (1) Expected value, standard deviation � hypothesis testing 1 algorithm of hypothesis testing 
(2) Probability tree � combinatorics (vague) 

Table 3: Conceptual knowledge of Mr. D’s students 

Beliefs about the relevance of statistics 
The structure of Friederike’s beliefs about the relevance of statistics (and 
mathematics) is shown in figure 3.  

Statistics
(= probability theory)

Mathematics
(= ancillary science)

Analysis 
(= abstract investigation of functions) 

Geometry

Arithmetic as tool to cover 
common situations (purchase)

Making predictions in uncertain 
situations

[weather, elections, insurance tariff]

Possibility to understand 
decision making processes of 

the society 

Use of statistics in studies 
[biology, genetics] Purpose of statistics concerning 

society
Purpose of statistics concerning 

Friederike’s own life 

Figure 3: Friederike’s beliefs about the relevance of statistics (and mathematics) 

The relations used to describe the students’ beliefs have the following meaning: The 
“/ \” describes the hierarchy of concepts (which are subjectively defined in brackets). 
For example, for Friederike, mathematics is the superordinate concept for statistics or 
analysis. The second relation, i.e. the arrow, describes the purpose of the 
mathematical disciplines. Finally, there is the distinction between the purpose of  
mathematics concerning the students’ own life and concerning the society. 
Friederike believes that statistics are a tool to solve real problems emerging in the 
society. Real problems, for example, exist in predicting events in uncertain situations. 
Friederike mentions, as one example (in angled brackets) for this purpose, the 
construction of an insurance tariff: 
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Friederike:  So, I think, for example, that you can use this in the insurance business. 
That is, in all the areas where you need a certain amount of accuracy but 
you can never be 100 percent certain. Yes, in insurance, where some things 
that are very probable require a premium that is very high. And other 
things, which are not so probable, are not such a great risk. They would 
rarely have to pay a compensation. 

For Friederike, a further purpose of statistics is their use in a course of university 
studies. Friederike mentions biology and in particular genetics as an example. She is, 
however, not able to explain how statistics may be a tool to solve problems 
concerning biology. In the same way, Friederike’s beliefs about the relevance of 
statistics for her own life are vague. She mentions the role of statistics in 
understanding specific decision-making processes. She is, however, not able to 
explain this role with regard to a concrete example. Finally, Friederike says that 
mathematics offers little more than arithmetic: 

Friederike:  Outside school, maths has no real significance. Ok, you can deal with 
numbers, but we learned how to do that a long time ago.. 

Interviewer: Ok, and what you do later on in school, isn’t that important? 

Friederike: Perhaps with stochastics. Perhaps you can better understand how probable 
something might be. 

All the students of Mr. D define statistics as the theory of probabilities. Most of the 
students explain the purpose of statistics for the society by using examples from the 
classroom instruction (see table 4). With the exception of Hans, the students are not 
able to explain the benefit of statistics for their own lives. Finally, most of the 
students argue that the benefit of mathematics is to learn arithmetic, which enables 
someone to deal successfully with money (shopping etc.).  

Student Purpose of statistics (societey/own life) Purpose of mathematics (society/own life)

Gina prediction (e.g.medical science) / games (unimportant) shopping / career 

Hans none  / estimation regarding games (casino) none / economics, career 

Ingo prediction (e.g.elections) / games (unimportant) shopping / programming, study, career 

Janine economics  / critical faculty (press coverage) shopping / none 

Table 4: Friederike’s beliefs about the relevance of statistics (and mathematics) 

DISCUSSION
Regarding the declarative knowledge of the five students it is a crucial result that all 
students have no or little knowledge concerning the concepts of conditional 
probabilities, of (in)dependence, or of the Bayesian theorem. To facilitate the 
students’ comprehension of independence and the Bayesian theorem, Mr. D uses the 
probability tree in a traditional manner. It is possible that the students would have 
more knowledge concerning this concept that have an intrinsic difficulty, if Mr. D 
uses the tree with natural frequencies in a way many authors suggested (e.g. 
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Martignon and Wassner 2002). It seems, however, that students predominantly are 
not able to remember or to explain the concepts of an instructional digression. 
Regarding the procedural knowledge it is remarkable that the five students are able to 
set up probability trees or 2x2 tables. However, none of the students is able to explain 
how to use the 2x2 table to solve specific problems except for arranging frequencies. 
It seems that Mr. D’s decision to use the 2x2 table concerning two very different 
statistical concepts (Fisher exact test, dependence) tends to impede the students’ 
comprehension. 
Although it is one primary goal of Mr. D to establish a network of statistical 
concepts, the conceptual knowledge of his students is limited. The students remember 
the clusters of statistical concepts as isolated book chapters. On this note, most of the 
students have knowledge about the relationship of the concepts of the Bernoulli 
experiment, of binomial distribution and of a random variable. The students, 
however, do not mention the relationship between the concepts of binomial 
distribution and independence or binomial distribution and hypothesis testing.
The students mention several examples of applying statistics in real world problems  
linked to the statistical concepts. Most of these examples emanate from Mr. D’s 
instruction. However, although Mr. D emphasises both perceiving, and coping with 
real statistical problems, his students do not understand the purpose of statistics in 
dealing with problems of the real world (with no regard to instructional examples). 
Above, Mr. D was rated above as “good” teacher in respect to his classroom practice. 
However, the realised curricula of five of his students show a phenomenon that 
Helmke (2007) describes as follows: a teacher’s well prepared classroom practice 
must not necessarily yield the impact the teacher intends. 

OUTLOOK
The purpose of this report was to discuss the impact of one teacher’s everyday 
classroom practice on students’ statistical knowledge in a descriptive way. The case 
of Mr. D and his five students is one of four cases of the larger research project. The 
aim of this ongoing project will be to understand the relationship between the 
teachers individual curricula, the teachers factual curricula and the students 
implemented curricula. The aim of this holistic understanding will be to find starting 
points to change the teachers’ everyday classroom practice regarding both the 
teacher’s individual curricula and the demands concerning the promotion of SR, SL 
and ST.
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(1) Universidad de València, Spain, (2) IES Montserrat, Spain 
ABSTRACT
In this paper we investigate the influence that presentation format of a 
conditional probability problem has on students’ problem solving behavior. 
We not only focus on the way numerical data is presented but also on 
information in text form that refers to a conditional probability. We report 
that students’ behavior changes depending on data presentation, and the 
percentage of students that succeed in solving a problem increases if we 
change the presentation format of the problem in a suitable way. We 
conclude by making some proposals for teaching conditional probability 
problem solving. 
INTRODUCTION
From a psychological point of view, some authors (eg, Gigerenzer & 
Hoffrage, 1995; Cosmides & Tooby, 1996; as opposed to Evans, Handley; 
Perham, Over & Thompson, 2000; Girotto & Gonzalez, 2001), suggest that 
people calculate Bayesian inferences better if the information is expressed in 
terms of frequencies rather than probabilities. They report that participants 
perform better because there is a strong relationship between data format and 
the rules required to answer the problem. In (natural) frequency formats, 
these rules are less complex than in probability formats and can facilitate 
reasoning in complex Bayesian situations. Other authors argue that the 
reason doesn’t lie in data format but in information structure and the form of 
the question, making the problem much easier to understand. 
Almost all the conditional probability problems used in the research 
mentioned above were structurally isomorphic. Usually these problems were 
considered in pairs. Apart from data format, all of them can be 
mathematically (or symbolically) read as follows: Known p(E), p(+2E) and 
p(+23E) calculates p(E2+), otherwise known as the Disease Problem. All of 
these problems we label by means of a vector (1,0,2) (see Carles & Huerta, 
2007) that indicates the number and type of known numerical data we have 
in text of problem: in this case, we use one absolute probability and two 
conditional probabilities to calculate the unknown numerical data. Number 0 
means that we do not know the intersection probabilities. In order to 
calculate p(E2+) we need Bayes’ rule and the Theorem of Total Probability. 
But these problems are different (ie, not isomorphic) if we consider that 
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problem information is presented using different data formats: frequencies in 
one case and percentages in the other. None of them used probabilities 
(numbers in [0,1]) as a data format. 
On the other hand, the subjects performing problems in these studies weren’t 
considered to be math students, with some knowledge of making Bayesian 
inferences, but as people naïve in this topic and in probabilistic reasoning. 
For this reason, the main objective of these investigations was to explore 
reasons for successful problem solving according to data format and 
discovering which data format facilitates the most success. 
From the point of view of the didactic of mathematics, in a previous paper 
(Huerta & Lonjedo, 2006) we showed that different presentation formats of a 
conditional probability problem resulted in different student problem solving 
behavior. This paper investigated the processes involved in solving 16 
conditional probability problems. These paired problems were structurally 
isomorphic but used different data formats. One of the conclusions relates to 
differences in student behavior in solving the ‘same’ problem when data is 
expressed in terms of percentages as opposed to probabilities; ie, if data is 
expressed in terms of percentages, then students usually solve these 
problems using mainly arithmetical thinking strategies, whereas if data is 
expressed in terms of probabilities, one can recognize probabilistic thinking 
strategies in solving these problems. 
In CERME4 (Huerta & Lonjedo, 2006) we presented a report highlighting 
the problem solving processes when data is expressed in terms of 
percentages and probabilities. In CERME5, however, we present a piece of 
work that focuses on the process of solving three problems that are 
isomorphic in structure but where the information is expressed in three 
different formats: in terms of percentages, probabilities and absolute 
frequencies. Thus, the aims of this paper are: (1) to study the influence of 
data format in conditional probability problems on students’ behaviors and 
success; (2) to study the influence of semantic and syntactic aspects on the 
students’ success in solving these problems. 
THE RESEARCH PROBLEM 
Let us consider problems P7 and P15 (see Table 1) used in Huerta & 
Lonjedo (2006). These problems can be mathematically read as follows: 
Known p(A), p(B) and p(A2B), calculate p(B2A). It is a (2,0,1) problem 
asking for an inverse probability from a known conditional probability. The 
Bayes’ rule solves this problem. 
We know that in general, the percentage of students that were successful in 
solving both problems was very low (Huerta & Lonjedo, 2006). Only math 
college’s students were successful whereas secondary school students were 
not. Therefore, we considered a new problem, P1, structurally isomorphic 

Working Group 5

CERME 5 (2007) 733



with both P7 and P15, but with the data expressed in a different format. 
From the experience we had with problems P7 and P15, we also 
reconsidered the information in text form that was used to describe the data 
as conditional probabilities and expressed them with the same grammatical 
structure, in order to avoid as many misunderstandings as possible. One of 
these misunderstandings, for example, relates to students’ confusion between 
the conditional probability and the intersection probability. Quantities in P1 
are always absolute frequencies, except when referring to a conditional 
probability, in which case percentages must be used. Moreover, in P1 we 
also tried to avoid both semantic difficulties, using for example a more 
understandable sentence for the conditional probability, and semiotic 
difficulties, writing data for the absolute probabilities in terms of absolute 
(natural) frequencies. In Table 1 we can see the three problems we are 
referring to which are, essentially, three versions of the ‘same’ problem. 
P7
PROBLEM 
Data in 
percentages

60% of students in a school succeeded in Philosophy and 70% in 
Mathematics. Moreover, 80% of the students that succeeded in 
Mathematics also succeeded in Philosophy. If Juan succeeded in 
Philosophy, what is the probability that he also succeeded in 
Mathematics? 

P15
PROBLEM 
Data in 
probabilities

In a school, the probability of success in Philosophy is 0.6 and in 
Mathematics, 0.7. Choosing a student at random among those that 
succeeded in Mathematics, the probability that he/she also succeeded in 
Philosophy is 0.8. If Juan succeeded in Philosophy, what is the 
probability that he also succeeded in Mathematics?

P1
PROBLEM 
Data in 
frequencies

In a class of 100 students, 60 succeeded in Philosophy and 70 succeeded 
in Mathematics. Among those who succeeded in Mathematics, 80% also 
succeeded in philosophy. Of those who succeeded in Philosophy, what 
percentage of students also succeeded in Mathematics? 

Table 1. Three versions of the ‘same’ problem 

These problems form part of a broader research that tries to investigate the 
processes involved in solving conditional probability problems. One of the 
questions we try to answer has to do with the relationship between data 
presentation format and students’ problem solving process. 
METHOD
All three problems were items in a test administered to students of different 
ages and mathematical ability: Lower secondary school (13-14 year olds), 
upper secondary school (15-18 year olds) and 2nd year math students at 
university. In table 2 we can see the distribution of the student sample 
involved in this research. Only students from upper secondary school and 
university were taught about conditional probability, whereas students from 
lower secondary school were not. 
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School Level P7 P15 P1
Lower Secondary School 11 5 31
Upper Secondary School 52 26 39
University (Math College) 4 2 10
Total 67 33 80

Table 2: Number of students that tried to solve each problem 

Because we were not only interested in students’ success in solving 
problems but also in resolution processes, successful or not, we designed a 
set of descriptors to analyze problem solving behaviour, as follows: 
1. -  Problem solving process with success. This descriptor reports students’ 
successful behaviors in finding the correct result to the problem. Depending 
on the different reasoning shown by students during the problem solving 
process, we distinguish: 
1.1. Problem solving processes that include a type of thinking that is 
exclusively arithmetical: Students think in quantities and not in events and 
their probabilities, at least in a conscious way. 

Figure 1: Example of thinking process (in P1) classified in 1.1, exclusively 
arithmetical thinking. 

1.2. Problem solving processes that include a type of thinking that is mostly
arithmetical: Students think in quantities but they recognize events and their 
associated frequencies or percentages. 

F to succeed in Philosophy, M to succeed in Mathematics. 56 succeeded in M and F, I use 
the Venn diagrams, 93.3% among those successful in Philosophy succeeded in 
Mathematics 
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Figure 2: Example of thinking process (in P1) classified in 1.2, mostly 
arithmetical thinking. 

1.3. Problem solving processes that include a type of thinking that is 
basically probabilistic. In solving problems, students think arithmetically in 
quantities. These quantities are not used explicitly as probabilities. However, 
students recognize events and assign probabilities to them without using 
probability rules in a conscious way. 

F to succeed in Philosophy, M to succeed in Mathematics … 56% succeeded in 
Philosophy and Mathematics. I do a rule of three because I get as total space the totality 
of students that succeeded in Philosophy ….I get p= 0.933.. 

Figure 3: Example of thinking process (in P7) classified in 1.3, basically 
probabilistic thinking. 

1.4 Problem solving processes that include a type of thinking that is 
exclusively probabilistic. Students recognize events, assign probabilities to 
the events and explicitly use probability rules in order to find the result of 
the problem. 

Because the rule of conditional probability 

Figure 4: Example of thinking process (in P15) classified in 1.4, exclusively 
probabilistic thinking. 

2. - Problem solving processes without success. This descriptor reports 
students’ behaviors that were unsuccessful. Within this general descriptor, 
we consider a more specific descriptor that describes students’ semantic and 
syntactic difficulties, misunderstandings and mistakes, as follows: 
2.1 Difficulties. We analyze the solvers’ difficulties related to semantic and 
semiotic variables. 
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2.1.1 Semantic Difficulties. We analyze grammatical structures in 
descriptions used to express conditionality both as data (known and 
unknown) and as text. 
2.1.2 Syntactic Difficulties. We analyze formats of data and question 
presentation in problems. 
2.2 Mistakes. We analyze students’ mistakes related to difficulties. 
2.2.1. Mistakes as a result of semantic difficulties. These mistakes are 
undesirable interpretations of data in problems when students are translating 
them from usual language into symbolic language. Sometimes problem 
solving processes are coherent with students’ interpretations. These mistakes 
could appear early in the process, both in recognizing events and in 
assigning probabilities to events. 
2.2.1.1. Students’ interpretations of conditional probability when it is data. 
We can distinguish the following interpretations: 
2.2.1.1.1. Interpretation of the conditionality as an intersection event (Ojeda, 
1995).
2.2.1.1.2. Interpretation of the conditionality as an absolute probability. 
Student answers the question p(A|B) by means of p(A). 
2.2.1.2. Students’ interpretations of the conditional probability when it is a 
question.
2.2.1.2.1. Interpretation of the conditionality as an intersection event. 
Students answer questions about a conditional probability by means of an 
intersection probability. 
2.2.1.2.2. Interpretation of the conditionality in question as conditionality in 
data. Student interprets p(A|B) as equal to p(B|A), the first being probability 
in data and the second, the question. 
3. - Others. We place here all students’ resolutions that are impossible to be 
qualified or explained by the other descriptors. These include blank answers, 
answers without workings, unrecognizable signs etc. 
There is another source of mistakes in solving these problems that we did 
not consider in this work. This concerns the misuse of decimal numbers, 
percentages, formulas and mathematical calculations. These mistakes, of 
course, would hinder successful problem resolution. 
SOME RESULTS 
The percentage of students that succeeded with problems P7 and P15 was 
6%. All of them were students from University. However, the percentage of 
students that succeeded with P1 was 36.25%. This figure includes students 
from all age levels. 
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From the data in Table 3, we can see that the percentage of students that did 
not try to solve the problems decreases in order, from the highest (66.67%) 
when the data is in the form of probabilities, to the lowest (21.25%) when it 
is presented as frequencies. Consequently, there is an appreciable increase in 
the percentage of students that succeeded in solving the problems, from the 
lowest when the data is in the form of probabilities and percentages (5.97% 
and 6.06% respectively), to the highest (36.25%) when presented as 
frequencies. In other words, the success rate when data was presented as 
percentages or probabilties was extremely low compared with the number of 
students that succeeded with the data in the form of frequencies. We can 
explain these differences using the descriptors that classify students’ 
mistakes in the problem solving process. There is a very high percentage 
(89.74%) of students that did not succeed in P7 because they incorrectly 
interpreted conditionality data either as a question or as known data. Similar 
mistakes occurred in P15. However, this misunderstanding occured much 
less (20.6%) with data in the form of frequencies. A very high percentage 
(89.65%) of students that were successful when the problem was described 
using frequencies used arithmetical reasoning. No one used this type of 
reasoning when problem solving with percentages or probabilities. Only 3 
students out of the 29 that succeeded with the problem in frequencies used 
probabilistic reasoning. 
DISCUSSION 
The presentation of data in a conditional probability problem has some 
influence on the students’ success and problem solving behavior (see Table 
3). We think that the increase in students’ success (Table 3) is due to two 
factors: avoiding words that provoke ambiguity; and presenting data as 
absolute frequencies. For example, avoiding words like y (and) or también
(also) in problem descriptions prevented students from confusing conditional 
probability with intersection probability. The expression De los que (Among 
those who), that refers to conditionality both as data and as question, 
improved students’ interpretation. 
When data is expressed in terms of absolute frequencies and conditional 
probability as a percentage (Lonjedo Huerta (2006), p. 531), we believe that 
the chances of successful problem resolution are enhanced with a consequent 
increase in the percentage of successful students. Gigerenzer (1994) reports 
that in order to solve probability problems, our minds are better equipped if 
all data is expressed in terms of frequencies. We agree, although when 
referring to a conditional probability problem, we would like to add that if 
one of the data is a conditional probability, then it must be expressed in 
terms of a percentage in order to differentiate it from other data expressed in 
terms of absolute frequencies. In this manner, we can help students to 
interpret conditionality correctly. 
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Descriptors P7 Problem
Data in

percentages

P15 Problem
Data in

probabilities

P1 Problem
Data in

frequencies
1. Problem solving process with success (4 out of 67)

5.97%
(2 out of 33)

6.06%
(29 out of 

80) 36.25% 
1.1 Thinking is exclusively arithmetical 0 0 (7/29)

24.13%
1.2 Thinking is mostly arithmetical 0 0 (19/29)

65.52%
1.3
Thinking is 
basically
probabilisti
c

(1/4) 0 0 
25%

1.4
Thinking is 
exclusively
probabilisti
c

(3/4)
100% 10.34%75%
(2/2) (3/29)

2. Problem solving processes without 
success

(39 out of 
%

(34 out of 
80) 42.50% 67)

58.21%

(9 out of 33) 
27.27

2.2.1.1.1. Interpretation of the 
conditionality as an intersection event 

(13/39)
33.33%

(4/9)
44.44%

(1/34)
2.94%,

2.2.1.1.2. Interpretation of the
conditionality as an absolute probability 

(1/9)
11.11%,

0 0

2.2.1.2.1. Interpretation of the 
conditionality in question as an 
intersection event 

(22/39)
56.41%

(4/9)
44.44%

(6/34)
17.65%

2.2.1.2.2. Interpretation of the 
conditionality in question as 
conditionality in data 

7.69% 5.8%,
(3/39) 0 (2/34)

3. Others (24 out of 
67) 35.82% 

(22 out of 33) 
66.67%

(17 out of 
80) 21.25% 

Table 3. Percentages of students in relation to the descriptors. 

