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Abstract

Multiobjective optimization plays an increasingly important role in modern appli-
cations, where several criteria are often of equal importance. The task in multi-
objective optimization and multiobjective optimal control is therefore to compute
the set of optimal compromises (the Pareto set) between the conflicting objec-
tives.

Since — in contrast to the solution of a single objective optimization problem — the
Pareto set generally consists of an infinite number of solutions, the computational
effort can quickly become challenging. This is even more the case when many prob-
lems have to be solved, when the number of objectives is high, or when the objectives
are costly to evaluate. Consequently, this thesis is devoted to the identification and
exploitation of structure both in the Pareto set and the dynamics of the underlying
model as well as to the development of efficient algorithms for solving problems with
additional parameters, with a high number of objectives or with PDE-constraints.
These three challenges are addressed in three respective parts.

In the first part, predictor-corrector methods are extended to entire Pareto sets.
When certain smoothness assumptions are satisfied, then the set of parameter de-
pendent Pareto sets possesses additional structure, i.e. it is a manifold. The tangent
space can be approximated numerically which yields a direction for the predictor
step. In the corrector step, the predicted set converges to the Pareto set at a new
parameter value. The resulting algorithm is applied to an example from autonomous
driving.

In the second part, the hierarchical structure of Pareto sets is investigated. When
considering a subset of the objectives, the resulting solution is a subset of the Pareto
set of the original problem. Under additional smoothness assumptions, the respec-
tive subsets are located on the boundary of the Pareto set of the full problem. This
way, the “skeleton” of a Pareto set can be computed and due to the exponential
increase in computing time with the number of objectives, the computations of
these subsets are significantly faster which is demonstrated using an example from
industrial laundries.

In the third part, PDE-constrained multiobjective optimal control problems are
addressed by reduced order modeling methods. Reduced order models exploit the
structure in the system dynamics, for example by describing the dynamics of only the
most energetic modes. The model reduction introduces an error in both the function
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values and their gradients, which has to be taken into account in the development of
algorithms. Both scalarization and set-oriented approaches are coupled with reduced
order modeling. Convergence results are presented and the numerical benefit is
investigated. The algorithms are applied to semi-linear heat flow problems as well
as to the Navier-Stokes equations.

IV



Zusammenfassung

Mehrzieloptimierung bekommt einen immer grofferen Stellenwert in modernen An-
wendungen, in denen verschiedene Zielkriterien hiufig von gleich grofler Bedeutung
sind. Ziel der Mehrzieloptimierung bzw. der Mehrzieloptimalsteuerung ist es daher,
die Menge optimaler Kompromisse (die Paretomenge) fiir die in Konflikt stehenden
Ziele zu berechnen.

Im Gegensatz zur Losung von Einzieloptimierungsproblemen besitzt die Pare-
tomenge im Allgemeinen unendlich viele gleichwertige Losungen. Der numerische
Aufwand kann daher sehr schnell zu einer groflen Herausforderung werden. Dies tritt
umso mehr zutage, wenn zusatzliche Faktoren hinzukommen, wie zum Beispiel das
Losen einer Vielzahl von Problemen, die Berticksichtigung vieler Zielfunktionen oder
ein besonders hoher Rechenaufwand zur Berechnung der Zielfunktionswerte. Diese
Arbeit widmet sich daher der Identifikation sowie der Ausnutzung von Strukturen,
sowohl in der Paretomenge als auch in der zugrunde liegenden Dynamik, sowie der
Entwicklung effizienter Algorithmen fiir parameterabhiangige Probleme, Probleme
mit vielen Zielfunktionen oder durch partielle Differentialgleichungen beschriebene
Probleme. Die drei genannten Problemklassen werden in drei separaten Teilen be-
trachtet.

Im ersten Teil werden weit verbreitete predictor-corrector-Methoden auf die Fort-
setzung ganzer Paretomengen erweitert. Falls gewisse Glattheitsannahmen erfiillt
sind, besitzt die Menge parameterabhangiger Paretomengen eine zusatzliche Struk-
tur, sie ist in diesem Falle eine Mannigfaltigkeit. Der Tangentialraum kann nu-
merisch approximiert werden, um eine Richtung fiir den predictor-Schritt zu er-
mitteln. Im corrector-Schritt wird anschlieBend Konvergenz zur Paretomenge fiir
einen neuen Parameterwert erreicht. Der resultierende Algorithmus wird an einem
Beispiel aus dem autonomen Fahren validiert.

Im zweiten Teil wird die hierarchische Struktur von Paretomengen untersucht.
Durch die Betrachtung einer Teilmenge der Zielfunktionen lésst sich eine Teilmenge
der urspriinglichen Paretomenge berechnen. Unter zusatzlichen Glattheitsannahmen
liegen die jeweiligen Teilmengen auf dem Rand dieser iibergeordneten Paretomenge.
Auf diese Weise lédsst sich das “Skelett” einer Paretomenge berechnen. Da der
Rechenaufwand exponentiell mit der Anzahl an Zielfunktionen wéchst, konnen diese
Teilmengen um mehrere Grolenordnungen schneller berechnet werden, was an einem
Beispiel aus der industriellen Wascherei veranschaulicht wird.




Im dritten Teil werden Mehrzieloptimalsteuerungsprobleme behandelt, deren Dy-
namik durch partielle Differentialgleichungen beschrieben wird, und mit Verfahren
aus der Modellreduktion gekoppelt. Bei der Modellreduktion werden Strukturen in
der Systemdynamik ausgenutzt, indem beispielsweise nur die Dynamik der energiere-
ichsten Moden betrachtet wird. Diese reduzierten Modelle resultieren in einem
Fehler sowohl in der Zielfunktion selbst als auch im Gradienten, was bei der En-
twicklung von Algorithmen beriicksichtigt werden muss. Es werden sowohl Skalar-
isierungsmethoden als auch mengenbasierte Ansatze mit Modellreduktion gekoppelt
und das Konvergenzverhalten sowie die numerische Effizienz untersucht. Die Ergeb-
nisse werden anhand semilinearer Warmeleitungsprobleme und der Navier-Stokes-
Gleichungen verdeutlicht.
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1 Introduction

Multiobjective optimization is everywhere. In daily life as well as in technical ap-
plications, there is hardly ever only one goal of interest. For example, if we want to
go on vacation, we want to go to a beautiful place with perfect weather conditions,
ideally offering opportunities for recreation as well as various activities. Moreover,
the destination should be within easy reach and the journey should be affordable.
Since not all of these goals can be optimally satisfied at the same time, we are forced
to choose a compromise.

The same situation occurs in technical applications. Due to the ever increasing
complexity of technical systems and design requirements, there are nowadays few
problems where only one objective is of importance. For example, in transportation
one wants to reach a destination as fast as possible while minimizing the energy
consumption. This should ideally be achieved while providing an optimal comfort
and simultaneously maintaining maximal security. The example illustrates that
many objectives are often equally important. Similar to the vacation example,
these different objectives generally contradict each other which is why we are forced
to accept a trade-off between them. This results in a multiobjective optimization
problem (MOP):

Jl('u,)
min J(w) = min : ,

where multiple objectives have to be minimized at the same time. Similar to scalar
optimization problems, we want to find an optimal solution to this problem but in
a multiobjective optimization problem, this solution consists of the set of optimal
compromises. This means that solutions are optimal if we cannot find other solutions
that are superior in all objectives. For example, if one car is faster, cheaper, more
energy efficient and more comfortable than another one, there is no reason to choose
the second option (unless some additional objective is considered where it is the
superior choice). The task is therefore to compute the set of optimal compromises
between the conflicting objectives, the so-called Pareto set.

There exists a large variety of algorithms for the computation of Pareto optimal
solutions, either for single optima or for the entire set of optimal compromises. These
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can be divided into scalarization methods (see e.g. [Ehr05] for an overview), con-
tinuation methods [Hil0O1, MS17], evolutionary approaches [CLV07] and set-oriented
methods [DSH05, SWOBD13]. Moreover, combinations of these methods have been
investigated by various researchers. In [SMDT03], for example, concepts from evolu-
tionary computation are combined with set-oriented approaches whereas in memetic
algorithms (see e.g. [KC00, BdJ05, LSCS10, Bos12]), deterministic approaches are
used to accelerate local convergence.

If we want to optimally control a dynamical system — i.e. a system whose state
varies over time — then we have to solve an optimal control problem. In this sit-
uation, the optimization variable is a function (for example of time) instead of a
finite-dimensional a parameter. This can naturally be extended to a multiobjective
optimal control problem (MOCP) by formulating several criteria. The most impor-
tant distinction between optimization and optimal control is that since a dynamical
system shall be controlled, we have to take the system dynamics into account as a
constraint:

o Cr(y(t), u(t)) dt + @ (2.)
min J(y, ) = min :

. TN S cnyl), w(t)) dt + B(t,)
st. gt) = F(yt), ut)), t € [to, tel,
y(to) = Yo

These problems can either be solved directly by discretizing both the state and
the control or indirectly utilizing optimality conditions based on the Pontryagin
Maximum Principle or the Lagrange functional [BBBT01]. The system dynamics
F is often described by ordinary or partial differential equations and depending
on the type of dynamical system, the computational effort to numerically solve
these problems can quickly become very large. Similar to optimization, there are
many scenarios where multiple objectives are of interest in control problems. If
the vehicle is controlled by the engine torque profile over time, for example, the
transportation problem from above (fast versus energy efficient transportation) is
an MOCP.

Multiobjective optimization is a powerful tool in many situations and in different
stages of a design process. During the development of a new product, knowledge of
the Pareto set can help the developer (also referred to as decision maker, cf. [Miel2])
to judge the current design and decide whether trade-offs are beneficial for the overall
outcome. Even an unsatisfactory outcome can be very helpful in the sense that the
design concept can be modified early in the development process. During the opera-
tion of a system, knowledge of the Pareto set can be utilized to increase the system’s




flexibility. This way, the priorization of the different objectives may be varied, e.g. in
order to react to changes in the system state (such as a low battery state of charge),
to changing constraints (such as the speed limit) or to changes in the environment
(e.g. changing weather conditions). This online adaptivity is a key enabler for the
development of intelligent (self-optimizing [GFDK09]) systems.

In conclusion, the decision making process, independent of whether realized by a
human operator or by a control system using sensor data, can be significantly im-
proved by solving multiobjective optimization problems instead of artificially syn-
thesizing equally important criteria into one objective (e.g. by a weighted sum).
The benefits of putting optimization before decision making are described very well
in [BDMSO08]: “Converting a multiobjective optimization problem into a simplistic
single-objective problem puts decision making before optimization, that is, before
alternatives are known. [...] articulating preferences without a good knowledge
of alternatives is difficult, and thus the resulting optimum may not correspond to
the solution the user would have selected from the set of Pareto optimal solutions.
Treating the problem as a true multiobjective problem means putting the preference
articulation stage after optimization [...]. This will help the user gain a much better
understanding of the problem and the available alternatives, thus leading to a more
conscious and better choice.”

Being aware that in general multiple objectives are of interest, multiobjective
optimization has an increased value compared to single objective optimization in
many situations. However, we also have to accept a trade-off since the fact that the
objectives are conflicting often results in an infinite number of optimal compromises
and hence, the computing time is significantly higher. The problem of increased
computational complexity is even amplified if one (or more) of the following three
factors apply:

(1) many (parameter dependent) problems need to be solved,
(2) many objectives are present,
(3) the underlying model is costly to solve.

The second point is specific to multiobjective problems and while the first and the
third point are obviously equally valid for scalar problems, there exist additional
challenges in the situation where multiple criteria are present.

There are numerous examples for problems which exhibit one or more of the
above-mentioned challenges. Let us consider autonomous driving, for example. If
one wants to optimally control an electric vehicle with respect to multiple criteria
in real-time, the available amount of time is far too short for computing the entire
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Pareto set online, rendering such an approach infeasible. A popular method is
therefore to a priori scalarize the objectives (e.g. by a weighted sum) and thereby
transform the problem into a scalar optimal control problem that can to be solved
online. This results in the well-known and widely used model predictive control
(MPC) approach, see [GP17] and Section 2.2.2 of this thesis for details. However,
as motivated above, the strategy of a priori scalarizing the problem may result
in undesirable solutions since a small increase in one objective may allow for a
much larger decrease in another one, a trade-off a decision maker might happily
accept. An alternative approach (denoted as explicit MPC [AB09]) to satisfy the
real-time requirement is to solve problems for many different parameter values in
an offline phase and then select the respective solution from a library in the online
phase. When extending this concept to multiple objectives, we face the challenge
of building a library which consists of a large number of Pareto sets such that the
currently valid set can be selected from the library in the online phase. Hence, we
have to solve many parameter dependent MOPs.

The increased computational effort due to a large number of objectives mainly
stems from the curse of dimensionality. The Pareto set typically is an object of di-
mension k— 1, where k is the number of objectives. Hence, each additional objective
increases the dimension by one and the computational effort grows exponentially.
An example for such a problem occurs in industrial laundries. There several tons of
laundry are processed every day and hence, significant amounts of resources, namely
energy, water and cleaning detergents are required. Therefore, it is desirable to uti-
lize optimization and optimal control techniques to operate such a laundry in an
intelligent manner. One of the most important parts is the cleaning process itself,
where the optimal configuration depends on the type of laundry and the type of
contamination. In 1959, Herbert Sinner [Sin59] developed a concept for laundering
which is still applied in modern laundries. It states that in order to realize satisfac-
tory cleaning, the four influential factors temperature, chemistry (i.e. the amount of
cleaning detergents), washing time and mechanics (i.e. the rotational velocity of the
laundry) have to be chosen in the right way. Based on this, the process of cleaning
different types of contamination can be modeled according to experimental data.
Since there exists a variety of types of contamination (e.g. fat, wine, curry, oil, or
blood) which should all be cleaned as best as possible, we have to solve an MOP
with many objectives.

The third challenge is present in all MOCPs where the system dynamics are gov-
erned by partial differential equations (PDEs) which are used to model a wide range
of physical problems from heat flow over electro-magnetism to fluid dynamics. The
typical procedure to numerically solve a PDE is to introduce a discretization in both
space and time. The spatial domain is discretized by a numerical mesh based on a
finite difference, finite volume or finite element method, thereby transforming the
infinite-dimensional into a (potentially very large) finite-dimensional system (i.e. a




system of coupled ordinary differential equations) [FP02]. With increasing computa-
tional capacities, the size of problems that can be solved has tremendously increased
during the last decades [SvdVRO08|. However, many technical applications result in
problems that even nowadays are very difficult or even impossible to solve. This
is for example the case when one wants to directly solve the Navier-Stokes equa-
tions in complex domains. Consequently, solving optimal control problems involving
PDEs is a great challenge, and considering multiple criteria furthermore increases
the complexity.

Motivated by the three challenges above and the corresponding exemplary ap-
plications, this thesis is concerned with exploiting structural aspects, either of mul-
tiobjective optimization problems in general or of the specific problem at hand, in
order to reduce the computational cost. To this end, the three challenges mentioned
above will be addressed separately in three respective chapters. For the first two,
the fact that under additional smoothness assumptions the Pareto set is a manifold
[Hil01] will be utilized. For the third challenge, we consider multiobjective optimal
control problems constrained by PDEs. If in this situation the system dynamics
exhibits a structure (e.g. coherent structures in fluid flow), then the PDE can be
replaced by a reduced order model (ROM) [HLBR12] which can be solved much
faster.

In Chapter 2, the mathematical concepts utilized throughout this thesis will be
introduced. The focus lies on multiobjective optimization, including a survey of ex-
isting methods and convergence proofs for the reference point method and the subdi-
vision algorithm, both of which will frequently be used in the subsequent chapters.
Furthermore, optimal control and model predictive control are introduced before
the chapter concludes with an introduction to model order reduction in general and
ROM-based optimal control of PDEs in particular.

Chapter 3 is concerned with the situation where a large number of problems has to
be solved, which is motivated in Section 3.1 by a project within the leading edge clus-
ter Intelligent Technical Systems OWL (it’s OWL) in the context of autonomously
driven electric vehicles. The corresponding MOP depends on an additional param-
eter p (such as the initial velocity of the electric vehicle):

J1<’U,7 p)
min J(u, p) = min :
Jk(u7 p)

For the analysis of dynamical systems (e.g. path following and bifurcations) as
well as for solving multiobjective optimization problems, continuation methods (see
e.g. [AGO3]) are a powerful and widely used tool. The key enabler for these methods
is that by applying the Implicit Function Theorem, one can show that the solution
depends continuously on (or is even differentiable with respect to) the parameter of
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interest. Consequently, one can determine the tangent space at a current parameter
value and perform a predictor step along a direction within the tangent space. In
the corrector step a point is computed which solves the problem under consideration
for a new parameter value. In the situation considered here, this new “point” is the
entire Pareto set. Before addressing the corresponding numerical challenges, it will
first be shown in Section 3.2 that if the objective functions are differentiable with
respect to the parameter, the set of points satisfying the necessary optimality con-
ditions depends continuously on the parameter. Then a predictor-corrector method
will be presented by which continuation of entire Pareto sets can be realized. Since
it is difficult to compute the tangent space of the Pareto set, it is approximated via
finite differences. However, since the corrector step locally converges to the Pareto
set, this approach works very well which will be shown using academic examples as
well as an application from autonomous driving (Section 3.3).

The challenge of a large number of objectives will be addressed in Chapter 4.
Due to the ever increasing complexity of applications, the number of objectives
that are considered has increased during the last years. Whereas in the beginning of
multiobjective optimization, two or maximally three objectives were formulated, four
to twenty objectives are often considered today [FPLO05]. Since the computational
effort grows exponentially with the number of objectives, solving problems with
many objectives quickly becomes very challenging [SL.C11] which is why a new term
named many-objective optimization (see [VBB14] for an overview) has been coined
for this branch of multiobjective optimization, and many researchers are developing
algorithms specifically tailored to handle a large number of objectives [PF07, BZ11,
YLLZ13]. Due to the exponential increase, every objective that can be neglected
significantly reduces the time required to compute the Pareto set. This has been
addressed in [SDT"13], for example, where objectives of minor interest are identified
using Proper Orthogonal Decomposition (POD). The method proposed here works
in a similar fashion. It will be shown in Section 4.1 that considering only a subset of
objectives leads to the computation of a subset of the original Pareto set. Moreover,
if this set is a manifold, then neglecting objectives results in Pareto optimal solutions
that lie on the boundary of the original set. This way, a skeleton of the Pareto set of
the original problem can be computed very efficiently. Finally, interior points can be
obtained by means of a generalized e-constraint algorithm presented in Section 4.2.
The improvement in computational efficiency will be demonstrated using academic
examples (Section 4.3) as well as the application from industrial laundries introduced
earlier (Section 4.4).

Finally, Chapter 5 addresses the third challenge where the increased computa-
tional cost is caused by the underlying dynamical system itself. More specifically,
we are going to consider MOCPs constrained by PDEs. In this case, reduced order
modeling techniques can be applied which exploit the structure of the underlying
dynamics. For non-linear problems, ROMs obtained via POD and Galerkin projec-




tion [HLBR12] have been very successful in many applications. In this approach
data obtained from the infinite-dimensional state space is projected onto a basis
{wi}le which consists of only a small number of elements:

y(x,t) ~ Z zi(t) ().

This way, the infinite-dimensional problem can be replaced by a system of ordinary
differential equations for the coefficients z;(t).

Reduced order modeling approaches can be further divided into methods where
(1) a model is created only once,

(2) the reduction of the ROM-based optimization is validated by regularly evaluat-
ing the full model,

(3) error analysis is utilized to estimate the error of the underlying ROM and to
perform necessary adaptations.

All three of these approaches will be considered here, where the complexity of the
dynamical system varies from a linear heat equation to the two-dimensional, incom-
pressible Navier-Stokes equations. In Section 5.1, concept (a) will be pursued in
order to solve an otherwise intractable flow control problem. Different algorithms
for MOCPs will be compared with respect to the quality of the solution as well as
the computational cost. Furthermore, it will be shown that in particular for systems
with complex dynamics, it is highly advisable to implement means to control the
error of the ROM. Therefore in Section 5.2 a trust region framework for POD-based
optimal control of PDE-constrained problems [Fah00] — which falls within category
(b) — will be combined with scalarization methods. This way convergence of the
reduced problem can be guaranteed while a considerable reduction of the computa-
tional cost is achieved. Finally, in order to enable set-oriented approaches to utilize
ROMs, the subdivision algorithm developed in [DSHO05] will be extended to inexact
models in Section 5.3. It will be shown that inexactness in the gradients of the ob-
jectives leads to a reduction of the cone of valid descent directions and consequently,
only a superset of the Pareto set can be obtained. However, the “distance” between
the exact and the inexact Pareto front can be controlled by bounding the error of the
ROM. The interplay between reduced order modeling and set-oriented multiobjec-
tive optimal control, which is the subject of the research project Multiobjective Opti-
mal Control of Partial Differential Equations Using Reduced-Order Modeling within
the DFG Priority Programme 1962 - Non-smooth and Complementarity-based Dis-
tributed Parameter Systems: Simulation and Hierarchical Optimization, will finally
be investigated in Section 5.4




1 Introduction

Parts of this thesis grew out of several preceding publications to which the author
has made substantial contributions. They are referenced at the beginning of the
respective chapters.




2 Theoretical Background

The purpose of this chapter is to introduce and review the mathematical concepts
that will be used during the subsequent chapters of this thesis, starting with multiob-
jective optimization in Section 2.1, which is the common foundation for all following
results. Optimal control and model predictive control (MPC) are introduced in Sec-
tion 2.2 . When dealing with objective functionals instead of functions, optimal
control methods based on the calculus of variations need to be utilized. This is for
example the case when the optimization variable is a function of time. In order
to stabilize systems with complex dynamics, open loop and closed loop control are
combined which leads to the concept of MPC. In situations where the underlying
dynamical system is costly to solve, as is the case for partial differential equations
(PDEs), model order reduction techniques are a popular approach to reduce the
computational effort. Consequently, the basic principles of reduced order modeling
(ROM) will be addressed in Section 2.3.

2.1 Multiobjective Optimization

In most applications from industry or economy, multiple objectives are of interest.
In the case of manufacturing, for example, one wants to produce a product as cost
efficient as possible while maintaining high quality. When designing airplanes, it is
of interest to minimize the weight in order to save energy. At the same time, the
structural stability needs to be maximized to ensure a sufficient level of security.
These are only two examples of a dilemma which occurs in many situations. The
optimal value of the different objectives can seldom be achieved at the same time
since they are conflicting. This gives rise to a multiobjective optimization problem
(MOP). In a situation where multiple objectives are present, the solution does in
general not consist of isolated points but of the set of optimal compromises between
these objectives. The aim of multiobjective optimization is to compute this set, also
known as the Pareto set named after Vilfredo Pareto (1848 — 1923) [Par71]. All
elements contained in the Pareto set have in common that one objective can only
be improved by accepting a trade-off in at least one other objective. In other words,
from a Pareto optimal solution it is impossible to simultaneously improve all objec-
tives. In the literature, multiobjective optimization is also referred to as multicriteria
optimization, vector optimization or Pareto optimization.




2 Theoretical Background

In this section the concept of multiobjective optimization will be introduced,
starting with Pareto optimality in Section 2.1.1. Gradients and descent directions
are revisited in the multiobjective context in Section 2.1.2 and some geometrical
properties are recalled in Section 2.1.3 before summarizing the most important meth-
ods for solving MOPs in Sections 2.1.4 and 2.1.5. The next step after the Pareto
set has been computed, the decision making (cf. [Miel2]) will (apart from a small
exception in Chapter 3) not be covered in this thesis.

2.1.1 Pareto Optimality

In multiobjective optimization we want to minimize multiple objectives at the same
time. Consequently, the fundamental difference to scalar optimization is that the
objective function J : R® — R* is vector-valued. Hence, the general problem is of
the form

min J(u) = min : (2.1)

s.t. gi(w) <0, i=1,...,1
h]-('u,):(), jzl,...,m,

where u € R" is the control variable and g : R* — R, g(u) = (g1(w), ..., g/(w))" and
h:R" — R™ h(u) = (hi(u),..., hy,(uw))', are inequality and equality constraints,
respectively. The space of the control variables is also called the decision space and
the objective function maps u to the objective space. Alternatively, problem (2.1)
can be written as

min J(w), (MOP)
where Y = {u e R" | g;(u) <0, i =1,...,l and hj(u) =0, j =1,...,m} is the
feasible set. In the unconstrained case, we have U = R"™.

Remark 2.1.1. In this thesis, all vector-valued quantities as well as mappings to
vector-valued spaces are written in bold notation.

Remark 2.1.2. It is common in finite-dimensional optimization to use the notation
x for the control or optimization variable and F for the objective function. In
contrast to that, w and J are more common for control problems. In order to unify
the notation, the latter will be used throughout this thesis for all optimization and
optimal control problems.

10



2.1 Multiobjective Optimization

In contrast to single objective optimization problems, there exists no total order
of the objective function values in R¥, k& > 2 (unless they are not conflicting). There-
fore, the comparison of values is defined in the following way [Miel2]:

Definition 2.1.3. Let v, w € R*. The vector v is less than w (denoted by v <, w),
if vi <w; for alli € {1,...,k}. The relation <, is defined in an analogous way.

Example 2.1.4. Consider the points wy = (3,2) and up = (1,3) and uz = (2,1)
(cf. Figure 2.1). Then neither uy <, uy nor u; <, ws. However, us <, w since
Uz, < Uy and Uz < Up2-

Uy

[
us

R
>

Figure 2.1: Vector-valued comparison of points: The points u; and wuy are not or-
dered since uy £, u; and u; £, up. On the other hand uz <, w.

A consequence of the lack of a total order is that we cannot expect to find isolated
optimal points. Instead, the solution to (MOP) is the set of optimal compromises
(also called the set of non-dominated points):

Definition 2.1.5. Consider the multiobjective optimization problem (MOP). Then
(a) a point u* dominates a point u, if J(u*) <, J(w) and J(u") # J(u).

(b) a feasible point uw* is called globally Pareto optimal if there exists no feasible
point uw € U dominating u*. The image J(u*) of a globally Pareto optimal
point u* is called a globally Pareto optimal value. If this property holds in a
neighborhood U(uw*) C U, then u* is called locally Pareto optimal.

(c) the set of non-dominated feasible points is called the Pareto set Pg, its image
the Pareto front Pr.

Remark 2.1.6. The concept of non-dominance can be extended to sets, which will be
utilized in the gradient-free version of the subdivision algorithm (cf. Section 2.1.5):
a set B* dominates a set B if for every w € B there exists at least one u* € B*
dominating u.

Remark 2.1.7. Pareto optimal points are also known as efficient points [Ehr05,
Mie1?2] or non-inferior points [VHS83] in the literature.

11



2 Theoretical Background

A consequence of Definition 2.1.5 is that for each point that is contained in the Pareto
set (the red line in Figure 2.2 (a)), one can only improve one objective by accepting a
trade-off in at least one other objective. Figuratively speaking, in a two-dimensional
problem, we are interested in finding the "lower left” boundary of the feasible set in
objective space (cf. Figure 2.2 (b)). A lower bound for each of the points contained
in the Pareto front is the so-called utopian point J* with

JI = min J;(u)

uel

such that J* <, J(u) Vu € U. Several algorithms for solving MOPs make use of J*.

Figure 2.2: The red lines are the Pareto set (a) and Pareto front (b) of an exem-
plary multiobjective optimization problem (two paraboloids) of the form
mingyeg J(u), J: R? — R% The point J* = (0,0)" is called the utopian
point.

Similar to single objective optimization, a necessary condition for optimality is
based on the gradients of the objective functions. The first order conditions were
independently discovered by Karush in 1939 [Kar39] and by Kuhn and Tucker in
1951 [KT51, Kje00]. Due to this, they are widely known as the Karush-Kuhn-Tucker
(KKT) conditions. The theorem with multiple objectives is as follows:

Theorem 2.1.8 ([KT51]). Let u* be a Pareto optimal point of problem (2.1) and
assume that Vhj(u") for j = 1,...,m, and Vgs(u") for s = 1,...,1, are linearly
independent. Then there exist non-negative scalars aq, ..., oy > 0 with Zle a; =1,

12



2.1 Multiobjective Optimization

~v € R™ and p € R such that

Zazw +Z%w +ZuSVgs

gs(u") <0, s=1,...,1
,usgs('U'*) = O, S 1, l
s >0, s=1,...,1

Observe that (KKT) is only a necessary condition for a point u* to be Pareto optimal
and the set of points satisfying (KKT) is called the set of substationary points Pssub
[Miel2]. Obviously, Pssub is a superset of the Pareto set Ps.

Remark 2.1.9. An intuitive interpretation of the multiobjective KKT condition is
given in [Hil01] using the well-known weighted sum method (cf. Section 2.1.4). By
introducing Jo(u) = Zk Laidi(u) for a fived weight vector av € R¥, problem (2.1)
is transformed into a scalar optimization problem. The gradient of Ja(u) s simply
Via(uw) = S8 a;VJi(u) and the first order condition of this scalar problem is
equal to (KKT).

2.1.2 Gradients and Descent Directions in Multiobjective
Optimization

In this section we will revisit some results considering gradients for multiobjective
optimization problems. While it is widely acknowledged in scalar optimization that
utilizing gradient information is beneficial, this is different for multiobjective opti-
mization [Bos12]. Apart from scalarization methods (cf. Section 2.1.4), many other
solution approaches are gradient-free. Nevertheless, several authors have addressed
gradients for MOPs. In [FS00, SSW02, Dés12], algorithms are developed where a
single descent direction is computed in which all objectives decrease. An extension
of Newton’s method to MOPs with quadratic convergence is developed in [FGS09]
and an algorithm by which the entire set of descent directions can be determined is
presented in [Bos12].

In what follows, we will only consider unconstrained MOPs, i.e. Y = R". The

13



2 Theoretical Background

corresponding KKT condition is then as follows:

k
Z aZVJZ(u*) == O,
=1

a>,0, (KKTu)
k
Z oy = 1.
i=1

In this situation, if w ¢ Pgep then (KKTu) can be utilized to identify a descent
direction g(u) for which all objectives are decreasing, i.e.:

—VJi(u) - q(u) >0, i=1,... k. (2.2)

One way to compute a descent direction satisfying (2.2) is to solve the following
auxiliary optimization problem:

k
I iVJ;
s {30t

Using (QOP) we obtain the following result:

k
z ‘aZPO,;aizl}. (QOP)

Theorem 2.1.10 ([SSW02]). Consider the unconstrained multiobjective optimiza-
tion problem (MOP) with U = R™ and define q: R" — R" as

qlu) = — Z a;VJi(u), (2.3)

where & is a solution of (QOP). Then either q(uw) = 0 and u satisfies (KKTu), or
q(u) is a descent direction for all objectives Jy(w), ..., Jy(uw) in u. Moreover, q(w)
15 locally Lipschitz continuous.

Remark 2.1.11. Similar to scalar optimization, there exist in general infinitely
many valid descent directions q(u) and by solving (QOP), we obtain one particular
direction. As stated above, there are alternative ways to compute such a direction,
see e.g. [FSO0] for the computation of a single direction or [Bos12], where the entire
set of descent directions is determined.

Example 2.1.12. An example for the descent direction q(u) is shown in Figure 2.3
using a simple one-parametric problem with J: R — R2:

: o ut — P — 4P
o =i () 24

14
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Figure 2.3: Example (2.4). (a) The two objective functions and the respective
derivatives. (b) The descent direction ¢(u) and the corresponding KKT
weights @; and ap. In both figures, the set of substationary points is
marked in red and the Pareto set is marked in green.

Observe that the respective parts of the set of substationary points are bounded by
points where one of the scalar objectives possesses an extreme point. (This will be
addressed in detail in Chapter 4.) Correspondingly, the weights & at these points are
either (1,0) or (0,1). On the set of substationary points, the weights vary smoothly
(if the objective functions are smooth enough [Hil01]). This fact is utilized in the
weighted sum method, cf. Section 2.1.4. Outside the set, the weights may possess
Jumps, e.g. when the norm of the two gradients changes from |VJi|| > [|VJo
to |Vl > |[VJ|, see Figure 2.3 (b) at v = —1.36, v = 0.19 and u = 1.92,
respectively.

Using a descent direction for all objectives, we can utilize gradient-based meth-
ods known from scalar optimization theory (see e.g. [NWO06]) which often results
in accelerated convergence to an optimal solution. Line search methods are a very
popular iterative approach where in addition to a direction p € R" (i.e. a gradient-
based direction), a step length h € R has to be computed such that a new iter-
ate

wl ™) = ) 4 p0)pli), (2.5)

is an improvement of the current iterate u'). The descent direction p is chosen in
such a way that for constants o, 7 > 0,

¢ @ g

. — > 0, —— >, (2.6)
[q(w)[[[[p9] 1PV
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2 Theoretical Background

where g(u?)) is the direction computed by solving (QOP). If (2.6) is satisfied
and hY) is a feasible step size (e.g. the Armijo or the Powell step size [NWO06]),
then one can show that every accumulation point u®*) of the sequence (2.5) satisfies
condition (KKTu) of the unconstrained problem. This result was proved in [DSHO05],
it is stated here for completeness. In order to simplify the notation, we introduce
the linear combination Ju(u) = S°F | oy Ji(u) of the objective functions of (MOP),
where a € [0, 1]*.

Theorem 2.1.13 ([DSHO05]). Suppose that u™*) is an accumulation point of the se-
quence (u(j))jzo,lym created by (2.5). We assume that the derivative of each function
Jo is Lipschitz continuous with (uniform) Lipschitz constant L. Then u®) is a sub-
stationary point for the multiobjective optimization problem (MOP) with U = R™.

Proof. First observe that if one of the ul/) is a substationary point, then we are
done (cf. Theorem 2.1.10). Thus, without loss of generality, we may assume that
ud) — u for j — oo and that none of the ul¥) is substationary. Consider the

corresponding sequence /) = (&? ), c 62,(3 )) of solution vectors of the optimization
problem (QOP) in step j of the iteration procedure. Since 045]), e ,a,(j) € [0,1],

we may assume that a¥) — a for j — oco. Otherwise, we restrict the following
considerations to a subsequence. We show now that the sequence (u")) converges
to a stationary point for Jg(w), thus proving the desired result. Using the fact
that A is an Armijo or a Powell step size in u¥), we have by classical results on
iteration schemes for optimization problems (see e.g. [DS83]) that there exists a
constant © > 0 such that

Ja(j)(u(j)) - Ja(j)(u(jﬂ)) >

(2.7)

AT D\
© min —(Vl]a(j)<u(j)))Tp(j)’((V‘Ja<7)(u ) p )

1P|

in each step of the iteration process. Observe that © does not depend on j by the
assumption on the uniform Lipschitz continuity of V.J,. Now, suppose that

2
A , , A (VIa(u@)) " p@
Ja(u?) = J5(u9t)) < Omin | — (VJa<u(J)))T p), <( T|u(j))||) p
p
(2.8)
for infinitely many j. By our assumption on the descent direction we have
— VJa<u(j)) Tp(j) , .
( ) 1PV = (7/2)||V Ja(u)]], (2.9)

- - > 0,
IV J&(u@) ||| pD]]
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2.1 Multiobjective Optimization

for all j > jo. Combining these estimates with (2.7) and (2.8), we obtain

(N T @\
0 = lim min | — (Vja(u(j)))Tp(j), ((Vja(’“ ) p )

i3 EQl
> (O0/4) min(r, 0)||VJa(u(*))||2,

and u™ is substationary as desired.

It remains to consider the case where

2
: : . (VI (uD)) pD
Ja(u?) — Jg(u¥tY) > O min |— (VJa(u(J)))Tp(J)’ <( T’;‘)(]))H) p )

for all j > j;. Here, we obtain in an analogous way
Ja(u?) — Ja(utY) > (O /4) min(r, 0)||V J5(u)]|?
for all j > max(jo, j1). Letting j — oo, it follows that
IV Ja(u™)]| = 0.
O

Remark 2.1.14. The iteration step (2.5) can also be interpreted as a dynamical
system of which the attracting set is a superset of the the set of substationary points
Pssub- If Pssub 15 bounded and connected, then the attractor is precisely Pssun. This
will be utilized in the subdivision algorithm presented in Section 2.1.5.

2.1.3 Manifold Conditions for Pareto Sets

It was shown by Hillermeier [Hil01] that under certain smoothness assumptions
(i.e. the objective functions and the constrains are twice continuously differentiable),
the set of substationary points Pgs g is locally a (k — 1)-dimensional manifold. This
additional structure has vast implications for the development of algorithms for
MOPs. A consequence is that in many situations, the set of substationary points
is connected. Hence, for two parameters u(!), u(® that are close to each other, the
corresponding points on the Pareto front are also close. This can be utilized when the
Pareto set is approximated by a finite set of Pareto optimal points, see Section 2.1.4.
Another implication is that a hyperplane tangential to the Pareto set exists at every
point. This is the foundation of continuation methods. In this section we want to
recall which additional conditions the objective function J has to satisfy for Pg b
to be a manifold.

17



2 Theoretical Background

Taking another look at (KKT), the points satisfying the optimality conditions can
be computed by solving a zero finding problem. For this, we introduce a new set of
constraints h(u) which consists of the equality constraints h(w) and active inequality
constraints g;(u), where Z = {i € {1,...,1} | g;(u) = 0} denotes the set of active in-
equalities in u. Using this notation, (KKT) can be rewritten as:

m+|Z|

k
Y aiVIi(u) + Y 3, Vhi(w) =0,
i=1 =1
hi(w) =0, j=1,....m+]|T].
Then introducing H : R +Z+k _ Rrdm+IZI+1 (KKT) is equivalent to

SF L arvi(u) + SRRy (u)

- J=1

H(u" v o) = h(u") = 0. (2.10)
Zf:l af —1

Consequently, the set of points satisfying (KKT) can be computed by finding a curve
c(¢p) = H '(0), where ¢ € RF"! is a parametrization of c.

Applying the Implicit Function Theorem (see e.g. [KP03]), one can show that the
set of substationary points is a (k — 1)-dimensional manifold:

Theorem 2.1.15 ([Hil01]). Let M := {(u*,7*, a*) € R*™HIHE | By 4% o) =
0 and a* >, 0}. If the Jacobian H' has full rank in one point (u*,¥*, a*), i.e.

rank(H (u*,5*,a*)) =n+m + |Z| + 1, (2.11)

then M is a (k—1)-dimensional differentiable submanifold of R"™ 4% in q neigh-
borhood of (u*,¥*, a*).

If all points (u*,~*,a*) € M satisfy the rank condition (2.11) then M is a
(k — 1)-dimensional differentiable submanifold of R"**.

Proof. The proof follows directly from the Implicit Function Theorem, see [Hil01].
]

Remark 2.1.16. Theorem 2.1.15 is also valid in many situations where J(U) is non-
convex. This is determined by the eigenvalues of the Hessian of Jo. If all eigenvalues
are greater than zero in a neighborhood U(u*) of u*, J(u*) is locally conver and u*
is locally Pareto optimal. If at least one eigenvalue is less than zero, then w* is a
saddle point of the scalar function Jo. In this situation, Pareto optimality has to be
confirmed by higher order information. Nonetheless, the rank condition is conserved.
In between these situations, at least one eigenvalue is exactly zero and the Implicit
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2.1 Multiobjective Optimization

Function Theorem is no longer valid. Here, the manifold property is conserved only
if there exists at least one objective function with VJ;(u*) - v # 0, where v is the
eigenvector corresponding to the zero eigenvalue. For a more detailed discussion,

see [HilO1, pp. 68-75].

The above result is used in many algorithms referred to as continuation methods,
see e.g. [SDD05, CLS16, MS17]. This concept will be extended in Chapter 3 to con-
tinuation methods for entire Pareto sets and in Chapter 4, the resulting additional
structure will be exploited to hierarchically compute Pareto sets by considering sub-
sets of objectives.

