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Abstract

We present a new method based on set oriented computations for the calcu-
lation of reaction rates in chemical systems. The method is demonstrated with
the Rydberg atom, an example for which traditional Transition State Theory
fails. Coupled with dynamical systems theory, the set oriented approach pro-
vides a global description of the dynamics. The main idea of the method is
as follows. We construct a box covering of a Poincaré section under consider-
ation, use the Poincaré first return time for the identification of those regions
relevant for transport and then we apply an adaptation of recently developed
techniques for the computation of transport rates (Dellnitz, Junge, et al. [2005];
Padberg [2005]). The reaction rates in chemical systems are of great interest
in chemistry, especially for realistic three and higher dimensional systems. Our
method is applied to the Rydberg atom in crossed electric and magnetic fields.
Our methods are complementary to, but in common problems considered, agree
with, the results of Gabern, Koon, Marsden, and Ross [2005]. For the Rydberg
atom, we consider both the half and full scattering problems in both the 2- and
the 3-degree of freedom systems. The ionization of such atoms is a system on
which many experiments have been done and it serves to illustrate the elegance
of our method.
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1 Introduction

One of the primary goals of chemical physics is the calculation of the rate at which
a reaction proceeds. Transition State Theory (TST) (see e.g. Truhlar, Garrett,
and Klippenstein [1996]), also known as Rice-Ramsperger-Kassel-Marcus (RRKM)
theory (see e.g. Gilbert and Smith [1990]) is widely used in the chemistry community
to calculate these rates. While successful in many examples, this statistical theory
is inadequate in some other examples, and in those, it can have an error of a few
orders of magnitude when compared with experimental results (De Leon [1992]).

TST identifies a transition state for the system under consideration; this is a set
of states through which the reactants must pass in order to become products of the
reaction. These transition states may be in phase space rather than configuration
space but TST assumes that the regions in phase space connected by this transition
state are structureless in the sense that motion within them is purely statistical
(Marston and De Leon [1989]). However, in the examples where TST fails, this
assumption breaks down and indeed, the structure of phase space must be accounted
for when calculating reaction rates (Gabern, Koon, Marsden, and Ross [2005]).

De Leon, Mehta and Topper have shown, by developing reaction island theory,
that cylindrical manifolds in phase space mediate two degree of freedom chemical
reactions (De Leon, Mehta, and Topper [1991a], De Leon, Mehta, and Topper
[1991b]). Uzer, Jaffé and co-workers have isolated some of the important geometri-
cal aspects of the phase space structure for higher degree of freedom systems (Jaffé,
Farrelly, and Uzer [1999], Uzer, Jaffé, Palacián, Yanguas, and Wiggins [2002]). We
note that Koon, Lo, Marsden, and Ross [2000] emphasized the importance of hete-
roclinic networks and the associated cylindrical manifolds (tubes) when considering
dynamical channels and Contopoulos and Efstathiou [2004] used escape rates from
a surface of section to identify regions that govern the transport between parts of
the phase space.
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Gabern, Koon, Marsden, and Ross [2005] have calculated reaction rates in chem-
ical systems with three degrees of freedom using dynamical systems tools and Monte
Carlo methods. By taking into account the invariant manifold tubes that mediate
the dynamics of a reaction, these rates were calculated for a system with non-
statistical dynamics. A major difficulty that was overcome by using a Monte Carlo
method was the calculation of the volume of the overlap of the invariant manifold
tubes.

The present work uses a new approach, based on set oriented methods (see for
example Dellnitz and Junge [2002]), to identify the structures in phase space that
mediate chemical reactions and to calculate the associated reaction rates.

The set oriented approach focuses on a global description of the dynamics on
a coarse level and covers the relevant region of phase space by appropriately sized
boxes. By considering a transfer operator associated with the underlying map, one
is able to describe the evolution of an initial distribution under the dynamics. Via a
partition of some interesting region in phase space, this operator can be discretized,
yielding a stochastic matrix. The transport rates between different regions in phase
space can then be computed using this matrix of transition probabilities. This global
analysis is more efficient and can provide more information than the calculation of
many individual trajectories.

The primary differences between the approach presented in this paper and that
of Gabern, Koon, Marsden, and Ross [2005] are that the set oriented method

1. does not use normal forms to find the invariant manifold tubes but rather uses
information about the time trajectories take to return to a Poincaré section;

2. does not use Monte Carlo methods for the calculation of volumes as the nec-
essary information is naturally given by the box volumes and the matrix of
transition probabilities; and

3. does not use long term simulations but rather short term simulations for a
large number of globally distributed initial particles.

Despite the large differences in methodology and computational tools, the results
of the set oriented approach and that of Gabern, Koon, Marsden, and Ross [2005]
are in good agreement, which gives one confidence in both methods.

The present paper takes the ionization of a Rydberg atom in crossed electric and
magnetic fields as its example. Both the planar problem and the three dimensional
problem are considered, with the half scattering and full scattering rates being
calculated. The power and the potential of the set oriented approach in dealing
with high-dimensional systems is thereby demonstrated.