Of those students who succeeded, arithmetical thinking strategies were 
typically used in problem solving, although they also demonstrated 
recognition of events and their frequencies and percentages. However, the 
thinking process used in solving the problems seems to be strongly related to 
data format. Students that succeeded with the problem described in 
frequencies used mainly arithmetical reasoning, whereas those who were 
successful with the problem expressed as percentages or probabilities used 

robabilistic reasoning. In general, when students were solving these 
s they use the data explicitly mentioned without translation from one 

rmat to another. Only in a few cases (3 out of 29) did students translate 

p
problem
fo
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frequencies into probabilities in order to solve the problem (P1) using 

ent, Sedlmeir (2002) proposed 

c reasoning, and 

 agree with other authors (eg, Ojeda, 1995; Girotto & 

ev
co

Ca

probabilistic reasoning. These were all University students. 

CONCLUSION
The concept of natural frequencies introduced by Gigerenzer and his 
colleagues (a good discussion about this concept can be read in Hoffrage, 
Gigerenzer, Krauss & Martignon (2002)), has produced some proposals 
about natural frequencies-based teaching in the last two ICOTS. Martignon 
& Wassner (2002) proposed using (natural) frequency trees in order to read 
quantities in a typical Bayesian problem and facilitate secondary school 
students problem solving. They concluded that students trained with 
frequency trees performed significantly better than students formula-trained. 
In a similar way, but in a computer environm
using frequency trees and frequency grids to help students read (1,0,2) 
problems with data in percentages using an isomorphic problem with data in 
(natural) frequencies. Moreover, Martignon & Kurz-Milcke (2006) proposed 
a method of training younger students by means of arithmetic urns and 
tinker-cubes in stochastic reasoning. 
This work also has implications for teaching problem solving in conditional 
probability. In agreement with the authors mentioned above, we propose 
organizing the process of teaching this topic by starting with solving 
problems like P1, prior to attempting problems like P7, and then finally 
moving on to problems like P15. Our reasoning consists of introducing 
students to the subject by means of rates and proportions, making Bayesian 
inferences with data in (natural) frequencies and using arithmetic reasoning, 
followed by percentages employing basically probabilisti
finally by means of probabilities with an exclusively probabilistic reasoning 
approach. (0,0,3) problems, like the P4 problem that was presented by Carles 
& Huerta (2007) in CERME5, are not able to be solved using only arithmetic 
reasoning and, consequently, by means of (natural) frequencies. They 
require probabilities and probabilistic reasoning strategies.
Finally, we also
Gonzalez, 2001) that one of the main sources of student error involves 
misinterpretation of the conditionality and the probability of the intersection 

ent. The incidence of this misinterpretation could be reduced if we teach 
nditional probability problem solving in the way we propose in this work. 
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THE RELATIONSHIP BETWEEN LOCAL AND GLOBAL 
PERSPECTIVES ON RANDOMNESS [1] 

Peter Johnston-Wilder and Dave Pratt
Institute of Education, University of Warwick, UK, and Institute of Education, 

University of London, UK. 
In clinical interviews, learners were invited to talk about their experiences of making 
sense of the emerging sequence of outcomes from repeated trials using different 
generators, some of which were biased. Analysis of the interviews revealed distinct 
ways of viewing the phenomena represented by the interview tasks. Drawing upon the 
local and global meanings of randomness identified by Pratt (1998), learners were 
found to shift their attention rapidly between local and global perspectives. Data 
presented in this paper illustrates the shifting perspectives. It is suggested that not 
only did these students, three or more years older than those in Pratt’s study, shift 
attention from global to local as well as from local to global perspectives, but such 
shifts may have been stimulated at times by consideration of causal factors. 

STIMULUS TASKS 
When studying perceptions of randomness, it is important to distinguish between a 
random process and randomness in a sequence of outcomes generated by a random 
process (Zabell, 1992). Previous research into perceptions of randomness has not 
always been clear about this distinction (Nickerson, 2002), but some writers have 
discussed the issue explicitly (Falk and Konold, 1997; Wagenaar, 1991). The position 
that randomness is a property of a process rather than of the outcomes was adopted 
by Wagenaar (1991), and related to this is the view that any outcome from a random 
process is considered a random outcome (Pollatsek and Konold, 1991). However, it is 
only by observing outcomes from a process that one can judge whether the process is 
random. 
Johnston-Wilder (2006a) suggested that randomness needs to be seen as ‘dynamic’, 
since a permanent printout of a random sequence loses the essence of what it is to be 
random. He reported his own struggle to see random number tables as random since 
“whenever I opened the book the sequence was the same”. In the present research we 
see randomness as a model describing a process and providing an explanation for 
observed outcomes. A sequence of observed outcomes is described as ‘random’ if it 
can be considered to have arisen from a process modelled by ‘randomness’. 
Stimulus tasks commonly used in previous research may be classified into two 
categories (Falk and Konold, 1997). In a generation task, subjects make up a random 
sequence of outcomes to simulate outcomes from a random process such as ‘tossing a 
coin’. In a recognition task, subjects might select the ‘most random’ of several sets of 
results. Falk and Konold suggest (1997) that recognition tasks “may be more 
appropriate for revealing subjective concepts of randomness” because “a person 

Working Group 5

CERME 5 (2007) 742



could perceive randomness ‘accurately’ and still be unable to reproduce it” (p. 302). 
Indeed there is clear suggestion from many studies (Nickerson, 2002; Shaughnessy, 
1992) that people are generally not good at generation tasks, typically producing 
fewer long runs, and more alternations between outcomes, than would be expected 
from a random process (Falk and Konold, 1997). Other studies have used recognition 
tasks to explore what sequences people consider to be maximally random; these again 
show that people tend to identify randomness with sequences having an excess of 
alternations between outcomes (Falk and Konold, 1997). 

LOCAL AND GLOBAL PERSPECTIVES ON RANDOMNESS 
Pratt studied ways in which children aged 10 and 11 years articulated their ideas and 
beliefs as they worked in a carefully designed computer-based domain (Pratt 1998, 
2000). He distinguished two categories of meaning for randomness expressed by 
children: ‘local meanings’ were related to uncertain behaviour of the process and 
focused on “trial by trial variation”, while ‘global meanings’ evolved as children 
recognised the importance of observing a larger number of trials and discerned long 
run features of distribution. The terms ‘local’ and ‘global’ also appear in Ben-Zvi and 
Arcavi’s account (2001) of ‘local and global views of data’, where local 
understanding typically relates to a few values, while global understanding relates to 
general patterns  in the dataset. 
When analyzing data from the early stages of students’ work, Pratt noted that 
students did not articulate global meanings, but described situations entirely in terms 
of local meanings. Only later, after working with a specially designed computer 
environment, did the children begin to express meanings for longer term aggregation. 
As the children worked in this environment, mending broken simulations of random 
generators such as coins and dice, their attention was drawn to the different behaviour 
of the generators in the short and long term. Pratt saw the transition from local to 
global meanings and analysed in some detail the complexity of that process. He did 
not, however, report movement from global to local meanings. Perhaps children of 
this age were not able to articulate global meanings until their thinking had been 
perturbed by the use of the computer-based tools. Alternatively, perhaps it is implicit 
in Pratt’s tasks and probes that no such switch was either anticipated or looked for. 
Similarly, Ben-Zvi and Arcavi (2001), in a study of pupils’ developing understanding 
of data and data representations, saw the transition to learning to look for global 
understanding of data as part of a developmental process.  
The focus of the current paper is on whether we can identify transition in the opposite 
direction, from global to local, and to explore the nature of such movement. 

METHOD
We anticipated that we might find evidence of such a shift from global to local by 
studying older students. We recognise that such an approach would not clarify 
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whether the lack of evidence in Pratt’s study for the articulation of global meanings at 
age 11 was as a result of the method he used or the naivety of the learners. 
Nevertheless, it seemed important to establish whether or not shifts from global to 
local could happen before we considered what might stimulate such shifts. 
Eighteen learners, aged from 13 to 17 years, undertook clinical interviews for about 
an hour each. Interviewees were pupils at local secondary schools (13-18), selected 
by an experienced mathematics teacher in the school as pupils who would be able to 
express their ideas confidently. They had agreed to participate in the study, and their 
parents had also given permission.  
Interviewees worked on tasks using three unusual dice: biased, spherical and cracked. 
The biased die looks like a standard cube, except it has two faces labelled 5 and no 
face labelled 3. It has a weight in the face labelled 1, biasing it towards showing 6. 
The spherical die is hollow and marked symmetrically with numbers 1 to 6. It 
contains a small bead so that, when rolled on a flat surface, it stops with one of the six 
numbers uppermost. If it is correctly balanced, each of the six outcomes is equally 
likely. The cracked cubical die has a split running across the face labelled 6, and 
spreading partway across the faces labelled 2 and 5. Since interviewees used this die 
after their experiment with the biased die, it was expected that they would consider 
that it might also be biased.
In each task, the learner was first asked to comment on the appearance of the die and 
to consider how it might behave when rolled several times. The learner was then 
invited to roll the die a few times before commenting on the observed outcomes. 
Learners were encouraged to discuss their ideas throughout and we watched their 
behaviour closely. If a learner appeared to show concern about a run of outcomes, or 
even an individual outcome, they were invited to explain what they were thinking. It 
was hoped that using three different dice would increase the learner’s awareness of 
what they expected from each die, and their willingness to articulate their 
assumptions. In particular, it was hoped that the tasks would provoke learners to talk 
about how to recognise equally likely outcomes and whether these were necessary for 
the die to be considered to behave ‘randomly’. 
Each interview was audio-taped and transcribed in detail for analysis. A commentary 
was written around extracts from the transcript to provide a detailed account of key 
moments. Finally, common themes were identified across the interviews. At this 
stage of the analysis, the relationship began to emerge between two distinct ways of 
thinking about random outcomes: local and global perspectives. 

THE DATA 
Analysis of data from the present study has identified two ways of thinking about 
randomness, which are clearly related to Pratt’s local and global meanings. Learners 
were seen to shift between these two perspectives, from local to global and back to 
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local. Sometimes these shifts appear frequent and rapid. These differing perspectives 
reflect the learner’s focus of attention. 
In this paper we report data from two cases, Ben and David, selected to illustrate 
issues surrounding relationships between local and global perspectives. Interviewees’ 
shifting attention is not apparent in isolated incidents but rather needs to be tracked 
through a sequence of interactions over a period of time. This requires discussion of 
extensive passages from the commentaries, and there is not space to discuss more 
than two cases. The quoted excerpts show the actual words spoken by the learners, 
even when these are ungrammatical. 
Ben’s story 
In these excerpts, Ben (age 15.7) was using the spherical die. In the first seven 
throws, he observed {5 5 1 4 1 6 1} and he looked for patterns in the sequence. 

1. Ben:  …we haven’t had any 3s or 2s, so it could be one of those, but – well, 
it’ll probably be another number than a 1.  

2. Interviewer: Why?  
3. Ben:  Just from following the pattern. If it wasn’t a die, that’s what I’d say.

Ben noted that any outcome was possible. He went on to seek an explanation for the 
absence of 2s and 3s, looking at the generating process from a local perspective. 

4. Ben:  It might be the way I’m throwing it though. Or when I picked it up, 
I’m throwing it the same way. Or it could just be chance.

Out of concern about lack of 2s and 3s, Ben checked the labelling of the die. When 
the fourteenth outcome was 3, he cheered!  He now attended to physical factors 
affecting the outcomes, deliberately playing with the die between rolls, and feeling 
the weight moving inside the sphere. When asked how he would know this was a fair 
die, he expressed a global perspective based on his prior belief about a fair die.

5. Ben:  …You just have to keep rolling it. It should in the end even out if it’s 
a fair dice. If it’s not a fair dice it’ll… keep on staying away from the 
2s and 3s, like it is at the moment. 

6. Interviewer:  Are you worried about it being fair? 
7. Ben:  …No, not really. …It could just be chance. If there’s a 1 in 6 chance 

of getting each different number... I just haven’t got a 2 yet, which is 
strange. Although I’ll probably get a 2 now, if I roll it...

Ben switched rapidly between contrasting views about this die. Although he 
understood the need for more trials (characteristic of a global empirical perspective), 
and expressed a distributional belief that the die would be fair, he still used a local 
perspective in looking for the first occurrence of a 2 and was concerned when he had 
not seen it in fifteen throws. Globally, he looked for a frequency distribution to match 
his prior belief, and accepted that “It could just be chance”. By changing the focus of 
his awareness, Ben arrived at contrasting explanations for the absence of 2. After 17 
throws without a 2 {5 5 1 4 1 6 1 1 5 4 4 5 1 3 6 5 4 5 5}, Ben was quiet, and 
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experimented with the die, rolling it in his hand without talking for 13 seconds, 
before commenting. 

8. Ben:  It seems pretty fair. But it depends what happens when you roll it. 
He seemed to experience a tension between apparent ‘fairness’ of the process, and 
imbalance in the outcomes. Then he rolled a 6, but he wanted the die to show a 2. It 
was as though he wanted to remove the anticipation of waiting for a 2 to occur, and 
by experimenting with the way he rolled the die he was trying to make it happen. 

9. Ben:  …oh land on a 2.  
On the next throw Ben rolled the die, and got a 2! He was excited because his 
experimenting with how to roll the die had coincided with rolling a 2, and so he 
began to think he could control the outcomes. Then he went quiet again, until he was 
asked what he was thinking about. He commented that the axis of rolling the die did 
not explain the outcomes as 2 and 3 were not opposite to each other on the die.  

10. Ben:  Just seeing… if I was always rolling it in a way so it only lands on 6, 
5 1, 4. But that wouldn’t work, or make sense… it stays away from 2s 
and 3s, but it won’t cos they’re not next to each other – but they are.

Ben was again reasoning in a local perspective, trying to explain the short sequence 
of outcomes observed. But in the next sentence he began to search for a causal 
explanation that may have impact on the chance of certain numbers appearing. 

11. Ben:  It might be weighted more heavily on the 2 and the 3, on the inside, I 
was just thinking. If the weight’s heavier there it will be less likely to 
turn that way. 

Ben rolled a 1 and remarked that the die seemed more random now. 
12. Ben:  The more you do it, you know, the more different… But at the start it 

was all the same. So the more you do it the better the results you get, I 
suppose.

Perhaps in line 11, consideration of probabilities had signalled a possible shift to a 
global perspective. By line 12, it seems Ben had indeed found a global explanation 
and he tried to stabilise this idea in his mind. The next throw produced a 5. 

13. Ben:  …It should, unless it’s weighted, be completely random. But at the 
start it just seemed to be 5s and 1s. But then it… just got a lot more 
mixed as it went down, so I suppose… it’s just… more and more of a 
dice and, sort of less chance that the odd number will count for so 
much. You got a couple of 5s at the beginning, then, later as you go 
on, you’ll get more of the other numbers as well. In theory, I think. 
…Although I haven’t got that many 2s still.

As he moved towards a stable global perspective, Ben was holding in tension the two 
contrasting ideas of randomness (by which he meant equiprobability) and bias – and 
he expressed them alternately. These were the apparently conflicting global 
interpretations for Ben: prior belief and a global frequentist view, possibly emerging 
from the aggregation of the observed outcomes. As soon as he expressed the idea of 
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randomness, he reverted to discussing the bias. He rolled another 5 and reverted to a 
local perspective. 

14. Ben:  But I have got quite few 5s I think. …But that could just be the way 
I’m rolling it. 

Over the next few throws, Ben’s concern about bias diminished as he obtained more 
2s and 3s. He remarked again on the apparent randomness.  

15. Ben:  Maybe it’s just… I suppose it could just be a completely fair dice… It 
does have quite a few 5s, but that just might be me rolling it, rather 
than the dice would be weighted or something. 

David’s story 
In the following account of David (age 14.1) working with the biased die, we show 
how David’s attention moved towards reconciling two global perspectives: his prior 
beliefs about the probability distribution of the six possible outcomes and the 
emerging sequence of observed outcomes. 
David observed two 6s and a 4 in the first three throws, but stated that the outcomes 
were equally likely. 

16. David: It’s all the same probability, but it gave me more 6’s than any other 
number. 

After two further 6s, David was concerned that the die “always seemed to land on 6”. 
His attention was shifting from his global belief about the probability distribution to 
the short sequence of observed outcomes – a local perspective. When the seventh 
throw gave a 5, David tried to articulate a pattern that he thought was emerging. 

17. David: It seems to land on higher numbers than lower numbers. 
Although his attention was on the short sequence of observed outcomes, he tried to 
express a new global view from the pattern he saw {6 4 6 6 6 6 5}. However, he still 
had the idea that the outcomes should be equiprobable. After two further 6s he 
suggested that ‘chance’ would correct the imbalance by producing a lower outcome.  

18. David: I think it’ll be a lower number next… because there’s been too many 
higher numbers. It could be any of the six numbers. I think it might be 
a lower one. 

David was persisting with the idea that the outcomes were equally likely, but he tried 
to modify the behaviour of a ‘chance’ process to be self-correcting. After rolling 
another 6, David took this idea to an extreme, choosing the lowest value available as 
his prediction to maximise the degree of correction. 

19. David: (Silence for 10 seconds) I think it might be a 1… because it’s landed 
on 4, 5 and 6 and on each of the sides it’s close to 2, 4 and 1. 

The long pause suggests that David was unsure how to respond. He had observed ten 
outcomes {6 4 6 6 6 6 5 6 6 6}. When the eleventh throw gave a 5, David changed his 
position, using recent outcomes as a guide to what might happen next. 

20. David: (Throws)  5…  I think it might land on another 6. (Laughs) 
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21. Interviewer: Why have you changed your mind? 
22. David: Because… it seems to always land on high numbers, and I’m not sure 

why, it just always seems to land on a high number. It hasn’t landed 
on any under 4 has it?

From here onwards, the emerging global distribution was so different from the idea of 
equiprobable outcomes that David appeared to accept the die was biased. However, 
even after two further 6s, he still struggled to express this new view. When he was 
asked if he still thought that the next outcome could be any number, he restated, 
hesitantly, the idea that the outcomes were equally likely. 

23. Interviewer: You started off by saying that it could be any number…  Do you still 
think it could be any number? 

24. David: I think it can be any number yeah…, cos there’s a one in six chance of 
getting every number there. 

At this point, David again examined the die closely, trying to explain the emerging 
global distribution. For the first time, he spotted that the die was incorrectly labelled 
– an extra 5 in place of the 3 – but this did not explain his observations. 