2.1.4 Solution Methods

Many researchers in multiobjective optimization focus their attention on develop-
ing efficient algorithms for the computation of Pareto sets. The intention of this
section is to provide an overview of widely used solution methods for MOPs and
to discuss their respective advantages and disadvantages. This survey is by far
not exhaustive since a lot of different approaches and variations of algorithms ex-
ist. Instead, the most important methods will be addressed, many of which will
be used later on in this thesis. For a more comprehensive overview, the reader is
referred to e.g. [Ehr05, Miel2], a review of more recent advances can be found in
[CPO7].

Algorithms for solving MOPs can be compiled into several fundamentally differ-
ent categories of approaches. The first category is based on scalarization techniques,
where ideas from single objective optimization theory are extended to the multi-
objective situation. Consequently, the resulting solution method involves solving
multiple scalar optimization problems consecutively. Continuation methods make
use of the properties presented in Section 2.1.3. Another prominent approach is
based on evolutionary algorithms [CLV07], where the underlying idea is to evolve an
entire population of solutions during the optimization process. Set-oriented methods
provide an alternative deterministic approach to the solution of MOPs. Utilizing
subdivision techniques, the desired Pareto set is approximated by a nested sequence
of increasingly refined box coverings [DSHO05, Jah06, SWOBD13]. Since most of the
results in this thesis are based on set-oriented algorithms, these will be described in
more detail in the subsequent Section 2.1.5.

Scalarization Methods

All scalarization techniques have in common that the Pareto set is approximated
by a finite set of Pareto optimal points which are computed by solving scalar sub-
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problems. In many cases, the Pareto set possesses a structure (i.e. it is a manifold)
and is thereby connected. Hence, two consecutive subproblems have solutions which
are close to each other. This can be utilized to considerably accelerate the conver-
gence. Nevertheless, MOPs are in general much more costly to solve than scalar
optimization problems. Moreover, scalarization approaches are often inapplicable
to problems with a large number of objectives since the parametrization quickly
becomes tedious or even intractable.

The subproblems can be solved using any suitable method from scalar optimiza-
tion, see e.g. [NWO06] for an overview. Note that since the scalar optimization
routines often are of local nature, these methods are also local and depend on the
initial guesses. However, when the Pareto set is a manifold (cf. Section 2.1.3), these
methods are promising to find the globally optimal Pareto set provided that an
initial point can be accurately computed, e.g. by scalar optimization of one of the
objectives. In the following, several popular scalarization techniques will be intro-
duced, namely, the weighted sum method, the e-constraint method, normal boundary
intersection and the reference point method.

\
\
\ N
\ N
\ \
\,
\

> J1 > J1
(c) (d)

Figure 2.4: Weighted sum method. (a) Computation of one Pareto optimal point
for a fixed weight vector e which is the normal vector of a (k — 1)-
dimensional hyperplane. (b) Computation of multiple Pareto optimal
points by varying a. (c¢)—(d) Non-convex sets J(U) lead to multiple
Pareto optimal points with the same weight a. In particular, not all
points can be computed using the weighted sum method.

In the weighted sum method, scalarization is achieved by introducing a weight
vector a € R¥. The scalar objective is then a convex combination of the objective
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functions Ji, ..., Jg:
k
min Jo(u) = min 3 a;Ji(u),
a>,0, (2.12)
k
ZO&Z' =1.
i=1

The vector a defines a (k —1)-dimensional hyperplane tangential to the Pareto front
(cf. Figure 2.4 (a)). By varying e, different Pareto optimal points can be computed
and if the set J(U) is convex, the entire Pareto front can be approximated this way
(cf. Figure 2.4 (b)). However, in the non-convex case, several Pareto optimal points
can be described by the same value of a such that gaps can occur (cf. Figures 2.4 (c)
and (d)). Furthermore, varying a in equidistant steps does not necessarily yield an
equidistant covering of the Pareto front [DD97].

In the e-constraint method, all but one objectives are transformed to constraints

Ty J2

> J1

JQ JQ

Jl Jl

€1

(c)

Figure 2.5: e-constraint method (min,ey Jo(u) subject to Jy(u) < €;). (a) €5 = oo.
(b) Intermediate value for ;. Large gaps in the Pareto front can occur.
(¢) The algorithm stops when the scalar minimum of J; is reached. (d)
Previously Pareto optimal points can later on be dominated by newly
computed points.
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which leads to the problem

min J;(u)
uel (213)
S.t. Jj(U)SEj, j:17...,k’, ‘]7&2,

where the constraints € € R¥! can be chosen. By setting ¢, = oo for j =
1,...,k, j #,1, the scalar optimum of J; is obtained when solving (2.13). By adjust-
ing €, a different (locally) Pareto optimal point is computed.

Using the e-constraint method, it is possible to approximate Pareto sets where
J(U) is not convex which is a clear advantage compared to the weighted sum method
(cf. Figure 2.5). However, it is equally difficult to achieve an equidistant covering of
the Pareto front. Moreover, convergence for the scalar problem (2.13) can become
difficult with an increasing number of constraints [Ehr05]. An extension of the e-
constraint method where less than k& — 1 objectives are treated as constraints will
be presented in Section 4.2.

Normal boundary intersection (NBI) was originally introduced in [DD98|. The
general idea is to first compute the hyperplane spanned by the convezr hull of indi-
vidual minima (CHIM) ® : R x R¥ — R*:

®(u,B) = Z@i (Ji(u)e; — J),

52,0,
k
> Bi=1,
i=1

where 3 € RF is a parametrization of CHIM and e; denotes the it unit vector.
Each objective is shifted by the scalar minimum (i.e. the respective component of
the utopian point J*) such that all shifted objectives are non-negative (cf. Fig-
ure 2.6 (a) and (b)). After discretizing the hyperplane by a fixed number of points
each of which is prescribed by a fixed value 3, we compute the point along the
normal vector m pointing to the origin with the maximum distance ¢t to CHIM
(cf. Figure 2.6 (c)):

max t
teR20 uclf (214)
s.t. ®(u,B) +tn=J(u).

In the situation where parts of the Pareto front lie above the hyperplane, the objec-
tive function in (2.14) has to be replaced by a more sophisticated achievement scalar-

izing function (ASF) (cf. Figure 2.6 (d)). Several researchers have addressed this
problem, see e.g. [Wie80, Wie86], an overview is presented in [MMO02].
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Jo—Ji

Figure 2.6: Normal boundary intersection. (a) Determination of the scalar minima
J; for i = 1,...,k yields J*. (b) Convex hull of individual minima
(CHIM) and grid of starting points covering the CHIM. (c) Solution of
scalar optimization problems. (d) Solution when parts of the Pareto
front lie above the hyperplane defined by the CHIM. In this case the
objective in problem (2.14) has to be replaced by a more advanced ASF.
(e) Pareto front (blue) and CHIM (red) of Example (2.15), where not all
Pareto optimal points can be computed, e.g. the yellow point.

NBI has advantages and disadvantages comparable to the e-constraint method.
While it is possible to solve problems where J(U) is non-convex, an equidistant
discretization of the hyperplane spanned by the CHIM does not necessarily lead to
a well-spread covering of the Pareto front. Moreover, this method is incapable of
computing points that lie outside the “shadow” of the hyperplane. Consider for
example the problem

U
min | v 2.15
w2 (2.15)

23



2 Theoretical Background

In this case, the individual minima are (—1,0,0), (0,—1,0) and (0,0, —1) and the
Pareto front is the part of the unit sphere lying in the negative octant (cf. Fig-
ure 2.6 (e)). Using NBI, it is not possible to compute all these points, a counterex-
ample being the point (—\/5/2, —V/2/2, 0).

The reference point method is very similar to normal boundary intersection. Here,
the solution of (MOP) is again approximated by optimizing the distance between a
Pareto optimal point and a reference point. In the beginning, one Pareto optimal
point «® has to be known. This can be achieved by solving a scalar optimization
problem for some weighted sum of all objectives (including the scalar optimization
with respect to any of the objectives of (MOP)). Then a so-called target TV € R¥
is chosen such that it lies outside the feasible set in objective space, e.g. by shifting
the solution of the first Pareto point (T = J(u®) — (h,0,...,0)T, by > 0). We
then solve the scalar optimization problem

min || T — J(u)| 2.16)
ul el

with ¢ = 1. As a result, the corresponding optimal point J(u(!) lies on the boundary

Jo J2
A g A g 129 — sy

% JED) i | T — (02

J(,U,I/L/ 1 \)
Jul)

o (i+1) > J; O'T(i,+1) >
(c) (d)

Figure 2.7: Reference point method. (a) Initial point J(u"Y) and initial target
T, (b) Computation of next Pareto optimal point by solving the scalar
optimization problem (2.16). (c) Computation of next target point T0+"
and prediction step u®**V) in decision space. (d) Solution of the next
scalar problem.
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of the feasible set and it is not possible to further improve all objectives at the same
time. Thus, the point is (locally) Pareto optimal. This concept is also referred
to as compromise programming, see [Ehr05] where a proof of Pareto optimality
for problem (2.16) can be found. Since this will be utilized in Section 5.2 in the
development of a multiobjective trust region method for PDE-constrained problems,
it is stated here:

Theorem 2.1.17 ([Ehr05]). Consider the weighted compromise programming prob-
lem

k »
i T; — Ji(w)?’ | =min|T - 2.1
min (Z( () ) min | T~ J(w), (217)
for 1 < p < oo, where T is the target point which is less than or equal to the utopian
point, i.e. T <, J*. Then if u* is a solution to (2.17), u* is Pareto optimal.

Proof. Suppose that u* is a solution to (2.17) and that u* is not Pareto optimal,
i.e. u* ¢ Pg. Then there exists a ¥ dominating u*, i.e. J(u') <, J(u") and J;(v') <
Jj(u") for at least one j € {1,...,k}. Consequently, 0 < Ji(«') —T; < J;(u*) — T;
foralli=1,...,kand 0 < J;(«') —T; < J;(u") — T} for at least one j € {1,... k}.
Thus, | T — J(u)|, < || T— J(u")||, which is a contradiction to u* being a solution
to (2.17). O

Remark 2.1.18. In practice, the requirement T <, J* is often not satisfied, see
Figure 2.7 for an example. However, if T is chosen in such a way that T <, J(u*),
then u* is still Pareto optimal in a neighborhood U (u*).

By adjusting the target position based on already known targets and Pareto
optimal points, multiple points on the Pareto front (i.e. J(u®), J(u®),...) are
computed recursively (cf. Figure 2.7). For J being sufficiently smooth, the change in
decision space is small when the target position changes only slightly and hence, the
current solution is a good initial guess for the next scalar problem which considerably
accelerates the convergence.

Similar to the other scalarization approaches, properly setting the targets to ob-
tain a good approximation of the Pareto front (i.e. an approximation of the entire
front by evenly distributed points) becomes complicated in higher dimensions. How-
ever, when dealing with two objectives, the targets can easily be determined using
linear extrapolation as proposed in [RBW'09] (cf. Figure 2.7 and Algorithm 2.1).
This also allows us to compute the whole front in at most two loops (s = 1,2, line 2
in Algorithm 2.1). From the initial point, we first proceed in one direction, e.g. de-
creasing J;. When at some point J; is increasing again (line 6 in Algorithm 2.1),
we have reached the extreme point of the feasible set and the scalar optimum of J;
(cf. the point (0,8) in Figure 2.2 (b) for an example). We then return to the initial
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point and proceed in the opposite direction (lines 8, 9 in Algorithm 2.1) until the
other extreme point is reached.

Algorithm 2.1 (Reference point method for J € R?)

Require: Initial solution u(”), parameters h, h,, h, € R, index i = 0
1: Compute the first target point T = J(u®) — (hy,0)7
2: for s =1,2 do

3: loop

4: 1=1+1

5: Solve scalar optimization problem min ) || T — J(u®)||2

6: if extremal point of Pareto front is passed (Js(u®) > J,(ul~Y)) then

7: if s =1 (first direction is completed) then

8: uPH) = y© (Go back to the initial solution)

9: T = J(u®) by HJJ(;(T)))) J((;(O(;)))Hz hi”:r’é?% (Go into the
opposite direction)

10: break

11: else

12: STOP

13: end if

14 else i+1) u( )) J(uli=1) T(/L‘LJ(u(i))

15: T = J(u) + by iy == + s

16: P = 4@ 4+ hy, (u® — w=D) (Predictor step)

17: end if

18: end loop

19: end for

Continuation Methods

It has already been discussed in Section 2.1.3 that path following methods can be
applied to approximate the set of substationary points if the Pareto set is a manifold.
The idea is to compute a curve ¢(¢p) = H *(0) where ¢ € R*! is a parametrization
of ¢ and H is defined according to (2.10). In this situation, predictor corrector (PC)
approaches are frequently utilized. When differentiating H(c(¢)) = 0 with respect
to ¢, we obtain

H(c(9)) - ¢(¢) = 0.

Consequently, the Pareto set can be linearized by computing kernel vectors of
H'(¢(¢)). This is achieved by performing a QR factorization [GvL13] of H'":

H(c<¢>>T = QR = (QI? ) qn+m+k)R7
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2.1 Multiobjective Optimization

where the last k — 1 entries of @ form an orthonormal basis of the tangent space of
the Pareto set (Figure 2.8 (a)). After performing a predictor step with a suitable
step length along the tangent space (Figure 2.8 (b)), a new solution is computed in
the corrector step which again satisfies the KKT conditions (Figure 2.8 (c)). This
is achieved by applying Newton’s method, for example. The PC steps are then
repeated in order to compute the next Pareto optimal point (cf. Figure 2.8 (d)).

(%) U2

> U1 > U1

U2 U2

> U1 3 U1
() (d)

Figure 2.8: Continuation. (a) Local linearization of Pggp. (b) Predictor step along
the linearization. (c) Corrector step to obtain the next Pareto optimal
point. (d) Computation of the consecutive point.

The efficiency of the PC method can be increased by introducing adaptivity
[AGO03]. If a large number of iterations is required in the corrector step for example,
this means that the predictor step presumably resulted in a point far away from the
Pareto set, indicating a strong curvature. Consequently, the step length of the pre-
dictor step can be reduced for the computation of the next point.

If the set of substationary points Pgg,p is high-dimensional, we observe prob-
lems with respect to the parametrization similar to scalarization techniques. It
is then difficult to choose directions for the predictor steps in order to obtain a
well-spread covering of Pggp. In this situation, interactive methods can be used
in which a decision maker interactively determines which Pareto optimal points to
compute next [CLS16, MS17]. Furthermore, continuation methods are restricted
to situations where Pggp is connected. Otherwise, it can only be computed in
part.
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Evolutionary Algorithms

Multiobjective Evolutionary Algorithms (MOEAs, see e.g. [CLV07] for an overview)
have successfully been applied to a large variety problems. Although evolutionary
algorithms will not be covered in this thesis, the basic principles are briefly explained
here to acknowledge their relevance in multiobjective optimization. The basic idea is
adopted from biological evolution, following the concept of survival of the fittest. The
algorithms consist the stages reproduction, mutation, recombination, and selection.
The general concept is as follows:

(1) Start with an initial population,
(2) Repeat until termination:

(a) Create new individuals via reproduction and recombination from the previ-
ous population,

(b) Evolve individuals via mutation,

(c) Evaluate the fitness function (such as the objectives of an MOP or non-
dominance properties) and select the fittest individuals.

Most MOEAs do not utilize gradients which makes them easy to use and also
applicable to black box problems. However, this often has the consequence that a
very large number of function evaluations is required and convergence is slow. Sev-
eral authors have therefore proposed to combine MOEAs with gradient information
[BdJO05, Bos12, HSK06]. These algorithms are also known as memetic algorithms
[NCM12], where general MOEA concepts are combined with local search strategies
known from gradient-based optimization.

2.1.5 The Subdivision Algorithm

Set-oriented methods [DSH05, SDD05, SWOBD13] are an alternative deterministic
approach for the solution of MOPs. Instead of approximating the Pareto set by a
finite number of points, a superset of the Pareto set is computed. This superset is
composed of a finite number of subsets, represented by n-dimensional boxes, where
n is the dimension of the decision space. As the diameter of the boxes tends to zero,
this superset converges to the set of substationary points. Many of the results in
the following chapters make use of these set-oriented methods and for this reason,

the subdivision algorithm is presented in detail in this section, mainly following
[DSHO5].

The general concept of the algorithms presented here has been developed for the
computation of attractors of dynamical systems [DH97] and was later adapted for the
computation of zeros of functions in [DSS02] and the computation of global Pareto
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sets in [DSHO5]. At the end of the section a derivative-free alternative (the sampling
algorithm) based on non-dominance testing is presented as well as a recovering
algorithm, where the neighborhood of the current box collection is explored and
additional boxes covering parts of the Pareto set are added. The main algorithm,
the subdivision algorithm, is currently restricted to unconstrained MOPs such that
we will use it in order to approximate the set of points satisfying the condition
(KKTu) for unconstrained MOPs.

Consider a finite collection of dynamical systems of the type
u ) = (), 1=0,1,...,r, (2.18)

where, for simplicity, each f; : R® — R" is assumed to be a diffeomorphism. In the
context of zero finding [DSS02], the systems f; correspond to damped Newton meth-
ods with different damping constants or step sizes. Denoting by © = {1,2, ... r}Mo
the set of all sequences of the symbols {1,2,...,r}, we define the function fy, =
fo, 0. .0f, for j > 1 with ¥/ = (Jo,01,...,9;-1) and ¥; € ©. Then the attracting
set for the dynamical systems (2.18) is defined as follows:

Definition 2.1.19. Let f,,...,f. : R® — R" be diffeomorphisms and let Q C R™ be
compact. The relative global attractor of f,, ..., f. with respect to Q) is defined as

Aot = (V[ For(@ N Q.

9€eO j>1

Using a multilevel subdivision scheme, Algorithm 2.2 computes an outer ap-
proximation of the relative global attractor Aqy, .z in the form of a sequence
of sets B, BW ... where each B® is a subset of B®~Y and consists of finitely
many subsets B of () covering Agy, . r. Within Algorithm 2.2, the box diame-
ter

diam(B)) = max diam(B)
BeB(s

tends to zero for s — oo such that convergence to Ag is obtained.

Theorem 2.1.20 ([DSS02]). Let Ag be the global attractor of f,...,f. relative
to the closed set Q. Let B®), s = 0,1,..., be a sequence of collections created by

Algorithm 2.2 and denote by Q) = Upgepe B the corresponding sequence of compact
subsets of Q@ = Q0. Then

lim dj, (Q, Ag) =0,

5—00

where dy, denotes the Hausdorff distance [RW9S].
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Algorithm 2.2 (Subdivision algorithm)

Let B be an initial collection of finitely many subsets of the compact set Q such
that (Jgepo B = Q. Then, for s > 1, B®) is inductively obtained from B~ in
two steps:

(i) Subdivision. Construct from B*~) a new collection of subsets B¢) such that

U B= | B

BeB() BeB(s—1)
diam(B®) = 0@ diam(BE™), 0 < Opin < 0 < Opay < 1.

(ii) Selection. Define the new collection B*) by

B~ {B e B

3B € BY such that f,}(B) N B # @} .

If we now consider a dynamical system of the type (2.18) using the descent
direction g(w) (given by Equation (2.3)) obtained by solving the quadratic problem
(QOP), this leads to

u ) = o) 4 B0 gD (), (2.19)

where h() € R is an appropriately chosen step length (e.g. such that it satisfies the
Armijo rule [NWO06] for all objectives). Note that this is equivalent to Equation (2.5)
(with pU) = ¢)) such that according to Theorem 2.1.13, each accumulation point of
(2.19) satisfies (KKTu). From a dynamical systems point of view, the attractor Ag of
the system (2.19) is the set of substationary points if Pg¢,p is bounded and connected
(cf. Remark 2.1.14). Otherwise, Pgsup C Ag. As a consequence, Algorithm 2.2 yields
an outer approximation of this set:

Theorem 2.1.21 ([DSHO05]). Suppose that the set Pgeup of points u* € R™ satisfying
(KKTu) is bounded and connected. Let @ be a compact neighborhood of Pssup. Then
the application of Algorithm 2.2 to Q with respect to the iteration scheme (2.19) leads
to a sequence of coverings BY) which converges to the entire set Pgeup, that is,

dn(Pssup, BY) =0, fors=0,1,2,....

We now take a brief look at the numerical realization of the subdivision algorithm.
The elements B € B are n-dimensional boxes. In the selection step, each box
is represented by a prescribed number of sample points at which the dynamical
system (2.19) is evaluated (cf. Figure 2.9 (a)). This involves determining the descent
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Figure 2.9: Global subdivision algorithm — selection step. (a) Evaluation of the
dynamical system (2.19). (b) All boxes that do not possess a preimage
within the collection are discarded.

direction by solving (QOP) and an appropriate step size h € R, e.g. via backtracking
[NWO06]. We then evaluate which boxes the sample points are mapped into and
eliminate all “empty” boxes, i.e. boxes which do not possess a preimage within
B® (Figure 2.9 (b)). The remaining boxes are subdivided, followed by the next
elimination step until a certain stopping criterion is met (e.g. a prescribed number
of subdivision steps).

Sampling Algorithm

In many applications, gradients are unknown or difficult to compute. In this case,
a gradient-free alternative of Algorithm 2.2 can be constructed using the concept
of non-dominance (cf. Definition 2.1.5 and Remark 2.1.6). Algorithm 2.3 (denoted
as the sampling algorithm) also consists of a subdivision and a selection step with
the difference that the selection step is a set-valued non-dominance test. Sample
points are inserted and the objectives are evaluated at each of the points. Then
all boxes are discarded that contain only dominated points. Hence, we directly
compute a superset of the global Pareto set Pg, also for constrained MOPs. In the
presence of inequality constraints, for example, we eliminate the boxes for which
all sample points violate the constraints and then perform the non-dominance test
for the remaining boxes. Equality constraints are simply modeled by introducing
two inequality constraints. Finally, a combination of both the gradient-based and
the gradient-free algorithm can be applied in order to accelerate convergence or to
reduce the gradient-based algorithm to the computation of the Pareto set Pg instead
of the set of substationary points Pg sup.

Recovering Algorithm

In order to fill gaps in the box covering that may occur due to insufficient sam-
pling, a recovering algorithm can be utilized. Very similar to the subdivision al-
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Algorithm 2.3 (Sampling algorithm)

Let B be an initial collection of finitely many subsets of the compact set Q such
that (Jgepo B = Q. Then, for s > 1, B®) is inductively obtained from B~ in
two steps:

(i) Subdivision. Construct from B¢~ a new collection of subsets B such that

U B= | B

BeB(s) BeB(s—1)
diam(B®)) = 0@ diam(BEY), 0 < Opin < 0 < Opax < 1.

(ii) Selection. Define the new collection B*) by

B~ {B e B

3B € B® such that B dominates B} ,

where set-valued dominance is understood according to Remark 2.1.6.

gorithm, there exist a gradient-based and a gradient-free version of this procedure.
The gradient-based version utilizes the continuation procedure described previously,
i.e. the Pareto set is locally linearized. Then sampling points are inserted in the
resulting hyperplane and corrected using a Newton step. All boxes that are hit by
these points are added to the box collection such that the set of substationary points
can be locally recovered. A detailed description of the procedure can be found in
[SDDO05]. The gradient-free alternative uses non-dominance testing, see [Sch04] for
details. Here, all boxes that are immediate neighbors to the current box collection
are inserted and the objectives are evaluated for a set of sample points. Then all
dominated boxes are discarded. The recovering steps are repeated until no further
boxes are added to the collection.

Note that both the gradient-based and the gradient-free version of the recovering
algorithm are only capable of locally exploring the Pareto set. Hence, the algorithm
is not global and also, one can no longer compute Pareto sets which are disconnected.
However, the procedure can be used in combination with the subdivision or the
sampling algorithm in order to increase the numerical efficiency. Moreover, if the
numerical effort is too great for subdivision to be applicable, recovering can be used
to locally compute Pareto sets.
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2.2 Optimal Control and Model Predictive Control

The purpose of optimal control is to steer a dynamic process in such a way that
some cost functional J is minimized. This implies that — in contrast to optimization
— we have to compute an optimal function instead of a finite-dimensional parame-
ter. In practice, this often is a control input over time such as the engine torque
of a vehicle or the amount of heat introduced into a system. Moreover, the dy-
namics of the system have to be taken into account which are often described by
ordinary or partial differential equations. One can easily formulate optimal con-
trol problems with multiple objectives by simply introducing a vector-valued cost
functional J which results in a multiobjective optimal control problem (MOCP). De-
pending on the solution approach, these problems can be solved in a similar fashion
as MOPs.

The purpose of this section is to give an introduction to optimal control and var-
ious extensions that will be utilized throughout this thesis. However, since the main
subject is multiobjective optimization, the results are presented only briefly. Instead,
references to more detailed introductions are given in the various sections. First, the
general (multiobjective) optimal control problem will be introduced in Section 2.2.1,
including a short overview of well-known solution approaches.

In the context of real-time applicability, it is often necessary to apply closed-
loop control instead of open-loop optimal control strategies in order to take plant-
model mismatches or unforeseen events into account. To this end, optimal control
approaches can be utilized within closed-loop control via model predictive control
(MPC). This approach will be introduced in Section 2.2.2. A related concept, motion
planning with motion primitives, will be covered briefly in Section 2.2.3.

2.2.1 Optimal Control

The introduction to optimal control mainly follows [BBB*01] and [OB08], an even
more detailed introduction can be found in [Lib12]. As stated in the introduction,
the aim of optimal control is to optimally steer a process with respect to some
objective while taking the system dynamics into account. The problems covered
in this thesis are either described by ordinary differential equations (ODEs) or by
partial differential equations (PDEs). There exist dynamical systems which have
to be described differently, e.g. as discrete dynamical systems or via differential
algebraic equations. However, these will not be covered here. In the case of ODEs,
the dynamics on the time interval [to, t.] can be described by

y(t) = F(y(t)> U(t)), te <t07t6]7

y(to) = o (ODE)
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where u € L*((to, t.); R™) is the control function, y € H'((to, t.); R™) is the system
state, ¢ is the time derivative dy/dt and F : R™ x R™ — R™ is continuously
differentiable with respect to y and u. The Hilbert space L? is equipped with the

. 1/2
inner product (y, z ft ‘ t)dt and the norm ||y||z2 = ( w0 Y(t) - y(t) dt)
and H' is the standard Sobolev space W2 (cf. [HPUU09]).

When considering PDEs, the state y € L*((to,t.); H' () N H((to,t.); L*(Q)),
additionally depends on the location @ The domain of interest 2 C R™ is a
connected open set with the spatial dimension n, and the boundary is denoted by
' = 09). By this, we have

y(z 1) = Gy(z,t), ut), (=t)€Qx (lo,te,
(z,t) + b(x, t)y(z, t) = c(x, 1), (z,t) €T x (to,t,), (PDE)
y(mv tO) = y(](m)’ S Q’

Jy

a(zx, t)a—n

where u € L*((to,t.); R™) is again the control and n is the outward normal vector
of the boundary I'. The operator G is a partial differential operator describing
the evolution of the system. For details, the reader is referred to [HPUU09, Tr610].
Since the state is space dependent, we additionally have to take boundary conditions
(BCs) into account which are formulated as Robin type BCs. The coefficients a(z, t),
b(z,t) and c(x,t) are given by the problem definition. Note that these include both
Dirichlet as well as Neumann BCs by neglecting one of the terms on the left hand
side, respectively.

Remark 2.2.1. By introducing a semi-discretization in space for the PDE (e.g. us-
ing a finite element discretization with n, grid points), problem (PDE) is trans-

formed into problem (ODE) with n, degrees of freedom. Consequently, the following
formulations are restricted to the ODE case.

For the case of space independent states, the cost functional J :R™ x R™ — RF
with k& objectives is of the general form

A

R Jl(y’ ’U;)
Jww=| | (2.20)
jk(yv u’)
where
iy, u) :/tCC’i(y(t),u(t))dt+<I>i(t6), i=1,... .k (2.21)

The term ®; : R — R represents the terminal cost and is called the Mayer term
whereas the integral term (with C; : R™ x R™ — R) is the Lagrange term. Problems

34



2.2 Optimal Control and Model Predictive Control

where the cost functional contains both a Mayer and a Lagrange term are of Bolza
form. A problem of Lagrange type can be transformed into a problem of Mayer type
and vice versa [Gerl12].

In many cases, there exists a unique solution y(t) or y(z, t) for every wu(t), i.e. there
exists a solution operator S : U — Y (see e.g. [Tr610]) and hence, we obtain a re-
duced cost functional J(u) := J(Swu, w). The existence of such a reduced functional
will be assumed throughout the remainder of the thesis.

Based on the above formulations, we introduce the multiobjective optimal control

problem for ODEs:

min J(u)

s.t. (ODE),
glu(t)) <, 0, (2.22)
)

Here, g : R™ — R! and h: R™ — R™ are (inequality and equality) path constraints
and r: R™ — R™f are final constraints. Analog to problem (MOP), the constraints
can be incorporated in the formulation of feasible sets ) and U for the state y and
the control u, respectively.

The problem with PDE constraints can be formulated analogously. In this case,
the cost functionals are of the form

A

Ji(y,u):/ﬂ(/t:e C’i(y(w,t),u(t))dt—k@i(m,te)) de, i=1,... k  (2.23)

Necessary Optimality Conditions for Scalar Problems

The considerations in the following sections will be restricted to ODEs, assuming
that (according to Remark 2.2.1) semi-discretized PDEs can also be addressed this
way. In the single objective case, the corresponding necessary conditions for opti-
mality go back to Lev Pontryagin and his well-known Mazimum Principle [Lib12]. It
states that an optimal triple (y*, u*, A*), where A € H'((to, t.); R™) is the so-called
adjoint state (or co-state), maximizes the control Hamiltonian H : R™ xR™ xR™ —
R, where

H(y(t), u(t), A(t)) = —=C(y(t), u(t)) + X F(y(t), u(t)),
with C' : R™ x R™ — R.

A more intuitive condition for optimality can be derived using the Lagrange
formalism which is well known form constrained scalar optimization. As stated in

35



2 Theoretical Background

[IK08], the Lagrange formalism coincides with the Pontryagin Maximum Principle.
The Lagrangian £ : R™ x R™ x R™ — R is defined as

L(y,u,A) = / e (C(y(t), u(t)) + AT (y(t) — F(y(t), u(t)))) dt + ®(t.). (2.24)

to

For an optimal triple (y*, u*, A*) the Lagrangian becomes stationary:
IL(y", u", A*) =0,
where dL(y, u, A) is the variation of £ with respect to y, w and A, respectively:

oL oL oL
IL(y, u,A) = a—y5y+ 8_u6u+ 5(5}\.

The condition dL(y, u, A) = 0 generally results in an optimality system (provided a
constraint qualification condition holds [HPUUO09]) which consists of the state equa-
tion, the adjoint equation, and the optimality condition. The latter is zero if the
triple (y*, u*, A*) satisfies the first order conditions and otherwise yields a descent di-
rection for the objective which can be utilized in iterative approaches.

Solution Methods for Scalar Optimal Control Problems

Over the past 50 years, many researchers have contributed to the development of
solution methods for scalar optimal control problems. These methods can be divided
into two main categories, indirect and direct approaches, also referred to as optimize-
then-discretize and discretize-then-optimize, respectively. For a more detailed intro-
duction, the reader is referred to [BBB*01] and the references therein.

For the first approach, the optimality conditions presented above are formulated
as a boundary value problem which is then discretized in order to solve it numerically.
The formulation of the system is often challenging such that mathematical insight
and knowledge about optimal control theory are important. Due to the demands on
memory and CPU time, the optimality system is often solved iteratively: the state
equation is solved forwards in time, the adjoint equation backwards in time, and
the optimality condition then provides gradient information. Alternatively, multiple
shooting or collocation methods can be used to indirectly solve the optimal control
problem.

In the second approach, the problem is first discretized, i.e. a time and spatial
grid are introduced. As a result, the optimal control problem is transformed into a
high-dimensional optimization problem and methods from non-linear optimization
can be applied. However, it is no longer possible to exploit the structure of the un-
derlying dynamical system in order to derive methods tailored to a specific problem.
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Direct methods can further be divided into direct single and direct multiple shooting
as well as Galerkin type and direct collocation methods. For large scale applica-
tions, these approaches have proven to be more successful than indirect methods
[BBBT01].

Parameter Dependent Optimal Control Problems

In many situations, the dynamical system additionally depends on a parameter
p € R™. This parameter can for example have an influence on the initial condition
or on the system dynamics in general. For the ODE case, the parameter dependent
version is
y(t) = F(y(t)v ’U;(t), p)? te (t07t€]a
y(to) = yo(p)-

Consequently, the corresponding cost functional also depends on p. If we are inter-
ested in solving optimal control problems for various parameter values, it would be
advantageous if the problem exhibited additional structure. In fact, this has been
addressed by several researchers for single objective optimal control, see e.g. [MP94,
MP95, MM96, BM00]. Parameter dependent MOCPs will be investigated in Chap-
ter 3.

(ODEp)

One can show that the solution y of the dynamical system (ODEp) is Lipschitz
continuous with respect to p if the vector field as well as the initial condition are
also Lipschitz continuous:

Theorem 2.2.2 ([Gerl2]). Assume that for the dynamical system (ODEp) the Lip-
schitz condition

1 F(y, (), w(t), p1) = Fy, (1), w(t), po) | < Lal[lw1(8) = 9:(D)]| + [p1 = po])

holds with a Lipschitz constant Ly and the initial condition y,(p) is Lipschitz contin-
uous with a Lipschitz constant Ly. Then the solution y(t) is also Lipschitz continuous
with respect to p.

Consequently, if the objective functional depends Lipschitz continuously on 1y,
the continuity with respect to p is carried over to J.

Differentiability of the solution with respect to p can be shown if additional
smoothness assumptions are met. This has been investigated in a series of papers for
scalar as well as vector-valued parameters, also considering control-state constraints
[MP94, MP95, MM96]. In short, the additional assumptions are that the objective
functional J and the vector field F have to be at least C?, the second derivative of
the control Hamiltonian 2% has to be positive definite and the Riccati equation of

ou?
the linearized problem has to possess a C! solution. Together, these are denoted
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as the second-order sufficient conditions (SSC). For details, the reader is referred to
[MP94].

Multiobjective Optimal Control

When considering multiple objectives in an optimal control problem, solution meth-
ods can again be divided into indirect and direct approaches. To the best of
the author’s knowledge, indirect approaches have until now not been investigated
or applied when directly addressing the vector-valued objective functional. In-
stead, by using a scalarization technique such as the weighted sum or the refer-
ence point method (cf. Section 2.1.4) the theory for scalar optimal control can
be applied. When applying a direct approach on the other hand, the MOCP is
transferred into a (potentially high-dimensional) MOP paving the way for tech-
niques based on the vector of objectives J, i.e. set-oriented, continuation or evolu-
tionary algorithms. Algorithms for the solution of MOCPs have been proposed in
e.g. [LHDvI10, OBRzF12, SWOBD13, DEF*16] for ODE constraints. In [LKBMO05]
as well as [ARFLO09], non-linear PDE constraints are taken into account but the
model is treated as a black box, i.e. no special treatment of the constraints is
required. The first articles explicitly taking PDE constraints into account are
[[UV13, ITV16], where MOCPs are solved with a weighted sum approach and
model order reduction techniques subject to linear and semi-linear PDE constraints,
respectively. In [BBV16, Banl6, BBV17], scalarization is realized via the refer-
ence point method. In Chapter 5, both direct and indirect approaches to MOCPs
will be coupled with reduced order modeling in order to solve PDE-constrained
MOCPs.

2.2.2 Model Predictive Control

Control theory has significantly been influenced by the advances in computational
capacities during the last decades. For many systems, it is nowadays possible to
use model-based optimal control algorithms to design sophisticated feedback laws.
This concept is known as model predictive control (MPC) (see e.g. [GP17] for an
extensive introduction). The general goal of MPC is to stabilize a system by using a
combination of open and closed-loop control. Using a model of the system dynamics,
an open-loop optimal control problem is solved in real-time over a so-called prediction
horizon. The first part of this solution is then applied to the real system (plant) while
the optimization is repeated to find a new control function on a prediction horizon
which is slightly moved forward in time. For this reason, MPC is also referred
to as moving horizon control or receding horizon control. As the optimal control
problem (OCP) has to be solved online, a fixed upper bound for the computing
time for solving the problem must not be violated. Due to this, MPC was initially
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introduced in the process industry where the system dynamics are comparatively
slow. However, advances in computer technology as well as algorithms have enabled
the use of MPC in a large variety of applications [QB97].

In order to construct a feedback controller, the optimal control problem (2.22)
is repeatedly solved online for varying time frames [t,, 54, with t; = s - ¢, and
torp = (s +p)-tn, s =0,1,2,.... Here, several time horizons are introduced. The
sample time t,, over which the control input is constant, is the smallest time instance
considered in the MPC framework. The optimal control problem is solved over a
horizon of length ¢,, which is the prediction horizon. In many situations, a third
horizon, the so-called control horizon t. < t, is defined on which the control can be
varied within the optimal control problem. By choosing t. < t,, the complexity of
the control problem can be reduced which is often critical for real-time applicability.
If this is not an issue, one can set ¢, = t,. After having solved the first OCP, the
first entry of the optimal control, w*(t,), is applied to the plant and the optimal
control problem is solved again with a time frame shifted by ¢;. The procedure is
illustrated in Figure 2.10.

The concept of MPC was initially developed to stabilize a system [GP17], i.e. to
drive the system state to a (potentially time dependent) reference state. However,
stabilization is not always the main concern, e.g. when the system is already stable or
when stability can be achieved by many different control inputs. In this situation, we
can pursue additional objectives such as minimizing the energy consumption, which
is known as economic MPC' (see e.g. [RA09, DAR11, GP17]).

A Reference state

/ Measured state

— Predicted control

/ ~_Prediction horizon Sample
/ time
| | | | | | | |
I LU e B B B
14 ts +1 t +2 ts +p

Figure 2.10: Sketch of the MPC methodology. While the first part of the predicted
control is applied to the system, the next control is computed on a
shifted horizon.

Due to the remarkable success of MPC, a large variety of algorithms has been es-
tablished, where a first distinction can be made between linear and non-linear MPC.
The first category refers to schemes in which linear models and quadratic objective
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functions are used to predict the system dynamics. The resulting optimization
problems are convex, i.e. global solutions can be computed very fast. Linear MPC
approaches have been very successful in many different industrial applications (see
e.g. [QBI7] and [LCI7] for overviews of applications and theory). The advantage
of non-linear MPC [GP17] is that the typically non-linear system behavior can be
approximated more accurately. Furthermore, more complicated optimality criteria
and non-linear constraints can easily be incorporated in the problem formulation.
However, the complexity and thereby the time to solve the resulting optimization
problem increases such that it is often difficult to preserve real-time capability (see
e.g. [EPST16]).

Motivated by this, another extension is ezplicit MPC (see [AB09] for a survey),
where the problem of real-time applicability is addressed by introducing an offline
phase during which the open-loop optimal control problem is solved for a large num-
ber of possible situations, using e.g. multi-parametric non-linear programming. The
solutions are then stored in a library such that they are directly available in the
online phase. This concept will be used in Section 3.1 for the development of a mul-
tiobjective MPC algorithm for non-linear dynamical systems.

2.2.3 Motion Planning

An alternative for optimal strategy planning which has similarities to explicit MPC
is the concept of motion planning with motion primitives going back to Frazzoli et
al. [FDF05] (see also [Kob08, FOBK12]). Here, the challenge of online applicability
is also addressed with a two-phase approach but in contrast to explicit MPC, tra-
jectories for both the control and the state are obtained by combining several short
pieces of simply controlled trajectories that are stored in a motion planning library.
These motion primitives can be combined in order to create longer trajectories. In
the online phase, the optimal sequence of motion primitives is determined from the
motion planning library using e.g. graph search methods [Kob08]. To reduce the
computational effort, this approach extensively relies on exploiting symmetries in
the dynamical control system such that a motion primitive can be used in multiple
situations, e.g. by performing a translation or rotation under which the dynamics are
invariant. The invariances are formally described by a finite-dimensional Lie group
G and its group action ¢ : G x Y — ), where ) is the state space. A dynamical
control system (ODE) is invariant under the group action 1, or equivalently, G is a
symmetry group for the system (ODE), if

(9, Pu(Yo: 1) = pu((9,9),t) Vg € G, (2.25)

where uy € U, t € [ty,t.] and w : [ty,t.] — U are piecewise-continuous control
functions. This means that the group action on the state commutes with the flow
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Pu(Yy,t) of the dynamical control system (ODE).