In the following section, the physical background of the example considered in
this paper is presented, followed by a detailed description of the model. Section 4
elucidates the set oriented method as it relates to the calculation of reaction rates. In
section 5 the results are presented and discussed, followed in section 6 by conclusions
and future directions.
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2 Background

The Rydberg atom is a hydrogen-like atom in that it has one valence electron.
Highly excited Rydberg atoms have enough energy such that the valence electron is
far away from the nucleus and its dynamics can be treated classically, to a good ap-
proximation. Introducing external perpendicular electric and magnetic fields breaks
the symmetry of the problem so that the escaping electron will do so in a particular
direction. The escape of the electron from the field of the nucleus (and surrounding
inner electrons) is known as ionization. The electron moves off to infinity and there
is no possibility of return. This process is an example of a unimolecular reaction or
dissociation.

The highly excited Rydberg atom is an interesting example not only because of
its relation to other problems in chemical physics but also because of applications in
diverse areas ranging from lasers to quantum computing (Federov and Ivanov [1990],
Wojcik and Parzynski [1995], Ahn, Hutchinson, Rangan, and Bucksbaum [2001]).
They are also of interest as they are at the overlapping region between classical
and quantum mechanics, where the correspondence principle applies (Raithel and
Walther [1994]). In addition to their theoretical interest, such atoms in crossed fields
arise naturally in some astrophysical plasmas.

Rydberg atoms are a compelling test bed as they have a theoretical richness
while also being experimentally accessible. Such atoms have been used to study
the onset of classical chaos and to develop semi-classical models of quantum reso-
nances (Marmet, Held, Raithel, Yeazell, and Walther [1994], De-Hua and Sheng-Lu
[2004]). They are well suited to experiments as the internal field strengths of the
atom are comparable to the external field strengths that are attainable in the lab-
oratory (Raithel, Fauth, and Walther [1991]). Thus it is possible to study the
strong-field regime.

Raithel, Walther and co-workers have studied Rydberg atoms in a number of
arrangements, including the crossed fields arrangement. They have calculated ion-
ization rates as a function of excitation energy for different values of the electric
and magnetic fields (Raithel and Walther [1994]). Advances in experimental meth-
ods now allow the excitation of a Rydberg atom to a known energy level (Held,
Schlichter, Raithel, and Walther [1998]). Thus, the techniques are available for ex-
perimentally calculating the ionization rates that are computed in the present paper.
We certainly hope that the explicit experimental connection is achieved in the near
future.

3 Model

3.1 Half and Full Scattering Problem

In a unimolecular dissociation reaction, the reactant is the bound state and the
product is the unbound state. To pass from a bound state to an unbound state, the
system must go through the transition state. Such reactions have come to be known
as half scattering problems (Jaffé, Farrelly, and Uzer [1999]). The full scattering
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problem involves moving through the transition state from an unbound state to a
bound state and then back through the transition state to an unbound state. The
example discussed in section 5 calculates rates of reaction for both the half scattering
and full scattering problems.

The reaction will proceed only if the system has enough energy to overcome the
energy barrier between reactants and products. For an energy at which the reaction
can proceed, the energy in the system must find its way into a reactive mode for
the reaction to occur. It is this process which determines the rate of the reaction.

These ideas are applied to the ionization of a highly excited Rydberg atom in
external crossed electric and magnetic fields. Such an atom has an outer electron
that is far enough away from the nucleus that its dynamics may be treated classi-
cally. This valence electron is assumed to have enough energy to pass through the
transition state from the bound state to the unbound state, which is of course, ion-
ization. Once in the unbound state, there is no possibility of return for the electron.
This is the half scattering problem. The full scattering problem involves the capture
of the electron followed by ionization of the same electron.

3.2 The Hamiltonian System

The dynamics of the electron is described classically by the following 3-degree of
freedom Hamiltonian in co-ordinates that have been scaled by the cyclotron fre-
quency:

H =
1
2
(p2

x + p2
y + p2

z)−
1
r

+
1
2
(xpy − ypx) +

1
8
(x2 + y2)− εx, (3.1)

where r =
√

x2 + y2 + z2 is the distance between the electron and the center of the
nuclear core. The cyclotron frequency, ωc, is given by ωc = eB/m where e is the
electron charge, B is the magnetic field strength and m is the mass of the electron.
The scaled electric field strength, ε, is defined by ε = ω

−4/3
c E where E is the applied

electric field strength (see for example Jaffé, Farrelly, and Uzer [1999]).
The Legendre transformation gives us the velocities

ẋ = px −
y

2
, ẏ = py +

x

2
, ż = pz.

The Jacobi constant (first integral) is given by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2Ω(x, y, z) = −2E(x, y, z, ẋ, ẏ, ż)

where

E(x, y, z, ẋ, ẏ, ż) =
1
2
(ẋ2 + ẏ2 + ż2)− Ω(x, y, z),

is the energy function. The effective potential function is Ω(x, y, z) = εx + 1
r . The

2-degree of freedom system is obtained by setting z = ż = 0 in the equations above.
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The Stark saddle point occurs at

x =
1√
ε
, y = 0 , z = 0,

ẋ = 0 , ẏ = 0 , ż = 0.

The Hill’s region is the region of configuration space in which the electron is ener-
getically forbidden to go and for ẋ = ẏ = ż = 0 is given by

M(ε, C) = {(x, y, z) ∈ R3 | Ω(x, y, z) ≥ C/2}.