25. David: Yeah but that means it should land on 5 more, but it doesn’t. (Silence 
9 seconds)  But there is still one in six chance of getting a 6. 

Again, his argument reverted to equiprobability, although he seemed to be actively 
seeking a reason to suggest that the die was biased. The disparity between the 
observed outcomes at the local level and his prior belief in equiprobability was now 
driving his search for an explanation, but he had not yet abandoned his prior belief. 
When he rolled another 6, David picked up the die to examine it again. When asked 
how many 6s he had observed, he counted thirteen 6s in sixteen throws. Even now, he 
clung to the idea that the faces should be equally likely and, at the same time, that 
chance would correct the imbalance of outcomes. 

26. David: I’m not sure…  There should be a one in six chance of getting a 6…  
I’m hoping it’s going to land on a low number. (Laughs)   

After another 6, he finally expressed a global view that the die was biased. 
27. David: I think the probability of getting 6 is higher now. Because just of the 

outcome. I’m not sure why. 
Although David was convinced that the die was biased, he had no explanation for his 
global view. From now on, he examined the die after each throw until he spotted the 
weight. Then he quickly explained the observed distribution of outcomes. 

28. David: (Examines the die again) Is it cos that bit there – is metal?  So, it’s 
going to… put more outcome onto 6, put more chance onto it…  Well, 
I’m not sure cos… there’s two 5s, but it would have to… go on the 
other side of that… metal part. And that only happens when it slides 
across. But every time I actually roll it, it always lands on a 6. So I 
think it might be that, it’s heavier, so it’s landing down further, and 
there’s more force going down, so it’s going to stick down on it. 
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At last, David was able to construct, in his own terms, a global view of the 
‘probability’ distribution that he could reconcile with what he observed at the local 
level. Because he had observed 6 so often, he argued that the weight “is heavier” and 
the die is “going to stick down on it”. Until he found this explanation, he could not be 
comfortable about rejecting his prior belief, and he could not reconcile the observed 
outcomes with his global sense of distribution. 
David’s response to the biased die was unusually protracted. He appeared to have 
been deeply committed to his prior idea that the die should be fair and he continued to 
seek justification for this view, even when he had observed thirteen 6s in sixteen 
throws. His attempts to justify that his observations could arise from a fair die 
indicated that, although he was aware that outcomes from a random process might not 
be representative of the long run, he was possibly unaware of how much variability to 
expect in the outcomes of a fair die.
There were further examples of David shifting between the local and the global 
perspectives when he was working with the other activities. However, when he 
worked with the spherical die and the cracked die, his prior beliefs were supported by 
the emerging empirical distribution, since the observed frequencies were not very 
different from his prior belief that the outcomes would be equally likely. 

CONCLUSIONS
Analysis of transcripts in this study has showed that learners think about random 
outcomes using two distinct and contrasting perspectives: local and global, which 
reflect different focuses of attention. In the local perspective, attention is on the 
uncertainty of the next outcome and ephemeral patterns that appear in short 
sequences of outcomes. The learner does not aggregate outcomes or think in terms of 
a distribution. In the global perspective, the learner is aware of a distribution of 
outcomes, either empirically, as an emerging frequency distribution of observed 
outcomes, or in terms of prior beliefs about the generating process (for example, 
when rolling a die, expecting the outcomes to be equally likely). These two 
perspectives are clearly related both to Pratt’s local and global meanings of 
randomness (Pratt, 1998) and to Ben-Zvi and Arcavi’s (2001) local and global 
understandings of data. However, evidence in the present study had shown that 
learners’ attention shifts frequently, and sometimes rapidly, between these 
perspectives, from local to global and back to local.
Ben’s ideas were strongly affected by short run behaviour of the spherical die. When 
the sequence of recent outcomes did not include one or two of the possible outcomes, 
he tried to explain the apparent bias. When the missing outcomes had appeared once 
or twice, he described the behaviour of the die as “random”. Sometimes “random” 
was “the absence of pattern”, and this cue was switched on and off by short-term 
changes in the sequence of outcomes. Ben’s interpretation of the outcomes was also 
influenced by the fact that he did not know how much variability to expect from a fair 
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die. For example, he did not know how many throws he might need to wait until all 
six outcomes had appeared at least once, or how often should the most commonly 
occurring outcome appear in the first n throws of the die. Therefore Ben could not 
judge whether he had seen too many 5s, or whether the waiting times he observed 
before the first 3 and the first 2, were appropriate in a fair die. To refine his 
judgement of whether a die was fair, Ben needed intuitions about variability. 
Understanding of variability is important in reconciling the local and the global views 
of randomness. In all the interviews, shifting attention between local and global 
perspectives in both directions was common, and the phenomenon seemed to be 
fuelled by a desire to draw conclusions from short sequences of outcomes. This in 
turn seems to be related to a poor understanding of variability. 
The interviews also provided insight into the process by which an individual begins 
to reconcile what is seen in the local perspective with an emerging global view. With 
the spherical die (Ben’s story, for example), the results of throwing the die do not 
seem to demand any causal explanation. Even so, Ben’s articulation in line 11 “the 
more you do it the better the results you get” seems to have a causal root to it.  
Where there was mismatch between a strongly held prior belief and the long run 
frequency distribution, the tension within the individual was seen to mount with each 
successive outcome. David’s work with the biased die stands out in this regard. His 
attention shifted rapidly between the conflicting perspectives, and he was uncertain 
about what to attend to. In the case of the biased die (David’s story), the strange data 
easily provokes causal explanations. Perhaps surprisingly, those causal explanations 
seem to stimulate a global perspective. 
However, is it so surprising? Pratt’s study (1998, 2000) showed that global meanings 
constructed when working within his computer-based microworld had a causal nature 
and recent work (Prodromou & Pratt, in press) has sought to marshal such causal 
meanings in making sense of distribution. Indeed, Piaget argued in his seminal work 
(Piaget and Inhelder, 1975) that the organism eventually invents probability in order 
to operationalise randomness. When we take a global perspective, we recognise long 
term predictability as opposed to short term unpredictability. This predictability can 
be understood in terms of causal forces such as the weight in the die or the effect of 
many throws or a mixture of the two. 
We have provided evidence that these students, aged 13 years and above, shifted 
between local and global perspectives in both directions, adding to the findings by 
Pratt of shifts from local to global. Indeed, such shifts were prolific. It remains to be 
seen whether such evidence can be found for younger students. This study also 
suggests that causal factors may play an important part in such shifts. 

NOTES
1. This paper refers to data and analysis from the first author’s doctoral thesis (Johnston-Wilder, 
2006a) and is partly based on an earlier paper (Johnston-Wilder, 2006b). 
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TRANSPARENT URNS AND COLORED TINKER-CUBES FOR 
NATURAL STOCHASTICS IN PRIMARY SCHOOL 

Laura Martignon, Kathryn Laskey and Elke Kurz-Milcke 
 Institute for Mathematics, Pädagogische Hochschule Ludwigsburg  

 and the Krasnow Institute, George Mason University 
We join the camp of mathematics educators who claim that children should receive 
early training in stochastic thinking, although their training – at such stage – may 
only be based on a heuristic understanding of stochastic phenomena. The term 
“heuristic” is to be taken in the sense propagated by scientists like Einstein and 
Polya, which is not as “a rule of thumb” but as a correct yet partial approximation of 
the normative approach. We present a review of empirical results supporting our 
claim and propose to guide children to construct stochastic situations enactively.
EFFECT OF REPRESENTATION FORMATS IN PROBABILISTIC 
REASONING TASKS 
The theoretical framework of this paper is that provided by Hasher & Zack’s work on 
humans’ automatic recording of frequencies in the environment combined with 
Barsalou’s mental concept simulators (1999) and the theory of heuristics for 
inference proposed by Gigerenzer, Todd and the ABC Group (1999). Barsalou’s 
simulators implement a basic conceptual system that represents types, supports 
categorization, and produces categorical inferences. Productivity results from 
integrating simulators combinatorially and recursively to produce complex 
simulations. In this framework mathematics education of young students consists in 
the education of an inner representation space where mental simulators of 
mathematical processes are implemented (e.g., “imagine drawing from an urn”). 
Mathematical intuitions in general and probabilistic intuitions in particular are thus 
conceptually replaced by heuristics for inference combined with mental simulations 
that are part of an adaptive toolbox (Gigerenzer et al. 1999). For such mental 
simulators natural frequencies (see below for a characterization), are more 
ecologically rational than percentages and probabilities (1995). We are beginning to 
find confirmations from cognitive neuroscience of this thesis. In fact, we have 
collected evidence suggesting that the regions of the brain which are active when we 
perform probabilistic inferences by means of natural frequencies differ from those 
that are active when we solve probabilistic problems with percentages or 
probabilities. This is true even for expressions such “1 out of 4” as compared with 
expressions such as “0.25” or “1/4”.  
Initial experimental results substantiating the above hypotheses support an emphasis 
in schools on natural representation formats for probabilistic information. Here, the 
term “natural” means arising either directly from enactively constructing 
subcategories of a population by partitioning it sequentially in nested subsets and 
determining the proportions of the subcategories thus formed, or mentally simulating 
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these same processes. Our emphasis is not meant to replace instruction in percentages 
or measure theoretic probability. On the contrary, we view early school interventions 
as a means to prepare young children for later instruction in working in the formal 
mathematics of probability. Enactive learning approaches, we claim, can teach young 
children to reason with proportions of counted items, thus making use of natural 
representation formats to develop intuitions. Probabilistic inference in secondary 
school can then make use of this previously acquired substrate by anchoring 
probabilistic reasoning in “translations” of probabilities into natural frequencies. The 
advantages of such “translations” have been empirically tested in interventions in 
secondary school (DFG Project in BIQUA, Ma-1544/1-4 and Bi-384/4-3).  
Cognitive Processes in Probabilistic Reasoning Tasks 
As awareness grows of the importance of uncertainty in everyday life and in public 
affairs, concern also grows about the competence of the citizenry to process 
uncertainty in a sound and effective manner. An alarmingly large proportion of the 
public cannot make effective use of probabilistic information. The German 
newspaper “Süddeutsche” (Süddeutsche Zeitung Magazin, 31.12.1998) asked 1000 
Germans, what they think is the meaning of 40%: a quarter, 4 out of 10, or every 40th. 
Only 54% knew the correct answer, which is “4 out of 10”. A burgeoning literature 
has documented disparities between the results of unaided judgment and the 
prescriptions of the probability calculus (KAHNEMAN, SLOVIC AND TVERSKY, 1982). 
Summarizing the literature on human performance on probabilistic reasoning tasks, 
Gould (1992) commented: “Tversky and Kahneman argue, correctly, I think, that our 
minds are not built (for whatever reason) to work by the rules of probability.” Yet, 
recent re-examinations of the literature on human performance on tasks involving 
uncertainty have concluded that to a large extent, the negative results can be 
explained by discrepancies between the environment and tasks on which present-day 
humans perform so poorly, and those faced by our ancient forebears (e.g., 
GIGERENZER, et al., 1999). The question is then: Would it be possible to improve the 
public’s skill at probabilistic reasoning by matching pedagogical strategies 
adaptively to cognitive processes during early phases of education, thus providing 
anchoring mechanisms and “translation” heuristics for the phase when more formal 
representations are taught? We build on a base of existing results on the cognitive 
mechanisms underlying probabilistic reasoning. Our research was originally 
motivated by an important type of probabilistic reasoning task known as “Bayesian 
reasoning.”  A prototypical Bayesian reasoning task involves using evidence about an 
uncertain proposition to revise our assessment of the likelihood of a related 
proposition. The following example is drawn from a recent article by Zhu and 
Gigerenzer (2006) that examined children’s ability to perform Bayesian reasoning.  
The context was a small village in which “red nose” was a “symptom” of “telling 
lies”. The task required the children to relate the proposition “having a red nose” to 
the proposition “telling lies.” Specifically, they were given information about the 
probability of “red nose” conditioned on “liar” and that of “red nose” conditioned on 
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“non-liar,” as well as the incidence of liars in the village. They were then asked to 
establish the chance that someone with a red nose tells lies. The performance of 
children (fourth graders) improved substantially when the probabilistic setting was 
replaced by a setting in which the cover story reported the natural frequencies 
involved, i.e., in terms of a sequential partitioning of nested sets and their 
proportions. Humans, children and adults, appear to be adapted to a “natural” 
sequential partitioning for categorization. The term “natural” means that these 
proportions (i.e., relative frequencies) are perceived as being obtained by the mental 
simulation of counting. ATMACA AND MARTIGNON (2004) conjectured that different 
neural circuits are involved in the natural frequency and probability versions of the 
Bayesian task. They reported experimental results that support their conjecture. 
Subjects were given tasks by slide projector, and solved them mentally with no 
writing allowed. Information was collected on correctness of solutions and the time to 
solution. The experiment made use of a response mode called result verification or 
result disparity (KIEFER and DEHAENE, 1997): Subjects are presented with a proposed 
solution and asked to judge as quickly as possible whether it is correct or incorrect. 
ATMACA AND MARTIGNON found that subjects needed significantly longer times and 
produced significantly fewer correct answers, for the tasks given in probability 
format versus those given in the natural frequency format. In one experiment 110 
participants were exposed to typical Bayesian tasks with “three branches” and tasks 
with “four branches” as represented below:  

three branches tree fourbranches tree

 

 

Three branches: 10 out of 1000 children have German measles . Out 

of the 10 children who have German measles, all 10 have a red rash. 

Of the 990 children without German measles, 9 also have a red rash. 

How many of the children with a red rash have the German measles? 

Four branches: 10 out of 1000 car drivers meet with an accident at 

night. Out of the 10 car drivers who meet with an accident at night, 8 

are intoxicated. Out of the 990 car drivers who do not meet with an 

accident at night, 40 also are intoxicated. How many of the car 

drivers who are intoxicated actually meet with an accident at night? 

Figure 1: Bayesian Task 

Results of the experiment are summarized in the following Figure: 
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   Figure 2: Percentage of Subects Solving Task Correctly 

Perception of frequencies of occurrences, this result suggests, could be a mechanism, 
or at least part of a more complex mechanism, that enables fast and effective 
decisions in uncertain situations, because “…natural selection (…) gives rise to 
practical cognitive mechanisms that can solve (…) real world problems...” (FIDDICK 
& BARRETT, 2001, S. 4). DEHAENE (1997) wrote in a similar context: “Evolution has 
been able to conceive such complex strategies for food gathering, storing, and 
predation, that it should not be astonishing that an operation as simple as the 
comparison of two quantities is available to so many species).” (DEHAENE 1997, p. 
27) 

The Automatic Processing of Frequencies

The automatic perception of frequencies of occurrences was described by HASHER 
AND ZACKS in the 70s: “Operations that drain minimal energy from our limited-
capacity attentional mechanism are called automatic; their occurrence does not 
interfere with other ongoing cognitive activity. They occur without intention and do 
not benefit from practice”. Certain automatic processes, we propose, are ones for 
which humans are genetically “prepared”. These processes encode the fundamental 
aspects of the flow of information, namely, spatial, temporal, and frequency-of-
occurrence information.” (HASHER AND ZACKS, 1979, p. 356). Humans are known to 
be sensitive to frequencies even when they do not pay attention to them. In 
experiments, participants performed well when remembering frequencies of events, 
even when they had no reason to expect a memory test at all (ZACKS, HASHER AND 
SANFT, 1982), and there seems to be evidence that they did not count the events 
(COREN AND PORAC, 1977). As reported by HASHER AND ZACKS (1984), several 
experiments have shown that neither activated intention, nor training, nor feedback, 
nor individual differences such as intelligence, knowledge or motivation, nor age, nor 
reductions in cognitive capacity such as depression or multiple task demand, have an 
influence on the processing of frequencies of occurrence information. That is to say, 
there are strong hints that the human brain adapted to the processing of frequencies 
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during evolution. Furthermore, several experiments have provided evidence that 
“(…) various animal species including rats, pigeons, raccoons, dolphins, parrots, 
monkeys and chimpanzees can discriminate the numerosity of various sets, including 
visual objects presented simultaneously or sequentially and auditory sequences of 
sounds” (DEHAENE ET AL., 1998, p. 357). According to models of animal counting 
presented by MECK AND CHURCH (1983), numbers are represented internally by the 
continuous states of an analogue accumulator. For each counted item, a more-or-less 
fixed quantity is added to the accumulator. The final state of the accumulator 
therefore correlates well with numerosity, although it may not be a completely 
precise representation of it. (DEHAENE, 1992) This model explains the observation 
that animals are very good in handling small quantities, while performance degrades 
with the increase of magnitude. During this counting process, “the current content of 
the accumulator is used as a representative of the numerosity of the set so far counted 
in the decision processes that involve comparing a current count to a remembered 
count.” (GALLISTEL AND GELMAN, 1992, p. 52) That is to say, the current content of 
the accumulator represents the magnitude of the current experienced numerosity, 
whereas previously read out magnitudes are represented in long-term memory. This 
enables comparison of two number quantities, which is essential for frequency 
processing. The comparison of number processing abilities in animals and human 
infants leads to the conclusion “that animal number processing reflects the operation 
of a dedicated, biologically determined neural system that humans also share and 
which is fundamental to the uniquely human ability to develop higher-level 
arithmetic.” (DEHAENE ET AL., 1998, p. 358). Several studies report abilities of 
frequency perception in kindergartners and elementary school children in the range of 
grades 1 to 6 (HASHER AND ZACKS, 1979; HASHER AND CHROMIAK, 1977). And the 
findings of abilities in numerosity discrimination in infants and even newborns 
(ANTELL AND KEATING, 1983) “may indicate that some capacity for encoding 
frequency is present from birth.” (HASHER AND ZACKS, 1984, p. 1378).  

From Absolute Numerical Quantities to Natural Frequencies 

Animals and humans could not survive if they had only developed a sense for 
absolute frequencies without a sense for proportions of numerical quantities for 
inference. “Are all red mushrooms poisonous, or only some of them? How valid is 
red colour as an indicator of poison danger in the case of mushrooms?” Whereas non-
precise estimates may have been sufficient for survival in ancient rural societies, 
answering this type of question by means of well calibrated inferences is vital in 
modern human communities. Successful citizenry requires this type of competency 
and, it is our conviction, elementary school should provide tools for successful 
quantified inferences. In order to establish whether one cue is a better predictor than 
another (e.g., whether red colour is a better predictor than white dots for poisonous 
mushrooms) we need a well tuned mental mechanism that compares proportions. 
Little is known so far, in the realm of cognitive neuroscience, as to which brain 
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processes are involved in proportion estimation and proportion comparison. The more 
rudimentary instruments for approximate inference that humans share with animals 
must be based on some sort of non-precise proportion comparison (GIGERENZER, ET 
AL., 1999). But when do infants in modern societies begin to quantify their 
categorization and when can they be trained in quantified proportional thinking? 
Although fractions are the mathematical tool for describing proportions, we envisage 
an early preparation of children’s use of numerical proportions without 
“normalizations” before they are confronted with fractions. The results by Piaget and 
Inhelder on the understanding of such proportions in children motivated two 
generations of researchers in developmental and in pedagogical psychology related to 
mathematics education. We cite here one direction in particular, which has been 
fundamental to our work (Koerber, 2003). In a series of well designed experiments, 
STERN, KOERBER and colleagues (STERN ET AL. 2002) demonstrated that third-graders 
can learn to abandon the so-called additive misconception, in which children respond 
with “9” instead of “12” to “3 : 6 = 6 : ?”. In these experiments, children were asked 
to compare mixtures of lemon and orange with respect to their intensity of taste. The 
training involved using a balance beam or graphs to represent juice mixtures, and 
moving the pivot to represent changes in proportions. At the end of a short training (2 
days at most) children showed improvement in proportional thinking, The results of 
STERN and her school thus provide evidence of third-graders’ aptitude to learn 
proportional thinking when provided with adequate instruction.  
Cognitively Natural Representations and Task Performance 

Stern’s results can be combined with results of Gigerenzer and his school at the 
interface between pedagogy and cognitive science in the search for pedagogical 
approaches that tap into cognitively natural representations. The natural frequency 
representation for Bayesian reasoning tasks is based on information that can be 
gained by “naturally”counting events in an environment, and therefore taps into very 
basic human information processing capacities. “Natural sampling is the way humans 
have encountered statistical information during most of their history. Collecting data 
in this way results in natural frequencies.” (HOFFRAGE, GIGERENZER, KRAUSS & 
MARTIGNON, 2004) The term “natural”, as has been pointed out, signifies that these 
frequencies have not been normalized with respect to base rates. Probabilities and 
percentages can be derived from natural frequencies by normalizing natural 
frequencies into the interval [0,1] or [0, 100], respectively; however, this transformed 
representation results in loss of information about base rates. Consider the following 
examples from HOFFRAGE, GIGERENZER, KRAUSS & MARTIGNON, 2004: 

Natural frequencies: Out of each 100 patients, 4 are infected. Out of 4 infected 
patients, 3 will test positive. Out of 96 uninfected patients, 12 will also test 
positive. 
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Normalized frequencies: Out of each 100 patients, 4 are infected. Out of 100 
infected patients, 75 will test positive. Out of 100 uninfected patients, 12.5 will 
also test positive. 