Invariance leads to the concept of equivalent trajectories. Two trajectories are
equivalent if they can be exactly superimposed through time translation and the
action of the symmetry group. In the classical concept of motion primitives, all
equivalent trajectories are summed up in an equivalence class, i.e. only a single rep-
resentative is stored that can be used at many different points when transformed
by the symmetry action. In other words, controlled trajectories that have been
computed for a specific situation are also applicable in many different (equivalent)
situations. In the multiobjective MPC algorithm presented in Section 3.1, the con-
cept of motion primitives will be utilized to reduce the number of MOPs that have
to be solved offline.

2.3 Reduced Order Modeling

Simulations are becoming more and more important in the design, optimization and
control of complex dynamical systems. With the tremendous advances in comput-
ing, very large systems are nowadays easily solvable that would have been considered
as too expensive only a few years ago. Due to this, simulation is today accepted
as a third discipline besides theory and (physical) experiments [SvdVRO08]. How-
ever, with increasing computational capabilities, systems of even larger complexity
come into focus. In engineering, it is nowadays often of interest to simulate the
dynamics of non-linear multi-physics systems such as fluid structure interaction or
combined mechanical and electromagnetic behavior. These systems possess a large
number of degrees of freedom that can easily reach the order of 10° to 108, in par-
ticular if the dynamics are described by partial differential equations that have to
be discretized by a numerical mesh. If one wants to use these models for real-time
control (such as MPC') or in a multi-query context such as optimization or parame-
ter estimation, the capacities of even the most advanced computers quickly become
insufficient.

To address this problem, reduced order modeling (ROM) is frequently applied.
This is a powerful technique where large scale (also called high-fidelity) models are
replaced by surrogate models of low dimension (see e.g. [ASGO1, BMS05, QHST05]
for an overview). Many model order reduction techniques are data-driven [PW15],
meaning that the large scale system has to be evaluated at least once to collect
data. Based on this data, a much smaller model is created that approximates the
solution of the original system. The reduction of the dimension results in a signif-
icant reduction of the computational effort which can be of several orders. At the
same time, one has to accept an error in the reduced model. Hence, a trade-off
between accuracy and speed-up has to be selected which depends on the specific
situation the ROM is derived for. In the early stages of an optimization routine
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or the development process of a new product, it may be necessary to evaluate
many different parameters or designs such that low computing times are impor-
tant while in other situations, it may be necessary to increase the accuracy, e.g. to
avoid violations of critical constraints. In order to combine the strengths of detailed
and efficient simulations, researchers have also started investigating multi-fidelity
methods [REWHO08, PWG16], where models of various degrees of detail are used
hierarchically or alternatingly.

One of the most widely used techniques in model order reduction is Proper Or-
thogonal Decomposition (POD). This method, also known as Principal Component
Analysis or Karhunen-Loéve decomposition [SvdVRO08], was first introduced by Lum-
ley [Lum67] to identify coherent structures in turbulent flows. The first ROMs based
on POD were introduced by Sirovich in 1987 [Sir87]. Since the ROMs in this the-
sis are based on POD and Galerkin projection, this approach is presented in more
detail in Sections 2.3.1 and 2.3.2, an introduction to ROM-based optimal control is
presented in Section 2.3.3.

Besides POD, there are various other model order reduction techniques, each
of which has specific strengths. The Reduced Basis Method (RB) (see e.g. [IR01,
GMNPO07, RHP08, HO08, AZF12]) is widely used for parameter dependent prob-
lems. The concept here is to collect data from the full system at a small num-
ber of parameter values and then construct a reduced basis with which the sys-
tem can be evaluated at arbitrary parameter values. This method has successfully
been combined with a weighted sum method to solve multiobjective optimal con-
trol problems constrained by semi-linear parabolic PDEs [IUV13]. Concepts from
localized reduced-basis methods [AHKO12, OS15] will be adopted in Section 5.4 for
set-oriented multiobjective optimal control of PDEs.

A relatively new approach to reduced order modeling is based on the Koop-
man operator (see e.g. [Mez13]). The Koopman operator is a linear but infinite-
dimensional operator describing the dynamics of observables. In order to character-
ize it, one can compute its eigenvalues, eigenmodes and eigenfunctions. The eigen-
modes are numerically computed by a method called Dynamic Mode Decomposition
(DMD), which was originally introduced by Schmidt [Sch10], see also [RMB™09,
TRL"14, WKR15, KGPS16] for various extensions.

In contrast to POD, the DMD modes are not orthonormal. Furthermore, the
eigenvalues are not related to the amount of information that is contained in the
respective mode. On the other hand, similar to Fourier series analysis, each DMD
mode is related to a single frequency [RBWT09] and the (complex) eigenvalues
are related to the frequency (phase) and decay or growth (absolute value) of the
corresponding mode. If the observable is defined as the values on all nodes of
a grid of a discretization of a PDE (full-state observable [TRL"14]), then DMD
modes have the same dimension as POD modes. First approaches utilizing Koopman
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operator-based reduced order models in control problems have been presented in
[PBK14, Mez16, PBK16, BBPK16].

2.3.1 Reduced Models via Galerkin Projection

Among the most widely used approaches for non-linear optimization based on ROMs
is POD combined with Galerkin projection [KV99, SV10]. The general concept of
a Galerkin projection (see e.g. [HLBR12] for an introduction in the context of fluid
flows) is to find a finite-dimensional representation of an unknown function from
an infinite-dimensional space (e.g. a temperature distribution y(z,t) which is the
solution to a heat equation). This is realized by choosing elements ;(x) from
a function space (e.g. the Hilbert space L?) and representing y(x,t) in terms of

{whi(@) }2y:
y(at) =Y zi(t)i(@). (2.26)

i=1
An adequate basis {1; } .- | should satisty several requirements [Rem96]:

(i) it should be complete in order to be able to exactly represent the solution
y(z, 1),

(i) to allow for a unique solution, the elements ;(x) have to be linearly indepen-
dent (this is the case if {¢;};-, is an orthogonal system),

(iii) for a PDE-constrained problem, the Galerkin representation has to satisfy the
same boundary conditions as the original solution.

The typical procedure to numerically solve a PDE is to discretize the spatial domain
using a finite difference, finite volume (FV) or finite element method (FEM). This
leads to a finite-dimensional system with a large number of degrees of freedom,
making the problem costly to solve. In order to achieve a significant speedup, a
reduced model has to satisfy another requirement:

(iv) in order to achieve high numerical efficiency, we want to compute a basis as
small as possible, i.e. we want to find a truncation of (2.26) to ¢ basis functions:

l

y(x,t) ~ Zz,(t)wz(m) (2.27)

=1

If such a representation has been found, the problem of determining y is transformed
into the problem of determining the time-dependent coefficients z € H((ty,t.); RY).
By inserting (2.26) into the equation describing the dynamics for y (i.e. an equation

43



2 Theoretical Background

of the form (PDE) or the corresponding weak formulation), a differential equation
for z can be obtained®:

2(t) = G'(2(t), u(t)),  te (fote],
2(ty) =
In contrast to a standard spatial discretization approach by a numerical grid, the
dimension / is in many cases several orders smaller. In the next section POD will be

discussed as a method to compute the basis () and it will be shown that this yields
an optimal compromise between the requirements (i) and (iv).

(ROM)

2.3.2 Proper Orthogonal Decomposition

Obviously, the requirements (i) and (iv) for a good basis are contradictory. Con-
sequently, we search for a basis that is on the one hand capable of representing
the solution with an error as small as possible and on the other hand is of small
dimension ¢, which can be addressed by POD [HLBR12]. The above requirements
are formulated as an optimization problem, where the difference between the solu-
tion y(x,t) and its projection onto the reduced space has to be minimized (see also
[Fah00, Voll1]):

J4
wl,n,li?em/ o 1) =3 (1))l (2.28)

=1

s.t. (i, )2 =01y, 1<1i,j <UL,

where ¢; ; is the Kronecker delta. The procedure is practically realized by defining a
time grid [t1, ..., t.] and taking r snapshots at these time instances. For this purpose,
this approach is referred to as the method of snapshots [Sir87]. The optimization
problem is thereby transformed to

L
71{11}51@22 lyCot5) =3~ Wl t5), i) )

=1

s.t. (Q/h’ﬂpj)Lz = 5i,j7 1 S Z?j S 67

LA more detailed description of the procedure, in particular the treatment of boundary conditions,
is postponed to Section 5.1.
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which is equivalent to

1 2
YL ;F 2 (Wlst) v (2.29)

.....

s.t. (Vi) 2 = 03y, 1 <4,5 <A,

see e.g. [HLBR12]. Considering the case ¢ = 1 [Fah00], this yields

- Z ) ¥1)7s = %i (/Q y(@, ;) (@) dw> </ﬂ y(z,t;)01(2) dz)

ol e

wla Rq/Jl)LQ )

Rw1=/<2y )wl()

The operator R is a linear, self-adjoint operator and hence possesses orthonormal
eigenfunctions ; with associated positive eigenvalues o;, ¢ = 1,...,r. It is also
referred to as the two-point correlation in the statistical analysis of turbulent flows
[Pop00]. In [BHL93], it was shown that the ¢ eigenfunctions corresponding to the
¢ largest eigenvalues of R are the solution to problem (2.28) (see also [HLBR12] or
[Fah00] for a proof using singular value decomposition). Furthermore, the eigen-
values can be utilized to determine the amount of information that is neglected by
truncating the basis to size ¢ [Sir87]:

with

Z;:K—H Oi

e(l) == m

(2.30)

Besides optimality and orthonormality, the POD basis possesses several addi-
tional properties that are very useful for reduced order modeling [HLBR12, Fah00,
TBD*17]:

(i) preservation of physical properties (when considering data from divergence-free
flow fields, for example, the POD modes are also divergence-free),

(ii) computation of coherent structures containing the majority of the energy.

On the other hand, there are also weaknesses in the POD approach that should be
taken into account when using a ROM:
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(i) the technique does not distinguish between spatial and temporal structures.
Consequently, POD modes generally correspond to a mix of frequencies,

(ii) POD arranges modes in terms of the amount of energy which does not nec-
essarily correspond to the dynamical importance (in turbulence, for example,
small scale motions can significantly influence large scale structures),

(iii) it is not always easy to determine the correct basis size. This is closely related
to the previous point and results in a well-known drawback of the POD pro-
cedure, namely that dissipation, which frequently occurs on the small scales,
is underrepresented,

(iv) for complex dynamical systems such as the Navier-Stokes equations, accuracy
of the reduced order model can be very hard to achieve [NAMT03, SK04,
GBZI04, NPMO05, CBS05, BBI09, CAF09]. This can cause problems with the

convergence in optimization routines such as those presented in [Fah00, BC0S|.

Nonetheless, POD has been and continues to be tremendously successful in a
large variety of applications from image processing to reduced order modeling and
optimal control. The key reasons are the optimality of the basis and that the
truncation error can be estimated by the eigenvalues (cf. Equation (2.30)). This
can be used to determine the error of ROMs (see e.g. [KV01, KV02]) or even of
PDE-constrained optimal control problems [KV08, TV09].

In order to illustrate the POD procedure, let us consider the well-known example
of the von Kdrman vortex street which will also be studied in Section 5.1. There,
the numerical scheme for obtaining the data will also be introduced in more detail.
The von Karmén vortex street is a phenomenon occurring in two-dimensional fluid
flows governed by the Navier-Stokes equations at moderate Reynolds numbers. In
the wake of bluff bodies, vortices detach alternatingly from the upper and lower edge
and a periodic solution emerges. When applying the POD procedure to numerical
data either from experiments or numerical simulations, these are only available at
discrete points y?(t) in space?. Introducing a time grid [ti,...,t,], these points
can be arranged in the so-called snapshot matriz S = [yd(tl), o yd(tr)] € R¥wr,
In this example, the data has been obtained using a finite volume scheme and
then interpolating the data on a finite element grid with n, nodes. We collect 2n,
measurements (i.e. the two velocity components at n, nodes) at r different time steps
and solve the r-dimensional eigenvalue problem [KV02, Fah00]:

Ruv; = 8" MSv; = o,v;, i=1,...,r (2.31)

where M € R*w2™ ig the finite element mass matrix. Using the eigenvalues and
eigenvectors from (2.31), the POD modes can be computed. Making use of the finite

2The superscript ¢ indicates that this quantity is defined on a finite-dimensional grid instead of
a function space.
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(a) (b)

Figure 2.11: (a) A snapshot of the well-known von Kdrmdn vortex street. (b) Mean
value of the flow field.

element basis functions {¢;(z)}”,, these can then be embedded in an L? function
space:
Pl = L
(2 ,\/O_-,L

() = ( Z%?ildg"(biéj?w) ) .

J=1 Yi,j+ny

Svi;

Note that o; > 0 for i = 1,...,r due to R being self-adjoint.

Remark 2.3.1. Alternatively, the POD modes 1® con be computed applying singular
value decomposition to the matriz (MY 2)T S [Fah00).

In order to preserve the boundary conditions, we compute the POD on the fluctu-
ations around the mean flow field (see Figure 2.11 (b)). These satisfy homogeneous
boundary conditions as do the resulting POD modes, see Section 5.1 for details. By
choosing a value for €, typically 0.99 or 0.999, the basis size can be determined. For
many applications, the eigenvalues decay fast such that a truncation to a small basis
is possible. In this case, the first six modes capture already approximately 99.9% of
the energy.

Figure 2.12 shows the first four POD modes. The modes occur in pairs, the
second one slightly shifted downstream. This is due to symmetries (see the double
eigenvalues in Figure 2.13 (a)) in the problem, namely in the horizontal axis through
the cylinder as well as on the upper and lower boundary, respectively. The first four
modes already account for roughly 98.6% of the information, cf. Figure 2.13 (a).
The error, i.e. the ratio of the truncated eigenvalues, is visualized in Figure 2.13 (b).
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Figure 2.12: The first four POD modes of the fluctuating field of the von Kdrmdn
vortex street.
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Figure 2.13: (a) The first 100 eigenvalues oy for the von Kdrmdn vortex street. (b)
The corresponding truncation error €(f).

2.3.3 Optimal Control Based on Reduced Order Models

Motivated by the major achievements in the field of reduced order modeling, many
researchers are going beyond merely reproducing the dynamics with ROMs but in-
stead use them as a tool in a multi-query context such as parameter estimation
[Las14], uncertainty quantification [GFWG10] or optimization (see e.g. [QHST05,
PWGI6] for an overview). The first publications addressing MOCPs with PDE-
constraints have recently appeared. Whereas in [ARFL09] the model is treated as a
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black box and evolutionary algorithms are applied, a rigorous error analysis and con-
vergence results can be found in [[UV13, ITV16, BBV16, Ban16, BBV17].

In principle, there are three different approaches how to implement a POD-based
ROM in an optimization routine. The first one is to build a single ROM beforehand.
The data is collected by sampling over a “wide range” of the control space, see
e.g. [GPT99, Rav00, BCB05]. This method is the most efficient with respect to
the reduction of computing time. However, it is often difficult to determine how
to choose the reference control for which data is collected from the original system,
i.e. how to appropriately cover the “wide range”. Moreover, convergence to the
solution of the original problem cannot be guaranteed.

The second approach is based on trust region approaches [Fah00, BC08, YM13,
QGVWI6]. Here, the reduced model is only valid within a specified distance to
the reference control at which the data has been collected. Once the trust region
boundary is reached, the full model is evaluated again and one can determine the
efficiency of the objective reduction based on the surrogate model. Then a new
ROM is obtained and the optimization proceeds using the updated model (see also
Algorithm 5.3 in Section 5.2). For this approach, one can prove convergence to
a local minimum of a single objective problem, see [Fah(00] for a detailed descrip-
tion.

The third approach is to make use of the error estimate for the POD basis and
perform an error analysis for the ROM-based optimal control problem [KV99, WP02,
Row05, HV05, KV08, TV09]. This way, it is possible to specify error bounds on the
state and adjoint equation, the objective functionals and respective gradients as well
as the optimality condition. Moreover, this approach enables methods with adaptive
basis sizes such that the desired bounds are satisfied, resulting in a convergent and
highly efficient algorithm.

All three approaches will be investigated in Chapter 5 in the context of multiple
objectives, more precisely in Sections 5.1, 5.2 and 5.4, respectively.
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3 Continuation of Parameter Dependent
Pareto Sets

This chapter addresses the problem of having to solve a large number of MOPs or
MOCPs (e.g. in the presence of additional parameters) and how to exploit structure
in the solutions to accelerate the computation. To motivate the necessity for efficient
algorithms for these types of problems, an example from industry is presented in
Section 3.1. There, an intelligent cruise control for autonomously driven electric
vehicles is developed. In contrast to many other approaches for autonomous driving,
multiple criteria are considered as equally important here. On the one hand, the
vehicle should drive as fast as possible while on the other hand, energy efficiency
has to be maximized. Since it is numerically infeasible to solve the corresponding
MOCP in real-time, a new approach motivated by explicit model predictive control is
presented, where a large number of solutions is computed in an offline phase and then
stored in a library for later use. Since the number of problems grows exponentially
with the number of parameters, the efficient computation of a new solution starting
from an already known solution with slightly different parameter values is addressed
in Section 3.2. In Section 3.3, the benefits of this approach will be validated, using
again an example from autonomous driving.

3.1 Multiobjective Model Predictive Control of
Electric Vehicles

Alternative drive technologies have gained more and more attention during the last
years. This is mainly due to an increasing awareness of the impact of C'O, emissions
on climate change and the limitation of fossil fuels. In transportation, immense re-
search activities have been conducted to develop new or improve existing concepts for
electrically powered vehicles (EVs). Provided that the electric energy is harvested by
renewable resources, EVs produce neither C'O; nor NO, and significantly less par-
ticulate matter compared to conventional and hybrid vehicles.

Up to now, EVs suffer from a reduced range compared to conventional vehicles
powered by internal combustion engines. This is caused by the high battery cost
as well as the limited lithium ion battery storage density. Therefore, strategies to
increase the EV range without enlarging the battery play an important role for
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electro-mobility. There are various attempts to overcome the range limitations.
Studies (see e.g. [BWC12]) have shown that the driving style has a large impact
on energy consumption. Therefore, an intelligent controller acting on the drivetrain
may enhance the range of EVs without changing any of the core components like
the battery or the motor.

In this Section a new algorithm for multiobjective MPC of non-linear systems
is presented. Problems with multiple criteria have been addressed by several au-
thors using scalarization techniques (see e.g. [BM09a, BM09b] for a weighted sum
or [ZFT12] for a reference point approach). For non-convex problems, scalariza-
tion and a-priori priorization may result in an unsatisfactory compromise such that
we here want to compute the entire Pareto set in advance. To this end, elements
from multiobjective optimal control, explicit MPC and motion planning with mo-
tion primitives are combined. The resulting algorithm consists of an offline phase
during which MOCPs are solved and the corresponding Pareto sets and fronts are
stored in a library for a wide range of possible scenarios (i.e. different speed lim-
its, braking, accelerating). Invariances in the optimal control problem are exploited
in order to reduce the number of problems that need to be solved. In the online
phase, the currently active scenario is identified and the corresponding Pareto set
is selected from the library. According to a decision maker’s preference, an optimal
compromise is then selected from the Pareto set and the first part of the solution
is applied to the system. Similar to MPC, this is done repeatedly such that feed-
back control is realized. The difference to other approaches is the possibility to
interactively choose between different objectives such that the system behavior can
easily be modified. This can be very useful for autonomous driving, where one is
interested in reaching a destination as fast as possible while minimizing the energy
consumption.

In Section 3.1.1, the MOCP for the EV is formulated and solved offline for
a test scenario. The results are computed with the reference point method (see
Section 2.1.4) as well as the subdivision algorithm (see Section 2.1.5) in order
to compare the algorithms. The multiobjective MPC algorithm within which a
large number of MOCPs has to be solved is presented in Section 3.1.2. Due to
the numerical cost, the method is currently restricted to constant control inputs.
The results presented in this section have appeared in a series of papers [DEFT14,
DEF*16, EPST16, PSOBT17]. They were obtained in cooperation with Hella KGaA
Hueck & Co. within the leading edge cluster Intelligent Technical Systems OWL
(it’s OWL). The author has made significant contributions to the results presented
therein.
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3.1 Multiobjective Model Predictive Control of Electric Vehicles

3.1.1 Multiobjective Optimal Control of Electric Vehicles

All computations in the section are based on a very accurate EV model developed
in [MKDBI12]. The dynamics consists of a mechanical and an electrical subsystem
(cf. Figure 3.1) which are coupled by efficiency maps. The subsystems are modeled
using basic physical laws which results in a system of non-linear coupled ODEs. The
control input u(t) is the accelerator pedal position which can be set to values within
0 and 100. The model has been implemented in MATLAB/Simulink and has been

validated against experimental data.
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Figure 3.1: (a) Mechanical subsystem of the EV model taking the forces acting on

the vehicle into account. (b) Electrical subsystem consisting of motors,
consumers, batteries, the drivetrain, etc.
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As the initial scenario, we consider a fixed driving time of 250 seconds and an
artificial track (see the height profile h(t) in Figure 3.2 (b), bottom). We want to
maximize the driven distance (i.e. the final position p(t.)) as well as the final battery

state of charge S(t.):
. —S(te)
1521[/% ( _p(te) ) ’

st y(t) = F(y(t),ut)), te (tot, (3.1)
Y(to) = Yo,
w <u(t) < uy, t € (to,t.],

where the dynamics F'is incorporated in the MATLAB/Simulink model.

In order to solve (3.1), we choose a direct approach and discretize the control into
n steps over which the pedal position is constant, i.e. u;(t) € [0, 100] for ¢ € [t;_1, ],
1=1,...,nwithty <t; <...<t, =t.. Thescalar problems in the reference point
method (cf. Algorithm 2.1) are solved using an SQP method and the gradients are
computed using finite differences. Note that the model is formally non-differentiable
so that this step has to be treated with care. Thus, we first apply the gradient-
free sampling algorithm (Algorithm 2.3) and use the results to verify the results
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3 Continuation of Parameter Dependent Pareto Sets

obtained with the reference point method (Algorithm 2.1). The numerical procedure
is described in more detail in [DEF*14, DEFT16].

Figure 3.2 shows the Pareto front obtained with the sampling algorithm for dif-
ferent decision space dimensions as well as one EV simulation with a Pareto optimal
pedal position profile and the resulting velocity profile. We observe that large values
of u on positive slopes a and lower values on negative slopes are beneficial for the
energy consumption. Solutions with a higher decision space dimension are obviously
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7000 - =
6000 |
5000 - 40 6e3
- 30, o 14e3
< 4000 Sl """\ —~——\ | =
B 0l 12e3
3000 | —"_ . .,
2000 8 200
oueRr 4l /~ 7150
1000 | o u e B® < S /' 1100 S
u € RY ® S0 N—50
0 1 L L L L L |
4 L L L L L L L L L

S(te) t

(a) (b)

Figure 3.2: (a) Pareto front computed with the sampling algorithm for different
decision space dimensions (the points are the images of the box centers).
(b) EV simulation with a Pareto optimal pedal position profile (u € R1?,
S(t.) = 0.6914, p(t.) = 5800 m).

always at least as good as the lower dimensional solutions (cf. Figure 3.2 (a)). Ad-
ditionally, the difference between the solutions is largest in the middle section. This
is due to a higher variability in this part while near the ends of the front, the pedal
position is close to the maximal or minimal value at all times.

When looking at the Pareto optimal points around S(t.) ~ 0.745 (as well as
S(te) ~ 0.725 for u € R'%), we observe a gap which is caused by the EV’s recu-
peration technique. The last point at the low distance part of the Pareto front
corresponds to a stop at the top of a hill. Increasing the pedal position only slightly
results in a final position with a negative inclination a. Since the EV can roll down
the slope and recharge its battery via recuperation, a slight reduction of the objec-
tive S(t.) leads to a significant increase of the second objective p(t.), i.e. we can
drive downhill without requiring further energy. This results in a gap in the front.
The dents in Pareto front originate from the same physical effect. Due to the track
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3.1 Multiobjective Model Predictive Control of Electric Vehicles

slope alternating between positive and negative values, the slope of the Pareto front
is closely connected to the height profile.

A comparison of the results of the subdivision algorithm and the reference point
method (cf. Figure 3.3 (a)) shows good agreement for the case u € R'? indicating
that the reference point method also yields satisfactory results despite its local nature
and the non-differentiability of the model. This allows us to compute Pareto sets
for higher decision space dimensions. Note that the requirement T <, J* is not
satisfied here and Theorem 2.1.17 is not applicable. Hence, the reference point
method effectively traces the boundary of the reachable set and there are also points
included which are not Pareto optimal (cf. Remark 2.1.18). Consequently, one has

to identify non-optimal solutions using a non-dominance test. These are plotted in
gray at S(t.) ~ 0.74.
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Figure 3.3: (a) Pareto front computed with the reference point method for different
decision space dimensions. (b) Simulation with a Pareto optimal pedal
position profile (uw € R®, S(t.) = 0.6934, p(t.) = 5750 m).

As can be seen in Figure 3.3, the resulting improvements become smaller with
increasing decision space dimension. Although the discretization becomes finer, the
pedal position profile looks qualitatively very similar to the 10-dimensional solution
(cf. Figures 3.2 (b) and 3.3 (b), respectively).

The results show that considering multiple criteria can be useful in the develop-
ment of an intelligent cruise control. However, considering a fixed time frame and
neglecting disturbances is obviously infeasible for autonomous driving. Therefore,
the results presented here are embedded into a newly developed multiobjective MPC
(MOMPC) framework in the next section.
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3 Continuation of Parameter Dependent Pareto Sets

3.1.2 The Offline-Online Multiobjective MPC Concept

In order to develop a closed-loop control for the EV with multiple objectives, the
results from the previous section are coupled with an MPC framework. As presented
in Section 2.2.2; in an MPC routine the optimal control problem is solved online
repeatedly for varying time frames [t;,ts4p] (With ts = s -t and ts, = (s +p) -
th, s = 1,2,...). Despite initially being developed to stabilize a system [GP17],
stabilization is not always the main concern. Considering the EV, for example, we
only require a part of the state, namely the velocity, to remain within prescribed
bounds, which gives us the opportunity to pursue additional objectives such as
minimizing the energy consumption. This concept is known as economic MPC' (see
e.g. [RA09, DAR11]).

Since MOCPs are considerably more expensive to solve than scalar problems, it is
computationally infeasible to directly include them in an MPC framework. A simple
way to circumvent this problem is to scalarize the objective function by applying
the weighted sum method, for example, and introducing a weighted objective J, =
Zle «;J;. However, in this case an assumption on « has to be made in advance
which can in practice lead to unfavorable results. A slight increase in one objective
might allow for a strong reduction in another one, for example. Hence, we want to
have knowledge of the entire Pareto set during the MPC routine. To avoid large
computing times during execution, we therefore split the computation in an offline
and an online phase, similar to explicit MPC approaches [AB09] (as well as reduced
basis concepts in reduced order modeling (cf. Section 5.4)).

The offline phase (Algorithm 3.1) consists of several steps. First, various scenar-
10s are identified for which MOCPs need to be solved. The scenarios are determined
by the system states and the constraints. Secondly, the dynamical control system is
analyzed with respect to invariances in order to reduce the number of scenarios. In
our approach, we extend the standard concept described in Section 2.2.3 by identi-
fying symmetries in the solution of the MOCP with respect to the initial conditions

Yo:

arg min J(u, y,) = arg min J(u, ¥(g,y,)) Vg € G, (3.2)

uceU uel

where the notation J(w, y,) is introduced to indicate that the initial condition y,
is treated as an additional parameter. This means that we require the Pareto
set to be invariant under group actions on the initial conditions. If the dynam-
ics itself is also invariant under the same group action, then all trajectories con-
tained in an equivalence class defined by the standard approach introduced in Sec-
tion 2.2.3:

(9, Pu(Yo, 1) = pu((9,90),t) Vg € G, (2.25)
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3.1 Multiobjective Model Predictive Control of Electric Vehicles

will also be contained in an equivalence class defined by (3.2). However, the first class
may contain more solutions since we do not explicitly pose restrictions on the state
but only require the respective Pareto sets to be identical.

Algorithm 3.1 (Offline Phase of the MOMPC algorithm)
1: Identify relevant scenarios
2: Symmetry analysis
3: Reduce the number of offline scenarios by exploiting symmetries
4: Solve an MOCP for each of the scenarios and store the solution in a library

By identifying invariances according to (3.2), the number of MOCPs can be
reduced. If the system is invariant under translation of the initial position p(ty), for
example, we do not need to solve multiple MOCPs that only differ in the position.
Once these equivalence classes have been identified, we can reduce the number of
possible scenarios accordingly. We then solve the resulting MOCPs on the prediction
horizon t,, introduce a parametrization p € R*~! (which can then be chosen by the
decision maker in the online phase) and store the Pareto sets and fronts in a library
such that they can be used in the online phase. Since there is in general an infinite
number of feasible initial conditions, there consequently exists an infinite number
of scenarios that we have to consider. In practice, this obviously cannot be realized
and we are restricted to a finite set of scenarios. In the online phase, we then select
the scenario that is closest to the true initial condition. If a violation of the state
constraints has to be avoided (for example, the EV is not allowed to go faster than
the maximum speed), then a selection towards the “safe” side can be made. In case
of the EV, we would consequently pick a solution corresponding to a velocity slightly
higher than the actual velocity. This way, the maximally allowed acceleration would
be bounded such that exceeding the speed limit is not possible.

The online phase is now basically a standard MPC approach (cf. Algorithm 3.2),
the difference being that we select the solution of the control problem from a library
instead of solving it in real-time, similar to explicit MPC approaches. The resulting
algorithm thus provides a feedback law. In the offline phase, we define the scenarios
in such a manner that the system cannot be steered out of the set of feasible states.
This means that only controls w are valid that do not lead to a violation of the
constraints. Additionally, we include scenarios which steer the system into the set
of feasible states from any initial condition. In the literature, this is known as
viability, cf. [GP17]. In case of the EV, for example, we have to include controls
such that the velocity can be steered to values satisfying the constraints from any
initial velocity.

The presented algorithm can be seen as an extension of extended MPC approaches
to multiple objectives. We consider economic objectives (cf. [RA09]) and do not
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3 Continuation of Parameter Dependent Pareto Sets

Algorithm 3.2 (Online Phase of the MOMPC algorithm)

1: Measure the current system states that are necessary for the identification of
the scenario

2: Choose the corresponding Pareto set from the library, i.e. with initial conditions
closest to the current system state. (Due to the approximation, we cannot
formally guarantee that the constraints are not violated. However, it is assumed
that this is acceptable.)

3: Choose an optimal compromise w from the set, according to a decision maker’s
preference p

4: Apply the first step (i.e. the sample time) of the solution u to the real system
and go back to 1

focus on the stabilization of the system. This allows us to pursue multiple objec-
tives between which a decision maker can choose dynamically, e.g. in order to react
on changes in the environment or the system state itself. In contrast to weight-
ing methods, the entire Pareto set is known, providing increased system knowl-
edge.

Application to the Electric Vehicle

Due to the non-differentiability of the above EV model and in order to increase the
numerical efficiency, slight simplifications of the model have been made in [EPS™16],
namely by neglecting the influence of the temperature and disregarding the so-called
protection circuit of the battery. These are justified since they only result in minor
inaccuracies in the model when considering only short time horizons as in MPC.
After some algebraic manipulations, this results in a system of four coupled non-
linear ODEs for the state variables wvehicle speed v, battery state of charge S and
the long term and short term voltage drops U, and U g which is of the form of
(ODE):

y(t) = F(y<t)v u(t))a te (th te]»

Y(to) = Yo,

with y = (v, S, Usr,Uss)" € H'((to, t.); RY) and u € L*((to,t.);R). The system is
controlled by the torque u(t) of the front wheels. Additionally, the battery current
I(t) is computed from the state y(t) via an algebraic equation and the position by
integrating the velocity: p(t) = fti v(7) d7. For the derivation and the exact formula-
tion of the dynamical system, the reader is referred to [EPS™16].

Based on this system, problem (3.1) is extended to a more realistic scenario
with fixed distances (i.e. variable final time) and bounds taking speed limits into
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3.1 Multiobjective Model Predictive Control of Electric Vehicles

account:
i (575,
st. yt) = Flyt),u(t)), t € (to, L., (3.4)
Umin(t) < 0(t) < Umax(t), t € (to, tel, (3.5)
mm( ) < ]( ) < ImaX( ) te (t07te]a (3 6)
Y(to) = Yo, p(te) = Ppe. (3.7)

We set the final position p, to 100m, which means that the prediction horizon is
based on the position instead of time. Correspondingly, the sample time is also
specified with respect to the position, t, = 20m. The conflicting objectives are to
reach p, as fast as possible (J3) while minimizing the energy consumption (J;). The
battery current [ is limited in order to avoid damage to the battery which results
in implicit constraints on the control u. The velocity constraints are part of the
scenarios which are defined in the first step of the offline phase.

The more invariances the MOCP possesses (in the sense of Equation (3.2)), the
fewer problems need to be solved which significantly reduces the computational
effort. Hence, we numerically analyze the system in this regard (cf. line 2 in Algo-
rithm 3.1). Since the position p does not occur in the dynamical system (3.4), the
dynamics is obviously invariant under translations in p. Moreover, when looking
at the velocity v and the state of charge S (cf. Figures 3.4 (a) and 3.4 (b)), we see
that the trajectories are almost invariant for a wide range of translated initial values
of the state of charge S(ty) and otherwise fixed initial conditions. Note that this
is not a strict invariance, almost invariance is interpreted as a low sensitivity with
respect to S(ty). However, as argued above, we do not require invariances according
to Equation (2.25) but according to the weaker condition (3.2). In contrast to that,
when looking at Figure 3.4 (c¢), we observe that the dynamics is clearly not invariant
under translations in the initial velocity v(ty). After performing the same analysis
with regard to the other state variables Uy 1, and Uy g, it can be concluded that we
only need to define scenarios with respect to the initial velocity v(to) and the active
constraints vmi,(t) and vmax(t).

A constraint on the velocity is given by the current speed limit vpmay(p) which
depends on the current vehicle position. Since we want to avoid interference with
other vehicles by driving too slowly, we define a minimal velocity vmin(p) = 0.8 -
Umax(P). (Here the velocities are functions of the position because they are given by
the problem formulation this way. In the MOCP, they have to be reformulated as
functions of time.) The set of feasible states is constrained by the velocities vmin(t) <
v(t) < Umax(t) which also determine the different scenarios. We distinguish between
four cases (see Figure 3.5 (a)). While the cases constant velocity (box constraints)
and stopping (v = 0 at the stop sign) are easily implemented, we introduce a linear
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Figure 3.4: (a) Almost invariance of S with respect to the initial value S(ty). (b)
Invariance of the velocity v with respect to the initial value S(to) for
S(ty) > 5%. (c) No invariance of the state of charge S with respect to
the initial velocity v(tg).

constraint for the scenarios (ii) and (iii), respectively (see Figure 3.5 (b)) where,
depending on the current velocity, a minimal increase or decrease a(p) = (dv(p)/dp)
must not be violated. An example is shown in Figure 3.6, where the Pareto set
and the resulting velocity profiles are shown for the scenario v(tg) = 60 km/h and
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Figure 3.5: (a) Possible scenarios of boundary conditions. (i): constant velocity.
(ii): acceleration. (iii): deceleration. (iv): stop sign. (b) Computation
of lower bound an;, for the velocity gradient dv/dp.

Amin = 0.05 krfni Note that the control u is constant over the prediction horizon in
order to reduce the numerical effort. As mentioned before, only a finite number of
initial conditions can be considered. Solving an MOCP for every step of 0.1 in the
initial velocity leads to 1727 MOCPs in total.
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Figure 3.6: (a) Pareto set for an accelerating scenario with v(ty) = 60 km/h and
a(0) = 0.05 ka/h (b) The corresponding trajectories v(t).

Algorithm 3.2 is executed during the online phase. In each sample time, the
current velocity and the constraints (for the current position) are evaluated in order
to determine the active scenario. The corresponding Pareto set is then selected from
the library and — according to the weighting parameter p € [0, 1] determined by the
decision maker — an optimal compromise is chosen which is then applied to the

system. On a standard computer, this operation takes in the order of 1072 seconds
in MATLAB.

61



3 Continuation of Parameter Dependent Pareto Sets

100

Figure 3.7: Different trajectories computed by the MPC approach. The dashed lines
correspond to constant weights p whereas the green line uses dynamic
weighting (p = 0/0.5/1.0, respectively).

3.1.3 Results

Several solutions with different weights p are shown in Figure 3.7 for an example
track including two stop signs. The set of feasible velocities is bounded by the
red lines. The dashed lines correspond to constant weights, varying from p = 0
(energy efficiency) to p = 1 (high velocity) and the solid green line is a solution
where the weighting is changed from 0 over 0.5 to 1 during driving. The vehicle
is obviously driving according to the decision maker’s preference. This means that
a closed-loop control has been realized for which the objectives can be adjusted
dynamically. The adjustment can either be made manually or by a heuristic which
takes into account the track, the battery state of charge and the current traffic. The
objective function values for the entire track and different values of p are shown in
Figure 3.8 (a).

In order to evaluate the quality of the solution, we compare it to a control com-
puted via dynamic programming (DP, see [BS15] for an introduction and [SG09] for
the algorithm). For computational reasons, the comparison is performed on a shorter
track without stop signs and a relatively coarse discretization leading to a 100-
dimensional problem. In the DP problem, a simplified linear model (cf. [EPST16])
is used and the objective is a weighted sum of the MOCP (3.3) with J = t.+SE(t.),
where E : R — R is the consumed energy computed by integrating over the wheel
torque and 8 = 6-107°. In Figure 3.8 (b), we see that the solution obtained via
DP is superior to the approach introduced in this section. This is not surprising
since only a finite horizon is considered in MPC such that the results are at best
sub-optimal [GP17] whereas the entire track is considered at once in DP. Conse-
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Figure 3.8: Function values for the scenarios depicted in Figure 3.7 and in Figure 3.9
for different weights p and in comparison to the Dynamic Programming
solution.

quently, the DP algorithm is not real-time applicable and does not possess feedback
behavior. Additionally, only constant torques over the prediction horizon have been
considered until now. For future work, it will therefore be interesting to investigate
the benefits of a refined discretization.
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Figure 3.9: Validation of the approach versus a Dynamic Programming solution
(blue). Green line: dynamic weighting according to the lower plot.

When using a simple heuristic for the preference p instead of fixed values (larger
values for p at low velocities, lower values at high velocities and linear changes in
p when approaching braking maneuvers, see Figure 3.9 (bottom)), we see that the
quality of the solution can be significantly improved and is now comparable to the
global optimum obtained by DP. The resulting trajectories as well as the function
values J; and Jy almost coincide, cf. Figures 3.9 (top) and 3.8 (b). By this, a second
way to utilize the results is obtained. On the one hand, a decision maker can freely
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select the preference and on the other hand, p can be determined by a heuristic,
leading to solutions comparable to the global optimum.

Due to the computational cost, the decision space of the numerical example in
this section was limited to constant controls. In order to increase the degree of the
control input, it is necessary to increase the efficiency of solving the large number
of MOCPs in the presence of additional parameters. This will be addressed in the
next section.