Figure 3.1(a) shows one of the possible cases of the Hill’s region for the Rydberg
atom projected onto the xy-plane. For some values of the energy (and hence C), the
energetically forbidden region will be such that there is no way to go from a bound
state to an unbound state or vice versa. That is, the neck region in the figure will
close. Thus, for scattering problems we must have sufficient energy for the Hill’s
region to look qualitatively as shown in Figure 3.1(a).

(a) (b)

Figure 3.1: (a) xy projection of the Hill’s region (schematic). (b) The possible types
of trajectories in the equilibrium region are shown in the xy projection (schematic).
There are three different types of orbits: asymptotic (green), transit (red) and non-
transit (blue) orbits (see Koon, Lo, Marsden, and Ross [2000]).

3.3 Dynamics Near the Saddle Equilibrium Point

For the computation of transition probabilities we need to identify regions in phase
space that correspond to transport regions. In Transition State Theory the phase
space associated with the reaction is traditionally assumed to be structureless (Mar-
ston and De Leon [1989]). Jaffé, Farrelly, and Uzer [1999], as well as Gabern, Koon,
Marsden, and Ross [2005], have shown that this is not true for the problem of a Ryd-
berg atom in crossed electric and magnetic fields. Their work builds on the work
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of Conley [1968], McGehee [1969] and Koon, Lo, Marsden, and Ross [2000], which
have shown this to also be true for the restricted three body problem in celestial
mechanics.

For a system with n degrees of freedom, there is an invariant deformed (2n− 3)-
sphere that is the normally hyperbolic invariant manifold (NHIM), near the rank-one
saddle equilibrium point sp. Orbits asymptotic to this sphere form the stable and
unstable manifolds of the sphere. These manifolds (also called ”tubes”) are the
key features of phase space that mediate transport through the transition state. As
these tubes are (2n−2) dimensional objects in a (2n−1) dimensional energy surface,
they divide the possible orbits into two categories: those that will pass through the
transition state and those that will not. Orbits inside the stable manifold in the
interior of the atom will pass through the transition state, that is, particles on these
orbits will react. Figure 3.1(b) shows the possible types of trajectories in the region
near the equilibrium point sp.

3.4 The Poincaré Section

To reduce the dimensionality, an appropriately chosen (2n−2)-dimensional Poincaré
section is taken in the (2n − 1)-dimensional energy surface. In our context of the
2- and 3-degree of freedom system we choose a Poincaré section Σ given by the
conditions

y = 0, x < 0, ẏ > 0. (3.2)

All of the essential dynamics are captured by the Poincaré section as trajectories
will cross the Poincaré section only once in every loop that they make about the
nuclear core at the origin. Thus we focus our attention on the dynamics on the
Poincaré section.

In Figure 3.2 the xy-projection of typical (a) transit and (b) nontransit trajecto-
ries are shown. The starting point of the trajectory in (a) lies in the interior of the
stable manifold tube and leaves the Poincaré section directly, whereas the starting
point in (b) lies somewhere in the chaotic sea and comes back to Σ several times.

The first intersection of the unstable manifold tube with the Poincaré section
contains those orbits that have just passed through the transition state from the un-
bound to the bound state. The forward mapping of these orbits under the Poincaré
return map designates successive intersections of the unstable manifold tube with
the Poincaré section. The first intersection of the stable manifold tube with the
Poincaré section contains orbits that are about to pass through the transition state
from the bound state to the unbound state. The m-th pre-image of this intersection
under the Poincaré return map designates orbits that will pass through the tran-
sition state after m iterations. Thus in order to calculate rates of reaction for the
half scattering problem, it is sufficient to find the transport probability into these
intersections of the stable tube with the Poincaré section. For the computation of
transport rates in the full scattering problem it is necessary to calculate transition
probabilities between intersections of the stable and unstable manifold tubes with
the Poincaré section. The methodology for these computations is explained in §4.
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Figure 3.2: Typical (a) transit and (b) nontransit trajectories. The xy projection
of the Hill’s region is shown in green. Compare with Figure 3.1.

All of our computations were with a fixed energy level of E = −1.52, which
corresponds to a Jacobi constant of C = 3.04. With this value of energy, a reaction
will be able to proceed if the electric field parameter is greater than ε = 0.5776.
If the scaled electric field is less than this value then the neck region between the
bound and unbound states will be closed.

Figures 3.3 and 3.4 show the chaotic sea for the 2-degree of freedom Rydberg
atom together with intersections of the stable (blue) and unstable (red) tube bound-
aries. The electric field parameter is ε = 0.57765 for Figure 3.3, which is just above
the critical value. Figure 3.3 (a) shows the first six intersections of the stable (blue)
and unstable (red) tube boundaries with Σ and Figure 3.3 (b) focuses on the region
of interest. These tube intersections are very thin in comparison to the intersections
of the tube boundaries for ε = 0.58 shown in Figure 3.4. The black dots in these
diagrams represent trajectories crossing Σ. The same number of iterates and the
same initial conditions were used for both values of ε. In both diagrams, the inside
of the first intersection of the unstable tube with Σ is white because particles of
this region will be mapped out of this region under one iteration of the map and no
particles of the initial distribution will be mapped into this region. For an electric
field parameter ε = 0.57765, if a particle’s trajectory begins in the unstable (red)
tube, it will take five iterations before it could possibly be in the stable (blue) tube.
Thus in the full scattering problem, once an electron has been captured, it will make
five loops about the nuclear core before it could possibly leave the atom. For an
electric field parameter ε = 0.58, the first unstable tube intersection with Σ already
overlaps the first stable tube intersection.
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(a) (b) zoom into (a)

Figure 3.3: Chaotic sea for the 2-degree of freedom Rydberg atom is shown with
the first six intersections of the unstable (red) and stable (blue) tube boundaries
with the Poincaré section Σ under consideration. For this electric field parameter of
ε = 0.57765, the neck between the bound and unbound region is only open a little.