Because normalized frequencies filter out base rate information, they make the 
Bayesian task of inferring a posterior probability from evidence more difficult.  
The inference that most positives are false positives can be read directly from the 
natural frequency representation, while it must be obtained via a non-trivial 
calculation from the normalized frequency representation. Training young 
children enactively with natural proportions, we claim, enables them to make use 
of simple heuristics for dealing with probabilities. We have worked with fourth 
graders, preparing them to solve one of the mathematical test items of PISA 2003 
namely:  Consider two boxes A and B. Box A contains three marbles, of which one 
is white and two are black. Box B contains 7 marbles, of which two are white and 
five are black. You have to draw a marble form one of the boxes with your eyes 
covered. From which box should you draw if you want a white marble? Only 27% 
of the German school students were able to justify that one should choose Box A. 
Mathematically correct statements regarding why and when larger proportions in 
samples correspond to larger chances in the populations require serious amounts 
of conceptual work. In early grades, the consensus is that one should focus on 
intuition and competency rather than on formal mathematics. In other words, we 
should provide students with: (1) Basic stochastic modelling skills with natural 
representation formats and (2) Simple heuristics for operating with these formats. 
In this spirit, MARTIGNON AND KURZ-MILCKE (2005) and KURZ-MILKE AND 
MARTIGNON (2005) have designed a program that develops and encourages the 
natural frequency representation through the use of enactive learning. In playful 
yet structured activities, children use coloured plastic cubes called tinker-cubes to 
represent individuals that make up a population. Different colours represent 
different attributes (e.g., red cubes for girls; blue for boys). The cubes can be 
attached one to another, allowing representation and multi-attribute encoding (e.g., 
a red cube attached to a yellow cube for a girl with glasses; a blue cube attached to 
a green cube for a boy without glasses, a red cube attached to a green cube for a 
girl without glasses, and so on). Children collect the tinker-cubes into plastic urns 
that represent populations. In this way, they gain concrete visual and tactile 
experience with individuals with multiple attribute combinations and how they 
can be grouped into categories and subcategories. Recent exploratory studies of 
fourth-grade children indicate that children are both enthusiastic and successful 
when constructing these representations of categories and sub-categories in nested 
sets, especially when the populations are personally meaningful (e.g., “our class”). 
They can easily “construct” answers to questions like “how many of the children 
wearing glasses are boys?”        
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2. Constructing our class 

3. Enactive  

Bayesian  

Reasoning   

4th – graders 

(Kurz-Milcke&Martignon,
2005)

Figure 2                                        Figure 3 

In another activity, children enact a model of proportional reasoning by constructing 
so called similar urns to represent equivalent proportions (e.g., an urn containing 2 
red and 5 blue tinker-cubes – denoted by U (2:5) -  is similar to an urn containing 4 
red and 10 blue tinker-cubes). By this activity the children learn basic urn arithmetic. 
For instance, fourth graders in three classes of a school in Stuttgart successfully 
learned to solve the two boxes task described above, where U(1:2) is compared with 
U(2:5) by first constructing an urn U(2:4) similar to U(1:2) and then easily comparing 
U(1:2) and U(2:5). These tasks contain first elements of elementary probabilistic 
reasoning in general but also of Bayesian reasoning at a heuristic level. They 
represent a preparation for understanding both of fractions and � at a later stage � of 
probabilities. Empirical longitudinal studies have now been designed to confirm the 
hypothesis that mastery of these tasks in the younger grades should support better 
performance on stochastics questions in the later grades.  
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CONSTRUCTING STOCHASTIC SIMULATIONS  
WITH A COMPUTER TOOL -  

STUDENTS' COMPETENCIES AND DIFFICULTIES  
Carmen Maxara and Rolf Biehler
University of Kassel, Germany 

Constructing stochastic simulation with the computer tool FathomTM has become an 
important part of an elementary stochastic course for student teachers at our univer-
sity. We developed a three-step-design with a probabilistic part and activities with 
the software. Using a schema of the simulation process and different Fathom compe-
tencies we analyzed data from videotapes and semi-structured follow-up interviews. 
We sought to elaborate the problem solving process of students working on a simula-
tion task focussing on how the students acquired Fathom and mathematical compe-
tencies. Some conclusions are that the competencies required by the students in dif-
ferent depths and the connection of Fathom objects to mathematical concepts have to 
be established in teaching. 

INTRODUCTION
Simulation can serve two pedagogical purposes: Simulation can be used as a tool to 
solve problems and to make random situations more experiential (Biehler, 1991). 
Simulation is a mathematically more elementary method than calculating, so students 
can solve problems that are not otherwise solvable for them in a theoretical way. Also 
simulation can be used in combination or instead of analytical or combinatorial meth-
ods. We intend to use simulated models as experimental environments to support 
meaning construction in stochastic situations with various concepts like probability, 
event, random variable, or expected value. Another purpose for using simulation is to 
build up probabilistic intuitions.
At our university the tool-software Fathom is continuously used to support the learn-
ing and working processes in an elementary stochastic course for student teachers for 
grades 5 to 10 (pupils' ages are 11 to 16 years). The software is introduced and used 
for exploratory data analysis and descriptive statistics in the first part of the course. 
The students can use the learned software capabilities to analyze simulated data later 
on. The second part of the course concerns elementary probability. An important 
topic in this part is the simulation of random experiments, like the approach of Ko-
nold (1994) to estimate probabilities through simulation in introductory probability 
courses. The simulation in Fathom is introduced in parallel to the concepts of prob-
ability, random variables and events. Random situations are to be modelled mathe-
matically and simulated; both results are to be compared if available.
The software is used as a student tool for actively analyzing data, simulating and 
building models as well as for exploring methods and concepts. During the whole 
term the students have to work with this software. The students are required to ex-
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press the probability model in mathematical language, as well as using the language 
of events and random variables for explicitly expressing assumptions. The same re-
quirements hold for student activities with Fathom. They have to construct a prob-
ability model in Fathom and they are to use the "Fathom-language" for defining 
events and random variables. Also, students have to use Fathom as a data analysis 
tool and to document their work and results.  

THE STUDY 
This study is part of a research program concerning teaching experiments with 
Fathom in elementary stochastic courses at our university as well as in "standard sto-
chastic courses" at upper secondary levels at several schools (Biehler, 2003). Several 
studies aim to explore the relationship between students' stochastic thinking and 
knowledge and their simulation activities in Fathom in different ways (Biehler, 
2006). Here we present some results of a case study with eight student teachers, who 
were asked to solve a simulation task with Fathom in pairs. We videotaped the work-
ing process and communication of the students and captured their computer activities 
with a screen capture program. Subsequently we watched the recorded material with 
every single student in individual sessions with a "method-mix" of stimulated recall 
and half structured interview. 
Hypotheses of the study are based on three essential support features of the software 
Fathom for constructing simulations. One capability of Fathom allows students to 
construct and represent probabilistic models by various random machines. The ran-
dom machines act for different kinds of random experiments. The second capability 
is the use of Fathom as a simulation tool itself. Theoretical probabilities can be esti-
mated through relative frequencies and distributions of random variables through 
their empirical distributions. And third Fathom offers the possibility to experiment 
with the model. 
To use Fathom for modeling, simulating and experimenting the students need certain 
Fathom competencies. Two questions of our research are therefore: Which Fathom 
competencies do students need? And to what extent did the students in our study ac-
quire Fathom competencies to solve a typical task? A second field of research con-
cerns the fact, that simulation with Fathom allows students to solve problems they 
would not be able to solve in a theoretical way, because in simulation mathematical 
competence is substituted by Fathom competence. Will thereby students more easily 
concentrate on probabilistic aspects during their problem solving process? Fathom 
reifies the concepts of event and random variable by means of the Fathom-object of a 
"measure": A random experiment is represented in Fathom as an attribute whose val-
ues are generated by a random machine (a random command). A “measure” is a func-
tion that can be defined on the results (the attribute values) of a random experiment. 
We also have the hypothesis that use of Fathom supports the use of these concepts as 
empirical concepts in the modelling context. But a transfer from empirical to theoreti-
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cal terms probably works only with an additional theoretical treatment in the stochas-
tic course (see the Summary and Consequences). 

IDEAL WORKING PROCESS FOR SIMULATIONS WITH FATHOM - 
STAGES AND DECISIONS 
In this section, probabilistic and simulation steps and decisions are described that take 
place in a normative task treatment. In a prior didactical analysis of the simulation 
capabilities of Fathom, we developed concepts and notions to use the software as a 
simulation tool. We illustrate the conceptualized activities first in an abstract way and 
second by a concrete task, and also show potential deviations from the ideal pattern 
and sources of problems. The following problem analysis is partly based on research 
results and on a theoretical analysis (Maxara & Biehler, 2006).
We envisage that students would work on simulation problems in three steps: setting 
up a stochastic model of the random situation by using probabilistic concepts, writing 
a plan of simulation and realizing the plan in Fathom. These three steps would be 
used as a modeling guideline for simulation.  
In the first step the students are expected to model the random situation by building 
up a model of a real situation - a "model random experiment". They would describe it 
in a concrete model, for instance by an urn-model. They would construct the model, 
to identify the sample space, the probability distribution, as well as the events and 
random variables of interest. In the second step the students would transform the 
probabilistic concepts into a simulation plan. They could do this transformation step 
by step, perhaps as we exemplify it below.
For students' orientation we developed a four-step-design in two columns: probabilis-
tic concepts and Fathom objects and operations, which correspond to each other in 
each step. We call the concrete description of the four stages in Fathom (right col-
umn) the "plan of simulation", built on ideas by Gnanadesikan, Scheaffer et al. 
(1987). The pedagogical intentions of the plan of simulation are that students struc-
ture their simulations, reflect about the simulations, and document their simulations.  

Step Probabilistic concepts Fathom objects & operations 
1 Construct the model, the random ex-

periment 
Choose type of simulation; define a 
(randomly generated) collection, simu-
late the random experiment 

2 Identify events and random variables of 
interest (Events and random variables 
as bridging concepts) 

Express events and random variables as 
“measures” of the collection 

3 Repeat the model experiment and col-
lect data on events and random variables

Collect measures and generate a new 
collection with values of the measures 

4 Analyze data: relative frequency 
(events); empirical distribution (random 
variables)

Use Fathom as a data analysis software 

Table 1: Four-step-design as a guideline for stochastic modeling 
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Our hypothesis is that the simulation plan is a helpful metacognitive tool for students 
and that Fathom is supportive of developing fluent simulation competence.  
In the first step of the simulation plan one has to choose the type of simulation. We 
distinguish three different types of simulation in Fathom: the simultaneous simula-
tion, in which the single experiment corresponds to different columns, the sequential 
simulation, in which the single experiment corresponds to different rows, and a simu-
lation as a sampling from an urn (Maxara, 2006).
The four-step-design will be exemplified now on a typical task for the students. 
Thereby we demonstrate a perfect realization on the one hand and discuss possible 
problems on the other hand. 

The problem: Mister Becker has to wear a black suit during his working hours, but he can choose the tie 
himself. 7 different ties hang in his wardrobe. Every morning he randomly takes one tie out of the ward-
robe and puts it back in the evening. 

1. What is the probability that Mister Becker will wear 5 different ties in his five-day working 
week? 

2. What is the probability that Mister Becker will wear at least two identical ties in his five-day 
working week? 

3. How many different ties does Mister Becker wear on average in his five-day working week? 
Tasks:

a) Formulate the situation as a compound random experiment and specify the sample space W and 
the probabilistic assumptions. 

b) Provide a plan of simulation and estimate the unknown probabilities of 1., 2., and 3 with a 
Fathom-simulation. 

c) Document your work in a Fathom file. 

Stage 1: Defining the random experiment 
Perfect realization: On the probabilistic side the students have to make the following 
assumptions: each tie has the same probability to be drawn and the samples are sto-
chastically independent. The model could be a sampling from an urn that contains 
seven different balls, and five balls are successively sampled with replacement. In 
Fathom they have to choose an appropriate type of simulation. In this case this could 
be the sequential simulation, or sampling from an urn. We choose the sequential 
simulation. There we have to define a collection (e.g. named "week") and an attribute 
"tie" with the random machine "randomInteger(1;7)" or "randomPick(1;2;3;4;5;6;7)". 
Finally, we have to add five cases to the collection. Fathom is a supportive tool 
because it offers different random machines that resemble to concrete models.  
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Possible problems: During 
the construction of a simu-
lation several decisions 
have to be taken. Each de-
cision one has to take is a 
potential source of error 
with for a larger or smaller 
impact on the simulation 
and the interpretation of the 
simulation. In our study we 
could identify the following 
two problems: The first 
problem area is the trans-
formation of the random 
experiment into a correct 
simulation in Fathom. This 
problem depends on deci-
sions one, four and five. 
The second problem is the naming of the objects (decisions two and three). The deci-
sions of naming are important as the names of objects are relevant for the interpreta-
tion of results at a later stage.

Figure 1: Sequential simulation of the tie-problem 
with 5 decision points 

Stage 2: Events and random variables - defining measures 
Perfect realization: In the second step, events and random variables should be identi-
fied and defined. On the probabilistic side they should be verbalized. For this exam-
ple, we can define the two events by E1: "Mr. Becker wears five different ties in a 
week", E2: "Mr. Becker wears at least two equal ties in a week", and for the expected 
value we have to define the random variable X: "Number of different ties in a week". 
In Fathom, events and random variables correspond to measures that refer to the col-
lection as a whole. In the collection, we have to designate and define three measures 
with adequate formulas: For E1: "five_different_ties": uniqueValues(tie)=5, for E2: 
"least_2_equal_ties": uniqueValues(tie) 
 4, and for X: "number_different_ties": 
uniqueValues(tie). Fathom is supportive in two respects: the concept of "measure" is 
a natural representation of an event or 
random variable, and second, com-
mands such as "uniqueValues" makes 
this typical type of analysis direct and 
easy.
Possible problems: The problems in 
this stage are the naming of the 
measures (decision six) and the knowledge and implementation of correct formulas 
(decision seven). Another identified problem is that students omit the description and 

Figure 2: Defining measures 
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distinction of events and random variables before defining measures, and they try to 
transform (only) their colloquial verbalization into measures.  
Stage 3: Repeating the (compound) experiment - collecting measures 
Perfect realization: The model experiment has to be repeated. Thereby we have to 
collect data about events and random variables and to decide on the number of repeti-
tions. In Fathom, this corresponds to collecting measures. If you collect measures in 
Fathom a new collection of measures is provided with five automatic repetitions. 
Now, you have to collect as many measures as you think are adequate for approxi-
mately estimating 
probabilities or dis-
tributions. In this 
example, the simu-
lation was repeated 
1000 times.  
Possible Problems:
One problem field is the decision of the number n of repetitions. Are students reflect-
ing about n or do they always take 1000 repetitions by standard practice?

Figure 3: Collecting measures - repeating the simulation 

Stage 4: Data analysis 
Perfect realization: The fourth step consists of data analysis. The probabilities that 
were asked for in questions one and two can be estimated by the relative frequencies 
of the respective event. The expected value can be estimated by the empirical mean of 
the random variable. In Fathom, we can use summary tables to calculate the empirical 
values by the formulas "columnproportion" for the relative frequencies of the events 
and "mean( )" for the mean of the random variable. The graphics (bar chart and histo-
gram) can be used to visualize the data, but also to read off the values by dragging the 
cursor on the bars.

Figure 4: Data analysis in Fathom 
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Possible Problems: One source of problem is how to technically find the distribution 
and relative frequencies with Fathom. Another type of problem is related to interpret-
ing the computed values. For instance, a mean of 3.78 could be rounded to 4 (ties per 
week), showing by this a misunderstanding of means and expected values.  

STUDENTS' COMPETENCIES AND DIFFICULTIES DURING THEIR 
SIMULATION ACTIVITIES 
The students have to have different stochastic and Fathom competencies to cope with 
the simulation in Fathom and the possible problems they might encounter. Our work-
ing group distinguished four Fathom competencies: general Fathom competence,
formula competence, simulation competence and strategic and generalizing compe-
tencies (see Keitzer (2006) for a first application of these concepts). The general 
Fathom competence contains the knowledge of tools and their basic functionality in 
Fathom as well as the handling of the objects on the screen (clear design). The han-
dling of the formula editor and the knowledge of formulas in different contexts were 
integrated into formula competencies. The simulation competence describes the com-
petence to transform the random experiment into a Fathom simulation and to give 
meaningful naming of objects. The strategic and generalizing competencies catch the 
handling and avoidance of errors. 
We have used these Fathom competencies and the introduced schema of the simula-
tion procedure to analyze the problem solving activities of the eight students. The 
possible problems mentioned in each stage of simulation needed different Fathom 
competencies to be handled: Problems of transformation require simulation and for-
mula competence, problems of naming are part of simulation competencies, and 
knowledge about formulas is integrated into the formula competence. But not all 
problems are only connected with Fathom competencies, they also involve probabil-
istic competencies, reflection and the ability to connect the two sides. Those problems 
are for instance, the definition and distinction of events and random variables and the 
interpretation of the computed results. Below, we illustrate some exemplary compe-
tencies and difficulties of the students.
Exemplary competencies 
All pairs were able to solve the task through a simulation in Fathom and obtained cor-
rect results. Students' competencies were found in all four distinguished Fathom 
competencies and also on the probabilistic side. 
Simulation competence: To illustrate the simulation competence we look at the fol-
lowing part of transcript.

1 S 1: I shall now, well, we have chosen the sampling simulation.  
2 S 2:  Mmh. 
3 S 1: We have to put seven ties into the collection.  
4 S 2: Mmh. 
5 S 1: And then I would take a sample …  
6 S 2: Mmh. 
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7 S 1: … of size five. 
8 S 2: Mmh. 
9 S 1: Wouldn't I? Because it refers always to one week.  