3.2 Continuation of Pareto Sets

We have seen in the previous section that the multiobjective MPC algorithm results
in the necessity to solve a large number of MOCPs for different parameter values.
Similar to explicit MPC, the number of problems increases exponentially with the
number of parameters. The problem of infeasible computational cost has previously
been avoided by considering only constant controls. Since this is a severe restric-
tion, this section is concerned with the development of a continuation method for
entire Pareto sets with additional parameter dependencies. Having in mind direct
approaches by which MOCPs can be transformed into MOPs, the problems consid-
ered here are restricted to a finite dimension. The parameter dependent problem
can therefore be formulated as

Jl(“’a p)
: (3.8)

min J(u = min
u€Rn (u, p) ucR"

Jk(’uﬁ p)
st.  g(u,p) <0,
h(u, p) = 0,

withp e R, J: R*"xR™ — RF g:R"xR™ — R and h: R" x R — R™. Here,
J(u, p), g(u, p) and h(u, p) are introduced to account for the parameter dependency.
Parameter dependent MOPs have been studied extensively in [Wit12]. However,
continuation methods were applied to single points in the Pareto set. In [MS17,
SLT*17], the authors follow a similar approach. Although the method presented
here is mainly motivated by numerical experiments, a theoretical foundation for the
applicability of the proposed method will be presented first.

The idea is very similar to the continuation approach presented in Section 2.1.4,
where the set of points satisfying H = 0 (Equation (2.10)) was sought. Here, we
additionally consider a parameter p € R™ such that the set of substationary points
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for a certain parameter Pggp(p) value is defined by:

i @ Vi, p) + 3 Vi (w, p)

Hu',v*, ", p) = h(u*, p) =0, (3.9)
Zf:l aj —1

where the equality and the active inequality constraints have again been assembled
in h. Consequently, we have

Psan(P) = { (u', 7", ") € R* x R™ x R* | H(uw*, 7", ", p) =0}.  (3.10)

In what follows, we will assume that the requirements for Pg g, to be a manifold
are satisfied, i.e. the objective functions and the constrains are twice continuously
differentiable, cf. Section 2.1.3. Then for a fixed value p, the corresponding set of
substationary points Pssup(p) is a (k — 1)-dimensional manifold. Assuming that
the function H is continuously differentiable with respect to p, this result can be
extended to the parameter p:

Theorem 3.2.1. Consider the parameter dependent MOP (3.8) and let J, g and
h be twice continuously differentiable with respect to w and once continuously dif-
ferentiable with respect to p. Denote by M, = {(u*,7*, a*, p) € RrTmHIl+htns |
H(u*,v*, a*,p) = 0 and of >, 0} the set of points satisfying the first order condi-
tions (KKT) for admissible parameter values p.

If the Jacobian H' has full rank in one point (u*,5*, a*, p), i.e.
rank(H (u",5*, a*,p)) =n+m+ |Z| + 1, (3.11)

then My, is a (k — 1+ n,)-dimensional differentiable submanifold of RMmHEl+k+ns
in a neighborhood of (u*,v*, a*, p).

If all points (u*,¥*, a*, p) € M,, satisfy the rank condition (3.11) then M, is a
(k — 1+ n,)-dimensional differentiable submanifold of R+m+Zl+k+ny,

Proof. Due to the applicability of the Implicit Function Theorem, the proof is analog
to the proof of Theorem 2.1.15. O

Obviously, there exist problems where the requirements for Theorem 3.2.1 are
not satisfied. However, in this situation Pgeb(p) may still depend continuously
on p. This is for example the case when the objective functions as well as con-
straints are Lipschitz continuous with respect to the parameter. Consequently, so
are their respective gradients and also the function H, see also Theorem 2.2.2 on
p. 37.
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3 Continuation of Parameter Dependent Pareto Sets

Remark 3.2.2. Note that it is in general difficult to compute the tangent space of
M, for the entire set of substationary points Pgeuw(p). Instead, we will assume in
the following that the above results allow to find a parametrization of M, by the
parameter p and will develop numerical methods which exploit the continuity with
respect to p and approrimate the tangent space from numerical data.

3.2.1 A Predictor-Corrector Method for Parameter Dependent
MOPs

Motivated by the introductory considerations and Theorem 3.2.1, we want to utilize
previous solutions in order to accelerate the computation of Pareto sets under slight
variations of the parameter p. Following standard approaches for numerical con-
tinuation methods (see also [AGO03]), this is realized by a predictor corrector (PC)
method. Based on already known solutions, a predictor step is performed, serving as
an initial guess for the consecutive corrector step. Whereas in standard PC methods
a single point is sought which satisfies H = 0, we here have to compute the entire
set of substationary points in the corrector step (cf. Algorithm 3.3). This is real-
ized by applying the recovering algorithm described in Section 2.1.5. Alternatively,
if the solution is approximated by a finite number of points, one could perform a
descent step (e.g. based on (QOP)) for each of these points until the first order
conditions are satisfied. Note however that in this situation, proper care has to be
taken to avoid clustering and obtain a satisfactory approximation of Pgeun(p) by
these points.

Algorithm 3.3 (Predictor-Corrector Method for Parameter Dependent MOPs)

1: Solve problem (3.8) with p") and set the initial guess for the next problem,
i.e. PEL(P?) = Pssun(®V)

2: for s=2,3...do

3: Corrector step s: Solve problem (3.8) with p(®) using the recovering algorithm
(Section 2.1.5) and the initial guess Pt (p(*))

4: Predictor step s + 1: Compute the next initial guess Pf;;tub(p(s+1)) using
Algorithm 3.4

5: end for

The predictor step consists of computing the tangent space of the object one
wants to approximate and then selecting a direction within the tangent space and
a step length, e.g. based on the curvature. Here, the tangent space of Pgeup(p) is
approximated using numerical data. To be more precise, both the current and the
previous sets of substationary points are first approximated by a finite number of
points. Note that depending on the algorithm used for solving the MOP, the set is
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3.2 Continuation of Pareto Sets

already approximated this way in many cases. When applying set-oriented methods,
the box centers can be used for this purpose. Then a predictor step is performed
point-wise, based on two points from the respective sets that are closest to each
other (cf. Algorithm 3.4). For the linearization to be valid, the distance between
two parameter values s and s — 1 has to be small, i.e. |p® — p®~1|| < € for some
small € > 0.

Algorithm 3.4 (Predictor step for Parameter Dependent MOPs)

Require: Two solutions of problem (3.8), i.e. Pseu(p®Y) and Pseu(p'®) corre-
sponding to p*~1) and p'®), respectively; parameter h; > 0

1: Ap(p)roximate the two solution sets by a finite number of points {'u,;-f_l) i, and
{ujz ?22:1
2: for jo=1,...,n5 do
3: Find the point from the set {'ugff_l) 'y which is closest to u§2)3
Jmin = argmin Hugz) — ugf)Hg
jle{l,...,nl}
4: Compute the point
(s+1) _ . (s) () (s=1)
u;, =, + h (ujz = Y )
via linear extrapolation, where the step length is determined by
I P
h = hy -
[p() — pl=D]|5
5. end for
6: Construct the initial guess Pt (p¢*™™)) using the set of points {USSH)}Zﬁl

The procedure can be interpreted as a set-valued finite difference approach. Due
to this, we can only compute one direction in the tangent space of Pgsup(p), mean-
ing that continuation can be performed along a straight line within the parameter
space:

[P0 = p0, ~ [p@ = poD, [TJ =23
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3 Continuation of Parameter Dependent Pareto Sets
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Figure 3.10: (a) The Pareto sets of example (3.12) for varying parameter values
p. (b) Predictor steps computed by Algorithm 3.4 with h; = 2. The
predicted points are plotted as circles, the solution after application of
the corrector step is shown as a box covering in the same color. (c)
The Pareto fronts corresponding to (a) and the image of the points
predicted by Algorithm 3.4 (black dots).

Numerical Examples

In order to numerically analyze the behavior of the predictor step, let us first consider
an academic example with J: R? x R — R%:

. o (u = 1) 4 plug — 1)
min J(u, p) = min ( ( +1)° + (up 4+ 1) ) (3-12)
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3.2 Continuation of Pareto Sets

The solution to (3.12), computed with the sampling algorithm presented in Sec-
tion 2.1.5, is shown in Figure 3.10 (a) for varying parameter values. Figure 3.10 (b)
shows the points computed in the predictor step (Algorithm 3.4) for comparison.
For this example, Theorem 3.2.1 applies and the Pareto set is globally a mani-
fold. Consequently, the predictor step yields a set of points which lies very close
to the corresponding Pareto set (see also Figure 3.10 (c¢) for a comparison in im-
age space) and convergence of the corrector step is obtained after very few itera-
tions.

# lp=0.95 I =0.95
0-5 Ip =085 0.5 =0.85
lp = 0.75 =0.75
s 0 Ip=065 - g 0 =0.65
Ip = 0.55 =055
Ip = 0.51 =0.51
-0.5 w [ =05 -0.5¢ =05

Figure 3.11: The Pareto set and Pareto front of example (3.13) for varying parameter
values p.

Next, we again consider an objective function J : R2xR — R?:

4 4 2 2
iy () = i (17, (313)

On the symmetry axis u; = 0, the corresponding sets of substationary points are no
longer globally manifolds and Theorem 3.2.1 does not apply. However, the continu-
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3 Continuation of Parameter Dependent Pareto Sets

ity with respect to the parameter is not influenced by this. The results are shown
in Figure 3.11, where the predictor steps again show good agreement with the cor-
responding sets of substationary points. However, there are predictor points near
the line uy; = 0 which are relatively far away from the desired set. The reason for
this lies in the violation of the manifold requirements and the corresponding non-
smoothness in the set. The distance between the two closest points is measured in
the 2-norm in Algorithm 3.4 which does not take into account the geometry of the
Pareto set. The same effect may occur if the set locally possesses a strong curvature
such that two points are identified as closest which they are not when considering
a metric correctly accounting for the geometry. Nevertheless, since the corrector
step converges locally to the Pareto set Ps(p), these far-off predictor points did not
cause problems in the example considered here.

1 8
sp=1
-p=0.75
p=0.5
0.5 6 «p=025
p=0
$ 0 <4
=1
=0.75
-0.5 =0.5 2 } |
=05 T
=0
-1 ) 0 . .
-1 0 1 0 1 2 3
Uy J1

(a) (b)

Figure 3.12: (a) The Pareto sets of example (3.14) for varying parameter values p.
(b) The corresponding Pareto fronts.

Remark 3.2.3. In many applications, the constraints may be parameter dependent
as well. In this situation, we do not need to recompute the entire Pareto set when
varying p. Starting with the least constrained solution, parts of the Pareto set
rendered infeasible when tightening the constraints. However, the remainder of the
Pareto set is still optimal for the new value of p. Hence, we can keep this part and
use continuation to recover the Pareto set of the new problem. If this set is locally
a manifold, then the newly computed parts can only be found at the ends — where
the manifold requirements are violated — or they are not connected to the already
known part. In the first case, parameter variations in the constrains can be treated
efficiently since the starting points for the recovering can easily be identified.
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3.3 Application to Autonomous Driving

Consider for example the problem

(ug — 1)% + (ug — 1)* )

min J(w) = min ( (ur + 1)% + (up + 1)?

ucR? ucR?

(3.14)
s.t. u; < p.

The results for varying parameter values p are shown in Figure 3.12 where, beginning
with p = 1, we only need to recompute the vertical parts of the solutions with p <
1. This will be utilized in the newly developed multiobjective e-constraint method
presented in Section 4.2.

3.3 Application to Autonomous Driving

In this section the PC method developed in the previous section is validated using
another example from autonomous driving. Here, we are interested in optimally
determining the steering angle for a vehicle with respect to secure and fast driving.
To this end, we consider the well-known bicycle model [TLI0, PLMO6]. In this
model, the dynamics of the vehicle is approximated by representing the two wheels
on each axis by one wheel on the centerline (cf. Figure 3.13). When assuming
a constant longitudinal velocity, this leads to a non-linear system of five coupled
ODEs:

21(t) v, (t) cos(O(t)) — vy (t) sin(O(1))
2o (t) v, (t) sin(O(t)) + v, (t) cos(O(t))
g =| ow |= r CHeE (tot.].
0 Ca(t)uy (1) + Ca(t)r(t) + Ca(t)u(t), (3:15)
7 (t) Cu(t)vy () + Cs(t)r(t) + Cs(t)u(t)
y(to) = Yo,

where y = (z1,79,0,v,,7)" is the state consisting of the position & = (1, 5), the
angle © between the horizontal axis and the longitudinal vehicle axis, the lateral
velocity v, and the yaw rate r (cf. Figure 3.13). The vehicle is controlled by the

71



3 Continuation of Parameter Dependent Pareto Sets

AT2

Figure 3.13: Bicycle model for the approximation of the vehicle dynamics.

front wheel angle u and the variables

Ca,rcos(u(t)) + Co s

GO

- i

Cy(t) = Caf+s(u(t))

Oy(t) = ~2oC0s C;igz((g) FLiCar .
eyt = 3Gt COS](Z(Z; +LCus

Cy(t) = LoCas cos(u®))

I, ’

have been introduced for abbreviation. The constants therein describe the vehicle’s
geometry, mass as well as tyre properties, see Table 3.1.

Table 3.1: Physical constants of the vehicle model.

Variable Physical property Numerical value
Co.f Cornering stiffness coefficient (front) 65100
Cor Cornering stiffness coefficient (rear) 54100
Ly Distance front wheel to center of mass 1
L, Distance rear wheel to center of mass 1.45
m Vehicle mass 1275
I, Moment of inertia 1627

72



3.3 Application to Autonomous Driving

We consider the scenario of driving around a curve (cf. Figure 3.14 (e)), where the
two concurrent objectives are to drive as far as possible within a given time ¢, — %,
(maximize speed) and to remain close to the middle of the road (maximize security).
We set ty = 0 and t. = 10 and in order to reduce the computational effort, the control
u is approximated by five equidistant break points (u(0) = u,... u(10) = ud),
between which we interpolate linearly. This leads to the following MOCP with
J:R® x R? — R?,

min J(u?, p) = < = Jyo v(t) - s((t)) dt )

e d(x(t), Xoia)? dlt
s.t (3.15) (3.16)
d(l‘(t)7 szd) < dmaxs t e (to,te ,
w < u(t) < uy, t € (to, te],
z(to) = p,

where the first objective is the integral of the velocity v = (v, v,) in street direction
s(x(t)) (i.e. parallel to the centerline) and d(x(t), X,,:q) is the distance between the
vehicle position and the closest point on the centerline X,,,;4 (denoted as a dashed line
in Figure 3.14 (e)). By J(u?, p) we denote the reduced cost functional as introduced
in Section 2.2.1 with additional parameter dependency. The parameter enters in the
initial condition y,, where the initial position x(ty) is varied.

Both objectives in (3.16) require the computation of the minimal distance be-
tween the current position x(t) and the centerline &,,;4 (In the first objective, this is
necessary to determine the orientation s(z(t)) of the centerline). Hence, the model
is not differentiable and Theorem 3.2.1 is not applicable. Nevertheless, one may
assume that on a track without strong curvature, this does not result in conver-
gence issues since the objectives show no discontinuities with respect to the control
variable. This can be observed numerically, see Figure 3.14 (d), where the variation
of three different Pareto optimal solutions depending on the initial position x(t) is
shown. The trajectories indicate that the assumption on the continuity of the MOCP
with respect to the initial position is justified in this situation.

Pareto sets for varying initial positions are shown in Figure 3.14 (a) and in (b),
they are compared to the predictor step computed with Algorithm 3.4. We see that
the predictor points agree remarkably well with the actual Pareto set as do their
images with the Pareto fronts (cf. Figure 3.14 (c¢)) such that convergence can be ob-
tained faster than by solving each problem individually. Furthermore, using the pre-
dictor step as a stand-alone algorithm in a real-time setting allows for a quick predic-
tion of Pareto sets which have not been computed beforehand.

We observe in Figure 3.14 (c) that the Pareto set possesses gaps close to the
maximal driven distance. This is very likely due to the number of sampling points
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Figure 3.14: (a) The Pareto sets of (3.16) for varying initial positions z(tg) (Pro-

jection onto the first three variables (ué, u$,ud)). (b) Points computed

in the prediction step by Algorithm 3.4. (c) Pareto fronts correspond-
ing to (a) and function values of the predictor points (black dots). (d)
From left to right: Pareto points corresponding to the minimum of Js,
an intermediate solution and the minimum of J;, respectively. The
color corresponds to the parameter values in (a) — (¢). (e) Vehicle tra-
jectories corresponding to the controls shown in (d). The solution for
x1(to) = 59 is omitted for better visibility.
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Figure 3.15: (a) The Pareto sets of (3.16) for varying initial positions z () (Projec-
tion onto the first three variables (ué,u$,u4)). (b) Vehicle trajectories
corresponding to three different optimal compromises (similar to Fig-
ure 3.14 (d)).

in the recovering algorithm. These solutions correspond to trajectories which are
close to the boundary of the road (cf. Figure 3.14 (e)). This introduces numerical
challenges for the set-oriented approach. When varying the initial position in x
direction, this effect is even more significant, see Figure 3.15.

Both in Figures 3.14 and 3.15, we see that some trajectories close to the bor-
der of the road violate the constraints at several points. The reason is that these
trajectories correspond to the center points of the boxes (cf. Figure 3.14 (d)) which
do not necessarily satisfy the constraints. Boxes are only discarded if every sample
point within violates the constraints. Consequently, this issue can be resolved by
refining the box covering or alternatively, by selecting a point within the box which
is feasible.
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4 Solving Many-Objective Optimization
Problems via Subsets of Objectives

In this chapter the question how we can reduce the computational effort by exploit-
ing the structure of Pareto sets in the presence of a large number of objectives is
addressed. Many objectives are equally important in a wide range of applications.
In the transportation example from the introduction, one wants to reach a desti-
nation as fast as possible while minimizing the energy consumption. Ideally, this
should be achieved while providing an optimal comfort and maintaining maximal
security at the same time.

The number of objectives considered in multiobjective optimization problems has
grown. While two to three objectives were of interest in many applications in the
beginning, this number has increased to four to twenty in recent years [FPLO5].
This poses additional difficulties such that a new branch of research denoted as
many-objective optimization has evolved, see e.g. [[TN0§| for a short and [VBB14]
for a more detailed review. The additional difficulties mainly stem from the curse
of dimensionality. The Pareto set is typically a (k — 1)-dimensional object (where
k is the number of objectives) and hence, each additional objective increases the
dimension by one so that the computational effort grows exponentially (see also
[KLO7, ITNO8, SLC11]). Due to the complexity, computing the entire Pareto set
of many-objective optimization problems has only been treated by evolutionary ap-
proaches until now, see e.g. [PF07, BZ11, YLLZ13]. Alternatively, there exist de-
terministic methods for interactively computing only those parts of the Pareto set
which are of immediate interest [MS17, CLS16].

In order to reduce the complexity, one can try to reduce the number of objectives
in the problem. Similar to the approach described in this chapter, such a reduction
has been addressed in [SDT*13] in the context of evolutionary computation. The
approach therein is to identify objectives of minor interest (e.g. via POD) and neglect
them. In contrast to that, here the hierarchical structure of Pareto sets is exploited,
meaning that considering a subset of objectives results in a subset of the Pareto
set of the original problem. By this approach a skeleton of the desired set can
be computed very efficiently by solving a small number of MOPs with a reduced
number of objectives. This is particularly useful when function evaluations are
expensive (see e.g. Chapter 5 for PDE-constrained problems) or when theoretical
results rely on methods that are restricted to a small number of objectives. This is for
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4 Solving Many-Objective Optimization Problems via Subsets of Objectives

example the case in [BBV16, BBV17] where bicriterial MOPs constrained by PDEs
are solved using reduced order modeling and error control. The remainder of the
chapter is structured as follows. In Section 4.1, we will investigate the hierarchical
structure of Pareto sets and prove that in the unconstrained case, the boundary
of the set of substationary points is the union of the sets of substationary points
of all subproblems with k& — 1 objectives. The results are utilized to develop a
multiobjective version of the e-constraint method in Section 4.2. Numerical examples
are then presented in Sections 4.3 and 4.4.

Large parts of this chapter are also contained in [DPG] to which the author has
made substantial contributions.

4.1 The Hierarchical Structure of Pareto Sets

In this chapter we will address both constrained and unconstrained MOPs as intro-
duced in Chapter 2:

i . MOP
min J(u) (MOP)
In order to exclude degenerate cases, the following rank assumption for the gradients
of J is introduced:

Assumption 4.1.1. Let u* be a Pareto optimal point of (MOP). For every k > 2,
the Jacobian matriz J (u*), i.e.

VJl(’U,*)T
J(u) = : , (4.1)

VJk('u,*)T
satisfies the rank condition
rank(J' (u*)) =k — 1.

Remark 4.1.2. Note that this assumption is not restrictive. For a point w which is
not substationary, J(w) generally has full rank and a direction can be computed in
which all objectives are descending (cf. (QOP) on p. 14). This can be repeated until
a point w* is found where — in the unconstrained case — the rank of J' (u*) is reduced
according to the optimality condition (KKTu). The situation rank(J'(u*)) < k — 1
can only occur if multiple gradients are linear dependent or equal to zero, i.e. if
two objectives are non-conflicting. In this case, one can simply neglect one of these
objectives and the above assumption is again satisfied for the reduced problem.
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4.1 The Hierarchical Structure of Pareto Sets

Many solution approaches such as set-oriented methods can in theory also deal
with a large number of objectives (i.e. £ > 4) without any modifications to the
algorithms. However, in practice the computational effort grows exponentially with
the number of objectives. Consequently, it would be beneficial if we could gather
information about the Pareto set by considering only subsets of objectives. In fact,
we will start with the following simple observation:

Lemma 4.1.3. Consider a constrained multiobjective optimization problem of the
form (MOP) with k objectives where both the objectives and the constraints are
at least once continuously differentiable. By considering only s objectives, where
1 < s <k, we obtain (without loss of generality) the subproblem

min J (%) = min : , (MOP)
ucl ucld
Jo(w)
for which the following holds:

(a) The set of substationary points 7357sub of (M/O\P) is a subset of the set of sub-
stationary points of (MOP), i.e. Pssub € Pssub;

(b) The Pareto set Ps of (M/O\P) is a subset of the Pareto set of (MOP), i.e. Pg C
Ps.

Proof. (a) A substationary point u* of (M/O\P) has to satisfy condition (KKT).
Hence, there exist weights a* € R® with a* >, 0 and ) ;_; o = 1 such that

Za*w +th +Zutht

h;(u*) =0, =1,...,m,
gi(u) <0, t=1,...,1,
pege(u') =0, t=1,....1,
e >0, t=1,...,1

Consequently, when considering additional objectives, the corresponding weights can
be set to zero such that (KKT) is also satisfied for the problem with an increased
number of objectives.

Part (b) is a simple consequence of the non-dominance property (cf. Definition 2.1.5).
The Pareto set of (1\/[/6P) consists of all points which are non-dominated with respect
to the objectives 1 to s. Adding additional objectives will hence not affect the non-
dominance property of these points but only enlarge the Pareto set by points that
are non-dominated with respect to the additional objectives. O]
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A result of Lemma 4.1.3 is that by solving a subproblem (M/O\P) of (MOP), we
can compute a subset of the Pareto set. Due to the exponential increase in the com-
putational complexity with respect to the number of objectives, these subproblems
can be solved considerably faster while giving valuable insight into the original prob-
lem (MOP). In fact, it can be expected that solving a small number of subproblems
is still faster than solving the original problem. Generally one can formulate (';f)
subproblems which results in k& problems for the case s = k— 1 (i.e. when solving all
problems where one objective is omitted) or in (’;) = 2k(k — 1) bi-objective prob-
lems (e.g. 10 problems for & = 5). Note that part (b) of the lemma is even valid for
non-differentiable problems.

The above observation in itself can be very helpful in saving computational time.
However, additional insight into the structure of the set Psgp can be gained in the
unconstrained case when the objective functions satisty the additional rank condition
from Assumption 4.1.1. In this situation, each subset Pgqup € Pgeub is contained in
the boundary of Pg s, which is stated in the following theorem.

Theorem 4.1.4. Consider the general unconstrained multiobjective optimization
problem (MOP) with U = R™, and let all objectives be twice continuously differen-
tiable.

Let u* be a substationary point of the corresponding subproblem (M/O\P) with
s = k — 1 and assume that H (with H according to (4.4)) has full rank in u*
such that M = H *(0) is a (k — 2)-dimensional differentiable submanifold of R™**
in a neighborhood around (u*,a*) (according to Theorem 2.1.15, but with k — 1
objectives). Furthermore, let Assumption 4.1.1 hold.

Then w* s contained in the boundary OPseub of the set of substationary points
PS,sub Of (MOP)

Proof. Since u* is a substationary point of (M/O\P), the substationarity with respect
to (MOP) follows directly from Lemma 4.1.3. Without loss of generality, assume
that the kth objective has been neglected. Denote by /T/l\u* C R™ the tangent space
of Pgeub in u*. For every direction v € R"\ M, all objectives J;, i = 1,...,s, are
increasing. If we now set v = V.Ji(u*), then Ji is also increased along v. Due to
the rank condition, v ¢ /\//\lu*. Hence, there is at least one direction v in which all
objectives are increasing and u* lies on the boundary of Pggyp. O

The situation of Theorem 4.1.4 is visualized in Figure 4.1. While the optimal-
ity condition (KKTu) is not satisfied outside the set of substationary points (Fig-
ure 4.1 (a)), there exists a unique solution with a* >, 0 in the interior of Pgeup
(Figure 4.1 (c)). All points on the boundary of Pg g, satisfy (KKTu) for the orig-
inal problem as well as for a subproblem with s < k (Figure 4.1 (b)). Due to the
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VJs ()

() (b)

Figure 4.1: Sketch of an MOP with three objectives. (a) There exists no convex
combination of the gradients satisfying (KKTu) outside Pgqup. Instead,
the union of the half spaces defined by the gradients defines the cone of
descent directions for all objectives (shown in red). (b) On the boundary
of Pgsub, a subset of the gradients satisfies the KKT conditions, here
for the objectives 1 and 2. (c) In the interior, there exists a convex
combination of the gradients satisfying (KKTu) but here, all values of
the corresponding weight vector a* are larger than zero.

rank condition, there exists a unique weight vector a* € R* for each u* € R™ such
that
le(u*)T
o T (u) =o' : =0, (4.2)

VJk(u*)T

and we can deduce that at least one entry of a* has to be zero on the boundary of
Pssub- For illustration, let us consider the following example:

Example 4.1.5. Consider an MOP with J: R? — R3:

—6u? + ui + 3u’
min J(w) = min | (u; — 0.5)% + 2(ug — 1) | . (4.3)
uek Y\ (g — 12 + 2(uy — 0.5)?

The norm of the descent direction q(u), determined by solving the auziliary problem
(QOP), is shown in Figure 4.2 along with the values for the weights . Similar
to Example 2.1.12 on p. 14, we observe continuous variations of & within Pssub
(bounded by the white iso-lines) while outside jumps may occur. Moreover, one
component of & is always zero on the boundary of Pssu such that these points are
also substationary for the subproblem where only the objectives with non-zero weights
Q; are considered.

A further extension of Theorem 4.1.4 would be to show the other direction,
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Figure 4.2: (a) Norm of the descent direction g(u), where the boundary of the set of
substationary points is marked by the white iso-line. (b) — (d) The cor-
responding KKT weights a;, as and as, respectively. On the boundary
of Pgeub 0ne component is always zero.

i.e. that for every substationary point of (MOP) which is located on the bound-
ary, at least one component of a* has to be zero. This way, the entire boundary
could be computed by taking the union of all subsets with & — 1 objectives. This
is difficult to prove since the boundary of Pggup is in general not smooth (cf. Fig-
ure 4.5 on p. 91). However, when introducing additional assumptions, the desired
result can be achieved. The more general case will be considered afterwards in
Remark 4.1.8.

First we assume — according to the manifold conditions of Theorem 2.1.15 — that
the objective functions are twice continuously differentiable and that the Jacobian

matrix H of 3
_( 2in aiVi(u)
Hu, o) = ( Zf:1 a1 (4.4)
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satisfies the full rank condition everywhere. For an optimal tuple (u*, a*) we have
H(u*, a*) = 0 which is identical to (2.10) for the unconstrained case. Hence, the set
of substationary points M = H '(0) is a differentiable manifold. By the Implicit
Function Theorem, Equation (4.4) defines a mapping

&AM, (4.5)
where A*~1 is the k—1-dimensional simplex excluding the boundary:

k—1
AF-1 — {a* eRM Y ar <1, a" >, 0} ,
i=1

and M is the manifold of substationary points. The simplex represents the first k—1
components of the weight vector a* which can be chosen freely. The last component
is then defined as o =1 — Ef:_ll a;. Note that the components of a* are strictly
greater than zero in Theorem 2.1.15 and hence, ® is restricted to the interior of the
simplex. This is due to the fact that technical assumptions which make the Implicit
Function Theorem applicable are violated, i.e. that an open neighborhood around
(u*, ) has to exist. However, if we additionally assume that ® is a diffeomorphism,
the mapping can be extended to the closure

k-1
AF—1 — {a* e RF! Zoz;‘ <1, o >, 0},

=1

which will be shown in the following lemma.

Lemma 4.1.6. Consider the general unconstrained multiobjective optimization prob-
lem (MOP) withUd = R"™ and let J be twice continuously differentiable. Assume that
H' (with H according to (4.4)) has full rank everywhere such that M = H *(0) is a
(k —1)-dimensional differentiable submanifold of R"** according to Theorem 2.1.15.
Moreover, assume that the mapping ® : A*1 — M (Equation (4.5)) is a diffeo-
morphism.

Then @ can be continuously extended to a homeomorphism on the closure ® :
AF-1 5 M.

Proof. We have to show that ® is bijective and that both ® and ®-! are contin-
uous. Since ® is a diffeomorphism, the inverse ®~! is differentiable which implies
uniform continuity. The simplex A*~1 is complete and hence, according to [DMP03,
Proposition 1.5.10], there exists a unique continuous extension &1 of & to the
closure M of the manifold M: For every 3 € M there exists a Cauchy sequence
(B™) with 8™ € M, n=1,2,..., and lim,_,o(8™) — 3. By uniform continuity,
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(®1(B™)) is also a Cauchy sequence which results in

&' (lim (8)) = lim (&~ (8")) = & 1(3).
n—oo n—oo
From this we obtain completeness of M and consequently, ® can be extended to ®
in the same way as ® ! to ®-1: For every a* € A*~1 there exists a Cauchy sequence
(™) with a™ € AF1 n=1,2,..., and lim, (™) — a* which results in

®(lim (™)) = lim (®(a™)) =: B(a*).

n—oo n—o0

We have ®1(®(a*)) = 1V a* € AF~! 50 that it remains to show that @ is bijective
on the boundary as well. This again follows from uniform continuity:

T(@(a) = & (@(lim ()
=& (lim (@) = im (@(@(a) = 1.

]

Using Lemma 4.1.6, we can now state the main result of this chapter, i.e. that
the set of substationary points is bounded by the union of the sets of substationary
points of all subproblems with £ — 1 objectives:

Theorem 4.1.7. Consider the general unconstrained multiobjective optimization
problem (MOP) with U = R"™ and let J be twice continuously differentiable. As-
sume that H (with H according to (4.4)) has full rank everywhere such that M =
H(0) is a (k—1)-dimensional differentiable submanifold of R"** according to The-
orem 2.1.15. Moreover, assume that the mapping ® : AF=1 — M (Equation (4.5))
18 a diffeomorphism.

Then the k sets of substationary points of the corresponding subproblems (M/O\P)
with s = k—1 form the boundary of the set of substationary points Pgsuw of (MOP),

. kA
1.€. Uizl PS,sub,i = a,PS,sub-

Proof. The proof follows directly from Theorem 4.1.4 and Lemma 4.1.6. According
to Theorem 4.1.4, the sets Pgqub,i lie on the boundary of Pg gy and not in the inte-
rior. Consequently, the corresponding weight vectors a* lie on the boundary of the
simplex AF—1 (where at least one entry of a* is zero). Since ® is a homeomorphism
according to Lemma 4.1.6, the boundary of A*-! is mapped to the boundary of
M. O

Remark 4.1.8. The assumption on ® being a diffeomorphism is strong in the sense
that this excludes Pareto sets where the Pareto front is non-convex and in particu-
lar disconnected Pareto sets. Since ® is bijective, each point (af,...,af_;) has to
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4.1 The Hierarchical Structure of Pareto Sets

uniquely define a point u* on Pssuw. This does not hold in the non-convex setting
(see e.g. Figure 2.4 on p. 20) whereas under certain conditions, Pseus is a manifold
nonetheless, cf. Remark 2.1.16 on p. 18. However, the result that Pseu s bounded
by the union of the subsets 73575ub7i fori=1,...,k can be observed in other cases as
well, see e.g. Figure 4.2 in Example 4.1.5.

If Pssub 15 a manifold, then so is the interior of the subsets ﬁS,sub,i with k — 1
objectives. According to Theorem 4.1.4, these subsets lie on the boundary of Pgssub-
Hence, all points on the boundary are contained in (k — 2)-dimensional manifolds
except for those where more than one entry of o is zero. However, these points
are contained in a set of measure zero with respect to the boundary. Consequently,
the following theorem holds almost everywhere on the boundary of Pssu. It can be
interpreted as the “opposite direction” of Theorem 4.1.4. There, a solution of the
subproblem (MOP) has to lie on the boundary of Pssup whereas here, a solution of
(MOP) which lies on the boundary has to have an associated weight o where at
least one entry is zero.

Theorem 4.1.9. Consider the general unconstrained multiobjective optimization
problem (MOP) with U = R™ and let J be twice continuously differentiable. As-
sume that H (with H according to (4.4)) has full rank everywhere such that M =
H '(0) is a (k — 1)-dimensional differentiable submanifold of R"** according to
Theorem 2.1.15.

Let u* be a substationary point of (MOP) which is contained in the boundary
OPssup and assume that the boundary is a (k — 2)-dimensional differentiable sub-
manifold of R™* in a neighborhood around (u*, ). Then at least one component
of the corresponding weight vector o™ is zero.

Proof. Since u* is located on the boundary of Pggp, no gradient VJ;(u*), i =
1,...,k can point to the interior of Pggp. Otherwise, there would exist a descent
direction opposite the inwards pointing gradient which would lead to a decrease of
the corresponding objective value. Hence, the point w* would not be located on
the boundary. Consequently, all gradients either have to lie in the tangent space
My C R"™ of OPg ey (which is also (k — 2)-dimensional) or point outwards of Pg p.

Due to the rank assumption 4.1.1, maximally & — 1 gradients can lie in /T/l\u*.
The substationarity of w* implies that there exists a convex combination to zero
when appropriately choosing the corresponding entries of a*. Since no gradient
is pointing inwards, there exists no convex combination which takes the outwards
pointing gradients into account and yields zero at the same time. Consequently, the
entries of a* corresponding to vectors not contained in M, have to be zero. [

Corollary 4.1.10. The results of Theorems 4.1.7 and 4.1.9 also hold in the situation
where the set of substationary points is disconnected if the assumptions are satisfied
everywhere in the respective parts.
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4 Solving Many-Objective Optimization Problems via Subsets of Objectives

Theorems 4.1.7 and 4.1.9 imply that the set of substationary points is indeed
structured hierarchically. When neglecting one objective, the resulting set of sub-
stationary points lies on the boundary of the solution set to the original problem.
This can be repeated until s = 1 and we obtain the scalar minima of Jy, ..., Ji. If
we want to address an MOP with four conflicting objectives, for example, the set is
a three-dimensional manifold. It is bounded by four two-dimensional surfaces, each
of which is again bounded by three one-dimensional line segments. Finally each of
these line segments is bounded by two scalar minima, see Figure 4.5 in Section 4.3
for an illustration.

The hierarchical structure can be utilized to efficiently solve many-objective op-
timization problems. As a starting point, the Pareto set can be characterized by
its boundaries. If we are interested in computing interior points, these boundaries
can be used in continuation approaches [Hil0l, SWOBDI13, MS17] or evolution-
ary strategies [CLV07] as well-spread and already substationary initial guesses. An
alternative approach based on the e-constraint method and directly utilizing the
hierarchical structure is presented in the next section. Numerical examples illus-
trating the concept as well as the savings in computational time will be shown in
Section 4.3.

4.2 A Multiobjective Extension of the ¢-Constraint
Method

The results from Section 4.1 imply that it is numerically beneficial to gather infor-
mation about (MOP) by solving cheaper subproblems (MOP), and we will see in
Section 4.3 that this results in a remarkable speed-up. However, when we are inter-
ested in Pareto optimal solutions in the interior of the set of substationary points,
we have to make adjustments to the subproblems that we solve. The approach
presented here is inspired by the well-known e-constraint method (cf. Section 2.1.4),
where the following scalar problem is obtained by transforming all but one objectives

into constraints:
min J;(u)
ueld (2.13)
s.t. Jj(’U;)SEj, jzl,...,k', j#l

This way, a (locally) Pareto optimal point is computed for every feasible constraint
e ¢ RF 1L,

Following this idea, we reformulate (MOP) in a similar way. We set s = k — 1,
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4.2 A Multiobjective Extension of the e-Constraint Method

(d)

Figure 4.3: The Pareto set ((a) and (c)) and Pareto front ((b) and (d)) of exam-
ple (4.8) approximated by the multiobjective e-constraint method. The
Pareto set and Pareto front of the original problem are shown in gray

and for the two-dimensional subproblem with €5 = co and €; = —o0 in
blue. In (a) and (b), the solution to Problem (4.6) with €5 = 12 and
€3 = —oo is shown in red. In (c) and (d), €3 = 12 and e; = 10 which

yields additional Pareto optimal points. However, these are infeasible
due to the second constraint in Problem (4.7).

thereby neglecting one objective, and then introduce an additional constraint:

) Jl(’ll,)
LA
T (4.6)

s.t. Jk(’ll,) S Ek,

where J : i — R¥1 and &, € {RUoo} is an upper bound!. In the first computation,

'Note that since we are interested in interior points instead of points on the boundary in this
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we set €, = 0o0. The solution to (4.6) is thus a subset of the Pareto set according to
Lemma 4.1.3. In the unconstrained case, this set lies on the boundary of the Pareto
set if the conditions of Theorem 4.1.4 are satisfied. In the next iteration, we decrease
€, below the maximal value of J, and hence compute another subset. Points with a
lower value in J; need to have increased values in at least one other objective and
hence, they were dominated in the previous computation. By decreasing €, in each
loop, we can thus proceed and compute different subsets of the Pareto set in every
iteration, see Algorithm 4.1 below.

However, this leads to the problem that we compute parts of the Pareto set
multiple times, see Figure 4.3 (a) and (b), where the blue and red lines show solutions
to (4.6) with different values for €. By decreasing €, parts of the previous solution
are rendered infeasible and additional points are now Pareto optimal. However, as
only parts of the previous solution are infeasible, the remaining part is computed
twice. This can be circumvented in two different ways. On the one hand, we
could start with a previous solution, remove all points that are infeasible due to
the new constraint value and then proceed with a continuation algorithm (see also
Remark 3.2.3 on p. 70). On the other hand, we can introduce a lower bound ¢, and
thereby ensure that the different Pareto sets are disjoint:

Ji(u)
min j(u) = min :
ucel ucel
Js(u) (4.7)
s.t. €L S Jk(u) S Ek,

u satisfies the optimality conditions of (MOP).

Due to the lower bound ¢, additional points can be optimal that are not part of the
original Pareto set, see the green lines in Figure 4.3 (c) and (d). These have to be ex-
cluded from the solution by introducing the second constraint which can be realized
by verifying the optimality condition of the full problem after the computation of the
Pareto set. Both approaches are formalized in Algorithm 4.1, where alternative or
different steps for the second approach are written in brackets.

Due to the exponential increase in computational effort with the number of ob-
jective functions and the quadratic scaling of non-dominance tests, this approach
can help to significantly reduce the computing time. Moreover, a further increase in
computational efficiency may be achieved by interpreting more than one objective
as constraints. This increases the number of MOPs to be solved but reduces their
respective complexity. For the case that £ — 1 objectives are treated as constraints,
we obtain the classical e-constraint method. Note that using this approach, one has
to take into account that additional constraints can result in MOPs that are more

section, we can consider additional constraints, i.e. u € U C R"™.
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Algorithm 4.1 (Multiobjective e-Constraint Method)
Require: ¢;,¢, € R, Aee R, i =1
1: Set €, =00 and ¢, = —o0
2: Compute Pé?gub by solving problem (4.6) (problem (4.7))
3: while P{_}) # 0 do
4: Identify maximum value Ji max of Ji from 73;1;”18
) Set € = Jk,max — Ae
6 (Set €, = & — Ae¢)
7: Compute Péz;ub by solving problem (4.6) (problem (4.7))
8
9

Seti=17+1
: end while

difficult to solve as has been pointed out for the scalar e-constraint method (see
e.g. [Ehr05]).