4 Set Oriented Methods

In this section we describe the general methodology for the computation of transition
probabilities. We first introduce a method for the identification of the regions we
are interested in. We then discuss a technique for the computation of transport
rates and probabilities. It makes use of an appropriate discretization of a transfer
operator. Both of these methods are based on the set oriented approach (see for
instance Dellnitz and Hohmann [1996, 1997], Dellnitz and Junge [2002]).

4.1 Computation of Tube Intersections with Σ

As mentioned earlier, to compute the transition rate for the half and full scattering
problems, one needs to identify the intersections of the stable and unstable mani-
folds with the Poincaré section Σ. One possible way is described in Gabern, Koon,
Marsden, and Ross [2005] and the references therein. The authors use a normal
form method for the computation of the stable and unstable manifolds and their
intersection with Σ.

We follow a different approach to compute the intersections. We build on the
concepts of Mezić and Wiggins [1999]. They use an algorithm for a decomposition
of the phase space into those invariant sets on which the corresponding dynamical
system is ergodic. Based on these ideas, we develop a multilevel approach for the
decomposition of the set of interest.

First Return Time. Consider the system ẋ = g(x) with x ∈ Rd and a smooth
function g : Rd → Rd. Then the vector field g generates a flow ϕt : Rd → Rd with a
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(a) (b) zoom into (a)

Figure 3.4: Chaotic sea for the 2-degree of freedom Rydberg atom for an electric
field parameter of ε = 0.58. The first three intersections of the unstable (red) and
stable (blue) tube boundaries with the Poincaré section Σ under consideration are
shown in (a), whereas (b) is a zoom into the interesting region of (a).

smooth function ϕ defined for all x ∈ Rd and t in some interval I ∈ R. Consider a
local compact cross section Σ ⊂ Rd which is transverse to the flow ϕ, and each point
q ∈ Σ has to be valid in the system g. Recall that the Poincaré map P : U → Σ
for a point q ∈ U is defined by P (q) = ϕτ̃(q)(q), where U ⊆ Σ and τ̃(q) is the time
taken for the orbit ϕτ̃(q)(q) which starts at q to first return to Σ. We call τ̃(q) the
first return time (see for example Guckenheimer and Holmes [1983]).

We make use of the return time to divide the section Σ into different regions.
Therefore, we need to define τ̃(q) for all q ∈ Σ even if points do not come back to Σ.
If U = Σ then all points of the Poincaré section Σ will come back to it by definition
and τ̃(q) exists for all q ∈ Σ. If U ⊂ Σ then there are points in Σ\U for which the
Poincaré map P is not defined. For our analysis, it is necessary that all points in Σ
are assigned a time. Therefore, we define

τ(q) :=
{

τ̃(q) : q ∈ U
∞ : q ∈ Σ\U.

(4.1)

We use definition (4.1) for the computation of the first stable and unstable
tube intersections with Σ. Figure 4.1 shows the first return time distribution
for the 2-degree of freedom Rydberg atom in crossed electric and magnetic fields
for an electric field parameter ε = 0.58. For this we took the rectangle X =
[−0.295,−0.005] × [−1.0, 1.0] as Σ and divided it into 16384 small boxes. The
coloring of the boxes corresponds to the average return time with respect to initial
conditions in the respective box. Dark blue indicates a short average return time
and dark red an infinite return time. The dark red region corresponds to the interior
and the boundary of the stable tube (compare with Figure 3.4).
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Figure 4.1: First return time distribution of the rectangle X = [−0.295,−0.005] ×
[−1.0, 1.0] for an electric field parameter ε = 0.58. The color scheme goes from dark
blue, indicating that the return time is very short, up to dark red where the points
do not come back to the Poincaré section under consideration.

In section 3.3 we introduced asymptotic, transit and nontransit orbits, which we
will denote by Oas, Otr and Ontr, respectively. These are orbits on the boundary,
inside and outside of the invariant manifolds respectively. Uniqueness of solutions
ensures that an orbit cannot change between these groups (see Gabern, Koon, Mars-
den, and Ross [2005]; Koon, Lo, Marsden, and Ross [2000]).

Recall that there is no possibility of return for the valence electron after it
crosses from the bound to the unbound state. This means that for the system under
consideration, particles that leave the Poincaré section through the interior of the
first intersection of the stable manifold with Σ will never come back to Σ. The
same applies to particles on the boundary of this intersection. Therefore, in terms
of return times, the sets Oas, Otr and Ontr are given by

Oas = {x ∈ Σ | ∃ ε > 0 and ∃ y, z ∈ Vε(x) with τ(y) = ∞ and τ(z) < ∞},
Otr = {x ∈ Σ | ∃ ε > 0 such that ∀y ∈ Vε(x), τ(y) = ∞},
Ontr = {x ∈ Σ | ∃ ε > 0 such that ∀y ∈ Vε(x), τ(y) < ∞},

where Vε(x) denotes an ε-neighborhood of x.
With these theoretical considerations we are now able to devise an algorithm,

which is based on the ideas of Dellnitz and Hohmann [1996, 1997] and provides a
method for the approximation of Oas.