Student 1 explains to the other student what to do next and what the Fathom steps 
mean in terms of the random experiment. She has a reflective view on their working 
and simulation process and makes up a plan of the following simulation steps.  
Formula competence: The following example will show a good formula competence. 
Right at the beginning to simulate the random experiment the students have created a 
collection with an attribute.

10 S 3: And these are the ties. (Names the attribute "ties")
11  S 4: Mmh. 
12 S 3: And these are -, how many are in there?  
13 S 4: Of what? We have seven ties, haven't we? (Opens the formula editor)
 RandomInteger. (Type the formula)
14 S 3: One comma seven. 

The students do not talk about which formula they have to use, one of them stating 
the correct formula and the other completing it with the required values. It seems that 
they have adapted the random machines as representations of models for random ex-
periments and do not have to think much about an adequate formula.  
Stochastic competence: The following example shows students' understanding of the 
concept of the law of large numbers. A pair talked about the approximation of the 
relative frequencies of the measures to the theoretical probabilities and wrote into 
their document: "One can regard the relative frequencies of the measures as an ap-
proximation for the probabilities. The probability that Mister Becker wears five dif-
ferent ties is approximately 16.6%." By this sentence the students show an under-
standing of the estimation aspect, the fact that the simulated result is an approxima-
tion of the theoretical probability and not the probability itself.
Exemplary difficulties 
We identified several domains of difficulties during the four stages: difficulties in 
transforming the random experiment into a simulation, lacks in formula competence 
and difficulties pertaining to the probabilistic part and the connection to the Fathom 
simulation. Here are only some examples for the observed difficulties. 
Problem: Omitting probabilistic steps After defining the random experiment as a 
simulation, students omit the description and distinction of events and random vari-
ables and transform their colloquial verbalization or the task itself into a measure. In 
this case the students have created the simulation of the random experiment without 
discussion about what events or random variables to define as measures. 

32 S 3:  And now we should define measures. How do we call the first measures? (She 
opens the inspector of the collection). Anyway we have more then one. (Nam-
ing the first measure "E1")
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33 S 4: Mmh. (S3 types the formula uniqueValues(tie)=5)
34 S 4: Yes? 
35 S 3: Yes. 

The naming of the measure indicates that the students do not think about the mathe-
matical type of object. The reification of event and random variable in Fathom is not 
strengthened as intended in the theoretical part of the course. These two concepts are 
rather blurred in students’ minds, probably because both of them were defined as 
measures. The students use the Fathom-concept of measures as a replacement for the 
stochastic concepts of event and random variable in an efficient way. This shows a 
need for additional theoretical concept building.
Difficulty: Interpreting the re-
sults Difficulties in interpreting 
simulated results are related to a 
still unsatisfactory comprehen-
sion of the difference between 
relative frequency and probabil-
ity. The simulated relative fre-
quency of 0,171 is interpreted (at least in the text) as the (definite) probability to use 
five different ties per week. Here the students do not clearly distinguish consciously 
between those two concepts.

Figure 5: Exemplary interpretation of a simu-
lated result

SUMMARY AND CONSEQUENCES 
Despite some difficulties, the students of our study were able to simulate these kinds 
of stochastic situations in Fathom. They acquired the intended software competence 
and accepted the plan of simulation as guidance. We have distinguished four Fathom 
competencies that the students should have to simulate such kinds of random experi-
ments. The general Fathom competence was acquired by all students. The other three 
competencies were acquired in different depths like the examples illustrate.  
The substitution of mathematical competence by simulation competence is not diffi-
cult for the students. But most students do not use this freedom to concentrate on the 
probabilistic concepts behind the simulation. The reification of event and random 
variable as different kinds of measures did not work as expected. These students do 
not distinguish explicitly between events and random variables during their simula-
tion process, but they have a working knowledge about them. The concepts tend to 
remain separated in the two worlds, the "World of probability" and the "World of 
Fathom". Thus – as an instructional implication of the study – the informal use of 
these two concepts should be more deeply and explicitly related to each other in the 
course.
As a consequence it looks expedient to put more emphasis on the explanatory aspect 
of the simulation plan, so as not to only provide technical help, but also to foster stu-
dents' language, knowledge and reflection to link simulation aspects with probabilis-

Working Group 5

CERME 5 (2007) 770



tic concepts. Students should reflect on their simulation activities, about the basic 
probabilistic concepts and their relation to the simulation. Another aspect is to sup-
port a closer relation between the "World of probability" and the "World of Fathom" 
through more comparisons of simulations and theoretical mathematical solutions.  
The conclusions of this paper are also relevant to other countries than Germany in 
different aspects, because both the understanding of probability concepts and the 
simulation of random experiments are essential in teaching statistics. The use of tech-
nology is an important aspect in teaching and learning statistics. We think that our 
modelling guideline for simulation – setting up a stochastic model, writing a plan of 
simulation and realizing the plan in Fathom – is adaptable (perhaps with some modi-
fications in relation to the range of random experiments) for other simulation-
software. The general categories of students' competencies and difficulties are also 
applicable to other software, thus they could be of general interest to statistics in-
structors and researchers.
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A CROSS-NATIONAL COMPARISON OF INTRODUCTORY 
STATISTICS STUDENTS’ PRIOR KNOWLEDGE OF GRAPHS 

Maria Meletiou-Mavrotheris* and Carl Lee** 
*Cyprus College, Cyprus, **Central Michigan University, USA 

This study investigated the prior knowledge about graphing that groups of 
undergraduate Cypriot and U.S. students brought into the introductory statistics 
classroom. A total of 159 students completed a questionnaire designed to assess three 
aspects of graph comprehension: graph reading and interpretation, graph 
construction and graph evaluation. The study findings confirm our initial conjecture 
that U.S. students would exhibit better graphing skills due to the higher emphasis on 
statistics in U.S. school mathematics curricula. U.S. students outperformed their 
Cypriot counterparts in all tasks. The biggest differences, however, were observed in 
simple reading and interpretation tasks. Both Cypriot and U.S. students had 
difficulties in tackling more demanding tasks involving group comparison, graph 
construction, and critical evaluation of information presented graphically. 

INTRODUCTION
Introductory statistics courses have been using a multitude of graphical 
representations both as an essential tool in statistical investigation, and as a means to 
communicate statistical ideas. Good graphing skills are essential to conducting 
meaningful data analysis. Hence, it is important to know, at the outset of instruction, 
what types of data representations students are familiar with, and what difficulties 
they might encounter in the construction, interpretation, and evaluation of graphs.  
This article presents findings from a study that compared the background knowledge 
about graphs of undergraduate Cypriot and U.S. students upon entering an 
introductory statistics course. We chose to compare US and Cypriot students because 
they come from two educational systems that put different emphasis on statistics at 
the school level. In the U.S., like in many other countries, statistics has been 
established as a vital part of school mathematics at all grade levels. In Cyprus, while 
statistics spans the elementary school mathematics curriculum, there is almost 
complete absence of statistical concepts from the secondary school curriculum. Given 
the higher exposure of US students to statistics while at school, we anticipated that 
they would likely exhibit better graphing skills than their Cypriot counterparts. On 
the other hand, since charts, graphs, and plots are used broadly in the media to 
present, disseminate and “explain” information (Shaughnessy, Garfield, & Greer, 
1996), we conjectured that college-level Cypriot students would still be familiar with 
the main types of graphs despite less extensive formal study at school.  

METHODOLOGY
Context and Participants: The sites for the study were five introductory statistics 
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courses across three campuses – two four-year colleges in Cyprus, and a Midwestern 
university in the United States. A total of 159 students (92 Cypriot students, 67 U.S. 
students) participated in the study. Most students were sophomores or juniors and 
majored in Business. Few had taken mathematics courses at the precalculus level or 
higher. The average age for both US and Cypriot students was around 20. Only a very 
small percentage of the students were adult learners. 
Instruments, Data Collection and Analysis Procedures: At the beginning of the 
semester, students were administered a questionnaire. An identical questionnaire was 
administered to both US and Cypriot students, as the language of instruction in the 
Cypriot institutions participating in the study is English. The questionnaire consisted 
of ten tasks, covering four basic types of statistical graphs: bar graph, pie chart, line 
plot, and time plot. It was designed to assess three aspects of graphical knowledge: 
graph reading and interpretation, graph construction, and graph evaluation. Each of 
the tasks was selected from previous studies in statistics education to provide a point 
of reference for our findings. The tasks were open-ended, requiring students to justify 
their responses. Four of the tasks are shown in Figure 1.
Student responses to the questionnaire sub-tasks were first grouped into three 
categories depending on the aspect of graphical knowledge that was being assessed, 
and were then analyzed using the constant comparison analysis method. Constant 
comparison analysis, which involves unitizing, categorizing, chunking, and coding by 
choosing words, phrases, or sentences that specifically address the research questions, 
assisted us in the search for patterns and themes that were used to develop the study’s 
interpretation. We reached closure only after many sweeps through the data. The 
main findings of this empirical analysis are outlined in the next section.

RESULTS
A number of learning patterns and trends were discerned by examining U.S. and 
Cypriot students’ responses to the questionnaire. These patterns are described and 
interpreted for each of the three components of graph knowledge investigated in this 
study: graph reading and interpretation, graph construction, and graph evaluation. 
Reading and Interpretation 
Graph interpretation involves forming opinions from one or more graphs. It includes 
making comparisons within or between data sets displayed graphically, identifying 
patterns and trends, and making inferences from graphs. Graph interpretation cannot 
be effective if the reader does not possess basic graph reading skills. Thus, readers’ 
interpretations of a graph provide, at the same time, evidence of their knowledge of 
the graph’s structure (Friel, Curcio, and Bright, 2001).
Most of the Cypriot participants did very poorly on the tasks which explored their 
graph reading and interpretation skills. Their performance was particularly low in 
tasks involving reading and interpretation of bar graphs; they seemed unsure as to 
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Task 1: “Raisins in a 
Box” (Friel & 
Bright, 1996) 
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Are there the same number of raisins in each box?  How can you tell? 
Task 2: “Students’ 
Scores” (Watson & 
Moritz, 1999) 
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Which class did better? 
Task 3: “Top Actors’ 
and Actresses’ 
Salaries” (Jones et. 
al, 2002) 

Salaries of 15 Top Actors and Actresses (in millions of dollars) 
Actors Actresses
$17.5 $12.5
15.0 9.0
20.0 11.0
20.0 9.5
20.0 2.5
19.0 12.0
20.0 3.0
18.0 4.0
5.5 4.0
6.0 2.5

10.0 6.0
16.5 8.5
12.5 4.5
10.0 3.0
7.0 10.0

c) Construct a graph that will allow you to compare the salaries of actors 
and actresses. 

d) How do the actors’ salaries compare to the actresses’ salaries? 
Task 4: “Grocery 
Market Shares” 
(Watson, 1997) 

Coles

21,1%

Davids
13,3%

IHL4,4%

Other

61,2 %

Woolworth

28,5 %

Coles Myers accelerates retail purge 

Nationwide retail grocery market shares

a) Explain the meaning of this pie chart, which appeared on Australian 
Financial Review (1993).

b) Is there anything unusual about it?
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Figure 1: Sample of Questionnaire Tasks 
Cypriot
Students

U.S.
StudentsType of response 

n % n %
1. Properties of the graph – considering both the range of data and frequency 
“No, there aren’t the same number of raisins in each box you can tell because there 
are a different number of students with different numbers of raisins in a box. The 
boxes have 28 to 40 raisins inside, so they aren’t the same.” 

6 7 16 24

2. Literally “reading" the data from the graph
“No. In 6 boxes there are 28 and in 6 other 35. In 3 boxes there are 29 and in other 3 
31 and 38. In 4 there are 30, in 2 there are 34 and in 1 there are 32, 36, and 40.” 

5 5 4 6

3. Range of the data – considering only range and does not include frequency 
“No, the number of raisins in each box varies from 28-40 per box.” 9 10 40 60

4. Frequency of occurrence/height of bar
 “No, there aren’t. In some boxes there are many raisins and in some others no raisins 
at all. In few boxes you can see that is the same number of raisins.” 

19 21 0

5. Properties related to the context or to the data 
“No, because they found different numbers because weight is not exact as number” 1 1

6. Other - incomplete, unclear, or not statistically reasoned responses 
 “No, there is not the same number of raisins in each box.” 23 25 4 6

7. No response/I don't know 30 32 2 3
92 100 67 100

Table 1: Patterns of Cypriot and U.S. students’ responses to Task 1 

axes of bar graphs represent and had difficulties in distinguishing between data 
values and frequencies. They also had difficulties in reading simple plots of raw data. 
The only graphs they were somewhat familiar with were the pie chart and the time 
plot. U.S. students, on the other hand, gave responses indicating familiarity with all 
four types of graphs included in the questionnaire (bar graph, pie chart, line plot, and 
time plot), and possession of basic graph reading and interpretation skills.
Cypriot students’ responses to Task 1 (see Figure 1) are indicative of their lack of 
familiarity with even very simple graphs such as the time plot. In this task, students 
were given a line plot depicting the quantity of raisins in half-ounce boxes, and were 
asked to determine whether all boxes had the same number of raisins. In analyzing 
student responses, we used the same coding scheme as that used by Friel and Bright 
(1996), who included the task in a study researching middle school students’ level of 
graph comprehension. The results of the analysis are displayed in Table 1, which 
shows the frequency and proportion of each pattern of responses among U.S. and 
Cypriot students, as well as examples of typical responses within each pattern. 
Data in line plots are ungrouped, making them easier to interpret than bar graphs or 
histograms. However, despite the seemingly easy nature of Task 1, Cypriot students 
did extremely poorly. More than half (57%) of them gave either no response or some 
incomplete or vague response, while only about a fifth (22%) gave a reasonable 
response (Response types 1-3 in Table 1). By contrast, almost all U.S. students (90%) 
gave reasonable responses. And while a sizeable proportion of Cypriot students 
(21%) confused the role of data values and frequencies and focused on the frequency    
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Figure 2: Patterns of Cypriot and U.S. students’ responses to Task 2 

or number of X’s as the data values themselves (Response Type 4 in Table 1), no 
U.S. student did so. Although definitely exhibiting better graph interpretation skills 
than Cypriot students, students from the U.S. gave responses which indicated that 
they focused on only one feature of the distribution displayed by the line plot. The 
most common response among U.S. students was Type 3 response, i.e. considering 
only the range of values included in the line plot. Only a fourth of the U.S. students 
(24%) considered both the range of data and the frequency of occurrence.
The comparison of univariate datasets displayed graphically is a graph interpretation 
activity that has been investigated in several studies of secondary school students. 
Task 2 was included in the questionnaire to assess this important data analysis skill 
that provides the foundation to more formal group comparisons using inferential 
statistics (Watson and Moritz, 1999). Students had to compare the scores on a test of 
two classes of equal size based on a graphical representation of the scores. We coded 
student responses using the following pattern descriptors: (1) Comparing datasets by 
using multiple relevant attributes of the aggregate sets; (2) comparing datasets by 
using one relevant attribute of the aggregate sets (e.g. shape, center, or spread); (3) 
comparing datasets by using a point-by-point strategy (Groth, 2003). 
For this task also, there was a noticeable difference between the responses given by 
Cypriot and U.S. participants, with U.S. students again outperforming Cypriots. 
However, only a small proportion of U.S. students showed evidence of a powerful 
sense of distributional reasoning in group comparison problems. As seen in Figure 2-
left, only one-fourth of U.S. students (24%), and an even smaller percent of Cypriot 
students (5%), exhibited the first, most sophisticated pattern of responses in Task 2. 
These students viewed the two sets of scores displayed in the graphs as aggregates 
and used two or more relevant characteristics (e.g. center and spread) to make their 
comparisons: “Brown b/c more kids got higher than six. In Yellow Class, they were 
all in the middle”; “They did about the same on average, but Yellow Class was more 
consistent”; “Yellow Class because even though none of them got 7 right, they all 
were average, none got 3 right like Brown Class”. 
Two-thirds of both Cypriot and U.S. students exhibited the second pattern of 
responses. They compared the two datasets based on a single feature of the aggregate 
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sets. The feature used most often as the sole criterion of comparison, was the center 
of the two distributions: “Classes scored the same. If you take the class average, 
you'd get the same for both Yellow Class and Brown Class”. It should be pointed out 
here that the nature of the question posed to students in this task, might have 
contributed to this observed tendency to focus only on the center of the data 
distributions. Since students were only asked to decide which of the two classes did 
better, they might have concluded that comparing centers would be adequate, and that 
making reference to spread would not further enhance their answer. 
The least sophisticated pattern of responses involved a point-by-point comparison of 
the two sets. “Yellow. Although Brown had a 7 on a test, they also had a 3, while 
Yellow had no 3s but 2 more with 5s, eve though no 7s”; “They were equal because 
Brown had a student that got more correct. Yellow had more students get more 
correct on a certain number”. Only two students exhibited this type of reasoning. 
Finally, almost a third of the Cypriot students (29%), in contrast to only twelve-
percent of U.S. students, either gave no response, or some incomplete or unclear 
response that made it impossible to classify their reasoning strategy: “It is the same 
because they both have correct answers on the test”; “Yellow Class did better”.
In analyzing several tasks, including Task 2, we investigated whether students 
approached the tasks visually, numerically, or using a combination of visual and 
numerical techniques (Watson and Moritz, 1999). The most popular approach was the 
numerical one – perceiving graphs as a way to obtain the actual scores in order to 
calculate a number that would summarize the data. In Task 2, more than half of both 
the U.S. and Cypriot students used only numerical techniques. We identified four 
types of numerical strategies in tackling Task 2 (see Figure 2-right). The big majority 
of U.S. students (82%) used either the “compare averages”, or the “compare totals” 
strategy. Both of these numerical strategies are valid in the context of this particular 
task, although using totals as a basis of comparison would not have been correct had 
the classes not been of equal size. The most popular numerical strategy for Cypriot 
students, on the other hand, was the “horizontal” reading strategy (focusing on the 
horizontal axis and comparing only values). Both the “horizontal” reading strategy, 
and the “vertical” reading strategy (comparing only heights of bars), suggest limited 
understanding of the function of the axes in a bar graph (Ben-Zvi, 2004).
Graph Construction 
Graph construction is the process of displaying one or more datasets by using graphs. 
In order for students to be able to construct effective graphical representations of 
data, they need to know how to organize data, understand graph conventions like 
scaling and labeling axes, but, more importantly, also know which graph is the 
optimal choice for a given situation (Friel, Curcio, and Bright, 2001).  
The graph construction tasks included in the assessment required students to draw 
their own graphs of either provided or projected data. We did not specify the kind of 
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graph students should construct because we were interested in seeing whether they 
would produce a graphical representation that conveyed the different characteristics 
of a data distribution (center, spread, shape). Thus, in examining student 
constructions, our main focus was not on the technical details of their graphs, but on 
the characteristics of the distribution shown in the graphs, and particularly on whether 
the plot revealed or masked data variation (Canada, 2004). Of course, the 
characteristics of the underlying distribution can only be assessed when the technical 
details of the produced graph are plausible or at least understandable (Canada, 2004). 
Also, the type of graph that students use depends on their repertoire of different graph 
types, and on their skills in drawing graphs. Thus, while our focus was on assessing 
students’ distributional reasoning as judged by the graphs they constructed, we also 
paid some attention to the technical details of their graphs.  
The questionnaire tasks assessing students’ ability to construct graphs proved quite 
challenging for most students. Although students from Cyprus had a notably lower 
performance than U.S. students in graph construction tasks also, U.S. students did not 
perform well either. In Task 3, for example, where students had to construct a graph 
that would allow them to compare the salaries of fifteen top actors and actresses 
shown in a table, more than half of the Cypriot students (54%), and one-third of the 
U.S. students (33%), either gave no response or drew an empty plot, i.e. a plot with 
no data values in it (see Figure 3-left). Only thirty percent of U.S. students and fifteen 
percent of Cypriot students managed to construct a valid display that revealed the 
underlying distributions of salaries and allowed comparisons (e.g. integrated data into 
a single display that used ranks). Another twenty-two percent of U.S. students and 
eighteen percent of Cypriot students attempted to construct a graphical form that 
would provide information about both the center and spread of the two distributions 
of salaries, the displays they produced, however, were not valid and did not allow for 
proper comparisons between the two sets of salaries. Also, some students (15% of 
U.S. students, 13% of Cypriot students) produced a graph that displayed a single 
aspect of the data (e.g. a value bar with only two values – the first from each 
category, or a bar graph of mean salaries for actors and actresses). 
Graph Evaluation 
Graph evaluation is the ability to look behind the data rather than simply accepting  
the initial impression given by a graph (Monteiro & Ainley, 2003). It involves 
evaluating a graph on its correctness or effectiveness. As Watson (1997) points out, 
statistics instruction in the high school years should aim at gradually building 
students’ ability to question unrealistic claims made by the media or others without 
proper statistical foundation. Task 4 (see Figure 1) assessed not only the ability to 
read and interpret a graphical form (the pie chart), but also the ability to critically 
evaluate and question information presented graphically. Watson (1997) included this 
task in a large survey administered to middle school students in Australia to assess 
their level of statistical thinking based on authentic extracts from the media. 
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Figure 3: Patterns of Cypriot and U.S. students’ responses to Task 3(Figure 3-left), 
and Task 4 (Figure 3-right) 