4.3 Numerical Examples

In order to demonstrate the significant decrease in computational effort, the con-
cepts developed in Sections 4.1 and 4.2 will now be applied to several academic
examples and one example from industry. All solutions have been computed using
the sampling algorithm (Algorithm 2.3). In all computations the configuration of
the algorithm (i.e. the initial box and the sampling) has not been changed within
a problem. The increase in computational efficiency is therefore exclusively due to
the reduced number of objectives in the subproblems. Moreover, it should be men-
tioned that the above considerations do not rely on the choice of a specific algorithm.

As a first example, let us consider the objective function J : R?® — R3:

(Ul — 1)4 + (Ug — 1)2 + (U3 — 1)2
min J(u) = min (up + 1)+ (ug + D) + (ug + 1)* | . (4.8)
uek YN (g = 12 (g + 1)2 4 (ug — 1)

The Pareto set and corresponding front of (4.8) are shown in Figure 4.4. The Pareto
set is obviously structured hierarchically. The two-dimensional set of the original
problem is bordered by three edges, the Pareto sets of the corresponding subprob-
lems. These are again bordered by the respective minima of the two considered
objectives. Solving all three two-dimensional subproblems in total requires only
25% of the time for solving the problem with 3 objectives.
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(a) (b)

Figure 4.4: The Pareto set (a) and Pareto front (b) of example (4.8). The solution
of the three-dimensional problem is shown in gray, the two-dimensional
subproblems are colored in red, blue and green, respectively, and the
scalar minima are black.

The second example is an MOP with four objectives, i.e. J : R? — R*:

PR

uy +1)% 4 (up + 1)* + (us — 1)

min T = | (= 12 4+ 1) + (g 1)° (49)
(w1 4+ 1)% + (ug — 1)* + (uz + 1)?

The solution to this problem is shown in Figure 4.5, where again the hierarchical
structure becomes visible. The three-dimensional Pareto set is bounded by four
two-dimensional surfaces and these are again bounded by three edges each. The
reduction of computational effort is even more significant for this problem. Solving
the four three-objectives problems requires in total only approximately 2.3% of the
time needed for solving the original problem whereas the six bi-objective problems
require only approximately 0.04% of the time. This is a speed-up by a factor of over
2200.

If we want to exploit the hierarchical structure when computing interior points
of the Pareto set, we can apply the multiobjective e-constraint method presented
in Section 4.2. We again consider example (4.8) and, according to Algorithm 4.1,
set €, = oo and ¢, = —oo. This leads to the computation of the Pareto set for the
first two objectives, cf. Figures 4.3 and 4.6. The maximal value for J3 is approx-
imately 20 and thus, we consecutively solve problem (4.7) with €, = 18,16, 14, ...
and ¢, = 16,14,12, ..., respectively. The result is shown in Figure 4.6, where the
solutions to (4.7) with varying constraints are depicted in blue and the solution to
the original Problem is shown in gray for comparison. Observe that the solution
of the subproblems is dotted in some parts. This is due to numerical reasons and
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-

()

Figure 4.5: (a) The Pareto set of example (4.9). (b) The union of the Pareto sets
of the four subproblems with three objectives (shown in different colors)
forms the boundary of the original Pareto set. (¢) The Pareto sets of the
six subproblems with two objectives are shown in blue.

the box covering used in the sampling algorithm. In the subdivision procedure, it
is often difficult to accurately capture the constraints with a reasonable number of
sample points. This can result in the elimination of boxes in the earlier stages of
the execution since relatively large boxes are identified as infeasible although this
may not be true for all subsets of these boxes.

Let us now compare the efficiency of the two different problem formulations (4.6)
and (4.7). In the first approach, solving ten 2D problems takes in total approx-
imately 18.3% of the time required for solving the 3D problem. In the second
approach, the time for solving the 2D problems is again reduced by a factor of
roughly three, resulting in 6.2% of the time required for solving the 3D problem.
However, in this case we additionally have to evaluate the optimality condition of

91



4 Solving Many-Objective Optimization Problems via Subsets of Objectives

Figure 4.6: (a) The Pareto set of example (4.8) approximated by the multiobjective
e-constraint method, i.e. by a sequence of subproblems (4.7) with varying
constraint values €5 and €;. The solution to the original problem is shown
in gray. (b) The corresponding Pareto front.

Table 4.1: Computational savings due to reduction of the number of objectives.

Problem k | s | # Subproblems | CPU time required in %
(4.8) 3 |2 3 25
(4.9) 4 13 4 2.3
(4.9) 42 6 0.04
(4.10) 14| 2 01 7
(4.8) (e-constr. (4.6)) | 3 | 2 10 18.3
(4.8) (e-constr. (4.7)) | 3 |2 10 10.7

the original problem (the second constraint in (4.7)) which in total results in ap-
proximately 10.7% of the time required for solving the 3D problem. An overview of
the computational savings is given in Table 4.3.

4.4 Application: Industrial Laundry

As a last example, we consider an application from industry which has been investi-
gated within the leading edge cluster Intelligent Technical Systems OWL (it’s OWL).
In an industrial laundry, large amounts of laundry are processed every day. This
results in a considerable demand for resources, namely energy, water and cleaning
detergents, and it is advisable to utilize optimization and optimal control techniques
to control such a laundry in an intelligent manner (see e.g. [PGHT16]). An impor-
tant part in laundering is the cleaning process. Here, the optimal configuration
depends on the type of laundry and the type of contamination. In 1959, Herbert
Sinner [Sin59] developed a concept for laundering which is still applied in modern
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(a) (b)

Figure 4.7: (a) The Pareto set of problem (4.10) for the parameters temperature,
amount cleaning detergents and washing time. (b) Projection of the
Pareto front on the objectives cleaning of fat, cleaning of wine and cost.

laundries. It states that in order to achieve satisfactory cleaning, the four influ-
ential factors temperature (u;), chemistry (i.e. the amount of cleaning detergents,
ug), washing time (uz) and mechanics (i.e. the rotational velocity of the laundry,
uy) have to be chosen in the right way. Based on this, the process of cleaning
different types of contamination can be approximated by a quadratic model using
experimental data. This has been done for thirteen different types of contamina-
tion (e.g. fat, wine, curry, oil, or blood). As a fourteenth objective, we consider
the cost for the cleaning process which is simply modeled as a combination of the
prizes for heating and for the washing detergents, i.e. Ji4(u) = piu; + @ous. In
the optimization, we neglect the influence of mechanics (i.e. u4) since all objectives
are non-conflicting in that regard. This leads to the following overall model with
J:R3 — R":
u' Aju+ bl u+

min J(u) = min : ) 4.10
uck3 () welkd | u! Apzu+ blau+ cg3 (4.10)
P1uU1 + PUsg

where the coefficients A; € R313, b ¢; € R3, ¢ = 1,...,13, are determined by
experiments. Since we have fourteen objectives and only three parameters, the
Pareto set does not possess the additional structure required for Theorems 4.1.4
or 4.1.7 to be applicable. However, we can still compute subsets of the Pareto
set by considering subsets of objectives, cf. Lemma 4.1.3. When considering two
objectives only, this leads to 91 bi-objective problems in total. Nevertheless, the
computational saving is approximately 93% compared to the original problem. The
Pareto set and the Pareto front of the original problem are shown in Figure 4.7 in
gray and the unions of the 91 Pareto sets and Pareto fronts with two objectives
in blue. We see that a well-spread approximation of the original set is obtained.
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However, some parts are covered more coarsely than others which could be fur-
ther improved by applying the e-constraint method, solving additional subproblems
(e.g. with three objectives) or by subsequently applying continuation or evolutionary
algorithms.

94



5 Multiobjective Optimal Control of PDEs
Using Reduced Order Modeling

This chapter addresses the third main source of large computational cost: the com-
plexity of the model itself. The goal therefore is to exploit structure in the system
dynamics to achieve a significant reduction of the computing time. We are going
to consider control problems where the system dynamics is described by PDEs.
There exists a large variety of systems that can be described by PDEs, from fairly
simple problems such as the linear heat equation up to highly non-linear fluid flow
problems at large Reynolds numbers governed by the Navier-Stokes equations. The
typical procedure to numerically solve a PDE is to introduce a discretization both
in space and time. The spatial domain is discretized by a numerical mesh based
on a finite difference, finite volume or finite element method (see e.g. [FP02] for an
introduction related to fluid dynamics). This transforms the infinite-dimensional
into a (potentially very large) finite-dimensional system of coupled ODEs which is
solved using time stepping schemes such as Runge-Kutta methods. With increasing
computational capacities, the size of problems that can be solved has tremendously
increased during the last decades. However, many technical applications result in
problems that are still very difficult to solve or even infeasible. This is for example
the case when one wants to directly solve the Navier-Stokes equations for the flow
in an internal combustion engine or around an entire aircraft. Consequently, solving
MOCPs constrained by PDEs is a great challenge.

In order to reduce the computational effort, the original model can be replaced
by a reduced order model (ROM) with decreased complexity. As discussed in Sec-
tion 2.3.3, there are three different approaches for incorporating ROMs in an opti-
mization routine:

(1) creating a single ROM which sufficiently accurately approximates solutions for
a wide range of controls,

(2) trust region methods where the improvement obtained with a ROM is evaluated
by comparison with high fidelity solution,

(3) error analysis based on the truncation error of the POD basis.

In this chapter the three above-mentioned approaches to reduced order model-
ing based on POD are addressed and combined with multiobjective optimal control
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methods in order to solve PDE-constrained MOCPs. Section 5.1 serves as an intro-
duction and a motivation for the following chapters. There, a flow control problem
based on the Navier-Stokes equations is considered and two different approaches
how reduced order modeling and multiobjective optimal control can be combined
in order to efficiently solve these otherwise infeasible problems are compared. Due
to the computational effort and the lack of error bounds, a single ROM is com-
puted in advance. The results are compared to the high-fidelity solution which
shows good agreement but nonetheless strongly motivates more advanced approaches
where convergence can be guaranteed. To this end, the trust region approach de-
veloped by Fahl [Fah00] will be extended to multiple objectives in Section 5.2 by
combination with the reference point approach presented in Section 2.1.4. Finally,
the subdivision algorithm presented in Section 2.1.5 will be extended to inexact
function and gradient values in Section 5.3. In combination with error estimates
for POD-based reduced order models, this paves the way for set-oriented multiob-
jective optimal control of PDEs, and a problem of this type will be addressed in
Section 5.4.

5.1 Multiobjective Optimal Control of the
Navier-Stokes Equations

Flow control is a very active area of research (see e.g. [BN15] for an overview). Due to
the wide spectrum of potential applications (optimal mixing, drag reduction, HVAC
(Heating, Ventilation and Air Conditioning), etc.) and the progress in computational

capabilities, a lot of research is nowadays devoted to direct control of the Navier-
Stokes equations [Lac61, GeH89, BMTO01, Bew01, KBO7].

However, since directly addressing the Navier-Stokes equations is a computational
challenge, reduced order modeling plays an important role. Starting with Sirovich
[Sir87], many researchers have investigated ROMs based on POD and Galerkin pro-
jection in order to improve their capability of accurately predicting the dynamical be-
havior, both on limit cycles and during transition phases [DKKO91, Rem00, MKO02,
RCMO4, TR06, TR08, CFCA13, XFB*14]. The natural next step after being able
to efficiently predict the dynamics with a ROM is to utilize this in a multi-query
context such as parameter estimation [Lasl4] or optimal control, see e.g. [IR9S,
GPT99, Rav00, IR01, BCBO05] for methods using one fixed POD basis or [Fah00,
WP02, Row05, HV05, BCO8] for adaptive methods where convergence with respect
to the PDE-based solution is guaranteed. Flow control problems with concurrent
objectives have been investigated before (see e.g. [MDL99, NZP04, KHW15]), but
not in combination with reduced order modeling.
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Figure 5.1: Sketch of the domain Q2 C R2 The length is L = 25d, the height
H = 15d, and the cylinder center is placed at (5d, 7.5d).

In this section the approach with one fixed basis will be adopted and combined
with two fundamentally different algorithms for multiobjective optimal control prob-
lems, namely the reference point method (cf. Section 2.1.4) and the sampling algo-
rithm (cf. Section 2.1.5). After introducing the problem formulation, the numer-
ical scheme for obtaining the data and the PDE-based MOCP in Sections 5.1.1,
5.1.2 and 5.1.3, respectively, the ROM procedure for the Navier-Stokes equations
with boundary control is introduced in Section 5.1.4. The adjoint approach uti-
lized for the gradient-based reference point method is presented in Section 5.1.5.
In Section 5.1.6, results are shown and the advantages and disadvantages of the
two approaches are discussed, also with respect to the computational cost. In fact,
it is shown that the different methods strongly differ in their respective efficiency
and that gradient-based approaches have a better performance, provided that the
gradient is approximated with sufficient accuracy. Parts of this section have pre-
viously appeared in [PD15, POBDI15] to which the author has made substantial
contributions.

5.1.1 Problem Formulation

The two-dimensional, viscous flow around a cylinder is one of the most extensively
studied cases of separated flows in general as well as for flow control problems
[GPT99, GBZI04, BCBO05]. In this section the laminar case described by the in-
compressible Navier-Stokes equations at a Reynolds Number Re = Y%@d = 200 is
considered (Re is computed with respect to the far field velocity Y., the kinematic
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viscosity v and the cylinder diameter d):

% + (Y(z,t)- V) Y(x,t) = _Vp(z 1) + év2 Y(x,t), (5.1a)
V- Y(zt) =0, (5.1b)
(Y(z,to), p(z, 1)) = (Yo(), po()) , (5.1c)

for x € Q and t € (tg, ],

where Y € H'((to,t.); L*()) N L*((to, t.); H*(Q)) is the two-dimensional fluid ve-
locity and p € H'(2 x (t,t.); R) the pressure. H* is the standard Sobolev space
W2 (cf. e.g. [HPUUO09]). The spatial domain (cf. Figure 5.1) is denoted by .
Dirichlet boundary conditions (BC) are imposed at the inflow as well as the upper

and lower walls I'p and a standard no shear stress condition [HRT96] at the outflow
I N-

V(@ t) = (Yo, 0) for (z,1) € T'p x (f,t.], (5.1d)
(1) n— é% for (z,1) € Ty x (fo,t.], (5.1¢)

where n € R? is the outward normal vector of the boundary. On the cylinder T,
we prescribe a time-dependent Dirichlet BC such that it performs a rotation around
its center with the angular velocity u(t):

Yiat) — gu(t) ( ‘C(S)isr(lg) ) for (1,1) € Ty % (to, £, (5.1f)

with ¢ according to Figure 5.1. The cylinder rotation u(t) € L*((to,t.); R) serves as
the control mechanism for the flow.

Following [Fah00, BCBO05], the weak formulation of (5.1a) is introduced. Consider
the space V = {1 € H'(Q;R?) | V -9 = 0} of divergence-free test functions. Then
a function Y € HY(Q x (to,t.); R?) which satisfies

(%_tYHY.V) Y,¢> _ (g,v-¢) - Ew} = (V9,9 Y) -~ [(VV) )
(5.2)

for all ¢» € V is called a weak solution of (5.1a). Here, [-] is the boundary integral
(e.g. [Y] = |, Y(x) - ndx) and (-, ) is the inner product for vector-valued quantities
(e.g. (V,VY) = [ >, 0%i/0x;-0Y;/0x; dz). Note that (5.1b) is always satisfied
by design of the test function space V.

98



5.1 Multiobjective Optimal Control of the Navier-Stokes Equations

L

i

]

ma

K
Sed
£

ear

G
S

Lol
KoOER

L
&

AV
7
e

T
s

%y
A
s
i
AR

=

s

R

‘§m
Favas

1

Figure 5.2: (a) FEM discretization of the domain 2 by a triangular mesh (n, =
17048). (b) A snapshot of the solution to (5.1a) — (5.1f) for a non-
rotating cylinder (u(t) = 0), the coloring is according to the velocity
magnitude. The pattern is the well-known von Karmén vortex street.

5.1.2 Numerical discretization

The system (5.1a — 5.1f) is solved with the software package OpenFOAM [JJT07]
using a finite volume (FV) discretization and the PISO scheme [FP02]. Since the
computation of the reduced order model (evaluation of inner products etc.) is based
on the finite element method (FEM), the solution is then mapped to a finite element
mesh with n, = 17048 degrees of freedom (Figure 5.2 (a)). This is done in the spirit
of data driven modeling, where we collect data which does not necessarily have to

be obtained by a numerical method. Finally, the velocity field can be written in
terms of the FEM basis:

Mo = (5 e ) (5.3

where {¢;}7”, are the FEM basis functions and Y4(t) € R*™ are the nodal values
of the two velocity components, the superscript d denoting that this is a quantity
defined on the grid nodes'. All FEM computations are performed with the FEniCS
toolbox [LMW12] using linear basis functions.

For a non-rotating cylinder, i.e. u(t) = 0, the system possesses a periodic solution,
the well-known von Kdrmdn vortex street (Figure 5.2 (b)), where vortices separate
alternatingly from the upper and lower edge of the cylinder. The effect is frequently
observed in nature and is one of the most studied phenomena in fluid mechanics,
also in the context of flow control, where the objective is to stabilize the flow and
to reduce the drag.

'In the following, the nodal values of all quantities will be denoted by a superscript d.
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5.1.3 Multiobjective optimal control problem

In many applications, the control cost is of great interest. This is immediately clear
when the goal of the optimization is to save energy such that the control effort has to
be taken into account. In scalar optimization problems, this is often done by adding
an additional term of the form j ftze u?(t) dt to the cost functional where § € Rxg is
a weighting or reqularization parameter. Here, we want to consider two objectives
separately, namely the minimization of the fluctuations

y(il:, t) = Y(III, t) - <Y(:l:, ))

around the mean flow field

(Y(z,-)) = teito/; Y(a, 1) dt,

i.e. the stabilization of the flow, and Athe minimization of the control cost. This
leads to the following MOCP with J : C([to,t.]; H'(Q)) N L*((to,t.); H*(Q)) N
H*((to, te); L*(Q)) x L*((to, te); R) — R%:

te
min J (Y, u) :min< to

Yu Yu

|7
s.t. (5.1).

In contrast to bounded domains, the proof of existence of a solution is an open
problem for cases with no shear stress BCs, cf. [FGH98]. Nevertheless, based on
numerical experiences [Ran00] we will from now on assume that there exists a unique
solution Y(a,t) for each control u and hence (in accordance with the notation in
Section 2.2.1), we denote by Y(u) the solution Y(z,t) for a fixed u € L?((to,t.); R)
and consider the reduced cost functional J : L?((tg,t.); R) — R? which leads to the
reduced MOCP:

le

min J(u) = min ( to

y(~,t)H%2 de ) ) (54)

lullZ2

5.1.4 Reduced Order Model

Problem (5.4) can now be solved using one of the methods presented in Section 2.1.4.
However, all approaches require many evaluations of the cost functional and con-
sequently of the system (5.1a — 5.1f). A FEM or FV discretization yields a large
number of degrees of freedom n, such that solving (5.4) quickly becomes computa-
tionally infeasible. Hence, we need to significantly reduce the cost for solving the
dynamical system. This is achieved by means of reduced order modeling where we
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replace the state equation by a reduced order model of coupled, non-linear ODEs.
The more structure the dynamical system possesses, the smaller the size of the ROM
and consequently, the system can be solved much faster.

The reduced order model is derived by introducing a Galerkin ansatz, cf. Sec-
tion 2.3.1:

Y(x,t) = sz(twj(w), (1) € Q% (to, t], (5.5)

where z € H'((to, t.); R) are the time-dependent coefficients and {1;}|_, are basis
functions?. In contrast to FEM basis functions, these are in general global, i.e. they
have full support. The objective is therefore to find a basis as small as possible (¢ <
n,) while allowing for a good approximation of the flow field.

We can derive a ROM of dimension ¢ using (5.5). By selecting a basis that
is divergence-free, the mass conservation equation (5.1b) is automatically satis-
fied. (When collecting data from a divergence-free flow field, the resulting basis
elements are also divergence-free, see Section 2.3.1, p. 45.) Inserting (5.5) into

the weak formulation of the Navier-Stokes equations (5.2) yields a system of ¢
ODEs:

2(t) = B2(t) + C (2(t)),

where the coefficient matrices are computed by evaluating the L? inner products:

(8) - (V9 Vi)

(Calt)) = 207K (0),
with (’Cj)ik = ((¢i - V) by, ':bj)L? .

Remark 5.1.1. In the above as well as all following formulations, the influence
of the pressure term on the model coefficients has been neglected. In [NPMO05], it
has been shown that including the pressure term s favorable for the accuracy of
the reduced model for open systems. Instead, an additional model stabilization is
performed in order to increase the accordance with the flow field data which results
in a further modification of the model coefficients. Consequently, following [CAF09),
the influence of the pressure term is neglected.

However, this model is not controllable in the sense that we can no longer influence
the solution by choosing u(t). Moreover, the basis functions have to be computed

ZNote that now, both the state Y(z,t) as well as the modes 1); () are vector-valued.
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2 LA LAY

()
Figure 5.3: Flow field decomposition such that y(x,t) = 0 for (x,t) € T x (tg,.].
(a) <l7(a:, )> (b) Y.. (c) One snapshot of y.

from data with homogeneous BCs (Y(a,t) = 0 for (x,t) € T x (o, t]) such that
they inherit these. Otherwise, it cannot be guaranteed that the Galerkin ansatz (5.5)
satisfies the BCs for arbitrary values of z (cf. Section 2.3.1). The idea is therefore
to introduce the Galerkin expansion for a modified flow field y(«,t) which satisfies
homogeneous BCs for all (x,t) € I x (to,t.]. In order to realize this, the following
flow field decomposition is introduced [Rav00, BCB05]:

Y(z,t) = (Y(z,-)) + u(t) Ye(x) + y(x, t), (5.6)

where Y, is a so-called control function which is a solution to (5.1a) — (5.1c¢) with
a constant cylinder rotation u. € R and homogeneous BCs elsewhere (cf. Fig-
ure 5.3 (b)). The choice of u, for the computation of Y. is arbitrary but has an
influence on the resulting ROM such that the model performance might be influenced
by this choice. Since the main intention of this section is to develop multiobjective
optimal control algorithms for the Navier-Stokes equations, this problem is not ad-
dressed any further and a fixed value u, = 2 is chosen such that the cylinder surface
rotates with a surface velocity of 1. The decomposition for (5.6) is now computed
in two steps:

B Uref (t)
}/(,’,B7 t) - Y(m7 t) |u(t):uref(t) N uc

where wues is the reference control for which the data is collected. The individual
steps are visualized in Figure 5.3, where (Y («, -)) is shown in (a), Y. in (b) and one
snapshot of y in (c). This way, Y satisfies homogeneous BCs on the cylinder T,

for all ¢ € (to,t] and the fluctuating field y, for which we introduce the Galerkin
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expansion

wwt) =3 2(0),(a) (5.7

satisfies homogeneous BCs everywhere?.

Inserting (5.6) and (5.7) into (5.2) yields an extended ROM:

2(t) = A+ Bz(t) + C (2(t)) + Du(t) + (€ + Fz(t)) u(t) + Gu(t),

Zj(to) = (y(',to)albj)m =205, (58)

where z € H'((to,t.); R). The size of the coefficient matrices A to G depends on the
dimension ¢ of the ROM: A, D, &, G € RY B, F € RY; (C(2(t))); = 2(t) K, 2(t)
with K; € R% for j = 1,...,£. They can be explicitly computed using the following
equations (see also [Fah00, BCBO05] for details), where the time average of the mod-
ified flow field is denoted by Y,, = (Y (=,-)) for abbreviation:

A== (¥ V) Yo ) — - (V ¥y, Vi),
1
Bij=—((Yn V), 9i) . — (¢ - V) Yy, i) 1o — Te (Voi, Vpy) 12,
(Kj>ik - - (('4’2 : v)"‘»bka "‘»bj)m )
Di=—(Ye,¥i) 2,
1
gz' = - ((Ym . V) Yc>'¢i)L2 - ((Yc : V) Ymvvvbi)lﬁ - E (V Yca v'l;bi)L? ;
Fij == ((Ye-V)bj, ). — (05 - V) Yo, 44) 12
G=—(Y.- V)Y ;)2

The initial value problem (5.8) is integrated in time using a Runge-Kutta method
of fourth order.

Remark 5.1.2. Since the time derivative of the control occurs in (5.8), we require
higher reqularity, i.e. uw € H((to,t.);R). Moreover, the second objective has to be
altered slightly to avoid bang bang solutions [Ger12]. This point will be addressed
in more detail in Section 5.1.5.

Due to the truncation of the POD basis, the higher modes covering the small scale
dynamics, i.e. the dynamics responsible for dissipation, are neglected. This can lead
to incorrect long term behavior and hence, the model has to be modified to account

3Note that this does not hold exactly on the outflow boundary I'y. However, the resulting error
is small and hence neglected [BCBO05].
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for this. Several researchers have addressed this problem and proposed different
solutions, see e.g. [Rem00, SK04, NPM05, CAF09, BBI09]. Here, stabilization of
the model (5.8) is achieved by solving an augmented optimization problem [GBZI04].
In this approach, the entries of the matrix B are manipulated in order to minimize
the difference between the ROM solution and the projection of the data onto the
reduced basis (27 (t) = (Y{(-,1),;)12).

After replacing the high fidelity by the surrogate model, the objectives in (5.4) can
be replaced accordingly by equivalent formulations in terms of ROM-based quanti-
ties:

u

| ( Lol S ()@ 3 et ) | (5.9

T 0 [ u?(t)dt

Making use of the orthonormality of the POD basis, i.e. (9;, ;). = J;;, the first
objective in (5.9) can be simplified:

/QHiZi(t)t/a-(w) zdw:/ﬂ<izi(t)¢i(x)> : (izi(t)tpi(w)) dw:izf(t),

which allows us to replace (5.9) by

u u

min JT(UJ) — min ( o Zle 212(15) dt ) ’ (R—MOCP)

to
0 fieu?(t) dt

where the superscript r indicates that the objective functional is based on the re-
duced state z.

Finally, it remains to determine an adequate basis size for the reduced model.
The error €(¢) (cf. Equation (2.30) on p. 45) is only known for the reference control
at which the data is collected. If one allows for multiple evaluations of the finite
element solution, the ROM can be updated when necessary. This is realized using
a trust-region approach which will be covered in the next section. An alternative
approach is to use a reference control that yields “sufficiently rich” dynamics such
that the model can be trusted for a large variety of controls [BCB05]. We here follow
the latter approach and take 1201 snapshots in the interval [0,60] with At = 0.05
for a chirping reference control:

Uchirp(t) = —4sin(27¢/120) cos(2mt /3 — 18 sin(27t/60)),

see also Figure 5.4. Demanding e(¢) > 99% leads to a basis of size ¢ = 38.

For the uncontrolled flow (i.e. u(t) = 0), Figure 5.5 shows the comparison between
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Figure 5.4: Chirping function [BCB05].

the solution obtained by two different ROMs and the projection of the high fidelity
solution onto the corresponding POD bases. The model in Figure 5.5 (a) has been
computed with a reference control u,es = 0. We see that the agreement is very good
which is not surprising since the data has been collected precisely from this solution.
In Figure 5.5 (b), the model has been obtained at a reference control uref = Uchirp
and a larger difference can be observed. Nevertheless, the qualitative agreement is
satisfactory for a variety of different controls as desired for optimal control purposes.

Figure 5.5: The coefficients z of the first six modes of (5.8) (—) and projection of the
high fidelity solution (o) for two ROMs obtained at different reference
controls. (a) tref = 0. (b) Uref = Uchirp-

Figure 5.6 shows the first four POD modes for the uncontrolled solution which we
have already seen in the example in Section 2.3.1. In Figure 5.7 (a), the correspond-
ing singular values are shown for both the uncontrolled flow and the flow controlled
by the chirping function. The error, i.e. the ratio of the truncated eigenvalues, is
visualized in (b).
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Figure 5.7: Eigenvalues (a) and error (b) at current basis size for an uncontrolled
solution and a solution controlled by the chirping function.

5.1.5 Adjoint Systems

The gradient-based algorithm to solve the scalar optimization problems occurring in
the reference point method (Section 2.1.4) is realized with an adjoint approach based
on the Lagrange functional (cf. Section 2.2.1, p. 36). The first step is to transform
(R-MOCP) into a scalar optimization problem where the euclidean distance to a
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target T has to be minimized:

min J*(u) = mlnHT J" ()3, (5.10)

u

with Jr(u) = (Ty — Ji( 7u)) (T2 — J5(=, u))2

<T1 / Zz dt>+<T2—£/ttcu2(t)dt>2, (5.11)

where J" is according to (R-MOCP) and z satisfies the reduced order state equation
(5.8).

The task is now to solve a sequence of scalar optimization problems with varying
targets T. Problem (5.10) is addressed by a line search strategy [NWO06], where
the direction is computed with a conjugate gradient method and the step length via
backtracking such that it satisfies the Armijo rule. The required gradient information
is computed with an adjoint approach. To this end, we introduce the adjoint state
X € HY((to,t.); RY) and the Lagrange functional

L(z A u) = /t CT(u) — AT(8) (2(t) — A — Ba(t) — C(a(t))
— Du(t) — (€ + Fa(t))u(t) — Gu’(t)) dt, (5.12)

which is stationary for optimal values of u and the corresponding state z and ad-
joint state A. Using integration by parts, this leads to the following system of
equations®:

2(t) = A+ Bz(t) + C(2(t) + Dult) + (€ + Fa(t))ult) + Gui(t), (5.13)
A(t) = %J;( t) — <B+ %iz)(t) +]—"u(t)) A(t), (5.14)
oJr

0=

o (1) + (€ + Fa(t) + 2Gu(t))" A(t) — DTA(t) =: V. J'(t). (5.15)

The above derivatives are abbreviations for the Fréchet derivatives

aJT
8Zj (/;O — dt—Tl) j( )7

%‘Z( £) = 4¢ (E/t 21 )dt—T2> u(t),

and the initial and finial conditions are 2(ty) = z and A(t.) = 0, respectively.

4Note, that since this approach makes use of variational calculus, it is formally only applicable in
the case of stronger assumptions, namely for z, A,u € C! (since we apply integration by parts).
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Remark 5.1.3. The optimality system (5.13) — (5.15) for the scalarized cost func-
tional (5.11) can be derived as follows. In order to satisfy the necessary condition
for optimality, we require all variations of the Lagrange functional (5.12) to be zero:

oL oL .. JOL oL oL ..
oL = 5524‘ a—zéz + a—)\é)\ -+ %5164- %(571 =0

te T T
4:)/ ai+)\T B+6?C_(z)+]__u Sz + 97 + AT (E+ Fz+2Gu) ) du+
o \ 0z 0z ou

+(2-A—Bz2—C(2) —Di.— (£ + Fz)u— Gu*) SA+ ATDsi — A6z dt =0,

where the arguments have been omitted for abbreviation. Using integration by parts,

this leads to
te /- T
/ (AT+8L+>\T <B+ac—(z)+}“u>> oz+
to 0z 0z

+(2-A—Bz—C(2) — Di— (£ + Fz)u— Gu®) A+
+ (—)\TD+ %i + AT (E+Fz+ zgu)) Sudt — A6z
u

"+ ATDdu
0

te
=0

Since we require each variation to be zero individually, we obtain the equations (5.13)
— (5.15) and two boundary conditions at toy and t., respectively. We have a fized
value z(tg) = z such that 0z(ty) = 0 and hence, we have no initial condition A(ty).
In contrast, z(t.) is arbitrary such that 6z(t.) # 0 which results in the terminal
condition X(t.) = 0. Since we want to accept arbitrary initial values u(to) and X(to)
is also free, we obtain an additional condition X' (ty)D = 0.

Equations (5.13) — (5.15) form the so-called optimality system which is seldom
solved explicitly. Instead, the state equation (5.13) and the adjoint equation (5.14)
are solved by integrating forwards and backwards in time, respectively. The optimal-
ity condition (5.15) provides the derivative information V,J" of the cost functional
with respect to the control u. This information can be used to improve an initial
guess for the optimal control within an iterative optimization scheme as described
in Algorithm 5.1 below.

In [BCBO05], the condition A(t.) = 0 is the only boundary condition for the adjoint
equation and the condition AT (¢o)Ddu(ty) = 0 (cf. Remark 5.1.3) is neglected. In
the computations performed here, using this optimality system causes convergence
issues. The reason for this is that the gradient obtained by the adjoint approach
is incorrect, cf. Figure 5.8 (a) for a comparison to a finite difference approxima-
tion. (Since the state equation is approximated very accurately, the gradient can
be approximated this way.) The reason for this might be that the additional con-
dition for the adjoint equation is neglected. However, it has been reported before
[Fah00, DVO1] that it is favorable to include information of the adjoint state of
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Algorithm 5.1 (Adjoint-based scalar optimization)

Require: Target point T, initial guess u(?), stopping criterion €
1: fori=0,...do
2: Compute 2 by solving the reduced state equation (5.13) with u®
Solve the adjoint equation (5.14) in backwards time with «(®, 2, and
aJ7 /024
4: Compute the gradient VuT(Z) by evaluating the optimality condition (5.15)
with «®, 20, X0 9.J7 /02" and 9.J /0u®

@

5. if [VuT" |12 < € then

6: STOP

T else

8: Update the control: u(*1) = 4@ + ¢®d® where a® is the step length
satisfying the Armijo rule, computed via backtracking [NW06], and d® is the
conjugate gradient direction d® = —VUT(Z) + 1, dO) = VUW(O) with

v, Yy, Y
9: end if
10: end for

the PDE in the ROM. In fact, the adjoint-based gradient can often be inaccurate
or even incorrect if solely based on information about the state. Consequently, it
is difficult to determine whether the convergence problems stem from the missing
boundary condition or are due to neglecting adjoint information of the high-fidelity
system. To further investigate this, a second optimality system based on an alter-
native formulation of the reduced model is derived. Following [Rav00], we define
an augmented state (z,u)' and introduce a new control v € L?((ty,t.);R), where
v(t) = 4(t). It is known from optimal control theory that if a dynamical system
depends linearly on the control, the control is bounded by box constraints and does
not appear in the cost functional, the solution is of bang bang type and might in-
clude singular arcs [Ger12], see also Remark 5.1.2. This is exactly the situation for
the second formulation and since the computation of such solutions is numerically
challenging, a regularization term is added to the second objective in (R-MOCP),
Le. J5 = ll|ul3, + Bllv||3., where 8 is a small number (here: § = le=®). The op-
timality system can be derived in an analogous way to the one described above in
Remark 5.1.3, where the adjoint states are now denoted by XA € H'((ty,t.); R?) and
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p€ H'((to, te); R):

A1) = A+ Bz(t) + C(2(t)) + Du(t) + (€ + Fz(t))u(t) + Gu*(t), (5.16)
() = v(t). (5.17)
At) = —aa‘]; (t) - (B + a%(;(g)) + ]-'u(t))T A, (5.18)
[1(t) = —fg (t) — (€ + Fz(t) + 2Gu(t)) " A, (5.19)

0= %—T(t) +DIX() + p(t) =: V,J7(t), (5.20)

with the Fréchet derivatives:

aaf(t) =4/ (£ /: u?(t) dt + 3 /: v?(t) dt — Tg) u(t),
oJr

(1) =4 (z /: V(1) dt + 5/: V2 (t) di — Tg) (1),

dJ7 /0z; as before and the respective boundary conditions

2(to) = 20, Alt.) =0, p(to) =0, u(t.) = 0. (5.21)

This is a boundary value problem for the state equations (5.16), (5.17) and the
adjoint equations (5.18), (5.19) which can be solved by an iterative scheme. Applying

S
Q
-0.1 ¢ N = Finite Differences| -0.15 ¢ =—=Finite Differences |
— Adjoint = Adjoint
0.2 ! ! ! ! -0.2 : : : :
0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) (b)

Figure 5.8: Comparison of the gradient computed using the adjoint approaches with
an approximation by finite differences (FD). (a) Optimality system (5.13)

—(5.15) (FD: (Vu?)j = (J"(u+he;) — J"(u)) /h, where he; is the vari-
ation by h of the i entry of the discretization u? of u). (b) Optimality
system (5.16) — (5.20) (FD: (V,J7)¢ = (T (v + he;) — T7(v%))/h).
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a shooting method (cf. Algorithm 5.2), the initial value u(ty) is computed such that
p(to) = 0 is satisfied. This is computationally more expensive than the simple
forward-backward integration in Algorithm 5.1. However, the system (5.16) — (5.20)
yields strongly improved convergence and decreased sensitivity to the optimization
parameters in comparison to the system (5.13) — (5.15), which is due to the improved
gradient accuracy (cf. Figure 5.8 (b)).

60

« Reference Point (Algorithm 5.1)
+ Reference Point (Algorithm 5.2)

75 80 85 90 95
Ji

Figure 5.9: Comparison of the solutions computed with the two optimality systems
(5.13) — (5.15) and (5.16) — (5.20).

The improvement is visualized in Figure 5.9, where the Pareto front based on
(5.16) — (5.20) has been computed executing the reference point method (Algo-
rithm 2.1), starting in the scalar optimum of zero control cost. In contrast to that,
multiple attempts have been made with the system (5.13) — (5.15), starting at dif-
ferent points on the Pareto front. All of them either divert quickly from the front or

stop prematurely. The final results in this section are therefore based on the system
(5.16) — (5.20).

Remark 5.1.4. As already stated, the approach based on the adjoint equation can be
very sensitive. This is also the case when applying additional stabilization methods
where the coefficients are manipulated to better match the state equation. Although
the accuracy of the state equation can be significantly improved, this often yields
severe errors in the adjoint equation and hence, the gradient. Therefore, it would be
interesting to investigate direct approaches where only accuracy of the state equation
is of importance.
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Algorithm 5.2 (Adjoint-based scalar optimization with shooting)

Require: Target point T, initial guess v(?), stopping criterion e
1: fori=0,...do
2: Shooting step: Determine u((¢y) by solving an internal root finding problem
in order to enforce the condition 1) (¢y) = 0. This step requires forward solves
of (5.16), (5.17) and backward solves of (5.18), (5.19)
3. Compute 2, v by solving (5.16), (5.17) with v and u®(ty)
4: Solve the adjoint equations (5.18), (5.19) in backwards time with v,
20 u® 97 /02 and 97 /ou
5: Compute the gradient Vvﬁ(z) by evaluating the optimality condition (5.20)
with A® . 4@ and 9J7 /9v®
if vaT(Z)HLz < e then
STOP
else
Update the control: v+ = v® 1+ ¢®Dd® with a® and d® as in Algo-
rithm 5.1
10: end if
11: end for

5.1.6 Results

In this section solutions of (R-MOCP) obtained with the sampling algorithm (Al-
gorithm 2.3) and the reference point method (Algorithm 2.1) using the optimality
system (5.16) — (5.20) are compared. The time interval [¢y, ¢.] is fixed to [0, 10] which
corresponds to roughly two vortex shedding cycles. In order to use the subdivision
method, a sinusoidal control is introduced, i.e. u(t) = Asin(2rwt + 7). The choice is
motivated by the fact that the uncontrolled solution of the problem is also periodic.
A phase shift is included to allow for controls with non-zero initial values. This way,
(R-MOCP) is transformed into an MOP with J”" : R® — R*:

min J"(A,w,7) = min ftt: ]2 dt
Aw,7€R T Aw,T€R @ft';e (Asin(2rwt + 7'))2 dt

> . (MOP-3D)
Another way to reduce the dimension is to approximate u by a cubic spline with
a moderate number of break points. In this case, the parameters to be optimized
are the spline values at these break points. For the reference point method, u is
discretized with a constant step length of At = 0.05 and the system (5.16) — (5.18)
is solved with a fourth order Runge-Kutta scheme.