Set Oriented Subdivision Algorithm. The set oriented subdivision algorithm
generates a sequence B0,B1, . . . of finite collections of compact subsets of Rn such
that the diameter diam(Bk) = maxB∈Bk

diam(B) converges to zero for k → ∞.
Given an initial collection B0, we obtain Bk from Bk−1 for k = 1, 2, . . . by
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(i) Subdivision:
Construct a new collection B̂k such that⋃

B∈B̂k

B =
⋃

B∈Bk−1

B and

diam(B̂k) ≤ θk diam(Bk−1) where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection: Define a new collection Bk by

Bk = {B ∈ B̂k | ∃x, y ∈ B with τ(x) = ∞ and τ(y) < ∞}.

Remark. By construction we have

diam(Bk) ≤ θk
max diam(B0) → 0 for k →∞.

We denote by Σk the collection of compact subsets obtained after k subdivision
steps, Σ0 = Σ. These Σk’s define a nested sequence of compact sets, i.e. Σk+1 ⊂ Σk.
For each l we have Σl =

⋂l
k=0 Σk, and we may view

Σ∞ =
∞⋂

k=0

Σk

as the limit of the Σk’s.
Obviously, this algorithm converges to

Oas = Σ∞.

Remark. To obtain the sets corresponding to the unstable manifold one needs to
proceed backwards in time.

For the 3-degree of freedom system and a parameter value of ε = 0.58, Figure 4.2
shows the xẋ- and zż-projections of the first stable (blue) and first unstable (red)
tube intersections.

Higher Return Times. The concept of the computation of the first tube in-
tersection with the Poincaré section can easily be extended to the computation of
further intersections. The n-th return time to Σ is denoted by τn(q) for q ∈ Σ. Fig-
ures 3.3 and 3.4 show further intersections of the stable (blue) and unstable (red)
tube boundaries with Σ for two different parameter values. These computations
were carried out using the above subdivision algorithm.

Now we have identified and approximated the regions of interest – for the fol-
lowing transport computations we only need the first intersections of the stable and
unstable manifold with the Poincaré section. In the next subsection we show how
the transition rates between these sets can be computed.
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(a) (b)

Figure 4.2: First intersection of the stable (blue) and unstable (red) tube with the
Poincaré section in (a) xẋ- and (b) zż-projections for a parameter value ε = 0.58.

4.2 Transport Rates

The set oriented approach provides a convenient framework for the computation
of transport rates between regions of interest. In the following, we briefly describe
a method that relies on an appropriate discretization of a transfer operator – the
Perron-Frobenius operator. For a detailed description we refer to Dellnitz, Junge,
et al. [2005] and Padberg [2005].

Transfer Operator. Let

f : M → M, xk+1 = f(xk), k ∈ Z,

be a map and R1, . . . Rl ⊂ M a partition of M into l regions. We are interested in
the transport rates

Ti,j(n) = m(f−n(Rj) ∩Ri),

where m denotes the Lebesgue measure, that is, the mass or volume of material
transported from some region Ri to Rj in n steps.

Generally, the evolution of measures ν on M can be described in terms of the
transfer operator (or Perron–Frobenius operator) associated with f . This is a linear
operator P : M→M,

(Pν)(A) = ν(f−1(A)), A measurable,

on the space M of signed measures on M .
This operator concept relates to the transport quantities in the following way:

Corollary 4.1. Let mi ∈ M be the measure mi(A) = m(A ∩ Ri) =
∫
A χRi dm,

where χRi denotes the indicator function on the region Ri. Then

Ti,j(n) = (Pnmi)(Rj).
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(Here Pn refers to the n-fold application of the transfer operator P .)

Since an analytic expression for this operator will usually not be available, we
need to derive a finite-dimensional approximation to it.

Discretization of Transfer Operators. As a finite dimensional space MB of
measures on M we consider the space of absolutely continuous measures with density
h ∈ ∆B := span{χB | B ∈ B}, i.e. one which is piecewise constant on the elements
of the partition (box covering) B. Let QB : L1 → ∆B be the projection

QBh =
∑
B∈B

1
m(B)

∫
B

h dm χB.

Then for every set A that is the union of partition elements we have∫
A

QBh dm =
∫

A
h dm.

Hence a discretization of the transfer operator P with respect to the box collec-
tion B, consisting of b boxes, is given in terms of a transition matrix PB := (pij)
with

pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, i, j = 1, . . . , b.

So the entry pij gives the (conditional) probability that a particle is mapped from
box Bj to Bi within one iterate of f .

Approximation of Transport Rates. For a measurable set A let

A =
⋃

B∈B:B⊂A

B and A =
⋃

B∈B:B∩A6=∅

B.