In the first part, where students had to explain the meaning of the pie chart (i.e. a 
reading and interpretation task), the majority of both Cypriot and U.S. students gave 
acceptable responses indicating basic understanding of the pie chart. In the second 
part, however, where they had to recognize the error in the pie chart, results were 
discouraging for both groups. Only thirty-nine percent of U.S. students and thirty-
seven percent of Cypriot students recognized that the percentage figures given in the 
pie chart are incorrect (Figure 3-right). These students either pointed out that “the
percentages do not add up to 100%”, or noted that “angle and percentage do not 
match”. One third of Cypriot students (32%) gave no response, or concluded that 
there is nothing unusual with the pie chart. A higher proportion of U.S. students (49% 
of U.S. students vs. 31% of Cypriot students) realized that there was something 
wrong with the pie chart, but gave either an explanation not being related to the task 
at hand, or an explanation being related but not being the significant unusual part to 
one who fully understands the structure of a pie chart (Watson, 1997). Explanations 
not related to the task at hand focused on the appearance of the graph, rather than on 
the message the graph meant to convey: “There is no key with the different colors 
and explaining what things mean. There should be decimal points”.
Among responses related to the task but not being the significant unusual part, the 
most common one was in the spirit of the following: “The other section (people that 
produce too small an amount to be named individually) fills up more than half of the 
market shares”. This peculiar feature of the pie-chart in the task attracted the 
attention of many students. The proportion of both US and Cypriot students 
displaying this type of reasoning was very high. This might be indicative of a 
limitation of the specific item, since indeed “Other being bigger than the rest” is 
something that one would never encounter in a valid pie-chart displaying real data.

DISCUSSION
In this study, we compared the background knowledge about graphs of groups of 
introductory statistics students in Cyprus and the U.S. The study findings confirm our 
initial projection that U.S. students would exhibit better graphing skills. U.S. 
outperformed their Cypriot counterparts in all tasks. The biggest differences were 
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observed in graph reading and interpretation tasks. U.S. students gave responses that 
indicated they had developed the ability to read and interpret basic plot types, in 
contrast to Cypriot students, the majority of whom exhibited lack of basic graph 
reading skills and serious misconceptions about graphs. However, both student 
groups exhibited limited distributional reasoning. They tended to focus on one feature 
of data distributions – usually the center – rather than considering multiple relevant 
attributes (shape, spread, skewness, etc.). Also, both student groups did poorly on 
tasks requiring them to critically evaluate information presented graphically.  
This study was exploratory in nature. There are several methodological weaknesses 
that might limit the validity and generalizability of the findings. The small scale and 
limited geographical nature means that generalizations should be done cautiously as 
the specific classrooms investigated might not be representative of all introductory 
statistics classrooms in the US and Cyprus. Moreover, the fact that graphical 
knowledge was solely assessed using a questionnaire, means results are limited by the 
appropriateness of the test items included in the questionnaire. One should also 
recognize the limitations imposed by language. Naturally, Cypriot students’ ability to 
express themselves in writing was typically lower than that of native speakers, and 
this might have somewhat contributed to their lower performance.  
Clearly, the results presented here are only suggestive and warrant more rigorous 
study. To better understand cross-national differences in students' graphical 
knowledge, there ought to be triangulation of data, using a combination of qualitative 
and quantitative means of data collection. Also, one ought to draw attention to the 
underlying cultural factors affecting statistical achievement. She/he has to consider 
the unique culture and characteristics of each country rather than assuming that 
instructional variables operate in the same way across all countries. She/he should 
also relate differences in student achievement to the broader educational system 
characterizing the two nations: coverage of topics related to statistics in the intended 
and implemented curriculum, academic training of teachers in statistical content and 
pedagogy, teachers’ beliefs about the nature of statistics, technology availability and 
use in the classroom, assessment practices, trends in education reform, etc. 
Despite its weaknesses, the study does provide useful information regarding college-
level students’ background knowledge of graphs. Findings corroborate with the 
research literature which indicates that most college-level students across nations lack 
a global perception of the features of a data distribution displayed graphically (e.g. 
Ben-Zvi, 2004), and have little understanding of data beyond simple bar-charts and 
pie-charts (e.g. Rubin, 2002). Moreover, findings suggest marked differences in the 
level of background graphical knowledge among college-level students from different 
countries that might be related to variations in the school mathematics curricula. 
Cypriot students’ poorer knowledge of graphs compared to U.S. students can partially 
be attributed to their more limited exposure to statistics while at school.
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The expanding use of data for prediction and decision-making in almost all domains 
of life makes it a priority for educational systems worldwide to help all students 
develop understanding of key statistical ideas prior to entering college. Although we 
by no means suggest imposing an international statistics curriculum, we do believe 
that statistics should be established as a vital part of school mathematics in every 
country. This is necessary in modern, knowledge-based society, where the ability to 
analyze, interpret and communicate information from data are skills needed for daily 
life and effective citizenship.
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The sample space and the structure of the possible combinations are 
components that determine a probability task. The aim of this study is to 
investigate whether preschoolers show any preference to spatially 
grouped stimuli and to what extent in terms of number of combinations, 
they can estimate possible outcomes. There were 3 trials with 2 sub-cases 
each, with alterations in the position and the number of color-paired 
sectors. Children showed preference to the paired stimuli and made 
predictions, based on visual comparisons (Way, 2003,) with ease up to 3 
combinations.  

Introduction
Risk perception and probability evaluation are concepts that relate to 
mathematical thinking. Recent studies have shown that preschoolers can 
make use of the basic probability notions: possible, impossible, sample 
space (Schlottmann, 2001; Pange & Talbot 2003; Way, 2003, Kafoussi, 
2004) by using computational and/or intuitive reasoning skills.  
From a traditional theoretical point of view, children are able to 
concentrate on a single dimension without the ability of reasoning 
multiple variables (Piaget& Inhelder, 1958). Preschoolers are considered 
to be static, incapable of causal reasoning and perceptually bound, 
confined by the similarity of appearance (Piaget, 1965). The ability to 
relate parts to the whole occurs under computational and operational 
strategies that emerge later in life. Consistent with this view, children use 
simplified strategies in probability choice tasks as they cannot take into 
account alternative possibilities, totality of events, relative frequencies 
and ratios (Siegler, 1981; Falk & Wilkening, 1998). 
On the other hand, some researchers have investigated the intuitive rather 
than the computational reasoning used by children in random experiments 
(Shlottmann, 2001; Andreson, 1996; Acredolo et al, 1989). Under this 
perspective children can relate multiple dimensions and show an intuitive 
way of counting probabilities (Pange &Talbot, 2003). Children can 
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recognize correlations, make inferences and make use of the frequency of 
co-occurrence (Kushnir& Gopnik, 2005). Based on visual information, 
children show a minimal understanding of randomness and can identify 
the most/least likely outcomes (Way, 2003). 
The nature of mathematical thinking in each stage is crucial under the 
teaching/learning scope. According to Bruner (1960), intuition is a 
precursor to analytical thinking. Within the classroom, pupils should be 
encouraged to guess, make hypotheses and predictions, and run the risk 
of being wrong, before developing their analytical thinking. In addition, 
children have to be actively engaged while solving a problem in order to 
acquire knowledge and learn (DeVries et al, 1990; Osborne and Freyberg; 
1985).
Based on these educational implications, the current study is going to 
investigate whether the number of combinations and their position within 
the sample space has any affect on children’s probability estimations. 
Through their personal involvement in a probability task, participants are 
tested onto whether their predictions get altered when the sample space 
undergoes structural and positional changes by maintaining the equality 
of events. 

Methodology 
Two groups of preschoolers, in a public kindergarten in Athens in 2006, 
aged 5 to 6, were tested on to whether they would have a probability 
understanding of two, three, and four combinations within spatially 
paired and spatially non paired stimuli. 10 children participated in 
condition 1 (single-paired condition) and 10 in condition 2 (non-paired 
condition). For the purpose of the current study, by terms of spatially 
paired stimuli we mean the allocation of two similar-colored sectors next 
to each other inside a circle. Any other position of the two similar-colored 
sectors among the circle is interpreted as spatially non-paired. 
All children carried out a pre- test (pre- assessment) in order to 
investigate whether they possess the concept of sample space or not; 
whether they realize that the structure of the sample space affects the 
equality- inequality of likelihood. They were given a circle divided into 4 
parts, 3 of which were green and 1 red. They were asked to predict where 
an arrow was more likely to stop after spinning around (the starting speed 
of the arrow in all experiments was initialized by the children). 
The experiment was conducted as a random game, as “Mr Arrow” (a 
drawn arrow pinned in the middle of a circle) was very sad and needed 
their help in order to decide which color he prefers. The experiment was 
carried out in a meaningful and childish context so that participants 

Working Group 5

CERME 5 (2007) 783



would empathize and become willing to assist the hero. Color-
combinations were presented on a circle that was divided each time in 
equal sectors as the number of colors.   
In trial A there were 2 combinations: green and red, so the circle was 
divided into 4 parts,  
in trial B, there were 3 combinations: green, red and blue, so the circle 
was divided into 6 parts
and in trial C, there were 4 combinations: green, red, blue and brown, so 
the circle was divided into 8 parts.

Condition 1
(single-paired)

Condition 2 
(non paired) 

1st case 
(common in both 

conditions)

2nd case 

TABLE 1: Example of Trial B (3 combinations: green, red, blue). 

Each trial was consisted of 2 sub-cases with a difference in the structure 
of the combinations in the colors.  
Each trial in both Conditions (single-paired and non-paired subsequently) 
began with the color- combinations presented in ordered pairs (ordered 
case). The second case of each trial which determined the condition, 
presented the color- combinations either partly non-paired  (Condition 1, 
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where only one single color kept its pair close to itself) or totally non-
paired (Condition 2, where all the color- pairs were mixed up). 
Children (N=20) ran the pre- test and the three main trials (trial A, trial B 
and trial C), in pairs in their classroom. Participants had the possibility to 
interact with each other and in turn they were asked by the researcher to 
predict which color “Mr Arrow” would show. Then, they were asked to 
push him with the finger and spin him around in order to find out his 
choice. Responses were tape-recorded and used for further analysis. 

Results
Children were quite enthusiastic to help Mr Arrow. At this age, children 
empathize and become identical with the heroes of the stories. The 
meaningful context allowed them to get actively engaged: 

Researcher: …so, what do you think, are you going to help him? 

 Tasos:  Yes, he seems nice. 

 Amalia: I don’t want him to be sad… 

In the pre-test trial 15 out of the 20 children gave the ‘expected’ answer; 
they could predict that green was the most likely color to come out, as it 
possessed the ¾ of the sample space: 

Researcher: Which color do you think Mr Arrow will show? 

Andreas: He will show green, green is more. 

 Maria:  Green. There are 3 green. 

The rest of the children, answered intuitively, based on random 
justifications:

Researcher: Why red? 

Tasos:  I like red, so red will appear. 

Niki:  Mr Arrow is a boy so he will prefer red.  

A. In the first trial we used two colors (i.e. red, green) and children made 
predictions by chance. Others predicted red and others green (equality of 
likelihood).
Based on the outcome of the 1st case, 13 children in total predicted the 
same color as a possible outcome in case 2, no matter if the sample space 
was ordered or unordered. This implies that children of this age have an 
understanding of co- occurrence: 

Popi:  He will show red, as before… 
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B. With the addition of the third color (i.e. red, green, blue) in the second 
trial, blue (the new color) was the most frequent prediction among the 
responses of the ordered case.
In the single paired case of this trial (Condition 1), 7 children predicted 
the color that was still ordered and spatially next to its pair: 

Researcher: What about this circle? What do you think Mr Arrow will 
show now? 

Nikos:  Blue, there are more blue triangles. 

Dimitris: He will prefer the blue, because it is all together.

The alteration of the colors’ positions had an affect on children’s 
predictions. The fact that blue would keep an ordered arrangement, 
opposed to the rest colors, made it the most possible outcome.  
In the non-paired case, 6 children again based their answers on the 
outcome of the last case. It is worth mentioning that all of them had 
realized that the positions of the colored parts had changed and that no 
new color was added: 

Researcher: Let’s see this circle! Which color do you think Tina that 
Mr Arrow will show this time?  

Tina:  Look, the colors are the same…  

 Lena:  But they are up and down…  

Tina: Never mind… he showed green before… I think he will 
show green. (response based on co-occurrence)

Children in this case were able to follow the changes in the combinations. 
They could visually recognize that the positions of the 3 combinations 
had been mixed up. They understood that no new color was added in the 
circle and that red, green, and blue combinations had just been presented 
in different positions. They were in the position of making visual 
comparisons. Again, previous outcomes affected children’s predictions 
for the next trial. 
C. In the 1st case of the third trial, 9 children in total predicted the new 
color. The new visual input again (as in trial B) influenced their 
predictions:

Aggelos:  Brown is new! Mr Arrow will prefer it… 

However, children seemed not to be able to follow all 4 combinations 
(i.e. red, green, blue and brown). They started to loose their concentration 
and paid attention to other factors, for instance: 

Researcher: Let’s move on to this circle… [interruption] 
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Liana:  Again these colors? When will pink appear? 

Mina:  Will Mr Arrow visit us again? 

Researcher: Sure, he may also bring Mrs Arrow. But, come on, let’s 
finish. Liana it is your turn, which color do you think he will choose? 

Liana:  Brown. 

Researcher: Why brown? 

Liana:  Because brown (intuitive answer). 

Research: Ok then, let’s see.  

In the single-paired case (condition 1), this time only 5 children predicted 
the ‘ordered’ color as a possible outcome.
In condition 2 no pattern was found in the children’s predictions. In 
general the responses were based on chance: 

Efi:  Blue was before, now it will be green… 

Researcher: Why do you think green will appear? 

Efi:  I don’t know. 

Children seemed to be tired at this point. Answers had no justification 
and children had in a way lost their interest.

Discussion
The most interesting results relate to the structure of the sample space. 
The position of the stimuli affected the children’s responses. Children 
favored the spatially paired combinations. This is quite evident in the 
second cases of the 1st Condition, where children preferred the color 
combination that was presented next to its pair. In the 2nd Condition 
where colors were not allocated as subsequent pairs on the circle, children 
responded randomly or intuitively. 
Of course, the fact that the design of the current experiment was based on 
paired stimuli in this precise way may imply that children may have 
worked on other meanings too, such as proportions or quantified 
categorization rather than on mere probabilities (Deák& Bauer, 1996); 
this is an issue for further investigation. Thus, the focus of the present 
study was to find out whether preschoolers could understand the equality 
of events when the same color combinations were visually presented in 
different positions among the circle.  
These results comply with the theory that at this age, children respond 
intuitively (Schlottmann, 2001; Pange & Talbot, 2003) based on visual 
perception, abstract reasoning and personal preferences. Children showed 
the ability to focus on more than one variable (color and position) in 
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contrast to the piagetian notion of centration. In addition, it was evident in 
the first trial of both Conditions that children were able to follow and 
estimate the frequency of co-occurrence. In accordance with the findings 
of previous studies, children were able to make inferences and predictions 
based on what occurred previously. Evidence has shown that even at the 
age of 3, children have the ability of inference making and similarity 
selecting (Deak et al, 2002; Kushnir& Gopnik 2005).
Children showed a strong reliance on visual impressions and 
comparisons; they could see and understand that the structure of the 
sample space had changed but they couldn’t recognize that there was still 
equality of likelihood. They were also affected by the entrance of a new 
color and in the beginning of each trial they would use this color as the 
color of their prediction. Preschoolers were able to notice that the same 
number of paired combinations appeared in different positions in both 
cases but they couldn’t estimate the same possibility for each color. In 
consequence, the structure of sample space and the likelihood of events 
do not have a clear connection at this age (non-probabilistic thinking 
stage; Way 2003). 
Finally, the above results imply that preschoolers can be easily aware of 3 
combinations and begin to have difficulties in their predictions when a 
fourth element enters the task. At this point, children begun to loose the 
track of the task and responded by chance. For instance, 3 girls 
complained about the 4th color (brown) as they would rather expect a 
more ‘female’ one. Such findings relate to other studies that have shown 
that infants can represent the exact number of objects in a scene, up to a 
set size limit of three or four (Barth et al, 2005).
The fact that the current experiment took place in a meaningful context as 
a ‘game- mystery’, instead of a context with random shots and no 
sequence and story, enabled the children to be actively involved in the 
task through their new friend. Participants were personally engaged in 
order to help Mr. Arrow and their own intentions were identified with 
those of Mr- Arrow and vice versa. Such approaches where an external 
figure or puppet, ie Mr Arrow, are part of the experiment are quite often 
in studies with children of this age (Denison et al, 2006; Cimpian& 
Markman, 2003; Doherty, 2002; Siegler, 1991), so that they get 
motivated within a context.  Under these guidelines, children were 
encouraged to predict, estimate, and construct knowledge (basic concepts 
of the constructivist approach; DeVries et al, 1990; Osborne and 
Freyberg; 1985). Thus, this sort of interference might have influenced 
children’s pure stochastic way of thinking.
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These results may be useful under the perspective of instruction- 
teaching, as science content and cognitive capacity are important to 
match (Lind, 1999). Preschoolers can manipulate pairs of 3 combinations 
but when it comes to the fourth they find it difficult. Moreover, further 
research is needed to investigate more profoundly how intuitive and 
computational reasoning develop and whether there is interplay, as well 
as how intuition is complementary to formal understanding (Bruner, 
1960).
Further research could investigate how the different combinations of a 
sample space (up to three) are processed through other probability task 
designs (with methodological alterations). For instance, color 
combinations can be replaced by items or other stimuli (i.e. pictures of 
animals or tools); paired combinations can be replaced by single ones in 
order to eliminate the possibility of children’s working with mechanisms 
of categorization or identical observation; the sample space can be 
represented in an ordinal or vertical rather than a circular space. This sort 
of visual modifications may affect the children’s responses and may 
imply other results i.e. extension of 3 combinations to 4; this needs 
replication. In addition, computer – based tasks may rouse new findings 
too. Here, we entail the issue of the utility of New Technologies in the 
classroom?
To sum up, such methodological and theoretical implications can be 
investigated more profoundly and as a result be incorporated in the 
teaching- learning procedure of probabilities in preschool education. So, 
if we would like to move on to a more formal learning procedure like the 
construction of knowledge, then the same task should be repeated in other 
contexts (i.e. computer- based tasks), under precise educational goals.
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This study investigates the way that prospective teachers conceive the role of tasks in pre-
primary mathematics teaching regarding randomness. This is explored in the context of 
the teaching practice of prospective teachers during the last semester of their university 
studies. The methodology of the study was organised in four stages: 1. design of lesson 
plan; 2. classroom implementation; 3. discussion of the lesson with the school practice 
instructor and; 4. self-assessment report and redesign of the lesson. These stages have 
been acknowledged as crucial settings for encouraging reflection, awareness and 
professional development in general (Moyer,2001). In the particular study we analysed 
four cases of prospective teachers who planned and taught lessons regarding probability. 
The data comes from their lesson plans, observations of their teaching, interviews after 
their teaching and their written self-assessment reports. The analysis of the data shows 
that prospective teachers appreciated the importance of motivation and using tools in 
their classrooms for teachings stochastics. However, from our classroom observations we 
identified that the activity was often mathematically trivialized and that there was a 
misunderstanding about the stochastic interpretation of the task.
INTRODUCTION

Hoyles (2002) claims that the mathematical activity is designed to foster 
mathematical meanings through construction, interaction and feedback, and also the 
students could scaffold their own thinking through communicating with the tools. 
However, these tools are often considered early years more as means to motivate children 
rather than to challenge them mathematically. One reason could be teachers’ lack of 
sound mathematical knowledge that would have allowed them plan activities that would 
enhance young children’s mathematical activity. The importance of a strong knowledge 
of content in teaching mathematics has been acknowledged by a variety of references 
(e.g. Mason, 1998; Ma, 1999). In addition to this, teachers need to consider children’s 
ideas and intuitions both in their planning and in their actual teaching. Shulman (1986) 
defines this knowledge as ‘pedagogical content knowledge’ and Ball and Bass (2000) 
believe that teaching mathematics entails work with microscopic elements of 
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mathematical knowledge in order to make sense of a child’s apparent error or appreciate 
a child’s insight.