Figure 5.10 shows the box covering of the Pareto set of (MOP-3D), the respective
Pareto front is shown in Figure 5.11 (a) in green. It is worth mentioning that — apart
from a few spurious points at A ~ 0 caused by numerical errors (Figure 5.10 (a))
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— the set is restricted to a small part of the frequency domain. This is compre-
hensible since the rotation acts against the natural dynamics of the von Karmén
vortex street. The trade-off between control cost and stabilization is almost exclu-
sively realized by changing the amplitude of the rotation. When moving towards

|
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Figure 5.10: (a) Box covering of the solution of (MOP-3D), obtained with the sam-
pling algorithm after 27 subdivision steps. (b) Only the physically rel-
evant part is shown which is restricted to a small part of the frequency
domain. The trade-off between the two objectives is mainly realized by
changing the amplitude.

the two scalar optimal solutions, i.e. minimal fluctuations and minimal control cost,
respectively, further improvements are only possible by accepting large trade-offs in
the other objective which is a common phenomenon in multiobjective optimization.
When designing a system, one could now accept a small increase in the main objec-
tive, i.e. flow stabilization, in order to achieve a large decrease in the control cost.
This becomes more clear when looking at Figure 5.12 (b), where different optimal
compromises for the control are shown. For a relatively small improvement of J
from 85 to 81.05 (—5%), the control cost increases by 322%.

Figures 5.11 (a) and 5.12 also show the Pareto fronts and Pareto optimal controls
computed with the sampling algorithm using two different spline approximations
(five and ten breakpoints) on the one hand and with the reference point method using
arbitrary controls on the other hand. We observe that a spline with five breakpoints
is too restrictive to obtain control functions of acceptable quality. When using ten
breakpoints on the other hand, the Pareto front clearly surpasses the solution of the
sinusoidal control. However, it is numerically expensive to compute since a large
number of sample points has to be evaluated to cover ten-dimensional boxes. The
best solution is computed with the reference point method. The improvement over
the spline-based solution is relatively small, the reason being that the controls are
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Figure 5.11: (a) Comparison of Pareto fronts of (R-MOCP) obtained with different
solution methods. (b) Comparison of Pareto optimal controls with
equal cost (Jj = 15).

—J{ = 74.57|1 —J = 81.05|]
==J] =~ 75
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—--J] ~ 85

Figure 5.12: Different Pareto optimal points of (R-MOCP) computed with the refer-
ence point method (a) and of (MOP-3D) computed with the sampling
algorithm (b).

almost similar (see Figure 5.11 (b), where solutions of the different methods with
the same control cost J; = 15 are compared). When considering scenarios with time
intervals longer than ten seconds, the spline dimension has to be further increased,
leading to again much higher computational cost whereas the cost for the reference
point method increases only linearly in time. This is due to the fact that only the
number of time steps in the forward and backward integration (5.16) — (5.18) is
affected. Finally, Figure 5.13 shows two solutions of (5.1a) — (5.1f) with controls
computed with the reference point method, corresponding to different values of the
control cost Jj and thus, different degrees of stabilization. Due to the relatively
short integration time of ¢, = 10 seconds, changes are only apparent closely past
the cylinder. Nevertheless, increased stabilization can be observed when allowing
higher control cost.

In order to evaluate the quality of the solution obtained with the ROM approach,
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(a)

(b)

Figure 5.13: High fidelity solution at ¢ = 10 with two different Pareto optimal solu-
tions computed with the reference point method. (a) Low control cost
(J5 = 1.84), almost no reduction of fluctuations (J; = 85). (b) Larger
control cost (J5 = 30.12), stronger reduction of fluctuations (J] = 75).
Due to the short integration time, the effect is only visible in the vicinity
of the cylinder.

the cost function is evaluated using the system state obtained from a PDE evalua-
tion, which is shown in Figure 5.14. Since errors due to the ROM are only introduced
in the first objective, the Pareto optimal points are shifted horizontally. In general,
we observe a good agreement between the solutions, the error being less than 4% for
all solutions that have been evaluated. However, particularly in regions with a steep
gradient 0.J5/0.J] in the Pareto front, this small error can result in a different shape
of the front. Note that the two points with the highest values for J§ are dominated
by the next lower point. This gives a strong motivation for controlling the error
of the ROM (cf. Section 5.2) and investigating the influence of the inaccuracies in
the gradient obtained by the adjoint approach. Here, the sampling algorithm has
the clear advantage over the reference point method since it only depends on the
accuracy of the state equation.

Table 5.1: Comparison of CPU times of different methods (Subdivision algorithm in
parallel: CPU time = Number of CPUs times wall clock time).

# boxes / | # Function | # Adjoint | CPU time [h]
points evaluations | evaluations
Subdivision (MOP-3D) 1383 ~ 8.3 106 0 ~ 1132
Subdivision Spline R% 6057 | ~11.1-10° 0 ~ 1512
Subdivision Spline R0 1880 ~ 42106 0 ~ 5875
Reference point (5.16) — (5.20) 256 26781 1002 ~12.2
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Figure 5.14: Comparison of the objective values based on the state of the ROM and
the PDE solution. Since there is no error in JJ, the points are shifted
horizontally. Although the overall agreement is acceptable, the PDE-
based Pareto front appears to have a different shape, in particular for
solutions with large control cost.

From a computational point of view, the reference point method is significantly
faster, cf. Table 5.1.6. This is not surprising since in order to have a good repre-
sentation of a box, a large number of sample points needs to be evaluated. This is
already numerically expensive in 3D and more so for a spline-based approximation,
i.e. we need to pay a price for global optimality and the derivative free approach.
For future work, it is therefore advisable to utilize the gradient-based version of the
subdivision algorithm in order to decrease the computational cost, provided that a
sufficient accuracy of the reduced gradients can be achieved. Another question that
needs to be addressed is how to control for error of the ROM and the respective
gradient in order to guarantee optimality for the PDE-based problem. This will be
the subject of the next section.

5.2 A Trust-Region Algorithm for Multiobjective
Optimal Control of Nonlinear PDEs

In the previous section two fundamentally different algorithms for MOCPs have
been combined with reduced order modeling in order to take PDE-constrained into
account. Although the accuracy of the results is satisfactory, it is not possible to
quantify the error which may cause problems when considering more complicated
problem setups which have been investigated less intensively than the von Karman
vortex street. Therefore, this section is dedicated to the second approach of imple-
menting POD-based ROMs in optimal control (cf. Section 2.3.3), namely by trust
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region methods [Fah00] (see also [QGVW16, YM13, RTV17]). This concept is known
as Trust Region POD (TRPOD). In [BC08], TRPOD has been utilized for single
objective optimal control of the Navier-Stokes equations, more precisely of the von
Karman vortex street. However, the control law there is sinusoidal, which yields
an optimization problem with w € R?. Moreover, the solution on the limit cycle
is considered whereas here, we are interested in transient phenomena which poses

more difficulties for the ROM.

5.2.1 Problem Setting

In order to compare the ROM-based to the PDE-based solution, a much simpler
problem is considered here, i.e. a linear heat equation on a rectangular domain
Q (cf. Figure 5.15 (a)) with homogeneous Neumann boundary conditions and dis-
tributed control:

j=1
N (5.22)
a_’n(:a t) = O7 (ZB, t) € XX (t07te]7
y(; to) = yo() z el

Here, y € H'((to,t

¢); L2(Q)) N L*((to, te); H*(Q)) is the temperature distribution
and u € L*((to,t.); R?)

is the control. The two objectives are to simultaneously

1
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Figure 5.15: Domain € discretized by a finite element mesh. (a) In the lower left
and the upper right corner, the two shape functions x; are shown in
yellow and blue, respectively. (b) Desired state at ¢t = 5.7.
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minimize the distance to the desired state (cf. Figure 5.15 (b))
ya(x,t) = sin(zy + 29 — 1), (5.23)

and the control cost, which results in the bicriterial optimal control problem:

Y1) =yl 1) ) | (5.24)

2
Zj:l HU’]H%Q

te
min J(u) = min ( to

uclL? uelL?

where J : L? — R? is again the reduced representation for J(y, w) as introduced in
Sections 2.2.1 and 5.1.3.

Since it is necessary to measure the improvement of the objective function in
the TRPOD approach, we scalarize the objective by means of the reference point
method (see also Sections 2.1.4 and 5.1.5), where the distance to an infeasible target
T has to be minimized:

min J(u) = min | T — J(u)|f3. (5.25)
uelL?

ucL?

In contrast to the indirect method chosen in Section 5.1, a direct method is
used to solve (5.25). By the FEM discretization, the PDE (5.22) is transformed
into a system of coupled ODEs which is then integrated in time using an implicit
Euler scheme (see [Voll5] for details). The gradient V.J(u) is computed using al-
gorithmic differentiation which is implemented in the software package ADiMat
[BBLT02]. Finally, problem (5.25) is solved using the SQP solver implemented in
MATLAB.

5.2.2 Reduced Order Model

The solution of (5.24) via the reference point method and problem (5.25) requires
many evaluations of (5.22) which is expensive. Due to this, we again replace
the model by a POD-based ROM. Similar to Section 5.1, the reduced state z €
H'((to, t.); RY) is obtained by a Galerkin projection of y onto the POD basis {1; }¢_,
computed from FEM data with the method of snapshots. Hence, y can be expressed
in terms of z:

14

y(x, t) ~ Zzz(t)g/)z(:zz) (5.26)

=1
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The multiobjective optimal control problem as well as the scalarized problem are
formulated with respect to the reduced state accordingly:

te ; 2
min J"(u) = min jt; (ijl ZjQ(t)%) _yd("t)‘ =4 (5.27)
uEUa(i) uGU(;(i) Zj:l ||uj||%2
and
min J7(u) = min ||T — J"(w)|%. 5.28
m (u) n | (u)]3 (5.28)

Note that a constraint set Usu) has been introduced for the control. This is due to
the fact that the distance between the control w and the reference control u® at
which the data for the i*" POD basis has been collected is bounded by the trust
region radius 6.

5.2.3 Trust Region Algorithm

In this section we will prove that a minimizer u* of (5.28) is Pareto optimal with
respect to the PDE-constrained multiobjective optimal control problem (5.24). This
follows from the proofs for the TRPOD algorithm (Theorem 5.2.1) and the reference
point method (Theorem 2.1.17). The trust region framework developed by Fahl
[Fah00] is summarized below.

We begin by stating some assumptions on the PDE-based as well as the ROM-
based scalar objective functions. We make standard assumptions for problem (5.25)
such that a local minimizer exists:

(A1) The scalarized objective functional .J is continuously differentiable,
(A2) J is bounded below,

(A3) V.J is Lipschitz continuous on U.

We assume the following for the reduced scalar objective function .J”:

(B1) J7 is continuously differentiable on an open convex set containing the trust
region Uy = {u € L3({tg,£):B?) | [u— w9 < 50},

(B2) VJ(u) approximates V.J(u), i.e.

IV (ut) — VI (u®)]
V.77 ()] 2

<¢
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for a given ¢ € (0,1). (This condition is known as the Carter condition
[Car91].)

The condition (B2) introduces a bound for the accuracy of the reduced gradi-
ent.

Both the high-fidelity and the surrogate model are evaluated in the TRPOD
algorithm 5.3. While the majority of function evaluations is based on the ROM
to compute a minimizer within the currently valid trust region Usw , the reduction
p' of the objective with respect to the original problem is evaluated every time a
minimizer has been found. Depending on the value of p(¥), the descent step is either
accepted (and the trust region radius adapted) or rejected.

If the assumptions (A1) — (A3) and (B1) — (B2) are satisfied, then Algorithm 5.3

Algorithm 5.3 (TRPOD Algorithm [Fah00])

Require: 0 < n; <19 < 1 (evaluation of objective reduction), 0 < 73 < 75 < 1 < 3
(adaptation of trust region), initial trust region radius §(* > 0, initial iterate
u®), snapshot matrix S corresponding to w?), i = 0, stopping criteria €;, €.

1: loop
2: Build a POD-based ROM using the snapshot matrix S
3: Compute a descent step s for the problem (5.28) with ||s®| < §@ such
that u® + s is an approximate minimizer within the trust region radius ¢
Solve the full model (5.22) with u® + s and compute the gradient
VJ (u® + s%) and the snapshot matrix St+Y
if [VJ (u® 4+ s9) |12 < € or [[s7]|r2 < € then
STOP
end if
Compare the reduction of the objective function values using the the reduced
order model (5.28) and the full solution (5.25):

>

b T () = T (u 4 50)

P T () = 7 (w0 + s0)
9: if p() > n, then
10: Set w1 = 4 + s and choose 6+ € [60), v360)] (increase TR)
11: else if 1, > p¥) > 5, then
12: Set w1 = u® + s and choose §@+Y) € [1,6@, ) (decrease TR)
13: else if p < 7, then
14: Set ul™Y = 4@ and choose 60V € [y, 7,6@] (strongly decrease TR)

15: end if
16: Set 1 =141
17: end loop

120



5.2 A Trust-Region Algorithm for MOC of Nonlinear PDEs

efficiently yields a sequence {u(i)} of controls that converges to a local minimum of
the PDE-constrained problem (5.25). This is stated in the following theorem:

Theorem 5.2.1 ([Fah00]). Consider the scalarized problem (5.25) and let J satisfy
the standard assumptions (A1) — (A3). Let {u®”} be a sequence computed by Al-
gorithm 5.3, where every ROM satisfies the assumptions (B1) and (B2) for some
¢ € (0,1 —m59). Define by

w(J, u,8) = (J(u+s) = J(u) — (VJ(u),s)), (5.29)

2
I]172
a measure for the curvature of J(u) and assume that |w(J,u,s)| < c, for some
constant c,, > 0 in every iteration of Algorithm 5.3. Then

lim ([ V.J7(ul?)| 2 = 0,
71— 00
from which follows

lim VT (u?)] 12 = 0.

Note that the curvature condition (5.29) corresponds to the sufficient decrease
condition in the classical trust region concept, where a general non-linear model is
approximated by a quadratic model [Pow75].

We can now combine the above result with the convergence result for the ref-
erence point method (Theorem 2.1.17). To this end, we first have to ensure that
problem (5.25) has a unique minimizer:

Theorem 5.2.2 ([BBV16]). For any T € R? problem (5.25) has a unique solution.

The proof of this result follows from the convexity of the objective function .J(w)
and Theorem 2.14 in [Tr610], see [BBV16] for details. Finally, a combination of

Theorems 2.1.17 (reference point method), 5.2.1 (TRPOD) and 5.2.2 yields the
desired result.

Theorem 5.2.3. Let the target point T be less than the utopian point J*, i.e. T <,
J*. Then a minimizer u* of (5.28) is locally Pareto optimal with respect to the
PDE-constrained multiobjective optimal control problem (5.24).

Proof. By Theorem 5.2.2, problem (5.25) possesses a unique minimizer u*. Accord-
ing to Theorem 5.2.1, this minimizer can be computed by solving problem (5.28).
Finally, w* is Pareto optimal with respect to (5.24) by Theorem 2.1.17. ]
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5.2.4 Results

In order to validate the results, both (5.24) and (5.27) are solved with the reference
point method. The respective scalar problems (5.25) and (5.28) are solved using an
SQP method (see e.g. [NWO06]), where the gradients are approximated via algorith-
mic differentiation. In contrast to the last section, the dynamical system is faster to
solve and possesses less complicated dynamics. This allows us to compute the entire
Pareto front using a FEM discretization in order to compare it to the ROM-based
solution.

x FEM 20
* ROM

2500

2000 r

., 1500 |

1000

500 r

10 12 0 2 4 6 8 10

Figure 5.16: (a) Pareto fronts computed with the reference point method, where
(5.24) has been solved using a FEM discretization and (5.27) with the
TRPOD approach. (b) Several Pareto optimal controls. The solid lines
represent u; and the dashed lines wu,.

The two Pareto fronts are shown in Figure 5.16 (a) and we see that they agree
very well. Due to the very long computing time for the PDE-constrained problem,
the computation has been stopped and picked up again at different stages such
that we do not observe point-wise agreement. Moreover, numerical divergence be-
tween the FEM and the POD-based solution is introduced by the ROM approach
[Banl6]. Nevertheless, the TRPOD algorithm clearly yields Pareto optimal solu-
tions. Figure 5.16 (b) shows several Pareto optimal controls. Similar to Section 5.1,
we observe that the compromise between tracking the reference solution and control
cost is realized almost exclusively by varying the amplitude.

In [BBV16, BBV17], the reference point method has been used to solve PDE-
constrained MOCPs via reduced order modeling as well. Instead of adopting the
TRPOD approach for general PDE-constrained problems, the authors make use
of the problem structure and derive error estimates for the reduced order optimal
control problem. They observe that larger values of the cost functional in (5.28),
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i.e. increased distances between the targets and feasible points, lead to improved
error estimates. The same behavior can be observed in the TRPOD approach.
Here, Algorithm 5.3 exhibits improved convergence behavior since the values for p(*)
are larger.

When comparing the computational cost, the efficiency of the TRPOD approach
becomes evident, cf. Figure 5.17 (a), where the computing time for the two ap-
proaches is compared. On average, we observe a speed-up by a factor of over 60.
The reason is that in the TRPOD algorithm, almost all Pareto optimal solutions can
be computed with only a single evaluation of J(u) and V.J(u), cf. Figure 5.17 (b).
The reason for this is that two consecutive Pareto optimal solutions differ only
slightly. Hence, the final evaluation of the high-fidelity model in the TRPOD al-
gorithm (which is necessary to validate the stopping criterion) is used to generate
the POD basis for the solution of the consecutive scalar problem. This problem can
again be solved within one trust-region and a single evaluation of the full model is
required to verify the stopping criterion.
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n - FEM (Trust Region)
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Figure 5.17: (a) Comparison of the computing times for solving (5.24) and (5.27).
On average (dashed lines), the TRPOD method is over 60 times faster.
(b) Comparison of the number of function evaluations per scalar prob-
lem in the respective approaches.

Since all scalarization methods have difficulties with a large number of objectives,
the approach presented here is limited to a few objectives, ideally two. However,
when using the results from Chapter 4, the skeleton of a Pareto set with many
objectives can be computed efficiently.
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5.3 Extension of the Subdivision Algorithm to
Inexact Models

In the previous section the TRPOD approach has been extended to multiple objec-
tives using scalarization. This results in efficient algorithms for MOCPs with a low
number of objectives. However, in situations where globality is important or where
scalarization methods may fail due to the Pareto set possessing a complicated struc-
ture, set-oriented methods are superior. Therefore, the subdivision (Algorithm 2.2)
and the sampling algorithm (Algorithm 2.3) are extended to inexact function and
gradient information in this section. This way, ROMs with certified error bounds
can be utilized to accelerate the computation of the Pareto set.

Besides the problem of the computational effort and the necessity to apply re-
duced order modeling, many real world problems possess uncertainties for various
reasons such as the ignorance of the exact underlying dynamical system or unknown
material properties. Using surrogate models in order to decrease the computational
effort also introduces errors which can often be quantified (see e.g. [TV09]). A
similar concept exists in the context of evolutionary computation, where Surrogate-
Assisted Evolutionary Computation (see e.g. [Jinll] for a survey) is often applied
in situations where the exact model is too costly to solve. In this setting, the set
of almost Pareto optimal points has to be computed (see also [Whi86], where the
concept of € efficiency has been introduced). Many researchers are investigating
problems related to uncertainty quantification and several authors have addressed
multiobjective optimization problems with uncertainties. In [Hug01] and in [Tei01],
probabilistic approaches to MOPs with uncertainties have been derived indepen-
dently. In [DGO05, DMMO05, BZ06, SM08], evolutionary algorithms for problems
with uncertain or noisy data have been developed in order to compute robust ap-
proximations of the Pareto set. In [SCTTO08], stochastic search has been used, cell
mapping techniques have been applied in [HSS13] and in [EW07], the weighted sum
method has been extended to uncertainties.

Large parts of this section have previously appeared in [PD17] to which the author
has made substantial contributions.
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5.3.1 Problem setting

The problems considered in this section are unconstrained MOPs, i.e. the control
parameter u € R" is finite-dimensional. This leads to

Jl('u,)

min J(u) = min : : (MOPu)
ucR™ ucR™
Je(w)

which is equivalent to problem (MOP) introduced in Chapter 2 with &/ = R™. The
corresponding KKT conditions are hence

k
Z OéZVJZ<’U,*) = O,
=1

a>,0, (KKTu)
k

ZO@:L

i=1
where we assume the objectives J;(u) to be continuously differentiable.

Suppose now that we only have approximations J; (w), VJ! (u) of the objectives
Ji(u) and the gradients VJ;(w), © = 1,..., k, respectively. To be more precise, we
assume that

JI(u) = Ji(u) + Ry, |J] (w) — Ji(w)|l2 = Ri < Ky, (5.30)

where the upper bounds k,e € R¥ are given. We will in the following assume
that
€ <|[|[VJi(u)|lz, i=1,...,k, forall ueR",

since otherwise, we are already in the vicinity of the set of stationary points as will
be shown in Lemma 5.3.2. Using (5.31) we can derive an upper bound for the angle
between the exact and the inexact gradient by elementary geometrical considerations
(see also Figure 5.18 (a)):

€;

(u "(u)) = arcsin ﬂ arcsin | —————
VA, V() (e < (revtam,

IV Ji(u ) = ;. (5.32)

By ¢; we denote the largest possible angle, i.e. the “worst case”. Based on this
angle, one can define a condition for the inexact gradients such that the exact
gradients could satisfy (KKTu) if the deviation was indeed ¢; for i = 1,..., k. This
is precisely the case when each inexact gradient deviates from the hyperplane defined
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by (KKTu) at most by ¢;, see Figure 5.18 (b). Before proving this observation, an
iezact descent direction is defined:

Definition 5.3.1. A direction analog to (2.3) but based on inexact gradients, i.e.
k
g (u) ==Y @VJ(w witha>,0andY & =1, (5.33)
i=1

1s called inexact descent direction.

We can prove an upper bound for the norm of q"(u*) when u* satisfies the KKT
condition of the exact problem:

Lemma 5.3.2. Consider the unconstrained problem (MOPu) with inezact gradient
information according to (5.31). Let u* be a point satisfying the necessary conditions
(KKTu) for the exact problem. Then the inezact descent direction q"(u*) is bounded

by
lq"(u)l2 < |l€]|oo-

Proof. Since u* satisfies (KKTu), we have Y.F_, @, VJ;(u*) = 0. Consequently,

k

k k
S aVI(w) =Y & (Vi(w)+&) =Y aiE
i=1 =1

i=1

and thus,

k k k
‘ = H Zaigi < Z@'HQHQ < Zaiei
2 i=1 E—— i=1

k k

<Y @ max e = [lello > = €]l
- ie{1,....k} -
i=1 =1

| zk: &V ()
=1

]

A consequence of Lemma 5.3.2 is that in the presence of inexactness, we cannot
exactly compute the set of points satisfying (KKTu). At best, we can compute the
set of points determined by ||q"(u)||2 < ||€]|«- In the following section we will derive
a criterion for the inexact descent direction q"(w) which guarantees that it is also a
descent direction for the exact problem.
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5.3 Extension of the Subdivision Algorithm to Inexact Models

Figure 5.18: (a) Maximal angle between the exact and the inexact gradient in de-
pendence on the error ¢. (b) Maximal angle between the inexact
gradients in the situation where u* satisfies (KKTu) (In the 2D case:

™ — (1 + ¥2))-

5.3.2 Descent Directions in the Presence of Inexactness

The set of valid descent directions for (MOPu) is a cone defined by the intersection
of all half-spaces orthogonal to the gradients V.Ji(u),..., VJi(u) (cf. Figure 5.19
(a)), i.e. it consists of all directions g(u) satisfying

<(qlw), -V Ji(uw)) < g i=1,... .k (5.34)

This fact is well known from scalar optimization theory, see e.g. [NW06]. Observe
that here also directions are valid for which all objectives are at least non-decreasing.
In terms of the angle v; € [0,7/2] between the descent direction g(w) and the
hyperplane orthogonal to the gradient of the i" objective (cf. Figure 5.19 for an
illustration), this can be expressed as

= arccos q(u) - (=VJi(u)) i
"7 (Hq(U)\b : HVJi(u)HQ) =0, ...k (5.35)

We call the set of all descent directions satisfying (5.34) the ezact cone Q. If we
consider inexact gradients according to (5.31) then Q is reduced to the inexact cone
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5 Multiobjective Optimal Control of PDEs Using Reduced Order Modeling

Q" by the respective upper bounds for the angular deviation (;:
vi>pi >0, i=1,... k.

This condition can equivalently be expressed in terms of the inexact descent direc-
tion:

m < q"(u) - (=VJj(u))
2

vl = — — arccos - >, i1=1,... k. (5.36)
lq(u)lz - [[VJ; (U)||2)

This means that the angles between a descent direction and the hyperplanes de-
fined by the inexact gradients have to be at least as large as the maximum deviation
between the exact and the inexact gradients (cf. Figure 5.19 (b)). Thus, if an inex-
act descent direction q"(u) satisfies (5.36), then it is also a descent direction for the
exact problem.

~VJi(u) q(u) —VJz(u)

Figure 5.19: (a) Set of valid descent directions (the exact cone Q bounded by the
dashed lines) determined by the intersection of half-spaces defined by
the negative gradients. (b) Reduction of the set of valid descent direc-
tions in dependence on the error € (the inexact cone Q" bounded by
the dotted lines). The gray vectors represent the set of possible values
for the exact gradients V.J;(w) and the inexact cone Q" is defined by
the “most aligned” (here the uppermost) realizations of V.J;(u).

The goal is therefore to derive an algorithm by which an inexact descent direction
q"(u) can be determined in such a way that it is also valid for the exact problem.
To this end, we derive an additional criterion which is equivalent to (5.36). This is
stated in the following lemma:

Lemma 5.3.3. Consider the multiobjective optimization problem (MOPu) with in-
exact gradient information according to (5.31). Let q"(w) be an inexact descent
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5.3 Extension of the Subdivision Algorithm to Inexact Models

direction according to Definition 5.3.1. We assume ||@"(u)|l2 # 0, [|[VJI(u)|2 #
0,i=1,...,k. Then (5.36) is equivalent to

k
1
Qi > =g | 147 (w)]26; — a; (VJi(u) - VI (u) |, i=1,... k.
AT i Z_) (V7 )
J#i

(5.37)

In particular, g"(u) is a descent direction for all objective functions J;(w) if (5.37)
15 satisfied.

Proof. Exploiting the fact that the cosine function is strictly decreasing on the
interval [0, 7], (5.36) can be transformed to

¢(w) - (VW) PN g
T TV 2 o (5 %) =) = T

Using the definition of ¢"(u), this is equivalent to

(S @V (w) - VW) G VIl + S 8V (W) - V()

lg"(Wlls VI (w2 g™ (w2 [[VJ} (w)]l2

_ HVJ[(U)Hza N Z?:l,j;éi a;VJi(u) - VJj (u)

lg" (w2 g (w)ll2 [VJ7 (w)ll2
€
> _ v
VI (w2
1 k

= 2> o | e (w26 — a; (VJi(u)-VJ(u

J#i
]

Remark 5.3.4. By setting € = 0 (i.e. J"(u) = J(u)) in (5.37) and performing
some elemental manipulations, we obtain the condition (2.2) for an exact descent
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direction:

o)
|
Mw

N HVJ > ) - VJi(u))
i;
& a; (VJi(u) - VJi(uw) > Zaj VJ;(u) - VJi(u))
3751
< —VJi(u)-qlu) >0, i1=1,... k. (2.2)

The condition (5.37) can be interpreted as a lower bound for the “impact” of
a particular gradient V.J] on the descent direction induced by the corresponding
weight @;. The larger the error ¢;, the higher the impact of the corresponding
gradient has to be in order to increase the angle between the descent direction and
the hyperplane normal to the gradient. The closer a point u is to the Pareto front
(i.e. for small values of || g(u)||2), the more confined is the region of possible descent
directions. Hence, the inaccuracies gain influence until it is no longer possible to
guarantee the existence of a descent direction for every objective. This is the case
when the sum over the lower bounds in (5.37) exceeds one as shown in part (a) of
the following result:

Theorem 5.3.5. Consider the multiobjective optimization problem (MOPu) and
suppose that the assumptions in Lemma 5.3.3 hold. Let

k
1
Omini = =15 | la" (W26 — > @; (VI (u)-VJ (w) |, i=1,... .k

J=1
J7
(5.38)

Then the following statements are valid:

(a) If Zle Qmini > 1 then Q" = () and therefore it cannot be guaranteed that there
exists a descent direction for all objective functions.

(b) All points w with Zle Qmin; = 1 are contained in the set

| ij@z-wxu)HQ < 2||e||oo} . (5.3)

7)576 = {’U,E R™

Proof. For part (a), suppose that we have a descent direction g"(u) for which
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Zle Qmin; > 1. Then summing up over (5.38) yields

k e
;<u“vqﬂ e~ >> B
. Zi<”||vqu Wl LA BVI) VW)Y
I () B
" i(n” ||2 —“-’ﬁ$‘3;£;ff§“>> >1—i§k;ai=o
< i(Hw )l ‘|qf(ig(,ﬁ)."|§§;<$”2) -

=1

7

sin @; > Z sin ;.

=1 =1

Since ¢;,v; € [0,7/2] for i = 1,...,k, it follows that ¢; > ~,; for at least one
i € {1,...,k}. This is a contradiction to (5.36) and hence, Q" = ().

For part (b), we repeat the calculation from part (a) with the distinction that
Zle Qmini; = 1, and obtain Zle sing; = Zle sinv;. This implies @; = ~; for
i =1,...,k, i.e. the set of descent directions is reduced to a single valid direction.
This is a situation similar to the one described in Lemma 5.3.2. Having a single
valid descent direction results in the fact that there is now a possible realization of
the gradients V.J;(u) such that each one is orthogonal to " (w). In this situation, w
would satisfy (KKTu) and hence, ||g"(u)||2 < ||€]||co which leads to

.

|Sams], = e o], Sace

< e+ ],
i=1

< 2]

]

Corollary 5.3.6. If Zle Omini > 1, the minimal angle of the cone spanned by
the exact gradients V.J;(w) is larger than for Zle Qmini < 1 (c¢f. Figure 5.20 (b)).
Moreover, if ||q"(u'®)|, is monotom’cally decreasing for decreasing distances of to
Pssub (i-€. for a sequence u'®) with dj, (u'® Pgsub) < dp(ut™V Py gp) fors=1,...),
then part (b) of Theorem 5.3.5 also holds for Z i1 Qmin; > 1.
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The results from Theorem 5.3.5 are visualized in Figure 5.20. In the situation
where the inexactness in the gradients V.J! (u) permits the exact gradients V.J;(u) to
satisfy (KKTu), a descent direction can no longer be computed.

Figure 5.20: (a) Situation when a valid descent direction can no longer be computed.
(b) Situation where Zle Qming > 1.

In order to numerically compute a valid descent direction, one can compute a
direction by solving the auxiliary problem (QOP) and consequently verifying that
q"(u) is indeed descending for all objectives by checking condition (5.37). If this is
not the case, we can solve (QOP) again with adjusted lower bounds for a (cf. Al-
gorithm 5.4). Alternatively, one can compute the entire set of descent directions

Algorithm 5.4 (Descent direction for inexact gradients)

Require: Inexact gradients V.J!(w), error bounds € € R* and lower bounds & = 0
1: loop

2 Compute @ by solving (QOP) with a; € [, 1], i =1,...,k

3 Compute Qpin using (5.38)

4 if 32F Gmins > 1 then

5 q(w=0(Q =0)

6: STOP

7 else if & >, @i, then

s q'(u) = =, VI ()

9

STOP
10: end if
11: Update lower bounds: & = @min

12: end loop

[Bos12] and choose a direction from this set which satisfies (5.36) or (5.37), respec-
tively. In all examples considered, we observe that q"(u) is equal to g(u) for the
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majority of points w. This is likely due to the fact that by solving (QOP), we obtain a
steepest descent like direction which very often is relatively far away from the descent
cone’s boundaries. Close to the set of substationary points, the lower bounds @min
are occasionally updated but in many cases, the line search strategy directly leads
to points where Q" = () without requiring adjusted bounds.

The obtained descent direction can now be utilized to efficiently compute a point
which is approximately Pareto optimal. In order to compute the entire Pareto set
for MOPs with inexact gradient information, the above result will be combined with
the subdivision algorithm 2.2 in the next section.

5.3.3 Extension of the Subdivision Algorithm to Inexact
Gradients

In this section the subdivision algorithm (see Section 2.1.5) is combined with the
results from the previous section. Thereby, an algorithm for the approximation
of the set of substationary points of (MOPu) with inexact function and gradient
information is developed. So far, only inexactness in the descent direction has been
considered where only errors in the gradients are of importance. For the computation
of a descent step, a step length strategy is required where errors in the function
values have to be considered as well. For this purpose, we extend the concept of
non-dominance (2.1.5) to inexact function values®:

Definition 5.3.7. Consider the multiobjective optimization problem (MOPu) where
the objective function J(w) is only known approximately according to (5.30). Then

(a) a point u* € R™ confidently dominates a point u € R”, if J"(u") + k <,
J"(u) — k and J](u") + k; < J'(u) — k; for at least onei € 1,... k.

(b) a set B* C R" confidently dominates a set B C R"™ if for every point u € B
there exists at least one point u* € B* confidently dominating u.

(c) The set of almost non-dominated points which is a superset of the Pareto set
Ps s defined as:

'Ps,,.@ = {u* e R"

Fu € R™ which confidently dominates u*} . (5.40)

Based on these considerations, we introduce an inexact dynamical system similar
to (2.5) but based on inexact quantities:

W) — ) 4 ) pr), (5.41)

®Note that such a definition has also been introduced in [SVC09] in order to increase the number
of almost Pareto optimal points and thus, the number of compromises for a decision maker.
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where the direction p’") is computed using Algorithm 5.4 (i.e. p’¥) = q"(ul?))) and
the step length ") by Algorithm 5.5 (p. 135). Therein, 2"") is determined by a
modified Armijo rule [NWO06] such that

J[(u(j) + hr(j)pr(j)) + ki < JT(WVTY) — g + cih'@) (pr(j))TvJ;(u(j—l)) (5.42)

for i = 1,...,k. As a consequence of the inexactness in the function values and
the gradients, the approximated set is a superset of the Pareto set. Depend-
ing on the errors k and €, each accumulation point of (5.41) is either contained
in the set Pg, (5.40) or in the set Ps. (5.39). If the errors k and € are zero,
the computed set is reduced to the set of substationary points. In this situation
Ps.. = Ps and Qmin = 0, hence p"¥) = g(ul?)). Convergence of the dynamical sys-
tem (5.41) to an approximately substationary point is investigated in the following
theorem:

Theorem 5.3.8. Consider the multiobjective optimization problem (MOPu) with
inexact objective functions and inexact gradients according to (5.30) and (5.31),

respectively. Suppose that u* is an accumulation point of the sequence (u(]))j:0717.._
created by (5.41). Then

(a) u* € Pgen = PseUPs, where Pse and Ps,, are defined according to (5.39)
and (5.40), respectively,

(b) if k =0, € =0, u* is a substationary point of (MOPu).

Proof. (a) For every point u/) created by the sequence (5.41), one of the following
statements is true:

i) u) S 'Ps,e A uld) ¢ PS,/-; ii) uV) ¢ Pse A u) S PS,;-:
iii) u) e 'Ps,e A uD) e 7357,.i iV) u) §é Pse A u) é 'Psﬁ

In case i), u¥) € Pg, which means that the gradients VJ/(ul?)), i = 1,... k,
approximately satisfy the KKT conditions. We obtain Zle Qmin; = 1, i.e. the set
of valid descent directions is empty (Q" = 0, cf. Theorem 5.3.5). Consequently,
p"0) = 0 and the point u?) is an accumulation point of the sequence (5.41). In
case ii), the inexactness in J"(ul?)) results in h"?) = 0 (according to the modified
Armijo rule (5.42)), such that u) is an accumulation point. In case iii), both
p'¥) =0 and A"Y) = 0. In case iv), we have p"¥) = q(u")) and h"9) > 0. If for any
7 €10,1,...}, u¥) € Ps, or u¥) € Pg,, we are in one of the cases i) to iii) and ul?)
is an accumulation point. Otherwise, we obtain a descent direction such that the
sequence (5.41) converges to a substationary point u* € Psgp C Pg, of (MOPu)
according to Theorem 2.1.13, p. 16.
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For part (b), we obtain @y, = 0 by setting the errors € to zero and hence, the
descent direction is p"¥) = q(u")) (cf. Algorithm. 5.4). When & = 0, the modified
Armijo rule becomes the standard Armijo rule for multiple objectives. Consequently,
the problem is reduced to the case with exact function and gradient values (case iv)
in part (a)). O

Algorithm 5.5 (Descent step under inexactness)

Require: Initial point u'), error bounds x € R* and € € R*, ¢; € (0,1)

. Compute J/(u) and VJI (u), i =1,... k

2: Compute a direction p"¥) according to Algorithm 5.4

3: Compute a step length ") that satisfies the modified Armijo rule (5.42), e.g. via
backtracking [NWO0G]

: Compute uU*) = yl9) 4 pr)prQ)

—_

W

Following along the lines of [DSHO05], this yields convergence of the subdivision
algorithm with inexact values:

Theorem 5.3.9. Suppose that the set Pge . = PseUPs, with Pse and Ps,, accord-
ing to (5.39) and (5.40) is bounded and connected. Let () be a compact neighborhood
0f Psex. Then an application of the subdivision algorithm 2.2 to () with respect to
the iteration scheme (5.41) leads to a sequence of coverings B) which is a subset of
Pser and a superset of the set Pgsup of substationary points w* € R™ of (MOPu),
that 1s,

PS,sub - B(s) C PS,e,n-
Consequently, if the errors tend towards zero, we observe

hmo dh(B(s), PS,QN) = dh(PS,Sub7 B(S)) = 0

€,K—

Inexact Sampling Algorithm

In many problems, gradients are unknown or difficult to compute. In this case,
we can extend the sampling algorithm (Algorithm 2.3) to uncertainties. The re-
sulting algorithm 5.6 also consists of a subdivision and a selection step with the
difference that the selection step is an inexact non-dominance test according to Def-
inition 5.3.7. We thereby compute the superset Pg, of the global Pareto set Pg
with limy_,0 h(Ps, Ps) = 0.
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Algorithm 5.6 (Inexact sampling algorithm)

Let B be an initial collection of finitely many subsets of the compact set Q such
that (Jgepo B = @. Then B®) is inductively obtained from B®~Y in two steps:

(i) Subdivision. Construct from B¢~V a new collection of subsets B such that

U B= U B

BeB() BeB(s—1
diam(B®)) = 0 diam(BE), 0 < Omin < 05 < Oppax < 1.

(ii) Selection. Define the new collection B by

5 = [B et

3B € B such that B confidently dominates B} .

5.3.4 Examples

The results are now illustrated using three examples. To this end, we add random
perturbations to the exact model such that (5.30) and (5.31) hold for fixed error
bounds € and k. The first two examples, (5.43) and (5.44), are addressed with
the gradient-based subdivision algorithm 2.2 where the exact dynamical system is
replaced by the inexact version (5.41). The third example (5.45) is then treated
with the inexact sampling algorithm 5.6 since the resulting Pareto set is discon-
nected.