We obtain the following estimate on the error between the true transport rate
Ti,j(n) and its approximation using powers of the transition matrix PB. To abbre-
viate notation, let eR, eR, uR and uR ∈ Rb be defined by

(eR)i =
{

1, if Bi ⊂ R
0, else

, (eR)i =
{

1, if Bi ∩R 6= ∅
0, else

and

(uR)i =
{

m(Bi), if Bi ⊂ R
0, else

, (uR)i =
{

m(Bi), if Bi ∩R 6= ∅
0, else

where i = 1, . . . , b.

Lemma 4.2. Let Ri, Rj ⊂ M ,

S0 = Rj , Sk+1 = f−1(Sk), k = 0, . . . , n− 1

and
s0 = Rj , sk+1 = f−1(sk), k = 0, . . . , n− 1.
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Then ∣∣∣Ti,j(n)− eRj
T Pn

B uRi

∣∣∣
≤ eRj

T Pn
B (uRi − uRi) + (eRj − eRj )

T Pn
BuRi

+ max
{

m
(
f−n(Rj \Rj) ∩Ri

)
,m

(
f−n(Rj \Rj) ∩Ri

)}
+ max

{
m

(
(Sn \ f−n(Rj)) ∩Ri

)
,m

(
(f−n(Rj) \ sn) ∩Ri

)}
.

For a proof of this statement we refer to Padberg [2005]. This result is an im-
provement of a similar estimate in Dellnitz, Junge, et al. [2005]. The main difference
is that in our statement the error stays bounded if n goes to infinity. Furthermore,
this estimate gives a bound on the error between the true transport rate Ti,j(n)
and the one computed via the transition matrix PB. Especially those elements of
the fine partition B contribute to the error which either intersect the boundaries or
which contain preimages of the boundary of Rj , see Figure 4.3 for an illustration.
An obvious consequence of Lemma 4.2 is that in order ensure a certain degree of
accuracy of the transport rates, these particular boxes need to be refined.

f

f

R

Rj

i

Figure 4.3: Two box transitions that contribute to the error between the computed
and the actual value of the transport rate from a region Ri into region Rj after one
iterate. Picture taken from Dellnitz, Junge, et al. [2005].

Convergence. Using Lemma 4.2 one can prove convergence for the approximate
transport rate as the box covering is refined, see Dellnitz, Junge, et al. [2005] and
Padberg [2005].

Adaptive Refinement of the Box Covering. As shown above, the boxes that
contribute considerably to the error are those that either map onto the boundary
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of the target set or whose preimage lies on the boundary of the source set. Unlike
the situation in Dellnitz, Junge, et al. [2005], one usually does not observe the
desired transport within one iteration of the map, but only after a longer time
span. Therefore, we use the following algorithm, discussed in Padberg [2005], for
the refinement of the transport boxes.

Adaptive Algorithm. Let Ri, Rj ⊂ M and n ∈ N. Let B be a box covering of
M , let N := dn

2 e and let PB be the transition matrix as defined above. Determine
the boundary boxes

bRi := Ri \Ri

bRj := Rj \Rj

and compute
Ti,j(n) := eRj

T Pn
B uRi

Ti,j(n) := eRj
T Pn

B uRi ,

the numerical lower and upper bound on the transport rate Ti,j(n) respectively.
Choose J ∈ N.

For j = 1, . . . , J

1. Mark all boxes B for which

fk(B) ∩ bRj 6= ∅ for k ∈ {1, . . . , N}

or
f−k(B) ∩ bRi 6= ∅ for k ∈ {1, . . . , N}.

(This information is coded in the transition matrix.)

2. Subdivide marked boxes.

3. Compute PB.

4. Determine bRi , bRj , Ti,j(n), and Ti,j(n).

The algorithm produces an adaptive covering, refining those boxes in particular
that contribute to the error in computing the transport rates. Moreover, the algo-
rithm gives an upper and lower bound to the transport rate, at least up to the error
estimated in Lemma 4.2. Note that the numerical effort to compute the approxi-
mate transport rates essentially consists in n matrix-vector-multiplications – where
the matrix PB is sparse.
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Transport Probabilities. In many applications one is interested in transport
probabilities rather than in the transported volume. The transport probability as a
function of the number of iterations n is given by

qi,j(n) =
Ti,j(n)
m(Ri)

,

that is, the fraction of particles in Ri that gets transported to Rj in n steps.
An approximation q̃i,j(n) to this quantity can be obtained using the upper and

lower bounds on the transport rates and taking an average in the following way:

q̃i,j(n) =
Ti,j(n) + Ti,j(n)

m(Ri) + m(Ri)
.

Note that the quantities q̃i,j(n) can be computed from the box covering and the
transition matrix, whereas in our setting the true transport probabilities qi,j(n) are
theoretical values. Convergence of q̃i,j(n) to qi,j(n) follows from the results above
when the box covering is appropriately refined.

4.3 Implementation

The algorithms described above are implemented in the dynamical systems software
package GAIO (Global Analysis of Invariant Objects, see Dellnitz, Froyland, and
Junge [2001]). The box collections Bk are realized by generalized rectangles of the
form

B(c, r) = {y ∈ Rd | |yi − ci| ≤ ri for i = 1, . . . , d},

where c ∈ Rd denotes the center and r ∈ Rd the radius of the rectangle (box). For
our computations we use a finite number of test points in each box, such as a regular
grid or Monte Carlo points; see for instance Dellnitz and Hohmann [1996] or Junge
[1999] for a discussion on the choice of test points. In GAIO, the boxes are stored

in a binary tree, where the children of a box at depth k are constructed by bisecting
the box in alternate coordinate directions.