The integration of mathematics and pedagogy is described by Boaler (2003) as 
“mathematical know-how” and it can be achieved through teachers’ reflection on their 
own teaching. Prospective teachers operate from a complex knowledge base, both 
pedagogical and mathematical, which is developed through their personal experiences 
tacit and academic. Mason (1998) also appreciates the importance of reflection. 
According to him the key notions underlying real teaching are the structure of attention 
and the nature of awareness. During their teaching practice as prospective teachers design 
lesson plans, teach and evaluate their teaching the question of what they are “noticing” in 
these phases is an essential one.  Moreover, their own interpretations of the things that 
they notice give an indication of their level of awareness. In the case of mathematics 
teaching, the meaning we attribute to awareness in action is related to the craft knowledge 
that Ruthven (2002) describes. It is related to the teaching tools - materials that the 
prospective teacher brings to the classroom either from her own experience as learner of 
mathematics or either from her experience at the university in the area of mathematics 
education. In that level the arguments that she develops to support her teaching decisions 
and choices are grounded in this craft knowledge and remain at a primitive level. On the 
other hand, the awareness in the discipline of mathematics education, in our view, is the 
result of relating the academic knowledge, which is a result of university experience, but 
it is integrated to the craft knowledge that the prospective teacher possesses.

Nowadays, probability and statistics have an important role to play in our everyday 
life, especially at children, where most of their games have the idea of chance. It is 
natural for humans to use statements of probability to describe uncertainty of the external 
world. People speak in everyday terms of ‘chance’ and ‘randomness’. These concepts 
often serve them well in everyday communication because of the general consensus about 
their meanings. Yet, randomness is one of the most elusive concepts in mathematics. 
Hacking (1975) suggested that the meaning of the word random could be answered 
briefly, but it would take 100 pages to prove any answer correct! Moore (1990) implies 
an external source of the uncertainty, referring to the external world, and opposed to an 
internal source in the form of one’s knowledge. Falk, Falk, and Levin (1980) argue that 
probability is composed of two sub concepts: chance and proportion. One has to be aware 
of the uncertain nature of a situation in order to apply the results of proportional 
computations. Obviously the ability to calculate proportions as such does not necessarily 
signify understanding of probability. A realisation of uncertainty either in controlling or 
in predicting the outcome of an event is crucial.

 Paparistodemou and Philippou (2002) describe how young children start to make 
probabilistic decisions and think about chance and risk from an early age, depending on 
how they have embarked on probabilistic games. According to Borovcnik and Peard 
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(1996), there is no doubt that the topic of probability is an important one in the 
mathematics curriculum even though the inclusion of probability is a relatively recent 
development. Research (Paparistodemou, 2004; Paparistodemou & Noss, 2004; Pratt, 
2000) also shows that the design of an activity at the age of 4-11 is very important for 
children to express probabilistic ideas. According to Borovcnik and Peard (1996), there is 
no doubt that the topic of probability is an important one in the mathematics curriculum 
even though the inclusion of probability is a relatively recent development.  

Petocz and Reid (2002) indicate the importance for development of learning 
environments that can engage students’ interest, broaden their understanding of statistics 
and enrich their own lives. The complexity of mathematics teaching requires the 
development of awareness in a number of different elements that constitute teaching. 
Jaworski (1994) has identified some of these aspects: management of learning, 
mathematical challenge and sensitivity to students. These three are integrated under the 
notion of teaching triad. In this study, based on the Teaching Triad model (Potari & 
Jaworski, 2002) and Mason’s ideas on reflection and awareness (Mason, 1998), we 
investigate the kind of mathematical challenge prospective teachers offer to their students 
concerning the concept of randomness.  
METHODOLOGY 

The methodology of the research follows a qualitative approach. The participants 
are case studies of four prospective pre-primary teachers who were doing their teaching 
practice in pre-primary schools as a part of their university degree. The participants have 
passed successfully the following courses, which concerned stochastic and teaching 
mathematics, before participating at their teaching practice: Statistical Methods:
descriptive statistics, probability, binomial and normal distribution, sampling, confidence 
intervals, hypothesis testing, correlation, regression analysis, introduction to analysis of 
variance; Pre-Math Concepts: basic theoretical trends in Psychology concerning the 
development of pre-mathematical concepts in early childhood, the importance of 
language in the development of the first mathematical concepts, critical analysis of the 
arithmetic of natural numbers; Mathematical Concepts in the Kindergarten school: the 
content of mathematics for the kindergarten and the first grades of the primary school, the 
teaching methods of the subject as they have developed in recent years, the teaching aids, 
and the contemporary methods of evaluating the mathematical ability of pupils, 
fundamental psychological theories as they concern the development of primary 
mathematical concepts in preprimary school children. 

The data was collected from the four following sources: Source 1- Lesson plans: 
Each prospective teacher prepared four lesson plans on stochastics to the same pre-
primary classroom (age of children 4-5.5). The lesson plans were given to the first author 
before their teaching lesson. Source 2 – Observations of their teaching: The first author 
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observed the prospective teachers lessons and took notes during their teaching. The role 
of the researcher was that of a marginal participant (Robson, 1993). Source 3 – 
Interviews after their teaching: The participants were interviewed after their taught 
lessons. The participants expressed their first reaction on their lesson in a ‘semi-
structured’ interview (Scott and Usher, 1999). Source 4 - Written self-assessment reports: 
Prospective teachers wrote self-assessment reports after their teaching, where they 
expressed their thoughts concerning the positive and the negative aspects of their 
teaching. In the self-assessment reports teachers had the chance to modify their lesson 
plan.

The data was analysed by identifying extracts of related to mathematical 
awareness. Mathematical awareness was approached through the reflection process of the 
prospective teachers, during the interview and the self-assessment report. In particular, a 
number of critical events (like connecting mathematical activities to the task) were 
identified by the researchers from the lesson plan and the classroom observation. The 
critical events were not mentioned from the beginning of the interview. The prospective 
teachers either commented on these spontaneously or not. In the latter, they were 
prompted by the researchers to discuss about them. The researchers produced a teacher 
profile for each participant from all four sources. A validity check between the 
researchers was made when a researcher identified a critical event and a teacher profile 
was produced at the end. The data in this study is analysed concerning mathematical 
challenge and the concept of randomness and in the following paragraphs a characteristic 
example of the data is presented. 
MATHEMATICAL CHALLENGE AND THE CONCEPT OF RANDOMNESS: 
PROSPECTIVE TEACHERS’ MATHEMATICAL AWARENESSS
Logical versus stochastic interpretations of possibility 

According to their academic background, prospective teachers were trained in 
statistical methods and mathematical concepts in kindergarten school. It is interesting that 
although the focus of prospective teachers’ lesson was stochastic interpretation, many of 
their tasks did not include the concept of randomness. From the analysis of the data, we 
realized that there was confusion between logical and stochastic interpretation of 
possibility. In the logical interpretation of possibility the concept of randomness and 
chance is missing. For example, a prospective teacher, Amy1, planned a seven-activity 
lesson. One of her tasks shows an example of what we consider as a logical interpretation 
of possibility: ‘from a non-transparent bag find the possibility of choosing a soft ball or a 
book after you place your hand inside’. Here, children did not make any stochastic 
interpretations as when they place their hand inside they recognized which one was the 
soft item. In this tasks there is absence of randomness.  

1 All the names are pseudonyms 
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Amy’s first activity concerned some pictures with a scared duckling in a forest. 
She asked children to guess what happened in a forest and resulted to the duckling being 
scared. She explained in her lesson plan that the aim of this activity was for children to 
understand randomness by using the words ‘may be’, ‘perhaps’, ‘possible’, ‘impossible’. 
In her second activity she mixed up pictures of animal mothers and their children. She 
asked children to match the animal mothers of animal children that had been lost in the 
forest. She explained that the aim of this activity was also children to use the words 
‘possible’, ‘impossible’ and ‘certain’. She stated in her interview:

‘Children liked these activities and they used the new words! For example, because the 
duckling was in a forest it would be impossible to be scared from a car’.

In these two activities we can see that children used the words ‘impossible’, ‘may be’, 
‘possible’.  We agree that here the logical use of ‘possibility’ can be a reasonable 
precursor to later work on the stochastic treatment. But, since randomness is missing 
from the task there is not a stochastic interpretation.  Students were asked to answer 
whether something was possible, certain or impossible without being presented with a 
probabilistic scenario. The prospective teacher appeared to be using these words with 
children, but we can say that children have not been directed towards stochastic 
interpretation.  In another activity children asked to make a guess ‘of what may be the 
drawing hidden behind a carbon by partially revealing it’. Her aim was to express the 
word possible. However, students were not directed towards the mathematical content of 
probability, since the element of uncertainty and randomness was missing. Thus, 
although children might reason what the picture might be, they did not really approach 
the idea of probability. In the interview the researcher asked her to explain how she 
understood the probability (R stands for the researcher): 

R: What does the concept of probability mean to you? 

A: The may be…that something is possible. 

R: What does it mean when we say ‘something is possible’? 

A: …I know the word…it is at the edge of my tongue…but it doesn’t come to me      
now…Well, not to know something… 

We can argue here that the idea of probability was confused to ‘what something may be’ 
instead of ‘what may happens’. Amy appeared not to realise that the probability is related 
to the likelihood of an event occurring and she related it with the likelihood of something 
being a certain object. In Amy’s words we identified some ‘apprehension’ in her words. 
We could argue that the teacher based her definition to her own intuitions and she has not 
been able to identify the mathematical meaning of what a probability is.  

In Cathy’s case we can also recognise the concept of ‘randomness’ in the aims of 
her lesson. Again, children used the words ‘possible’, ‘impossible, ‘certain’, with the 
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absence of randomness. For example, the prospective teacher said that she had a number 
of pictures in her hands and children had to decide which of the pictures could have been 
taken in a park. The children had to concentrate on some aspects of the picture, i.e. 
darkness, and decide whether these could have been seen in a park. Children could 
answer that it was certain, possible or impossible. The teacher tended to introduce 
imaginative situations in which more than one eventuality might apply but that scenario 
can be confused with one which is really about probability. We believe that the 
probabilistic words certain, impossible, possible, uncertain needed to be discussed in the 
classroom however the lesson (as in this case) should not be limited to this. In her 
interview she argued:

“Is this connected with guessing? Would it be more ok if I had a bag and draw objects from 
inside? … I mean to predict.” 

In her words we can identify a kind of questioning of what is randomness. Cathy in her 
self-assessment report stated that she felt happy about her lesson and explained that her 
lesson went well because the children were excited, although some teachers consider a 
probability lesson to be difficult. It can be argued that she took in consideration children’s 
reaction to the activity. However, we feel that she considered whether they enjoy the 
activity but not the learning outcomes. Of course this is not surprising since we feel that 
she did not know what the learning outcomes should have been and therefore she could 
not look for them in children’s responses. Moreover, Cathy explained that a limitation she 
found was that she did not have the pictures ready on the board and the fact that she had 
to place them during the lesson was time consuming.  
Selecting a spinner 

In Macy’s lesson plan we recognised an awareness of the concept of randomness. 
Macy was very specific in her two aims of the lesson, which were ‘Children should be in 
a position to select the appropriate sample spaces for certain, impossible and fair events’ 
and ‘Children should experience the concept of randomness’. In her first activity she was 
planning to show children 6 spinners, which had different sample spaces (for example, 
whole blue, whole red, half blue half red, ¾ blue and ¼ red). Children would be asked 
questions such as: 

‘Which spinner should the blue boy use in order to win? Why?
If I spin this spinner will I get blue for sure? Why?’

Macy seemed to be very aware of the epistemological characteristics of her activity in her 
lesson plan and her task seemed well organized for introducing a stochastic interpretation. 
Although in the planning of the activity she stated that children would experience the 
concept of randomness, when she was teaching she presented to the children the spinners 
and asked them what colour would get without spinning any of the spinners. In addition 
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to this, her questions were often phrased to direct specific answers. For example, ‘For 
blue to win shall we get the blue spinner?’ This had as a result children providing yes or 
no answers and not using the words certain, impossible, possible. Macy’s case is 
interesting from the point of view that although we recognised from her lesson plan a 
mathematical challenge awareness, we can see from her teaching that she was not aware 
of a deeper understanding of the probability concept and the presence of randomness in 
her activities. On this point, in her interview she stated: 
M: This activity aimed at children seeing different sample spaces and making decisions in 

regard to which colour would win.  

R: What did you want children to learn? 

M: …Different sample spaces…Well, the activity went well, so the level of difficulty was 
good and children did not develop any misconceptions.  

We can recognise here that Macy used words like ‘sample spaces’, ‘making decisions’ 
and reflects on her activity on mathematical issues. Besides that, we can say that there is 
a limitation on this mathematical challenge, as she did not recognise the importance of 
randomness on her probabilistic activities. It is important to mention here, that Macy in 
her self-assessment report refers to the importance of randomness in her tasks and make 
changes to her lesson plan according to this. 
Mathematical limitations 

In their self-assessment reports some teachers seem to realise some mathematical 
limitations. Evelyn expressed her thoughts as follows:  

‘I feel that the lesson did not go so well for several reasons. Some of them are: the fact that I 
had to think about the activities by myself [she argued earlier in her interview that she 
couldn’t easily find activities in bibliography for this theme], the fact that I was not sure of 
the concept of probability myself, led to the lesson plan not being very good. However, I feel 
that the lesson would have been better if the children were calm’.

Evelyn was aware that if she had a deeper understanding of the probability concept this 
would have helped her to improve her planning. Besides that, she also reflected on 
management learning to address what she would have changed on her lesson, after her 
teaching.
DISCUSSION 

Quite often the mathematical challenge seems to be rather trivial both in the 
planning and in the classroom teaching (Jaworski, 1994). Although they state the 
mathematical aims of the lesson, in many cases these aims appeared to have certain 
limitations. For example, sometimes they were very general, emphasized procedures or 
disconnected from the designed tasks. One explanation for this appeared to be 
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prospective teachers’ lack of mathematical awareness. The data has shown that although 
the aims of the stochastic lesson plans were for children to use and understand the words 
“certain”, “probable”, “impossible” in a random scenario, children were using verbally 
these words in various scenarios without using the idea of randomness. The verbal use of 
these words might be a reasonable precursor to later work on the stochastic treatment. 
But, since the aim of the lesson plans was refer also to the concept of randomness, the 
existence of the concept in the tasks is really important (see Falk, Falk, and Levin,1980) 

Prospective teachers were concerned mostly of affective aspects and whether 
children were engrossed in the activities. For example, they were interested whether 
children had “fun”. However, prospective teachers did not appear to pay much attention 
to students’ intuitive ideas, prior knowledge, queries or quality of children’s responses 
and thinking. Even in cases where they focused on the above issues and showed some 
elements of awareness in action, they were not able to interpret these and move to a 
higher level of awareness in discipline. As a result, a balance between the affective and 
the cognitive side of sensitivity in many cases was not achieved.  

The management of learning was the domain that seemed to attract most of their 
attention (Mason, 1998). This is not surprising if one considers that probably one of the 
main concerns of a prospective teacher during their teaching practice is to “survive” in 
the classroom. Thus, group work, use of manipulatives, games, time management, were 
incorporated in their teaching. Although these approaches show a degree of awareness in 
action, their potential value was not achieved since these pedagogical practices were not 
interwoven successfully with the mathematical ideas. This could only be achieved if the 
prospective teachers had awareness in the discipline of mathematics education  

The data has shown the kind of experiences that guide prospective teachers’ 
design, implementation and evaluation of teaching.  Prospective teachers appreciated the 
importance of using tools in their classrooms for teaching stochastics. However, these 
tools are often considered more as means to motivate children rather than to challenge 
them mathematically (Hoyles, 2002). It can be argued that prospective teachers build 
relations between theory and practice at a rather general pedagogical level. The transition 
and reflection to more specific mathematical and pedagogical issues appears to be 
important to the ‘mathematical know-how’ procedure (Boaler, 2003), but a difficult 
endeavour. This calls upon special attention and reflection on behalf of mathematics 
teacher educators to tackle this problem.    

The training that the teachers had undergone concerned statistical methods and 
mathematical concepts in kindergarten school. Prospective teachers operate from a 
complex knowledge base, both pedagogical and mathematical, which is developed 
through their personal experiences tacit and academic. The study shows that there is a 
mismatch between the knowledge being constructed in that training and how that 
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knowledge can be used to teach young students. An implication of the study is that the 
teaching practice of these teachers could include a procedure, like the methodology that 
the this study adopted, were the prospective teachers can reflect and get feedback on their 
mathematical awareness according to their teaching experience. The stages of the 
methodology have been acknowledged as crucial settings for encouraging reflection, 
awareness and professional development in general (Moyer,2001). Mason (1998) 
appreciates the importance of reflection. In our view awareness in the discipline of 
mathematics education is the result of relating the academic knowledge, which is a result 
of university experience, but it is integrated to the craft knowledge that the prospective 
teacher possesses.
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MAKING CONNECTIONS BETWEEN THE TWO 
PERSPECTIVES ON DISTRIBUTION 

Theodosia Prodromou t.prodromou@warwick.ac.uk
Centre for New Technologies Research in Education, University of Warwick, UK   

My premise, in line with a constructivist approach and Pratt’s (1998) research, is 
that thinking about distribution must develop from causal meanings already 
established. The results of the third iteration of a design research study indicate 
support for my conjecture that it is possible to design an environment in which 
students’ well established causal meanings can be exploited to coordinate the 
emergent data-centric and modelling perspectives on distribution (Prodromou & 
Pratt, 2006). In this study, I report on the fourth iteration that investigates how and 
whether students bridge the two perspectives on distribution.