We begin with a two dimensional example function J : R*? — R? for two
paraboloids:

min J(u) = miy ( (ur + 1)% + (up + 1)

u€R? ucR?
The box coverings of the Pareto sets and the corresponding Pareto fronts with
k=(0,00",€=(0.1,0.1)" and & = (0,0)", € = (0.0,0.2) " are shown in Figure 5.21
(a) and (b), respectively. The background is colored according to ||g(u)||2 obtained
by solving (QOP), and the white iso-line indicates the upper bound of the error
(5.39). We see in (a) that the box covering is very close to the error bound whereas
it is less sharp in (b). Consequently, the error estimate is more accurate when the
errors are of comparable size in all gradients. The Pareto fronts corresponding to
(a) and (b) are shown in (c) and (d). We see that the difference between the Pareto
front of the exact (red) and of the inexact solution (green) is relatively small but

that the front has longer tails, i.e. additional points close to the individual minima
Ji(uw) = 0 and Jo(u) = 0.
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Figure 5.21: (a) Box covering of the Pareto set of problem (5.43) after 16 subdivision
steps of the gradient-based inexact subdivision algorithm (diam(B®) =
4, diam(B®") = 1/25). The solution without errors (Pseup) is shown
in red, the solution with € = (0.1,0.1)", & = (0,0)" (Ps,) is shown
in green. The background color represents the norm of the optimality
condition (KKTu), the upper bound of the error || g(w)||2 = 2||€[|c = 0.2
is marked by the dashed white line. (b) Analog to (a) but with € =
(0,0.2)" and the iso-curve ||g(w)|s = 0.4. (c)—(d) The Pareto fronts
corresponding to (a). The points are the images of the box centers
(color coding as in (a) and (b)).

In the numerical realization, each box is sampled by an equidistant grid with two
points in each direction, i.e. by four sample points in total. This results in a total
number of approximately 50,000 function evaluations for the exact problem. The
number of boxes is much higher for the inexact solution, in this case by a factor of
roughly eight. This is not surprising since the equality condition (KKTu) is replaced
by the inequality condition (5.39). Hence, the approximated set is no longer a (k—1)-
dimensional object. All sets B € B®) that satisfy the inequality condition (5.39) are
not discarded in the selection step. Consequently, at a certain box size, the number of
boxes increases exponentially with decreasing diameter diam(B) (cf. Figure 5.25 (b)
on p. 142). The result is an increased computational effort for higher order iterations.
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Figure 5.22: Comparison of the inexact and the exact solution of problem (5.43)

after 4, 8 and 12 subdivision steps.

This is also visualized in Figure 5.22, where the solutions at different stages of the
subdivision algorithm are compared. A significant difference can only be observed
in later stages. For this reason, an adaptive strategy needs to be developed in the
future where boxes satisfying (5.39) remain within the box collection but are no
longer considered in the subdivision algorithm.
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As a second example, we consider the function J : R?* — R3:

(Ul — 1)4 + (UQ - 1)2 + (Ug — 1)2
min J(w) = min | (u + D2+ (ug+ 1)* + (uz + 1)% | (5.44)
uekt S (= 12 4 (up + 1)+ (uz — 1)

The observed behavior is very similar to the two-dimensional case, cf. Figure 5.23,
where the box covering of the inexact problem as well as the iso-surface || g(u)||s =
2||€]| s are shown in (b). One can see that the box covering lies inside this iso-surface
except for very few boxes where small parts are outside. This is due to the finite
box size and the fact that at least one sample point is mapped into the box itself.
For smaller box radii, this artifact does no longer occur.

Finally, we consider an example where the Pareto set is disconnected. This is
an example from production and was introduced in [SSW02]. We want to minimize
the failure of a product which consists of n components. The probability of failing
is modeled individually for each component and depends on the additional cost
uc R™

p1(w) = 0.01exp (—(u1/20)2-5) ’
p2(u) = 0.0l exp (_(u2/20)2.5) ’
pi(w) = 0.01exp (—u;/15),  j=3.....n.

The resulting MOP is thus to minimize the additional cost and the failure at the
same time:

. - D o1 Uy )
min J(w») = min ) : 5.45
i J(w) = iy ( 1 (1 - py(w) (545)
We now assume that the additional cost are subject so some uncertainty, e.g. due to
varying prices, and set |u; — w;| < 0.01 for i = 1,...,n. Using this, we numerically
approximate the error bounds within the initial box B® = [0,40]" and obtain
k= (0.052-10"°)" and € = (0,8-1077) .

Since the Pareto set is disconnected, the exact and inexact sampling algorithm are
now applied. The resulting Pareto sets Ps and Pg,, are visualized in Figures 5.24 (a)
and (b) for n = 5. Due to the small gradient of the second objective, this results
in a significantly increased number of boxes by a factor of roughly 300 (cf. Fig-
ure 5.25 (b)).

The quality of the inexact solution can be measured using the Hausdorff distance
dn(Ps, Ps,.) [RWI8]. This is depicted in Figure 5.25 (a), where the distance between
the exact and the inexact solution is shown for all subdivision steps for the three
examples above. We see that the distance reaches an almost constant value in the
later stages. This distance is influenced by the upper bounds € and k, respectively.
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Figure 5.23: Box coverings of the Pareto set (exact solution Pggp in red, inexact

solution Pg, in green) of problem (5.44) after 24 subdivision steps
of the gradient-based inexact subdivision algorithm (diam(B®)) = 4,
diam(B®)) = 1/2°). (a) Solution without errors. (b) Solution
with & = (0,0,0)" and ¢ = (0.1,0.1,0.1)" and the iso-surface
llg(u)|2 = 2||€|lc = 0.2, i.e. the upper bound of the error. (c)—(d)
Two-dimensional cut planes through the Pareto set. The point of view
in (c) is as in (a) and (d) is a cut plane parallel to the u;-ug plane at
uy = —0.9. (e) The corresponding Pareto fronts.
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Figure 5.24: (a) Projection of the box covering of Pg for problem (5.45) with
n = 5 after 25 subdivision steps of the inexact sampling algorithm
(diam(B©®)) = 40, diam(B®) = 1.25). The coloring represents the
fourth component uy. (b) Box covering of Pg, with inexact data u
with |u; — u;| < 0.01 for i = 1,...,5. (¢c)—(d) The Pareto fronts corre-
sponding to (a) and (b) in green and red, respectively. The points are
the images of the box centers.

However, it is currently not possible to prescribe an upper bound for the Hausdorff
distance since depending on the algorithm, the bounds only limit inaccuracies in
the optimality condition or in the dominance properties, respectively. In order to
limit the error in the decision space, further assumptions on the objectives have to
be made.

As observed earlier, the number of boxes is much higher for the inexact solution in
all examples, cf. Figure 5.25 (b). The result is a severely increased computational ef-
fort for higher order iterations which motivates the development of an adaptive strat-
egy in which non-dominated boxes are not further subdivided.
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Figure 5.25: (a) Hausdorff distance d,(Ps,Ps,;) for the three examples above. (b)
The corresponding ratio of box numbers between the inexact solution
(n}) and the exact solution (ny).

5.4 Set-Oriented Multiobjective Optimal Control of
PDEs using ROMs

In this section the inexact sampling algorithm 5.6 developed in Section 5.3 is com-
bined with model order reduction techniques in order to develop a global, derivative-
free algorithm for PDE-constrained MOCPs using surrogate models. To this end,
the inexact sampling algorithm is combined with a localized reduced basis approach
[AHKO12] and error estimates for the objectives. The cynamical system considered
here is similar to (5.22) from Section 5.2 except for an additional non-linear term
which yields a semi-linear problem. An a-posteriori error estimator for the individ-
ual objectives is derived and numerical results concerning both the error estimator
and the overall algorithm are presented.

The results presented in this section grew out of a cooperation with the University
of Konstanz within the project Multiobjective Optimal Control of Partial Differen-
tial FEquations Using Reduced-Order Modeling which is part of the DFG Priority
Programme 1962 - Non-smooth and Complementarity-based Distributed Parameter
Systems: Simulation and Hierarchical Optimization. They have previously appeared
in [BDPV17] and the author has made substantial contributions. The results con-
cerning error estimates for the ROMs (Section 5.4.2) are entirely due to the authors
from the University of Konstanz.
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5.4.1 The Multiobjective Optimal Control Problem

Throughout this section let Q C R? be a bounded Lipschitz domain with boundary
I'. Further, let (tg,t.) C R be a time interval, @) := (to,t.) x Q and ¥ := (to,t.) x I.
The domain contains subdomains 2; C 2 and indicator functions are defined by
xi(x) = 1if & € Q; and x;(x) = 0 otherwise (i = 1,...,n). The control space is
given by 4 = R"™ and we consider the following MOCP:

/Q ly(te, @) — yas (@) da
1

min J , W) = min — 5.46a
ueld (v, w) ueld 2 / |y (te, ®) — yao(x)|]* de ( )
Q
ulf3
subject to the PDE constraints
(t,2) = Dy(t,2) + (1, 2) = S wale) for (1,0) € @
i=1
0 (5.46b)
%(t, x) = for (t,z) € X,
y(0, @) = yo(x) for z € Q,
and the box constraints
U, <, u<, w, inl forte (ty,t.). (5.46¢)

In (5.46a), the functions y,; and yg2 € L*(;R) are two conflicting desired states.
The state variable y is given as the solution to the semi-linear heat equation (5.46b).
One can show that such a solution always exists, is unique and in particular be-
longs to C'([to, te]; L?(Q2)), meaning that the integrals in (5.46a) are well-defined (see
[BDPV17] for details). In (5.46¢), the control variable u is bounded by bilateral con-
straints u,, w, € U with u, <, w,. Using this, the admissible set

Llad:{ueu‘ua <pu<, w inU}

can be defined. In order to apply a finite element method for solving (5.46), we
introduce the weak formulation of the state equation (5.46b).

Definition 5.4.1. A function y € Y = L*((to,t.); V) N H'((to,t.); V') is called a
weak solution to (5.46b) if for every ¢ € V.= H'(Q):

(G(t), ) + (Vy(t), Vo) + (y(t)*, ¢) = ;“ (i @)z in (to, o), (5.47)

((0), ) = (Yo, ),
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where & stands for “almost everywhere”.

In the FEM discretization, a Galerkin method is employed to replace the infinite-
dimensional problem (5.47) by a finite-dimensional version. Given linearly indepen-
dent spatial basis functions ¢1,...,¢,, € V, the space V is replaced by an n,-
dimensional subspace V¢ = span{¢, ey On,} C V. Typically, n, is a very large
number which is why the solution of the resulting system as referred to as a high-
fidelity solution:

Definition 5.4.2. A function y® € H'((to,t.); V) is called a high-fidelity solution
to (5.46b) if it holds for every ¢ € V4.

(), %) + (Vy'(t), Vo) + (y'(t)*, ¢?) = Zu (xi,¢?) e in (to, L),

(47(0), %) = (v5,¥%) ,

(5.48)

One can show — similar to previous problems — that for every u € U, there exists
a unique weak solution y € ) for (5.47) as well as a corresponding finite-dimensional
weak solution y¢ € H'((to,t.); V?) for (5.48). Consequently, we can define solution
operators S and 8% and introduce the reduced cost functionals

J: U — R, J(u) = J(Su, u),
JU U — RE, J(u) = JH(S%, u).

The MOCP (5.46) can now be reduced accordingly:

I(Sw)(t) = vaslh
min J(w) = min > | [(Sw)(t) —yaallh | st we U
13
and the corresponding high-fidelity problem is
X I(STu)(te) — yarll
%1615{1 J(u) = rgg 3 1(S%u)(te) — yazll% s.t. u € Uyg. (5.49)
13

5.4.2 Model Order Reduction

The sampling algorithm 2.3 requires evaluating the cost function J(u) for all sample
points w € B and all sets B € B®). Each of these evaluations requires a solution of
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system (5.48) for the current control. As has been stated before, this can quickly
become infeasible and it is therefore necessary to apply model-order reduction tech-
niques to reduce the computational effort for the optimization.

Similar to the previous sections, a POD-based ROM will be used. To this
end, s snapshots from a high-fidelity solution are stored in the snapshot matrix
S = [yd(to), . ,yd(te)} € R™*, where y%(t;) are the nodal values of the snapshots
y(t;). We then compute the POD basis {1¢}¢_, C V¥ of rank ¢ < d based on S
(cf. Section 2.3).

We define the finite-dimensional subspace V" = span {9, ... ¥4} C V< Thus,
the reduced state y"(t) € V" solves the following POD Galerkin scheme for every
1< <¢:

n

(yT<t)7 Wl) + (Vyr(t), V?ﬁf) + (yr(t)37 ¢f) - Zuz (Xm'(p;i) & in (t07t6)7

=1

y’l‘(o) =P Yo,
where the linear projection operator P : H — V" is given by

yg = P" yy = arg min ||’l7/)zd - yOHH‘
yievr

Introducing the POD solution operator 8" : U — H'((to,t.); V"), the reduced
order cost functional J” : i — R3 can be formulated:

(18700 = vl
7w =3 | IS -yl

i3

Assuming that P" : V' — V is bounded, it follows that S" is well-defined and that
the error between the high-fidelity and the reduced order solution can be estimated
[RTV17]:

0
TY: r 2
18%% — 8" ull 21y 1yry < C D M = Pryf|ly, < oo for any w € Usg.  (5.50)

i=0+1

Note that this error estimate is only valid for the particular control wes € Uag
which is used to generate the ROM. However, we need estimate the error for
an arbitrary control w € U,y which is achieved by utilizing the following theo-
rem.
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Theorem 5.4.3 ([RTV17]). Let V" = span{¢¢, ..., ¥¢} be a finite-dimensional
subspace as described above and let w € U,y be an arbitrary admaissible control.
Define the state and reduced state solutions as y? = S%u and y" = S"u. Then the
following a-posteriori estimate for the state holds:

t
ly*(#) —y" (D11 +/ Iy (r) =y (D} dr < AP (t,y")  for all t € [to,t.] (5.51)
to
with the a-posteriori estimator
t
a7 (t,) = (oo = sl + [ IR ar).
to

where the residual term is defined for t € [to,t.] and ¢* € V¢ as:
(R7(), ") = (57 (1), ") + (V' (1), V') + (v (1)%, %) = > ui (xir %) -
i=1

From this, one can immediately derive an estimator for the cost function:

Lemma 5.4.4 ([BDPV17]). Let V" be as before and u € Uaq an arbitrary admissible
control. Then the following a-posteriori estimate for the cost function holds for
i=1,2:

1
1 (w) = I (w)]| < V20P (te,y7) T (u) + 5 A% (e y"). (5.52)
Proof. We fix i € {1,2} and — using basic estimations — observe:

T 1 T
177 (w) = T ()l = 5 ([ (te) = asllir — 1y (te) — yaillZ |

= 1) = sl + 197 2) = sl
My (te) = yallr — (67 (te) = yall|

< LI t) = sl + 17 (20 = willr) - I8) = (22
= % (211" (te) = yailla + ly*(te) — y" () ) - 1y (te) — " (te)la
= VT (1) )+ 5l ) — o (2

The term |ly%(t.) — y"(t.)||% can be further bounded by the state estimator (5.51),
and this yields (5.52). O

Remark 5.4.5. The estimate AP'(-,y"(-)) is rigorous. Consequently, it has been
assumed during the proof that the unknown true error always behaves according to
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the worst-case scenario. One therefore frequently observes that the true error is
overestimated by an almost constant factor. Depending on the application, it may be
desirable to tighten the estimator by heuristically incorporating data from an offline
phase. Such a heuristic will be introduced in the next section. However, it has to be
noted that the mathematical rigor will be lost by doing this.

5.4.3 A Localized Reduced Bases Algorithm

In this section we will combine the results from Section 5.3.2 with the error estimate
(5.52) in order to efficiently and globally solve PDE-constrained MOCPs with set-
oriented techniques. To this end, the error estimates will be tightened by a heuristic
factor and then concepts from the localized reduced basis method will be adapted
to the multiobjective setting. The task is to solve problem (5.46) using the inexact
sampling algorithm and POD-based ROMs. In order to to compute the set of almost
non-dominated points Pg,., we define a maximal error k € R that is acceptable in
the objectives.

As mentioned in Remark 5.4.5, the error estimator (5.51) often constantly over-
estimates the true error, a fact that can also be observed in Figure 5.26 for the
given setup. In order to tighten the estimator, the following heuristic is applied. We
assume an over-estimation of the true error of the form

AP(te,y") = Csc - Ily*(te) — v (te) 17,

where Csc > 1 is an unknown scaling factor. Let a finite sample set Us. C Uaq be
given prior to the optimization. For a given ROM, we compute the high-fidelity
and reduced solutions y? = S%u and y" = S"u for all sample controls u € Us. and
compute C. as the geometric average

AP (te, 4o (T)) el
(H - yZ(te)H%{> .

Using this heuristic scaling factor, the error estimator can be replaced by

AP (L (1)

AZ(ty (1) = =4

The result of this procedure is illustrated for randomly chosen controls in Figure 5.26.
It can be observed that the mathematical rigor is lost, i.e. APl may be smaller
than the true error. However, it is significantly tighter which is beneficial for the
numerical efficiency in the sampling algorithm. This way, a larger number of boxes
is confidently dominated.
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Figure 5.26: (a) Error ||y%(t.) — y"(t.)||% in the state and error estimator
AP (t.,y"(t.)) for randomly chosen controls. (b) Error ||y4(t.)—y"(t.)||%
in the state and scaled error estimator AP'(t.,y"(t.)) for the same
controls.

In Figure 5.27, the corresponding function values obtained with the high-fidelity
and the surrogate model are compared. The error margin indicated by the estimator
A7 is barely visible due to the high accuracy.

Localized Reduced Bases Approach

Using the tightened error bounds, we are now in the position to address problem
(5.49) both with a finite element discretization and a POD approach. In the FEM
approach, the discretized state equation is evaluated at each sample point and the
value of the cost functionals J¢ to J¢ is determined. In the POD approach, we
have to ensure that the error estimator AZ is less than the prescribed bound
everywhere in the parameter domain. If we want to achieve this goal with a single
ROM, the model may become high-dimensional in order to satisfy the error bounds
everywhere and hence, inefficient. We therefore adopt ideas from localized reduced
basis methods [AHKO12, OS15] and construct a library R of locally valid models
during the subdivision procedure.

Prior to the first computation, the factor C. is determined using several ROMs
at randomly distributed controls w,es € Use within the parameter domain. In each of
these points, the factor between the true error and the error estimator is computed
and Cg is the mean factor over all computations. For problem (5.46), this factor is
approximately 2.5 everywhere in the parameter domain such that this approach is
justified. The library R is initialized by constructing a ROM for each of these FEM
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Figure 5.27: Cost function values J&(u) and J/(u), i = 1,2, corresponding to the
random controls in Figure 5.26.

solutions. This library can grow or shrink during the optimization, cf. Algorithm 5.7
below.

All sample points (the indices of which are contained in the set N) are evaluated
using the closest ROM in each subdivision step, where the distance is defined via
the Euclidean distance between the control u and the reference control ufif) at which
the j*" ROM was created. In the beginning, all points are denoted as insufficiently
approximated:

J={ieN| AL (u?) £, K},

meaning that they have not yet been approximated well enough using a ROM. Af-
ter the evaluation of J", all points with a satisfactory error estimate according to
(5.52) are eliminated from J. Since the remaining points violate the desired error
bound k € R*, we evaluate the full model and add a ROM to the library R. This is
done in a greedy way (see also [GMNPO7]), i.e. the ROM is added at the point with
the maximum error. The above steps are repeated until all points are sufficiently
accurately approximated and consequently, the set J is empty. Finally, all ROMs
are removed from R which have not been used. This is done in order to keep the
number of locally valid ROMs at an acceptable number. Moreover, ROMs belonging
to regions in the parameter domain which have been identified as confidently dom-
inated will not be required any further. The procedure is summarized in Algorithm

5.7.

149



5 Multiobjective Optimal Control of PDEs Using Reduced Order Modeling

Algorithm 5.7 (Greedy localized reduced basis approach)

Require: k € R”, library R, error scaling factor C, set of sample points N;
1: Consider all sample points as insufficiently approximated, i.e. J =N
2: while J # () do
3: fori=1,...,|9 do

4: Identify the closest ROM with respect to the 2-norm:
lclose = arg min ||'u,(i) — UEQHQ

JE{L,..|R[}

5: Compute J"(u®) using ROM icjose

6: Evaluate the error AZ (u”) for ROM igse using (5.52)

7: if AZ(u) <, k then

8: Accept J'(u?) as sufficiently accurate

9: Remove ¢ from the set J

10: end if

11: end for

12: Identify the sample point with the largest error:

max = arg max A;]C(u(s))
s€e]

13: Add a ROM to the library R with e = wlime)
14: end while
15: Remove all ROMs from R that have not been used

Numerical Results

In this section we compare numerical results for the MOP (5.49) obtained by a FEM
discretization (Algorithm 2.3) as well as a ROM (Algorithm 5.6), where the sample
points in each subdivision step are evaluated using Algorithm 5.7.

As the domain we consider the unit square = (0,1)? and the time interval
[to,te] = [0,1]. The desired states are given by

($) . 05, ) < 05, ($) . —0.5, I < 05,
Ya\T) =903, 2,>05 2P TV 05 2 >05,

such that there are both conflicting and non-conflicting areas in the domain. The
subdomains are given by

Q) =1[0,0.5] x [0,0.5], €y =1[0,0.5] x (0.5,1],
Qs = (0.5,1] x [0,0.5], Q4 = (0.5,1] x (0.5,1].

150



5.4 Set-Oriented Multiobjective Optimal Control of PDEs using ROMs

() - ¢ s 1

U

Figure 5.28: (a) Pareto set of (5.49) after 22 subdivision steps using a FEM dis-
cretization. Projection onto the first three components of u, and wuy
is visualized by the box coloring. (b) The Pareto set based on local
ROMs and the inexact sampling algorithm with & = (0.025,0.025,0)".
(¢) The corresponding Pareto fronts, where the FEM-based solution is
shown in green and the POD-based solution in red. The points are the
images of the box centers. (d) Assignment of sample points to ROMs.
Each of the colored patches has been assigned to one of the ROMs
which are represented by black dots.

The initial condition is yo() = 0 for all z € Q and box constraints w, = (1,1,1,1)"
and u, = —uy, are introduced. The maximal error is set to & = (0.025,0.025,0) "
where k3 = 0 since the ROM does not introduce an error in J;. Each box B is
represented by an equidistant grid of two points in each direction, i.e. by sixteen
sample points in total.

The exact Pareto set of (5.49) is shown in Figure 5.28 (a), where the boxes are
colored according to the fourth component u,. The corresponding Pareto front is
given in Figure 5.28 (c) in green. The Pareto set for the same problem, obtained by
Algorithms 5.6 and 5.7, is shown in Figure 5.28 (b), the corresponding Pareto front
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in Figure 5.28 (c) in red. A good agreement both between the Pareto sets and the
Pareto fronts can be observed. The error bound & for the objectives J¢ and J¢ is
satisfied as desired. In order to also bound the error in the decision space, further
assumptions on the objectives have to be made.

The locations of the reference controls s of the (remaining) ROMs are shown as
black dots in Figure 5.28 (d). The colored points are the sample points evaluated in
the 22" subdivision step, the coloring depends on the ROM the points were assigned
to. Due to the fact that the selection is based on the Euclidean distance, the size of
all the patches is comparable. Since there is no formal reason to choose this specific
way of assigning sample points to ROMs, this motivates the investigation of more
advanced clustering approaches in order to further reduce the number of required
ROMs.
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Figure 5.29: (a) The number of FEM evaluations in each subdivision step. (b) Ratio
of the total number of high-fidelity evaluations within the FEM-based
exact subdivision algorithm 2.3 and the POD-based inexact subdivision
algorithm 5.6. (c) Ratio of the respective number of boxes.

For the inexact Pareto set, only 444 evaluations of the full model were required,
i.e. the FEM evaluations were reduced by a factor of more than 1000. The FEM eval-
uations are mainly performed during the first subdivision steps (cf. Figure 5.29 (a))
whereas later, almost the entire decision space can be approximated by the existing
models. This is also illustrated in Figure 5.29 (b), where an exponential increase of
the ratio of high-fidelity solutions between the FEM and the POD-based approach
can be observed. Therefore, it would be interesting to investigate the benefit of an
offline phase similar to classical reduced basis approaches.

Due to the inexactness, the number of boxes is larger in the inexact computation,
which is shown in Figure 5.29 (c). Similar to the observations in Section 5.3, this
effect becomes more severe during higher order subdivision steps. All boxes in the
vicinity of the exact Pareto set are not eliminated which results in a strong increase
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in the number of boxes. Consequently, further research is required to address this
issue.

The approach presented here is only a first step towards using local reduced
bases within multiobjective optimization. It can be expected that the efficiency can
further be increased by implementing more sophisticated rules for clustering the
points than using the Euclidean distance. Moreover, using online enrichment (see
e.g. [AHKO12, OS15]) or combining different POD bases may also be beneficial for
the overall performance.

153






6 Conclusion and QOutlook

Multiobjective optimization becomes more and more important in modern appli-
cations. During the development of a new product, for example, knowledge of the
Pareto set can help the developer to judge the current design while during the op-
eration of a system, the ability to switch between optimal compromises increases
the system’s flexibility. The main drawback in comparison to scalar optimization
is the increased computational effort introduced by the presence of multiple crite-
ria. This becomes even more significant when additional parameter dependencies
have to be taken into account, the number of objectives is large or the underlying
model is costly to solve. Hence, the question that has been addressed in this thesis
is whether structural aspects, either in the multiobjective optimization or optimal
control problem or in the system dynamics, can be exploited in order to develop
algorithms with increased efficiency.

6.1 Continuation of Parameter Dependent Pareto
Sets

An algorithm for model predictive control of nonlinear dynamical systems with re-
spect to multiple criteria has been developed in Chapter 3. The algorithm utilizes
elements from economic and explicit MPC, multiobjective optimal control and mo-
tion planning with motion primitives. To this end, a large number of MOCPs has to
be solved in an offline phase. In order to reduce this number, the dynamical control
system is analyzed with respect to invariances of the solution under translations in
the initial conditions. This way, a known solution can be used in multiple situa-
tions. This requires a generalization of the concept of invariance in the sense that
invariances of the Pareto set of an MOCP with respect to variations of a parameter
have to be identified. According to a decision maker’s preference the system can be
controlled in real-time with respect to an optimal compromise between conflicting
objectives. Using a simple heuristic for the weighting of the objectives, solutions
of a quality compared to the global optimum computed by open loop dynamic pro-
gramming are obtained.

In spite of exploiting invariances, the number of MOCPs that have to be solved
quickly becomes very large and the computational complexity increases. Hence,
only constant controls have been considered in the application of autonomously
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driven electric vehicles. In order to increase the dimension of the control input,
it is necessary to improve the efficiency of solving parameter dependent MOCPs.
It has been shown that if the MOCP satisfies the manifold properties and both
the objectives and constraints are continuously differentiable with respect to the
parameter, the set of substationary points is a (k — 1 + n,)-dimensional manifold,
where n, is the dimension of the parameter. Based on this, predictor-corrector
methods can be extended to the continuation of entire Pareto sets. Despite being a
heuristic based on a finite approximation of the Pareto set, the predictor step yields
promising results, even in situations where the manifold properties are not globally
satisfied.

Finally, another example from autonomous driving has been investigated, where
a vehicle has to be steered with respect to the conflicting objectives to maximize
both speed and security. The results are a first step towards multiobjective MPC of
nonlinear dynamical systems.

6.2 Solving Many-Objective Optimization Problems
via Subsets of Objectives

The hierarchical structure of Pareto sets has been analyzed in Chapter 4. When
considering a subset of objectives, the resulting set of substationary points as well
as the Pareto set are subsets of the respective solutions to the full problem. More-
over, if the problem is unconstrained and sufficiently smooth, then the set of sub-
stationary points is bounded by the union of the sets of substationary points of
all subproblems where one objective is neglected. This can be exploited to effec-
tively compute the skeleton of Pareto sets for many-objective optimization prob-
lems.

In order to compute points from the interior of the Pareto set, an extension of the
well-known e-constraint method has been developed where a sequence of multiobjec-
tive subproblems has to be solved. Due to the exponential increase in computational
effort with the number of objectives, the interior can be approximated much faster
by solving a moderate number of e-constrained subproblems.

The results have been illustrated using several academic examples and an appli-
cation from industrial laundries. It has been shown that — depending on the number
of objectives — significant speed-up factors between 10 and more than 1000 can be
achieved. Moreover, the concept is not tailored to any specific algorithm such that it
can be used in combination with any method for solving MOPs.
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6.3 Multiobjective Optimal Control of PDEs Using
Reduced Order Modeling

Three different approaches for coupling multiobjective optimization and model order
reduction have been investigated in Chapter 5.

In the first approach presented in Section 5.1, only a single ROM has been com-
puted prior to the optimization and two different approaches for numerically solving
MOCPs involving boundary control of the Navier-Stokes equations have been com-
pared. The sampling algorithm yields a box covering of the global Pareto set which
can also be disconnected. Since its applicability critically depends on both the di-
mension of the Pareto set and the decision space dimension, it is restricted to a
moderate number of objectives as well as parameters, even in combination with re-
duced order modeling. Therefore the control function has to be represented by a low
number of parameters, e.g. by trigonometric functions or spline coefficients. Since
the reference point method converts the multiobjective optimal control problem
into a sequence of scalar problems, it is also applicable to high and even infinite-
dimensional problems. To incorporate gradient information, the optimality system
based on the reduced state equation has been derived for the scalar problem. In this
case, the accuracy of the approximated gradient is of great importance, which be-
comes evident when comparing two different optimality systems. Provided the gra-
dient accuracy is sufficient, the Pareto set can be approximated very efficiently using
the solution from previous scalar problems as initial guesses.

In Section 5.2, it has been shown that the trust region approach by Fahl [Fah00]
can be extended to multiple objectives in a straightforward manner when scalarizing
the objective function, e.g. via the reference point method. The improvement in com-
putational efficiency is significant which is demonstrated on a heat flow problem. The
advantage of this approach over computing only one model prior to the optimization
is that convergence to a Pareto optimal solution can be proved. Since all scalar-
ization methods have difficulties with a large number of objectives, the approach is
limited to a small number of objectives, i.e. ideally two. However, in combination
with the results from Chapter 4, the skeleton of the Pareto set of a many-objective
optimization problem can be efficiently computed.

In Section 5.3, the subdivision and the sampling algorithm developed in [DSHO05]
have been extended to MOPs with uncertainties in the form of inexact function
and gradient information. An additional condition for a descent direction has been
derived in order to account for the inaccuracies in the gradients. Convergence of
the inexact subdivision algorithm to a superset of the Pareto set has been proved
and an upper bound for the maximal distance to the set of substationary points has
been given.
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6 Conclusion and Outlook

In Section 5.4, the inexact version of the sampling algorithm has been applied to
an MOCP with a semi-linear parabolic state equation. The inexactness is a result
of applying POD-based reduced order modeling in order to accelerate cost function
evaluations. Accuracy of the ROM is ensured by using a-posteriori error estimators
for the state variable and the cost function values which have been coupled with a
heuristic scaling factor to compensate for an almost constant over-estimation. In or-
der to obtain ROMs of small size, a localized bases strategy has been adopted where
multiple locally valid ROMs are stored in a library. This library is constructed it-
eratively using a worst-first Greedy approach. The numerical results confirm that
the number of evaluations of the high-fidelity model can be reduced by a factor
of over 1000 while the prescribed error bound for the objectives is satisfied as de-
sired.

6.4 Future Work

The results presented in this thesis contribute to reducing the computational effort
of MOPs and MOCPs with the purpose to apply multiobjective optimization in real-
time applications or to consider multiple objectives in PDE-constrained problems.
Nevertheless, in all three areas that have been covered, there are open questions and
future directions that need to be addressed, either to further improve the efficiency
or to increase the range of possible applications.

In the case of parameter dependent problems, it would be beneficial to develop
a more rigorous approach to compute the tangent space of the entire Pareto set
instead of using a finite-difference approximation. Moreover, adaptive strategies for
the length of the predictor step (similar to the strategies presented in [AG03]) could
help to further increase the efficiency due to faster convergence of the corrector
step.

For the multiobjective MPC framework presented in Chapter 3, an analysis from
a more theoretical point of view would be of great interest. Questions concerning
feasibility, stability or optimality are crucial for the applicability of the approach
to real systems. A first step would be to investigate feasibility and stability under
the assumption that the solution of the required MOCP is exactly known. In the
next step, this needs to be extended in the spirit of explicit MPC methods in order
to account for interpolation errors in situations where the solution is only known
for slightly different parameter values. Finally, it would be interesting to apply the
method to the example considered in Section 3.3, where until now only one maneu-
ver, i.e. driving through a curve, has been considered. This way efficient autonomous
driving with respect to multiple objectives can be realized.
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6.4 Future Work

The approach to exploit the hierarchical structure of Pareto sets presented in
Chapter 4 is a promising start to significantly accelerate the solution of many-
objective optimization problems. Since parts of the results until now only apply to
unconstrained problems, it would be of great interest to extend these to constrained
problems. It can be expected that in this situation, it is significantly more difficult
to compute the boundary of the set of substationary points by solving sub-problems
with a reduced number of objectives. Furthermore, an algorithm which systemati-
cally constructs the Pareto set by taking more objectives into consideration in each
iteration should be developed. The results can be useful for both deterministic and
evolutionary approaches.

The methods presented in Chapter 5 which utilize reduced order modeling to solve
PDE-constrained MOCPs have shown great potential. Depending on the dynamical
system and the number of objectives, different methods for incorporating ROMs are
advisable. Considering flow control problems, for example, methods based on error
analysis would certainly be helpful, but until now, they are limited to special cases
(e.g. steady state [VP05]). In particular, at higher Reynolds numbers the challenges
for flow control and reduced order modeling increase significantly [BN15]. Therefore,
it would be interesting if in this case, one could improve the results by considering
another reduced order modeling approach, utilizing e.g. Koopman operator-based
methods which have been briefly mentioned in Section 2.3.

The set-oriented approach to POD-based multiobjective optimal control of PDEs
developed in Section 5.3 is — in the gradient-based version — until now restricted to
unconstrained problems. This should certainly be addressed in the future in order to
broaden the applicability. Moreover, although the error bound for the objectives is
satisfied as desired, the distance in parameter space can still be significant. It would
therefore be interesting to derive additional conditions under which the distance
between the Pareto sets can be bounded.

Due to the inexactness in the ROM, the box covering consists of a significantly
increased number of boxes, which is disadvantageous for the computational effi-
ciency. Therefore, an adaptive strategy needs to be developed where almost Pareto
optimal subsets remain within the box collection but are no longer considered in
the computation. Finally, it would be interesting to investigate whether the er-
ror bound can be improved when the error satisfies a certain probability distribu-
tion.

The localized reduced basis approach presented in Section 5.4 is only a first step
towards using local reduced bases within PDE-constrained multiobjective optimal
control. The efficiency can probably be increased by implementing more sophisti-
cated rules for clustering the points, by using online enrichment or by combining
different ROMs. In order to use model-order reduction and in particular error esti-
mation in the gradient-based subdivision algorithm, error estimates for the reduced
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6 Conclusion and Outlook

order gradients have to be developed.

160



Bibliography

[ABOY]

[AG03]

[AHKO12]

[ARFLOY]

[ASGO1]

[AZF12]

[Ban16]

[BBB+01]

[BBI09)

[BBL*02]

A. Alessio and A. Bemporad. A survey on explicit model predictive
control. In L. Magni, D. M. Raimondo, and F. Allgbwer, editors,
Nonlinear Model Predictive Control: Towards New Challenging Appli-
cations, Vol. 384, pp. 345-369. Springer Berlin Heidelberg, 2009.

E. L. Allgower and K. Georg. Introduction to Numerical Continuation
Methods. Society for Industrial and Applied Mathematics, 2003.

F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger. The lo-
calized reduced basis multiscale method. In Proceedings of ALGO-
RITHMY 2012, pp. 393-403, 2012.

M. N. Albunni, V. Rischmuller, T. Fritzsche, and B. Lohmann. Mul-
tiobjective Optimization of the Design of Nonlinear Electromagnetic
Systems Using Parametric Reduced Order Models. IEEE Transactions
on Magnetics, 45(3):1474-1477, 2009.

A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model re-
duction methods for large-scale systems. Contemporary mathematics,
280:193-220, 2001.

D. Amsallem, M. J. Zahr, and C. Farhat. Nonlinear model order re-
duction based on local reduced-order bases. International Journal for
Numerical Methods in Engineering, 92(10):891-916, 2012.

S. Banholzer. POD-Based Bicriterial Optimal Control of Convection-
Diffusion Equations. Master thesis, University of Konstanz, 2016.

T. Binder, L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M. Diehl,
T. Kronseder, W. Marquardt, J. P. Schloder, and O. von Stryk. In-
troduction to Model Based Optimization of Chemical Processes on
Moving Horizons. In M. Grotschel, S. O. Krumke, and J. Rambau,
editors, Online Optimization of Large Scale Systems: State of the Art,
pp- 295-339. Springer Berlin Heidelberg, 2001.

M. Bergmann, C.-H. Bruneau, and A. Iollo. Enablers for robust POD
models. Journal of Computational Physics, 228(2):516-538, 2009.

C. H. Bischof, H. M. Biicker, B. Lang, A. Rasch, and A. Vehreschild.
Combining source transformation and operator overloading techniques
to compute derivatives for MATLAB programs. In Second IEEFE Inter-
national Workshop on Source Code Analysis and Manipulation, 2002.

161



Bibliography

[BBPK16] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control. PLoS ONE, 11(2):1-19, 2016.

[BBV16] S. Banholzer, D. Beermann, and S. Volkwein. POD-Based Bicriterial
Optimal Control by the Reference Point Method. In 2nd IFAC Work-
shop on Control of Systems Governed by Partial Differential Equations,
pp. 210-215, 2016.

[BBV17] S. Banholzer, D. Beermann, and S. Volkwein. POD-Based Error
Control for Reduced-Order Bicriterial PDE-Constrained Optimization.
https://kops.uni-konstanz.de/handle/123456789/37360, 2017.

[BCO8] M. Bergmann and L. Cordier. Optimal control of the cylinder wake in
the laminar regime by trust-region methods and POD reduced-order
models. Journal of Computational Physics, 227(16):7813-7840, 2008.

[BCBO05] M. Bergmann, L. Cordier, and J.-P. Brancher. Optimal rotary control
of the cylinder wake using proper orthogonal decomposition reduced-
order model. Physics of Fluids, 17:1-21, 2005.

[BdJO5] P. A. N. Bosman and E. D. de Jong. Exploiting gradient information
in numerical multi-objective evolutionary optimization. In Proceed-
ings of the 2005 conference on Genetic and evolutionary computation
(GECCO 05), pp. 755762, 2005.

[BDMSO08] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors. Multiob-
jective Optimization. Springer Berlin Heidelberg, 2008.

[BDPV17] D. Beermann, M. Dellnitz, S. Peitz, and S. Volkwein. Set-Oriented
Multiobjective Optimal Control of PDEs using Proper Orthogonal De-
composition. Submitted, 2017.

[Bew01] T. R. Bewley. Flow control: New challenges for a new Renaissance.
Progress in Aerospace Sciences, 37(1):21-58, 2001.

[BHLI3] G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal
decomposition in the analysis of turbulent flows. Annual Review of
Fluid Mechanics, 25:539-575, 1993.

[BMO00] C. Biiskens and H. Maurer. SQP-methods for solving optimal control
problems with control and state constraints: adjoint variables, sensi-
tivity analysis and real-time control. Journal of Computational and
Applied Mathematics, 120(1-2):85-108, 2000.

[BM09a] A. Bemporad and D. Munoz de la Pefia. Multiobjective model predic-
tive control. Automatica, 45(12):2823-2830, 2009.

[BM09b] A. Bemporad and D. Munoz de la Pefia. Multiobjective Model Predic-
tive Control Based on Convex Piecewise Affine Costs. In Proceedings
of the European Control Conference, pp. 2402-2407, 2009.

[BMSO05] P. Benner, V. Mehrmann, and D. C. Sorensen, editors. Dimension
Reduction of Large-Scale Systems. Springer Berlin Heidelberg New
York, 2005.