Note that the methods described above can be used in parallel to speed up the
computation time.

5 Examples

We demonstrate the strength of our methods by computing ionization probabilities
for the full and half scattering problems of the Rydberg atom in crossed electric and
magnetic fields. We choose an energy of E = −1.52.

First we consider the full scattering problem of the 2-degree of freedom system for
an electric field parameter ε = 0.57765. We compare the results of the computation
with the respective results for the 3-degree of freedom system. Then we analyze
the 3-degree of freedom system for ε = 0.58, allowing a comparison with Gabern,
Koon, Marsden, and Ross [2005]. Finally, we use the results from the previous
computations to consider the half scattering problem.
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5.1 Full Scattering Problem for the 2- and 3-degree of Freedom
System (ε = 0.57765)

For the 2-degree of freedom system we consider the rectangle X = [−0.295,−0.005]×
[−1.0, 1.0] on the Poincaré section Σ. We start with a partition of X on depth 8. By
applying the return time algorithm in forward and backward time, we can identify
and approximate the first stable and unstable tube intersections, respectively. As a
result, we obtain a covering of X on depth 8, with the boxes covering the boundary
of the tube intersections on depth 18. This covering consists of 736 boxes. We denote
by R1 the set of boxes in the interior of the unstable tube intersection and by R1 the
boxes covering the interior and the boundary. The sets R2 and R2 correspond to the
stable tube intersection. Note that we are not given R1 and R2 explicitly because
we can only approximate these sets on the box level, yielding R1, R1, R2, R2.

We then apply J = 5 steps of the adaptive refinement algorithm with 25 grid
points per box. We choose N = 5 because we want to consider at least n = 10
iterations of the Poincaré map for our transport calculations. In each step, we
subdivide in both coordinate directions at once. As the boundary is on depth 18,
there is no gain in considering boxes on finer levels because while the computational
effort increases, we would not get any new information. So the resulting box covering
(18670 boxes), with those boxes contributing to the error in the transport rate having
being refined, is on depth 8/18; see Figure 5.1.

In Figure 5.2 we show the numerical lower and upper bounds on the transport
rates, T1,2(n) and T1,2(n) respectively, for n = 1, . . . , 15. Observe that the scattering
profile is structured. The approximate scattering probabilities q̃1,2(n) are shown in
Figure 5.3(a). The electron scattering probability is about 22% for n = 5 loops
around the nuclear core. It is zero or almost zero for all other n apart from n = 10
and n = 11, where we observe small probabilities.

To check the results, we computed these probabilities using as many as 900 grid
points per box, obtaining almost identical results. So for the given accuracy of the
sets of interest we can be sure that the results are correct.

We compare the results in the planar Rydberg system with those obtained in
the 3-degree of freedom problem. In the 3-degree of freedom system we have the
coordinates x, y, z, ẋ, ẏ, ż. Fixing a constant energy and a Poincaré section defined
by (3.2), our remaining coordinates are x, z, ẋ, ż. Therefore, the initial box needs
to be four-dimensional. For the following computations we chose X = [−0.3, 0] ×
[−0.1, 0.1]× [−1.0, 1.0]× [−2.0, 2.0].

We start with a box covering on depth 16 and apply the return time algorithm
in forward and backward time which yields a covering of the boundaries of R1

and R2 on depth 36. The resulting box collection consists of 139276 boxes. We
then apply J = 7 steps of the adaptive refinement algorithm, choosing N = 5
and 100 Monte Carlo points per box. In each step we subdivide in two coordinate
directions at once and obtain a covering of 2056672 boxes, again on depth 16/36. The
approximate electron scattering probabilities q̃1,2(n) for the full scattering problem
are shown in Figure 5.3(b). Note that the scattering profile has the same qualitative
characteristics as for the 2-degree of freedom system. Yet, the probabilities are lower
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Figure 5.1: Adaptive box covering for the Rydberg atom in crossed fields. In the
2-degree of freedom system for ε = 0.57765 those boxes are refined that contribute
to the error in the computation of the transport rates. The unstable (light red) and
stable (light blue) tube intersections are superimposed.

than in the planar case. A reason for this might be that the volumes of the tubes are
smaller while the relative box sizes are considerably bigger than in the planar case.
If the volume of the tube is comparatively small, as in our example, we need to use
a box covering on a much deeper level to decrease the error between the upper and
lower bounds of the transport rates. However, by doing this we obtain a covering
that is hardly manageable because it consists of a huge number of boxes.

To verify our results for this parameter value we computed the transport proba-
bilities in the 3-degree of freedom system using as many as 1000 Monte Carlo points
per box. This computation confirmed our results. Furthermore, in the 2-degree of
freedom system our results agree very well with calculations done for this value of ε
by the authors of Gabern, Koon, Marsden, and Ross [2005] (personal communica-
tion).