TWO PERSPECTIVES ON DISTRIBUTION 
Prodromou & Pratt (2006) referred to the modelling and data-centric perspectives on 
distribution which offer different views of variation. In the data-centric perspective, 
data is seen as spread across a range of values. In the modelling perspective, 
movements are considered as random under some probabilistic mechanism away 
from the main effect. A data-centric perspective on distribution which is in fact an 
empirical distribution pays attention to the variation and shape of data that has been 
collected, perhaps through a sampling process. Thus an empirical distribution is one 
composed of a set of variables that has been collected or is capable in principle of 
being observed. 
Exploratory Data Analysis (EDA) approach promotes a perspective on distribution as 
a representation of collections of actual data. The introduction of ICT into schools 
has prompted interest in Exploratory Data Analysis (EDA) as a means of engaging 
students in statistical analysis, arguably reducing the need for a sophisticated 
understanding of probability theory prior to meaningful engagement. Dynamic visual 
displays (Biehler, 1989) are ideally suited to support students as they manipulate data 
and use a range of different representations in order to infer underlying trends.
There are many research studies that take a data-centric perspective on distribution. 
Previous research has conceived of distribution as “an important part of learning to 
look at the data” (Moore, 1990, p.106) and as an organising conceptual structure with 
which we can observe the aggregate features of data sets rather than just individual 
values (Cobb, 1999). Perusal of recent research literature suggests that reasoning 
about variation and distributions are strongly associated (Ben-Zvi, 2004).
When we refer to the modelling perspective, we refer to the theoretical distributions 
(for example, Normal, Uniform and Binomial) that are mathematical models, in 
which we attribute probabilities to a range of possible outcomes (discrete or 
continuous) in the sample space. In this modelling approach a mathematical model, in 
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which we attribute probabilities gives rise to variation. Data distributions are 
regarded as variations from the ideal model, the variations being the result of noise or 
error randomly affecting the signal or the main effect, as reflected in the model it self. 
The signal, therefore, can be an average value with variation as noise around it 
(Konold & Pollatsek, 2004) or a distribution, such as the shape of a smooth bell curve 
of the normal distribution, with which we model data (Bakker, 2004).  
The modelling perspective of distribution pays attention to randomness and the 
probabilities that mould a wide range of scientifically real-world phenomena or the 
outcomes of some experiment. The modelling perspective reflects the mindset of 
statisticians when applying classical statistical inference. 

CONNECTING THE TWO PERSPECTIVES ON DISTRIBUTION 
Piaget and Inhelder (1975, translated from original in 1951) studied the idea of 
stochastic convergence as a function of the mental development of the subjects. Only 
at the third stage do 11- to 12-years-olds, according to Piaget, appreciate the role of 
large numbers in the regularity of a distribution which, in turn, allows for some 
beginnings of gradations up to the discovery of the normal distribution. In this sense, 
Piaget offers us the first hint that we only begin to gain some mastery over the normal 
distribution when we are able to grasp the role of large numbers in the regularity of 
distribution.
Prodromou and Pratt (2006) claimed that the concept image of distribution might be 
seen as impoverished if it were not to recognise its role as a probabilistic model for 
various types of phenomena as well as incorporating the data-centric perspective. 
They suggested that the concept image of distribution lies in coordinating emergent 
data-centric and modelling perspectives on distribution. They also argued that the 
emphasis of contemporary curricula on EDA approaches is insufficient alone to 
nurture such co-ordination. In order to coordinate these two perspectives, Prodromou 
and Pratt (2006) argued that it is necessary to see them as a duality that encompasses 
both the deterministic and the stochastic.  
Piaget & Inhelder (1975, translated from original in 1951) suggested that the learner 
fails in the first place to apply operational thinking to the task of constructing 
meanings for random phenomena. Only much later, according to Piaget, the learner 
succeeds in inventing probability as a means of operationalising randomness. Piaget 
offers a first hint that we only begin to gain mastery over the stochastic when we 
know how to exploit our well-established appreciation of the deterministic. Piaget’s 
constructivist stance demands that we take into consideration the prior knowledge of 
students since therein must lie the resources for appreciating distribution and other 
core stochastic concepts. 
Pratt (1998) reported that the local resources brought to bear by students of age 11 in 
describing short-term randomness, were remarkably akin to those of experts in one 
respect. Nevertheless, the same students were unable to demonstrate meanings for 
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distribution or the Law of Large Numbers. Global resources however began to 
emerge as these students engaged with specially designed tools, in a microworld 
called ChanceMaker. The students began to articulate new meanings for the longer 
term. These meanings were causally-based and situated versions of the Law of Large 
Numbers, such as “the more trials you do, the more even is the pie chart”. By 
phenomenalising (Pratt, 1998) randomness, Pratt claimed that the students were able 
to exploit well-established knowledge about causality to concretise (after Wilensky, 
1991) the Law of Large Numbers.
 Pratt’s work is significant for the present study due to the causal nature of students’ 
resources. It makes a prima facie case that technologically-based environments may 
have the potential to facilitate the construction of global resources out of causality. 
Prodromou and Pratt (2006) conjectured that, given appropriate phenomenalised 
tools, students would be able to coordinate the modelling and data-centric
perspectives of distribution. They designed a BasketBall microworld in which 
randomness could become an agent that causes variation and in turn randomness 
could be “controlled” through parameters instantiated as on-screen sliders; from an 
expert point of view they might be perceived as measures of average and spread. The 
handle on the slider and the arrows are initially seen as ways of controlling the 
throwing of the basketball. Later however they become a representation of the act of 
throwing (see Prodromou & Pratt, 2006). The mechanism for this fusion between a 
measure or representation and a control is what Papert (1996) called the Power
Principle; students coming to know through use. Prodromou and Pratt (2006) 
noticed, however, that there was a paradox. On the one hand, Pratt (1998) makes a 
prima facie case that technologically-based environments may have the potential to 
promote a method of constructing meanings for distribution out of causality. On the 
other hand, such an approach may strengthen the “centralised mindset” (Resnick, 
1991) and militate against the construction of distribution as an emergent 
phenomenon (Prodromou, 2004) that bridges the data-centric and modelling
perspectives on distribution.
This study is the continuation of the work of Prodromou and Pratt (2006). Both 
studies are based on my doctoral research. To elaborate the research question of this 
study, I aimed first to instantiate the conjectures into a new version of Basketball 
microworld that would perturb the students’ thinking and act as a window on that 
thinking-in-change (Noss & Hoyles, 1996) about the two perspectives on distribution.

METHOD
Influenced by the Constructionists’ (Harel & Papert, 1991) accent on the affective, I 
placed emphasis on developing activities for a playful context in which students are 
likely to construct purpose, while at the same time coming to appreciate the utility
(Ainley, Pratt & Hansen, 2006) of distribution as a central concept. The current study 
falls into the category of design experiments (Cobb et all, 2003) which, in 
combination with the delicate process of phenomenalising a mathematical concept 
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that can capture learners’ needs by transforming powerful ideas into situated, 
meaningful and manipulable phenomena, gradually sensitise us towards the complex 
learning ecology of the domain being investigated. Typically designed experiments 
require successive iterations to be used by students often weeks apart. The design is 
informed by analysis of the students’ activities in the previous iteration. In this paper, 
I report on students’ interaction with the fourth iteration of the microworld. In the 
third iteration, I conjectured that I would be able to build an environment that enabled 
the student to appreciate the limited explanatory power of causality to capture the 
essence of local variation. At the same time, I ventured that this environment would 
allow students to use causality to articulate features of distribution. The results of the 
third iteration showed that, at the micro-level, causality could not properly explain 
the random effects. At the same time, at the global level, causality was harnessed to 
articulate the relationship between parameters in the model (average, spread) and the 
shape of the distribution. I regarded this paradox of seeing the limitations of causality 
at the micro level while recognising the power of causality at the macro level to be at 
the heart of coordinating the two perspectives on distribution. I asked whether and 
how students can coordinate the data-centric and modelling perspectives on 
distribution, and I elaborate this aim in this iteration. The results of the third iteration 
supported my conjecture that it is possible to design an environment in which 
students’ well-established causal meanings can be exploited to coordinate data-
centric and modelling aspects of distribution. Students (aged between 14 and 15 
years) appreciated how, in addition to themselves as agents of variation, randomness 
instantiated in the form of the quasi-concrete arrows, can create histograms in which 
variation is apparent. In this sense, randomness might become understood as reality 
once removed. What I have called “letting go of determinism” might be seen as 
delegating control to a quasi-concrete object that exercises that power through 
random effects. The process of developing a model that can be used systematically to 
test out my conjecture made me particularly aware of introducing a graphical 
representation of the modelling distribution accessed by clicking on the relevant 
variable such as angle or speed (see

Fig. 1). Once the button of the relevant variable 
was pressed a dialog box showed the 
distribution of values from which the computer 
would randomly choose, given a particular value 
for the slider as set by the student. The students 
moved either the arrows or the handle on the 
slider and observed the impact of their actions 

n the graphical representation of the modelling
distribution. The microworld allowed students 
the facility to transform the modelling
distribution directly but the data-centric
distribution indirectly. While the simulation was 

o
Fig.1: The microworld affords 
students the opportunity to 
change the way that the computer 
generates the data, by moving 
either the arrows or the handle on 
the slider. 

Release angle

F
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playing, the students had access to both the modelling distribution and the data-
centric distribution and they were asked to compare the graphical representations of 
the two perspectives on distribution. In this iteration, the microworld was used by 
eight pairs of students (aged 14–15 years) in a UK secondary school. Typically 
students of this age will have only encountered distribution as a collection of data 
generated from an experiment. I focus on the work carried out by two pairs of 
students as they engaged in making connections between the data-centric and 
modelling perspectives of distribution. I captured their on-screen activity on video-
tape and transcribed those sections to generate plain accounts of the sessions. 
Screenshots were incorporated to make sense of the transcriptions. Subsequently, I 
analysed the transcriptions in attempts to produce extended narrative accounts for the 
students’ actions and articulations. The excerpts in the next session are taken directly 
from transcriptions of the video tape. (‘Res’ refers to the author.) 

FINDINGS
Below, I outline the interactions of Anna 
and James’ with respect to the two 
perspectives on distribution. After Anna and 
James had recognized that the modelling 
perspective and the data-centric
perspectives of distribution were showing 
different things, they were asked to compare 
the shapes of the graphical representations 
of the two distributions (Fig. 2).
Anna:         Ehm … They are similar, but not 
the same, because they both have got the tallest 
bar and then two shorter … 

Res: How can they be similar and 
tell different things? 

Fig.2: The modelling distribution 
(graph on the left) shows how the 
values of the corresponding variable 
were chosen. The graphs on the right 
plot the data generated by the 
computer, divided into successful 
throws (top) and unsuccessful throws 
(bottom).

Frequenc

Release angle

James:        Because, they’ve got the tallest in the middle, the second tallest on the left 
and then the second tallest on the right …. 

Their reaction at this stage was to recognize that isolated features or isolated bars of 
the data-centric distribution were similar to their corresponding bars of the modelling
distribution. This reaction was followed by considering the shape of a distribution as 
if it were an accumulation of just a few isolated bars: “the tallest in the middle, the 
second tallest on the left and then the second tallest on the right.” A few minutes later 
I suggested that they look once more at the histograms.  

 Res:           Are their shapes becoming the same?  

James:       Yeah, because that one is showing you what angle you selected (he was 
talking about the modelling distribution) 
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Res:           Yes, show me with the mouse.  

James:         (He pointed to the red graph on the left). This is showing what you selected 
and then these angles … they are showing which one you are using.

Res:   Yeah … but the shape as we can see is gradually becoming the same … Is it 
a coincidence?

James: No, It’s meant to do that.  

They began to articulate an understanding of the modelling distribution from which 
the histogram of frequency of successes against angle generalizes. This is articulated 
in terms of intentionality. But the sense of intentionality remains insufficiently clear. 
We can have at least two different possible interpretations: a) the intention is simply 
an expression of the pre-programmed deterministic nature of computers- at least in 
their experience; b) intentions are reflections of the actions of a modelling builder. 
Let us examine the data further. 

Res: It’s meant to do that. Why?  

James: Because, the computer …. 

Res: The computer? 

James: the basketball man … because he has been told to use that angle the most 
(40-50) and then he is told to use this angle (30-40) and he is told to use this 
angle (50-60) … so, that’s what it meant. 

Res: Do you agree with him that the computer man is told to use those angles? 

Anna: Yeah.  

Res: Ok …Why wasn’t he told to use those angles from the very beginning?   

James: Because, he did not know that. 

Res: And who has informed him about which angles to use? 

James: We did … 

Res: When did you tell him which angles to use? 

James: By changing the slider.  

I believe that the above protocol shows a transference of agency from the computer 
towards their own actions. This can be interpreted as a search for causes of variability 
and it might portray students’ intrinsic need to shift to the problem of inferring 
causality by resorting to a causal explanation. James and Anna did not comment on 
the differences and similarities of the two perspectives on distribution and I wished to 
probe into their understanding of this aspect.

James: Similarities are that the tallest one, the tallest bar on the middle. The second 
tallest bar is on the left, and … the last one is on the right … ehm … the 
difference, is this one … it tells you (showing the red bar on the left) … this 
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tells you what angle you selected, which one he gonna use the most and this 
one (the red graph on the right) tells you how he used all together in each 
throw, and this shows you the success rate of all the throws.

Res: Is their shape the same?  

James: Yeah.  

Res: So, the basketball player was meant to play as he did.   

James: Because, you told him to. Well, it’s meant to play between those lines, but 
… on that slider.

When the students talked about the similarity of the two graphs, they did so in terms 
of the relationship between the heights of the bars. In contrast, when they referred to 
the differences, they appealed not to the specific data, which was self-evidently 
different form bar to bar, but rather to the underlying role of the two distributions. 
They referred to modelling as what was intended but to the data distribution as what 
actually happened. James talked comfortably about variation which was the data-
centric perspective. At this point, the vicissitudes of randomness, and the lack of a 
strong sense of the probabilistic mechanism, had prevented James and Anna from 
talking explicitly about chance and randomness. I think this is attributed to a lack of a 
clear probabilistic-type language for talking about randomness and probability.  
I now wish to describe an alternative perspective articulated by Nick and Sarah. They 
expected an approximate equality between the modelling distribution and the data-
centric distribution; after a certain number of shots, they expected the two 
distributions to be equal.

Sarah: Eh …that (showing to the graphs on the right hand side and the graph on 
the left hand side)

Nick: Not basically … Basically that (the graph on the left hand) he hasn’t took a 
shot from there yet, so it’s not calculated it (showing the red graph on the 
right hand side)

Res: So, do you think that these two red graphs are going to be the same? 

Nick: Yeah … they will be … it’s just this bit (pointing to the interval of 20 to 30, 
which it hasn’t appeared yet on the red graph on the right hand side).

Res: Would they be in the future?  

Sarah: Yeah, because it has not taken a shot from there yet … that’s why it’s not. 

Res: What will make the two graphs the same?    

Nick: When it will take a shot from 20 to 30. 

They certainly expected isolated bars to appear on the data-centric distribution when 
certain shots would be chosen from the modelling distribution. A few minutes later, I 
suggested that they look once more at the graphs (Fig. 3).  
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Nick:           They are similar… 

Res:             Are they exactly the same?    

Nick:                 No … not exactly.

Res:   Do you think they will be exactly the 
same at some point? 

Nick:  Yes.  

Res:  Why?   
Fig.3: I asked them to compare 
the graph on the right (data-
centric distribution) with the 
graph on the left (modelling
distribution)

Release 

FrequencFrequenc

Release 

Nick:            Because now it’s got that bit 
(showing to the graph on the right) and they will 
become the same … this (pointing to the yellow part) 
is calculating what it’s gonna look like after that 
many shots.  

Res: Aha … aha … what is the difference between these two red graphs?

Nick: Because it’s getting closer to the number … so, when … that … when the 
number of balls, he shoots goes to 102 that it will stay (pointing to the 20-
30 interval of the graph on the left hand side) for the rest of it. 

Res: Yeah. 

Nick: And then he is taking 756 shots that (pointing to the interval of 30-40 in the 
modelling distribution) would be there (pointing to the data-centric
distribution)… and when he is taking 1906 shots that would be there and 
then he is taking that amount of shots, would be that. 

Res: So, what you are trying to say is that … 

Nick: They will become the same. 

Res: What you are trying to say is that the more times he throws … 

Nick: The closer they will become. 

The subjects never articulated a clear probabilistic appreciation of how the shots were 
generated. Nevertheless, they were able to express the notion of the modelling
distribution as a target for the data distribution. It seems that perceiving the modelling
distribution as a target towards which the data-centric distribution is directed is not 
dependent on understanding probability. Nick read the numbers of shots that would 
be chosen by referring to each interval in the modelling distribution and predicting 
that the corresponding number would appear in the data-centric distribution. Nick 
tried to explain why the two distributions would be the same.  

Nick: They are the same, If you could that (showing to the 40-50 bar of the graph 
on the right hand side) on this (showing to the 40-50 bar of the graph on the 
left hand side) It will say … ehm … it will say … ehm … it will say like 
“number of results between 40 and 50 degrees is 1906”. 
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Sarah: Yeah, eventually … yeah when …

Nick: and they will look the same … they will be the same …. 

Sarah: If it will wait to 102 which is the smallest one, they might seem the same  

Nick explicitly recognized that the frequency of the 40–50 class on the data 
distribution would be equal to its corresponding frequency on the modelling
distribution. It is all the more striking that the factor of equality of the two 
perspectives is present from the prediction which Sarah made at the end of the fourth 
task. But Sarah was able to foresee the equality of the two graphs only when the 20-
30 class interval for both distributions was 102. Her prediction concerning the bar 
which displayed that interval was quite curious since it elicited that prediction of 
equality. A few minutes later, the students articulated a revealing remark: 

Nick: The more he tries, the more …   

Sarah: The more time it takes, the more the angle … the more the graphs will look 
the same. 

Students had some sense of bridging the two perspectives, and this progress is built 
upon a growing appreciation of how the Law of Large Numbers regularises the data-
centric distribution, giving it shape and substance. However, their expectations do not 
show the underlying probabilistic mechanism by which shots are chosen from the 
modelling distribution to generate the data-centric distribution.

DISCUSSION
 After the subjects showed they were able to 
comprehend the role of the model and its different 
features, and distinguish the model (modelling
distribution) from the real data (data-centric
distribution), they were asked to compare the two 
perspectives of distribution. The students made an 
intuitive synthesis of the modelling and data-centric
distributions, schematised by the structural model 
in Fig.4. The model shows that the students can 
perceive of the modelling distribution (MD) as the 
intended outcome and the data distribution (DD) as 
the actual outcome. Students can also perceive of 
modelling distribution (MD) as the target to which 
the data distribution (DD) is directed. Nevertheless, 

neither the intentionality model nor the target model is dependent upon a strong 
appreciation of probability. The target and intention models are not dissimilar 
perhaps from how experts appreciate the co-ordination of the two perspectives on 
distribution. However, experts add to this image the probabilistic mechanism 
underlying the relationship between the two perspectives.  

Fig.4: A tentative model for the 
connection of the data-centric 
and modelling perspectives on 
distribution.

MD DD

Variation

Randomness
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