162



Bibliography

[BMTO1]

[BN15]

[Bos12]
[BS15]

[BWC12]

[BZ06]

[BZ11]

[CAF09)]

[Car91]

[CBS05]

[CFCA13]

[CLS16]

[CLV07]

T. R. Bewley, P. Moin, and R. Temam. DNS-based predictive control
of turbulence: an optimal benchmark for feedback algorithms. Journal
of Fluid Mechanics, 447:179-225, 2001.

S. L. Brunton and B. R. Noack. Closed-Loop Turbulence Control:
Progress and Challenges. Applied Mechanics Reviews, 67(5):1-48,
2015.

P. A. N. Bosman. On Gradients and Hybrid Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation, 16(1):51-69, 2012.
R. E. Bellmann and E. D. Stuart. Applied dynamic programming.
Princeton University Press, 2015.

C. Bingham, C. Walsh, and S. Carroll. Impact of driving characteristics
on electric vehicle energy consumption and range. I[ET Intelligent
Transport Systems, 6(1):29-35, 2012.

M. Basseur and E. Zitzler. A Preliminary Study on Handling Uncer-
tainty in Indicator-Based Multiobjective Optimization. In F. Rothlauf,
J. Branke, S. Cagnoni, E. Costa, C. Cotta, R. Drechsler, E. Lutton,
P. Machado, J. H. Moore, J. Romero, G. D. Smith, G. Squillero,
and H. Takagi, editors, Applications of FEwvolutionary Computing:
FEvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvolASP,
FEvoINTERACTION, EvoMUSART, and EvoSTOC, Budapest, Hun-
gary, pp. 727-739, 2006.

J. Bader and E. Zitzler. HypE : An Algorithm for Fast Hypervolume-
Based Many-Objective Optimization.  FEvolutionary Computation,
19(1):45-76, 2011.

L. Cordier, B. Abou El Majd, and J. Favier. Calibration of POD
reduced-order models using Tikhonov regularization. International
Journal for Numerical Methods in Fluids, 63(2):269-296, 2009.

R. G. Carter. On the global convergence of trust region algorithms
using inexact gradient information. SIAM Journal on Numerical Anal-
ysis, 28(1):251-265, 1991.

M. Couplet, C. Basdevant, and P. Sagaut. Calibrated reduced-order
POD-Galerkin system for fluid flow modelling. Journal of Computa-
tional Physics, 207(1):192-220, 2005.

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT
method for nonlinear model reduction: Effective implementation and
application to computational fluid dynamics and turbulent flows. Jour-
nal of Computational Physics, 242:623-647, 2013.

O. Cuate, A. Lara, and O. Schiitze. A Local Exploration Tool for
Linear Many Objective Optimization Problems. In 13th International
Conference on FElectrical Engineering, Computing Science and Auto-
matic Control (CCE), 2016.

C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. FEwvo-

163



Bibliography

[CPO7]

[DAR11]

[DD97]

[DD9S]

[DEF+14]

[DEF+16]

[Dés12]

[DGO5]

[DHO7]

[DKKO91]

[DMMO5]

lutionary Algorithms for Solving Multi-Objective Problems, Vol. 2.
Springer Science & Business Media, 2007.

A. Chinchuluun and P. M. Pardalos. A survey of recent develop-
ments in multiobjective optimization. Annals of Operations Research,
154(1):29-50, 2007.

M. Diehl, R. Amrit, and J. B. Rawlings. A Lyapunov Function for Pe-
riodic Economic Optimizing Model Predictive Control. IEEE Trans-
actions on Automatic Control, 56(3):703-707, 2011.

I. Das and J. E. Dennis. A closer look at drawbacks of minimizing
weighted sums of objectives for Pareto set generation in multicriteria
optimization problems. Structural Optimization, 14(1):63-69, 1997.

I. Das and J. E. Dennis. Normal-Boundary Intersection: A New
Method for Generating the Pareto Surface in Nonlinear Multicriteria
Optimization Problems. STAM Journal on Optimization, 8(3):631-657,
1998.

M. Dellnitz, J. Eckstein, K. Flakamp, P. Friedel, C. Horenkamp,
U. Kohler, S. Ober-Blobaum, S. Peitz, and S. Tiemeyer. Develop-
ment of an Intelligent Cruise Control Using Optimal Control Methods.
Procedia Technology, 15:285-294, 2014.

M. Dellnitz, J. Eckstein, K. Flakamp, P. Friedel, C. Horenkamp,
U. Kohler, S. Ober-Blobaum, S. Peitz, and S. Tiemeyer. Multiobjec-
tive Optimal Control Methods for the Development of an Intelligent
Cruise Control. In G. Russo, V. Capasso, G. Nicosia, and V. Romano,
editors, Progress in Industrial Mathematics at ECMI 201/ (to appear).
Springer, 2016.

J.-A. Désidéri. Mutiple-Gradient Descent Algorithm for Multiobjec-
tive Optimization. In J. Eberhardsteiner, H. J. Bohm, and F. G. Ram-
merstorfer, editors, Furopean Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS), pp. 3974-3993, 2012.
K. Deb and H. Gupta. Searching for Robust Pareto-optimal Solutions
in Multi-objective Optimization. In C. A. Coello Coello, A. Herndndez
Aguirre, and E. Zitzler, editors, Fvolutionary multi-criterion optimiza-
tion, pp. 150-164. Springer Berlin Heidelberg, 2005.

M. Dellnitz and A. Hohmann. A subdivision algorithm for the compu-
tation of unstable manifolds and global attractors. Numerische Math-
ematik, 75(3):293-317, 1997.

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag.
Lowdimensional models for complex geometry flows: Application to
grooved channels and circular cylinders. Physics of Fluids A: Fluid
Dynamics, 3(10):2337-2354, 1991.

K. Deb, M. Mohan, and S. Mishra. Evaluating the epsilon-Domination
Based Multi-Objective Evolutionary Algorithm for a Quick Com-

164



Bibliography

[DMP03]

[DPG]

[DS83]

[DSHO5]

[DSS02]

[DVO1]

[Ehr05]

[EPS*16]

[EW07]

[Fah00]

[FDF05]

[FGHO8]

[FGS09)

putation of Pareto-Optimal Solutions. Fwvolutionary Computation,
13(4):501-525, 2005.

Z. Denkowski, S. Migorski, and N. S. Papageorgiou. An Introduction
to Nonlinear Analysis: Theory. Springer Science & Business Media,
2003.

M. Dellnitz, S. Peitz, and B. Gebken. On the Hierarchical Structure
of Pareto Sets. In preparation.

J. E. Dennis Jr. and R. B. Schnabel. Numerical methods for uncon-
strained optimization and nonlinear equations. Prentice Hall Series
in Computational Mathematics. Prentice Hall, Inc., Englewood Cliffs,
NJ, 1983.

M. Dellnitz, O. Schiitze, and T. Hestermeyer. Covering Pareto sets by
Multilevel Subdivision Techniques. Journal of Optimization Theory
and Applications, 124(1):113-136, 2005.

M. Dellnitz, O. Schiitze, and S. Sertl. Finding zeros by multilevel subdi-
vision techniques. IMA Journal of Numerical Analysis, 22(2):167-185,
2002.

F. Diwoky and S. Volkwein. Nonlinear Boundary Control for the Heat
Equation Utilizing Proper Orthogonal Decomposition. In K.-H. Hoff-
mann, R. H. W. Hoppe, and V. Schulz, editors, Fast Solution of Dis-
cretized Optimization Problems: Workshop held at the Weierstrass In-
stitute for Applied Analysis and Stochastics, Berlin, May 8-12, 2000,
pp. 73-87. Springer Basel, 2001.

M. Ehrgott. Multicriteria optimization. Springer Berlin Heidelberg
New York, 2nd edition, 2005.

J. Eckstein, S. Peitz, K. Schéfer, P. Friedel, U. Koéhler, M. Hessel-von
Molo, S. Ober-Blobaum, and M. Dellnitz. A Comparison of two Pre-
dictive Approaches to Control the Longitudinal Dynamics of Electric
Vehicles. Procedia Technology, 26:465-472, 2016.

A. Engau and M. M. Wiecek. Generating e-efficient solutions in mul-
tiobjective programming. FEuropean Journal of Operational Research,
177(3):1566-1579, 2007.

M. Fahl. Trust-region Methods for Flow Control based on Reduced
Order Modelling. Phd thesis, University of Trier, 2000.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE Transactions
on Robotics, 21(6):1077-1091, 2005.

A. V. Fursikov, M. D. Gunzburger, and L. S. Hou. Boundary value
problems and optimal boundary control for the Navier-Stokes system:
the two-dimensional case. SIAM Journal on Control and Optimization,
36(3):852-894, 1998.

J. Fliege, L. M. Grana Drummond, and B. F. Svaiter. Newton’s

165



Bibliography

method for multiobjective optimization. SIAM Journal on Optimiza-
tion, 20(2):602-626, 2009.

[FOBK12] K. FlaBkamp, S. Ober-Blobaum, and M. Kobilarov. Solving Optimal
Control Problems by Exploiting Inherent Dynamical Systems Struc-
tures. Journal of Nonlinear Science, 22(4):599-629, 2012.

[FP02] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynam-
ics. Springer Berlin Heidelberg, 3rd edition, 2002.

[FPLO5] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe. Many-Objective
Optimization: An Engineering Design Perspective. In International
Conference on FEvolutionary Multi-Criterion Optimization, pp. 14-32,
2005.

[FS00] J. Fliege and B. F. Svaiter. Steepest descent methods for multicri-
teria optimization. Mathematical Methods of Operations Research,
51(3):479-494, 2000.

[GBZI04] B. Galletti, C.-H. Bruneau, L. Zannetti, and A. Tollo. Low-order mod-
elling of laminar flow regimes past a confined square cylinder. Journal
of Fluid Mechanics, 503:161-170, 2004.

[GeH89] M. Gad-el Hak. Flow Control. Applied Mechanics Reviews, 42(10):261-
292, 1989.

[Ger12] M. Gerdts. Optimal control of ODEs and DAFEs. Walter de Gruyter,
2012.

[GFDKO09] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl. Specification tech-
nique for the description of self-optimizing mechatronic systems. Re-
search in Engineering Design, 20(4):201-223, 2009.

[GFWG10] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Non-linear
model reduction for uncertainty quantification in large-scale inverse
problems. International Journal for Numerical Methods in Engineer-
ing, 81:1581-1608, 2010.

[GMNPO7] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient
reduced-basis treatment of nonaffine and nonlinear partial differential
equations. ESAIM: Mathematical Modelling and Numerical Analysis,
41(3):575-605, 2007.

[GP17] L. Griine and J. Pannek. Nonlinear Model Predictive Control. Springer
International Publishing, 2nd edition, 2017.

[GPT99] W. R. Graham, J. Peraire, and K. Y. Tang. Optimal Control of Vortex
Shedding Using Low Order Models. Part I: Open-Loop Model Devel-
opment. International Journal for Numerical Methods in Engineering,
44(7):945-972, 1999.

[GvL13] G. H. Golub and C. F. van Loan. Matriz computations. The Johns
Hopkins University Press, 4th edition, 2013.

[Hilo1] C. Hillermeier. Nonlinear Multiobjective Optimization: A Generalized
Homotopy Approach. Birkhauser, 2001.

166



Bibliography

[HLBR12]

[HOO8]

[HPUU0Y]

[HRT96]

[HSKO6]

[HSS13]

[Hug01]

[HVO05]

[TK08]

[IR9S]

[IRO1]

P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence,
Coherent Structures, Dynamical Systems and Symmetry. Cambridge
University Press, 2nd edition, 2012.

B. Haasdonk and M. Ohlberger. Reduced Basis Method for Finite Vol-
ume Approximations of Parametrized Evolution Equations. ESAIM:
Mathematical Modelling and Numerical Analysis, 42(2):277-302, 2008.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with
PDFE Constraints. Springer Science+Business Media, 2009.

J. G. Heywood, R. Rannacher, and S. Turek. Artificial Boundaries and
Flux and Pressure Conditions for the Incompressible Navier-Stokes
Equations. International Journal for Numerical Methods in Fluids,
22(5):325-352, 1996.

K. Harada, J. Sakuma, and S. Kobayashi. Local Search for Multiobjec-
tive Function Optimization: Pareto Descent Method. In Proceedings of
the 8th Annual Conference on Genetic and FEvolutionary Computation
(GECCO 06), pp. 659-666. ACM, 2006.

C. Hernandez, J.-Q. Sun, and O. Schiitze. Computing the Set of Ap-
proximate Solutions of a Multi-objective Optimization Problem by
Means of Cell Mapping Techniques. In M. Emmerich, A. Deutz,
O. Schiitze, T. Béack, E. Tantar, A.-A. Tantar, P. D. Moral, P. Legrand,
P. Bouvry, and C. A. Coello, editors, EVOLVE - A Bridge between
Probability, Set Oriented Numerics, and FEvolutionary Computation
1V: International Conference held at Leiden University, July 10-13,
2013, pp. 171-188. Springer International Publishing, 2013.

E. J. Hughes. Evolutionary Multi-objective Ranking with Uncertainty
and Noise. In E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello, and
D. Corne, editors, Fvolutionary Multi-Criterion Optimization: First
International Conference, Zurich, Switzerland, March 7-9, pp. 329-
343. Springer Berlin Heidelberg, 2001.

M. Hinze and S. Volkwein. Proper Orthogonal Decomposition Surro-
gate Models for Nonlinear Dynamical Systems: Error Estimates and
Suboptimal Control. In P. Benner, D. C. Sorensen, and V. Mehrmann,
editors, Reduction of Large-Scale Systems, Vol. 45 pp. 261-306.
Springer Berlin Heidelberg, 2005.

K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational
Problems and Applications. STAM, 2008.

K. Tto and S. S. Ravindran. A Reduced-Order Method for Simula-
tion and Control of Fluid Flows. Journal of Computational Physics,
425(2):403-425, 1998.

K. Itoand S. S. Ravindran. Reduced Basis Method for Optimal Control
of Unsteady Viscous Flows. International Journal of Computational
Fluid Dynamics, 15(2):97-113, 2001.

167



Bibliography

[IR06]

[TRO8)]

[ITNOS]

[ITV16]

[TUV13]

[JahO06]

[Jin11]

[JJT07]

[Kar39]

[KBO7]

[KCO0]

[KGPS16]

[KHW15]

[Kje00]

M. Ilak and C. W. Rowley. Reduced-Order Modeling of Channel Flow
Using Traveling POD and Balanced POD. In 3rd AIAA Flow Control
Conference, 20006.

M. Tlak and C. W. Rowley. Modeling of transitional channel flow
using balanced proper orthogonal decomposition. Physics of Fluids,
20(3):034103, 2008.

H. Ishibuchi, N. Tsukamoto, and Y. Nojima. FEvolutionary Many-
Objective Optimization: A short Review. Proceedings of the 2008
IEEE Congress on Evolutionary Computation, pp. 2419-2426, 2008.
L. Tapichino, S. Trenz, and S. Volkwein. Multiobjective optimal control
of semilinear parabolic problems using POD. In B. Karasozen, M. Man-
guoglu, M. Tezer-Sezgin, S. Goktepe, and O. Ugur, editors, Numerical
Mathematics and Advanced Applications (ENUMATH 2015), pp. 389—
397. Springer, 2016.

L. Tapichino, S. Ulbrich, and S. Volkwein. Multiobjective PDE-
Constrained Optimization Using the Reduced-Basis Method. Advances
in Computational Mathematics (to appear, preprint: hitp://kops.uni-
konstanz.de/handle/123456789/25019), 2013.

J. Jahn. Multiobjective Search Algorithm with Subdivision Technique.
Computational Optimization and Applications, 35(2):161-175, 2006.
Y. Jin. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1(2):61-
70, 2011.

H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM : A C++ Library
for Complex Physics Simulations. International Workshop on Coupled
Methods in Numerical Dynamics, pp. 1-20, 2007.

W. Karush. Minima of Functions of Several Variables with Inequalities
as Side Constraints. Master thesis, University of Chicago, Illinois,
1939.

J. Kim and T. R. Bewley. A linear systems approach to flow control.
Annual Review of Fluid Mechanics, 39:383—-417, 2007.

J. D. Knowles and D. W. Corne. M-PAES: A memetic algorithm for
multiobjective optimization. In Proceedings of the IEEE Congress on
FEvolutionary Computation, pp. 325-332, 2000.

S. Klus, P. Gel3, S. Peitz, and C. Schiitte. Tensor-based dynamic mode
decomposition. Submitted (preprint: arXiv:1606.06625), 2016.

T. Kothe, S. Herzog, and C. Wagner. Multi-objective shape optimiza-
tion of aircraft cabin ventilation components using adjoint CFD. In
16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference, pp. 1-13. AIAA, 2015.

T. H. Kjeldsen. A Contextualized Historical Analysis of the

168



Bibliography

[KLO7]

[Kob0g]
[KPO03]

[KT51]

[KV99)]

[KVO1]

[KV02]

[KVO8]
[Lac61]
[Las14]
[LCY7]

[LHDVI10]

[Lib12]

[LKBMO5]

[LMW12]

Kuhn—Tucker Theorem in Nonlinear Programming: The Impact of
World War I1. Historia Mathematica, 27(4):331-361, 2000.

S. Kukkonen and J. Lampinen. Ranking-Dominance and Many-
Objective Optimization. In IEFEE Congress on Evolutionary Compu-
tation, pp. 3983-3990, 2007.

M. Kobilarov. Discrete Geometric Motion Control of Autonomous Ve-
hicles. PhD thesis, University of Southern California, 2008.

S. G. Krantz and H. R. Parks. The Implicit Function Theorem: His-
tory, Theory, and Applications. Birkhduser Boston, 2003.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceed-
ings of the 2nd Berkeley Symposium on Mathematical and Statsitical
Probability, pp. 481-492. University of California Press, 1951.

K. Kunisch and S. Volkwein. Control of the Burgers Equation by a
Reduced-Order Approach Using Proper Orthogonal Decomposition.
Journal of Optimization Theory and Applications, 102(2):345-371,
1999.

K. Kunisch and S. Volkwein. Galerkin proper orthogonal decom-
position methods for parabolic problems. Numerische Mathematik,
90(1):117-148, 2001.

K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposi-
tion methods for a general equation in fluid dynamics. SIAM Journal
on Numerical Analysis, 40(2):492-515, 2002.

K. Kunisch and S. Volkwein. Proper Orthogonal Decomposition for
Optimality Systems. ESAIM, 42(1):1-23, 2008.

G. V. Lachmann, editor. Boundary layer and flow control: Its princi-
ples and application, Vol. 2. Pergamon Press, 1961.

O. Lass. Reduced order modeling and parameter identification for cou-
pled nonlinear PDE systems. PhD thesis, University of Konstanz, 2014.
J. H. Lee and B. Cooley. Recent advances in model predictive control.
AIChE Symposium Series, 93(316):201-216, 1997.

F. Logist, B. Houska, M. Diehl, and J. van Impe. Fast Pareto set gener-
ation for nonlinear optimal control problems with multiple objectives.
Structural and Multidisciplinary Optimization, 42(4):591-603, 2010.
D. Liberzon. Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2012.

A. V. Lotov, G. K. Kamenev, V. E. Berezkin, and K. Miettinen. Op-
timal control of cooling process in continuous casting of steel using
a visualization-based multi-criteria approach. Applied Mathematical
Modelling, 29(7):653-672, 2005.

A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated Solutions
of Differential Equations by the Finite Element Method - The FEniCS
Book. Springer Berlin Heidelberg, 2012.

169



Bibliography

[LSCS10]

[Lum67]

IMDL99]
[Mez13]

[Mez16]

[Mic12]

IMKO02]

[MKDB12]

[MMO6]

IMM02]

[MP94]

IMP95]

[MS17]

[INAM*03]

A. Lara, G. Sanchez, C. A. Coello Coello, and O. Schiitze. HCS:
A New Local Search Strategy for Memetic Multiobjective Evolution-
ary Algorithms. [FFEE Transactions on Fvolutionary Computation,
14(1):112-132, 2010.

J. L. Lumley. The structure of ingomogeneous turbulent flows. In
Atmospheric Turbulence and Radio Wave Propagation: Proceedings of
the International Colloquim, pp. 166-178, 1967.

N. Marco, J.-A. Désidéri, and S. Lanteri. Multi-Objective Optimiza-
tion in CFD by Genetic Algorithms. RR-3686, INRIA, 1999.

[. Mezi¢. Analysis of Fluid Flows via Spectral Properties of the Koop-
man Operator. Annual Review of Fluid Mechanics, 45:357-378, 2013.
I. Mezi¢. On Applications of the Spectral Theory of the Koopman
Operator in Dynamical Systems and Control Theory. In IEEE 54th
Annual Conference on Decision and Control (CDC), pp. 7034-7041,
2016.

K. Miettinen. Nonlinear Multiobjective Optimization. Springer Science
& Business Media, 2012.

X. Ma and G. E. Karniadakis. A low-dimensional model for simulating
three-dimensional cylinder flow. Journal of Fluid Mechanics, 458:181—
190, 2002.

C. Masjosthusmann, U. Kohler, N. Decius, and U. Biiker. A Vehicle
Energy Management System for a Battery Electric Vehicle. In 2012
IEEFE Vehicle Power and Propulsion Conference, pp. 339-344. IEEE,
2012.

K. Malanowski and H. Maurer. Sensitivity Analysis for Parametric
Optimal Control Problems with Control-State Constraints. Computa-
tional Optimization and Applications, 5(2):253-283, 1996.

K. Miettinen and M. M. Mékela. On scalarizing functions in multiob-
jective optimization. OR Spectrum, 24(2):193-213, 2002.

H. Maurer and H. J. Pesch. Solution Differentiability for Nonlinear
Parameteric Control Problems. SIAM Journal on Control and Opti-
mization, 34(6):1542-1554, 1994.

H. Maurer and H. J. Pesch. Solution differentiability for parametric
nonlinear control problems with control-state constraints. Journal of
Optimization Theory and Applications, 86(2):285-309, 1995.

A. Martin and O. Schiitze. Pareto Tracer: A Predictor Corrector
Method for Multi-objective Optimization Problems. Engineering Op-
timization (to appear), 2017.

B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele.
A hierarchy of low-dimensional models for the transient and post-
transient cylinder wake. Journal of Fluid Mechanics, 497:335-363,
2003.

170



Bibliography

INCM12]

[NPMO5]

[INWO06]

[NZP04]

[OBO§]

[OBRzF12]

(0S15]

[Par71]

[PBK14]

[PBK16]

[PD15]

[PD17]

[PFO7]

[PGH*16]

[PLMOG6]

F. Neri, C. Cotta, and P. Moscato. Handbook of memetic algorithms,
Vol. 379. Springer, 2012.

B. R. Noack, P. Papas, and P. A. Monkewitz. The need for a pressure-
term representation in empirical Galerkin models of incompressible
shear flows. Journal of Fluid Mechanics, 523:339-365, 2005.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series
in Operations Research and Financial Engineering. Springer Science &
Business Media, 2nd edition, 2006.

M. Nemec, D. W. Zingg, and T. H. Pulliam. Multipoint and
Multi-Objective Aerodynamic Shape Optimization. AIAA Journal,
42(6):1057-1065, 2004.

S. Ober-Blobaum. Discrete Mechanics and Optimal Control. PhD
thesis, University of Paderborn, 2008.

S. Ober-Blobaum, M. Ringkamp, and G. zum Felde. Solving Multi-
objective Optimal Control Problems in Space Mission Design using
Discrete Mechanics and Reference Point Techniques. In 51st IEEFE In-
ternational Conference on Decision and Control, pp. 5711-5716, 2012.
M. Ohlberger and F. Schindler. Error control for the localized reduced
basis multiscale method with adaptive on-line enrichment. SIAM Jour-
nal on Scientific Computing, 37(6):2865-2895, 2015.

V. Pareto. Manual of political economy. MacMillan, 1971.

J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decom-
position with control. arXiv:1409.6358v1, 2014.

J. L. Proctor, S. L. Brunton, and J. N. Kutz. Generalizing Koopman
Theory to allow for inputs and control. arXiw:1602.07647v1, 2016.

S. Peitz and M. Dellnitz. Multiobjective Optimization of the Flow
Around a Cylinder Using Model Order Reduction. In Proceedings in
Applied Mathematics and Mechanics (PAMM), pp. 613-614, 2015.

S. Peitz and M. Dellnitz. Gradient-Based Multiobjective Optimiza-
tion with Uncertainties. In Proceedings of the 4th International Work-
shop on Numerical and Evolutionary Optimization (NEO) (to appear,
preprint: arXiv:1612.03815). Springer, 2017.

R. C. Purshouse and P. J. Fleming. On the Evolutionary Optimization
of Many Conflicting Objectives. IEEFE Transactions on Evolutionary
Computation, 11(6):770-784, 2007.

S. Peitz, M. Graler, C. Henke, M. Hessel-von Molo, M. Dellnitz, and
A. Trachtler. Multiobjective Model Predictive Control of an Industrial
Laundry. Procedia Technology, 26:483-490, 2016.

R. Pepy, A. Lambert, and H. Mounier. Path Planning using a Dynamic
Vehicle Model. In 2nd International Conference on Information €&
Communication Technologies, pp. 781 — 786, 2006.

171



Bibliography

[POBD15] S. Peitz, S. Ober-Blébaum, and M. Dellnitz. Multiobjective Opti-
mal Control Methods for Fluid Flow Using Model Order Reduction.
arXw:1510.05819, 2015.

[Pop00] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[Pow75] M. J. D. Powell. Convergence properties of a class of minimization
algorithms. In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson,
editors, Nonlinear Programming 2, pp. 1-25. Academic Press, 1975.

[PSOB*17] S. Peitz, K. Schifer, S. Ober-Blobaum, J. Eckstein, U. Kdhler, and
M. Dellnitz. A Multiobjective MPC Approach for Autonomously
Driven Electric Vehicles. In Proceedings of the 20th IFAC World
Congress (to appear, preprint: arXiv:1610.08777), 2017.

[PW15] B. Peherstorfer and K. Willcox. Dynamic data-driven reduced-order
models. Computer Methods in Applied Mechanics and Engineering,
291:21-41, 2015.

[PWG16] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifi-
delity methods in uncertainty propagation, inference, and optimiza-
tion. ACDL Technical Report TR16-1, pp. 1-57, 2016.

[QBI7] S. J. Qin and T. A. Badgwell. An overview of industrial model pre-
dictive control technology. Control Engineering Practice, 93(316):232—
256, 1997.

[QGVW16] E. Qian, M. Grepl, K. Veroy, and K. Willcox. A Certified Trust Region
Reduced Basis Approach to PDE-Constrained Optimization. ACDL
Technical Report TR16-3, 2016.

[QHST05] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. Kevin Tucker. Surrogate-based analysis and optimization. Progress
in Aerospace Sciences, 41:1-28, 2005.

[RA09] J. B. Rawlings and R. Amrit. Optimizing process economic perfor-
mance using model predictive control. In Nonlinear model predictive
control, pp. 119-138. Springer Berlin Heidelberg, 2009.

[Ran00] R. Rannacher. Finite Element Methods for the Incompressible Navier-
Stokes Equations. In Fundamental directions in mathematical fluid
mechanics, pp. 191-293. Birkhauser, 2000.

[Rav00] S. S. Ravindran. A reduced-order approach for optimal control of
fluids using proper orthogonal decomposition. International Journal
for Numerical Methods in Fluids, 34(5):425-448, 2000.

[RBW109] C. Romaus, J. Bocker, K. Witting, A. Seifried, and O. Znamen-
shchykov. Optimal energy management for a hybrid energy storage
system combining batteries and double layer capacitors. In Energy
Conversion Congress and Ezposition, 2009. ECCE 2009. IEEE, pp.
1640-1647. IEEE Xplore Digital Library, Los Alamitos, 2009.

[RCM04] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for

172



Bibliography

[Rem96]

[Rem00)]

[REWHOS]

[RHPOS]

[RMB+09]

[Row05]

[RTV17]

[RWOS]

[Sch04]

[Sch10]

[SCTTOS]

[SDDO3]

[SDT+13]

compressible flows using POD and Galerkin projection. Physica D:
Nonlinear Phenomena, 189:115-129, 2004.

D. Rempfer. Investigations of boundary layer transition via Galerkin
projections on empirical eigenfunctions. Physics of Fluids, 8(1):175—
188, 1996.

D. Rempfer. On Low-Dimensional Galerkin Models for Fluid Flow.
Theoretical and Computational Fluid Dynamics, 14:75-88, 2000.

T. D. Robinson, M. S. Eldred, K. E. Willcox, and R. Haimes.
Surrogate-Based Optimization Using Multifidelity Models with Vari-
able Parameterization and Corrected Space Mapping. AIAA Journal,
46(11):2814-2822, 2008.

G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approx-
imation and a Posteriori Error Estimation for Affinely Parametrized
Elliptic Coercive Partial Differential Equations. Archives of Computa-
tional Methods in Engineering, 15(3):229-275, 2008.

C. W. Rowley, I. Mezi¢, S. Bagheri, P. Schlatter, and D. S. Henning-
son. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics,
641:115-127, 2009.

C. W. Rowley. Model Reduction for Fluids, Using Balanced Proper
Orthogonal Decomposition. International Journal of Bifurcation and
Chaos, 15(3):997-1013, 2005.

S. Rogg, S. Trenz, and S. Volkwein. Trust-Region POD using A-
Posteriori Error Estimation for Semilinear Parabolic Optimal Con-
trol Problems. http://kops.uni-konstanz.de/handle/123456789/38240,
2017.

R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, Vol. 317.
Springer Berlin Heidelberg, 1998.

O. Schiitze. Set Oriented Methods for Global Optimization. PhD thesis,
University of Paderborn, 2004.

P. J. Schmid. Dynamic mode decomposition of numerical and experi-
mental data. Journal of Fluid Mechanics, 656:5-28, 2010.

O. Schiitze, C. A. Coello Coello, E. Tantar, and E.-G. Talbi. Com-
puting the Set of Approximate Solutions of an MOP with Stochastic
Search Algorithms. In Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, pp. 713-720. ACM, 2008.

O. Schiitze, A. Dell’Aere, and M. Dellnitz. On Continuation Methods
for the Numerical Treatment of Multi-Objective Optimization Prob-
lems. In Dagstuhl Seminar Proceedings, 2005.

D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang. Objective
reduction in many-objective optimization: Linear and nonlinear algo-
rithms. IEEE Transactions on Evolutionary Computation, 17(1):77—
99, 2013.

173



Bibliography

[SG09]

[Sin59]

[Sir87]

[SK04]

[SLC11]

[SLT+17]

[SMOS]

[SMDT03]

[SSW02]

[SV10]

[SVC09]

[SvdVROS]

O. Sundstrom and L. Guzzella. A generic dynamic programming Mat-
lab function. In Proceedings of the 18th IEEE International Conference
on Control Applications, pp. 1625-1630, 20009.

H. Sinner. Uber das Waschen mit Haushaltswaschmaschinen. In
welchem Umfange erleichtern Haushaltswaschmaschinen und -gerdte
das Wischehaben im Haushalt? Hamburg: Haus + Heim Verlag,
1959.

L. Sirovich. Turbulence and the dynamics of coherent structures part I:
coherent structures. Quarterly of Applied Mathematics, XLV (3):561—
571, 1987.

S. Sirisup and G. E. Karniadakis. A spectral viscosity method for
correcting the long-term behavior of POD models. Journal of Compu-
tational Physics, 194(1):92-116, 2004.

O. Schiitze, A. Lara, and C. A. Coello Coello. On the influence of
the Number of Objectives on the Hardness of a Multiobjective Opti-
mization Problem. IEEE Transactions on Evolutionary Computation,
15(4):444-455, 2011.

V. A. Sosa Hernandez, A. Lara, H. Trautmann, G. Rudolph, and
O. Schiitze. The Directed Search Method for Unconstrained Parame-
ter Dependent Multi-objective Optimization Problems. In O. Schiitze,
L. Trujillo, P. Legrand, and Y. Maldonado, editors, NEO 2015: Re-
sults of the Numerical and Evolutionary Optimization Workshop NEO
2015 held at September 23-25 2015 in Tiyuana, Mezico, pp. 281-330.
Springer International Publishing, 2017.

A. Singh and B. S. Minsker. Uncertainty-based multiobjective opti-
mization of groundwater remediation design. Water Resources Re-
search, 44(2), 2008.

O. Schiitze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering
Pareto Sets by Multilevel Evolutionary Subdivision Techniques. In In-
ternational Conference on Evolutionary Multi-Criterion Optimization
(EMO), pp. 118-132, 2003.

S. Schaffler, R. Schultz, and K. Weinzierl. Stochastic Method for the
Solution of Unconstrained Vector Optimization Problems. Journal of
Optimization Theory and Applications, 114(1):209-222, 2002.

E. W. Sachs and S. Volkwein. POD-galerkin approximations in PDE-
constrained optimization. GAMM Mitteilungen, 33(2):194-208, 2010.
O. Schiitze, M. Vasile, and C. A. Coello Coello. Computing the Set
of epsilon-efficient Solutions in Multi-Objective Space Mission Design.
Journal of Aerospace Computing, Information, and Communication,
8(3):53-70, 20009.

W. H. A. Schilders, H. A. van der Vorst, and J. Rommes. Model Order
Reduction. Springer Berlin Heidelberg, 2008.

174



Bibliography

[SWOBD13]

[TBD*17]

[Tei01]

[TL90]

[TRL*14]

[Tr610]

[TV09)

[VBB14]

[VHS3|
[Voll1]

[Vol15]

[VP05]

O. Schiitze, K. Witting, S. Ober-Blobaum, and M. Dellnitz. Set Ori-
ented Methods for the Numerical Treatment of Multiobjective Opti-
mization Problems. In E. Tantar, A.-A. Tantar, P. Bouvry, P. Del
Moral, P. Legrand, C. A. Coello Coello, and O. Schiitze, editors,
EVOLVE - A Bridge between Probability, Set Oriented Numerics and
Fvolutionary Computation, Vol. 447 of Studies in Computational In-
telligence, pp. 187-219. Springer Berlin Heidelberg, 2013.

K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colo-
nius, B. J. McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis,
and L. S. Ukeiley. Modal Analysis of Fluid Flows: An Overview.
arXiw:1702.01455v1, 2017.

J. Teich. Pareto-Front Exploration with Uncertain Objectives. In
E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello, and D. Corne, edi-
tors, Fvolutionary Multi- Criterion Optimization, pp. 314-328. Springer
Berlin Heidelberg, 2001.

S. Taheri and E. H. Law. Investigation of a combined slip control
braking and closed loop four wheel steering system for an automobile
during combined hard braking and severe steering. American Control
Conference, pp. 1862-1867, 1990.

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.. Brunton, and J. N.
Kutz. On Dynamic Mode Decomposition: Theory and Applications.
Journal of Computational Dynamics, 1(2):391-421, 2014.

F. Troltzsch. Optimal Control Of Partial Differential Equations. Grad-
uate studies in mathematics, 112, 2010.

F. Troltzsch and S. Volkwein. POD a-posteriori error estimates for
linear-quadratic optimal control problems. Computational Optimiza-
tion and Applications, 44(1):83-115, 2009.

C. Von Liicken, B. Baran, and C. Brizuela. A survey on multi-objective
evolutionary algorithms for many-objective problems. Computational
Optimization and Applications, 58(3):707-756, 2014.

C. Vira and Y. Y. Haimes. Multiobjective Decision Making: Theory
and Methodology. Dover Publications Inc., 1983.

S. Volkwein. Model reduction using proper orthogonal decomposition.
Lecture Notes, pp. 1-43, 2011.

S. Volkwein. Proper Orthogonal Decomposition zur Optimalsteuerung
linearer partieller Differentialgleichungen. In D. Schroder, editor,
Elektrische Antriebe - Regelung von Antriebssystemen, pp. 1658-1684.
Springer, 2015.

K. Veroy and A. T. Patera. Certified real-time solution of the
parametrized steady incompressible Navier-Stokes equations: rigorous
reduced-basis a posteriori error bounds. International Journal for Nu-

merical Methods in Fluids, 47(8-9):773-788, 2005.

175



Bibliography

[Whi86] D. J. White. Epsilon efficiency. Journal of Optimization Theory and
Applications, 49(2):319-337, 1986.

[Wie80] A. P. Wierzbicki. The Use of Reference Objectives in Multiobjec-
tive Optimization. In G. Fandel and T. Gal, editors, Multiple criteria
decision making theory and application, pp. 468-486. Springer Berlin
Heidelberg, 1980.

[Wie86] A. P. Wierzbicki. On the Completeness and Constructiveness of Para-
metric Characterizations to Vector Optimization Problems. OR Spek-
trum, 8:73-87, 1986.

[Wit12] K. Witting. Numerical algorithms for the treatment of parametric mul-
tiobjective optimization problems and applications. PhD thesis, Uni-
versity of Paderborn, 2012.

[WKR15] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A Data-Driven
Approximation of the Koopman Operator: Extending Dynamic Mode
Decomposition. Journal of Nonlinear Science, 25(6):1307-1346, 2015.

[WP02] K. Willcox and J. Peraire. Balanced Model Reduction via the Proper
Orthogonal Decomposition. ATAA Journal, 40(11):2323-2330, 2002.

[XFB*14] D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon, J. Du,
and G. Hu. Non-linear model reduction for the Navier—Stokes equa-
tions using residual DEIM method. Journal of Computational Physics,
263:1-18, 2014.

[YLLZ13] S. Yang, M. Li, X. Liu, and J. Zheng. A Grid-Based Evolutionary
Algorithm for Many-Objective Optimization. IEEE Transactions on
Evolutionary Computation, 17(5):721-736, 2013.

[YM13] Y. Yue and K. Meerbergen. Accelerating Optimization of Parametric
Linear Systems by Model Order Reduction. SIAM Journal on Opti-
mization, 23(2):1344-1370, 2013.

[ZFT12] V. M. Zavala and A. Flores-Tlacuahuac. Stability of multiobjec-
tive predictive control: A utopia-tracking approach. Automatica,
48(10):2627-2632, 2012.

176



	Introduction
	Theoretical Background
	Multiobjective Optimization
	Pareto Optimality
	Gradients and Descent Directions in Multiobjective Optimization
	Manifold Conditions for Pareto Sets
	Solution Methods
	The Subdivision Algorithm

	Optimal Control and Model Predictive Control
	Optimal Control
	Model Predictive Control
	Motion Planning

	Reduced Order Modeling
	Reduced Models via Galerkin Projection
	Proper Orthogonal Decomposition
	Optimal Control Based on Reduced Order Models


	Continuation of Parameter Dependent Pareto Sets
	Multiobjective Model Predictive Control of Electric Vehicles
	Multiobjective Optimal Control of Electric Vehicles
	The Offline-Online Multiobjective MPC Concept
	Results

	Continuation of Pareto Sets
	A Predictor-Corrector Method for Parameter Dependent MOPs

	Application to Autonomous Driving

	Solving Many-Objective Optimization Problems via Subsets of Objectives
	The Hierarchical Structure of Pareto Sets
	A Multiobjective Extension of the -Constraint Method
	Numerical Examples
	Application: Industrial Laundry

	Multiobjective Optimal Control of PDEs Using Reduced Order Modeling
	Multiobjective Optimal Control of the Navier-Stokes Equations
	Problem Formulation
	Numerical discretization
	Multiobjective optimal control problem
	Reduced Order Model
	Adjoint Systems
	Results

	A Trust-Region Algorithm for MOC of Nonlinear PDEs
	Problem Setting
	Reduced Order Model
	Trust Region Algorithm
	Results

	Extension of the Subdivision Algorithm to Inexact Models
	Problem setting
	Descent Directions in the Presence of Inexactness
	Extension of the Subdivision Algorithm to Inexact Gradients
	Examples

	Set-Oriented Multiobjective Optimal Control of PDEs using ROMs
	The Multiobjective Optimal Control Problem
	Model Order Reduction
	A Localized Reduced Bases Algorithm


	Conclusion and Outlook
	Continuation of Parameter Dependent Pareto Sets
	Solving Many-Objective Optimization Problems via Subsets of Objectives
	Multiobjective Optimal Control of PDEs Using Reduced Order Modeling
	Future Work

	Bibliography