5.2 Full and Half Scattering Problem for the 3-degree of Freedom
System (ε = 0.58)

Choosing ε = 0.58, the first intersections of the stable and unstable tubes with the
Poincaré surface overlap. For the computation of the electron scattering probabili-
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Figure 5.2: Full scattering problem for the 2-degree of freedom Rydberg atom in
crossed fields for ε = 0.57765. Approximation of the lower bound T1,2(n) (blue) and

the upper bound T1,2(n) (red) on the transport rate for n = 1, . . . , 15 is shown.

ties in the 3-degree of freedom system we consider a partition of X as defined above.
The box covering consists of 2155528 boxes on depth 16/28, with the transport boxes
refined using J = 4 steps of the adaptive algorithm as described above.

The scattering probabilities q̃1,2(n) with n = 1, . . . , 10 are shown in Figure 5.4(a).
These results compare well with the scattering probabilities obtained by Gabern,
Koon, Marsden, and Ross [2005], who analyzed the system using the same parame-
ters.

In addition, we can re-use the box covering and the transition matrix already
computed for dealing with the half scattering problem.

Here we define R3 = X \R2 and R3 = X \R2, that is, we consider the transport
of particles from every region outside the stable tube R2 into R2. Note that by this
construction R2 and R3 have a non-empty intersection, containing the boundary
boxes of R2. So T3,2(n) and T3,2(n) can only give very coarse estimates on the
transport rate because the boundary boxes are taken into account twice. Therefore
we compute an approximation of the half scattering probability by

q̂3,2(n) =
e2

T Pn
Bu3 + e2

T Pn
Bu3

m(R3) + m(R3)
.

This represents an average of the transport from R3 to R2 and R3 to R2. The
results are presented in Figure 5.4(b). Note that for higher iterates one observes
an exponential decay of the electron scattering probabilities. Jaffé, Farrelly, and
Uzer [1999] used a similar parameter value for the computation of so-called survival
probabilities for the two-degree of freedom half scattering problem in their paper.
Even if it is not exactly the same value (they used an electric field parameter of
ε = 0.6) the shapes of the probabilities for both ε values look qualitatively the same.
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(a) (b)

Figure 5.3: Full scattering problem for the Rydberg atom in crossed fields for ε =
0.57765. Approximate transport probabilities q̃1,2(n) for n = 1, . . . , 15 in (a) the
2-degree of freedom system and (b) the 3-degree of freedom system.

6 Conclusion

This paper has presented a set oriented method for computing transport rates.
We considered a suitable Poincaré section and introduced a new method for the
computation of tube intersections with this section using the Poincaré first return
time. Based on these intersections we have the necessary information to find the
regions between which transport will occur. We can use an adaptive algorithm
for the computation of the transport rates relevant for the present situation (see
Dellnitz, Junge, et al. [2005] and Padberg [2005]). It focuses on a global description
of the dynamics using a box covering of the interesting region and a matrix of
transition probabilities between these boxes for the calculation of the transport
rates.

These techniques were demonstrated in the 2- and 3-degree of freedom systems
for the Rydberg atom in crossed electric and magnetic fields. The generalization to
higher dimensions is straightforward with the limitation being the time taken to do
the computations as well as the memory which would be required.

In contrast to Gabern, Koon, Marsden, and Ross [2005], the set oriented ap-
proach does not require normal form techniques for the computation of tube in-
tersections and does not use a Monte Carlo approach for the computation of the
reaction rates. However, there is agreement between the results of the two ap-
proaches.

One possible next step in this line of research is to experimentally verify the
numerical results presented in this paper. The techniques for calculating the relevant
transition rates are available but these observations have not yet been made. In
such an experiment, there would be a spread of energies of the incoming electrons
and also a variation in the electric field parameter ε. Thus, results of physical
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(a) (b)

Figure 5.4: The 3-degree of freedom Rydberg atom in crossed fields for ε = 0.58.
Approximation of transport probabilities in (a) the full scattering problem and (b)
the half scattering problem.

observations would not exactly match those in Figure 5.3 and Figure 5.4 but should
be qualitatively the same. That is, an experiment should look for a nonexponential
structure in the ionization rate that resembles those calculated in this paper. For the
results presented in this paper to be directly comparable with experimental results,
we would need to average over both the energy and the electric field.

An ongoing priority is to make set oriented calculations in higher dimensional
problems more computationally efficient. At the same time, methods to reduce the
number of variables needed to describe the coarse dynamics of a high dimensional
system are being pursued. The aim is to investigate high dimensional multiscale
problems by combining the set oriented method with an appropriate procedure for
distinguishing between optimal coarse and fine variables.

The methods presented in this paper represent a good starting point for further
investigations that use dynamical systems and geometric observations combined
with set oriented methods and statistics. To the best of our knowledge the results
of this paper and those of Gabern, Koon, Marsden, and Ross [2005] represents the
first successful calculation of reaction rates in a 3-degree of freedom chemical system.

Of course we also want to eventually apply these methods to the computation
of reaction rates and transition probabilities for more complex molecules, such as to
isomerization and conformations. To do so will surely require some form of model
reduction and the associated identification of suitable reaction coordinates, with the
methods of this paper applied to the coarse level dynamics. An interesting start on
such an endeavor using the Perron-Frobenius eigenfunctions themselves as coarse
variables has been given in Junge, Marsden, and Mezic [2004] and Nadler, Lafon,
Coifman and Kevrekidis [2004]. Thus, we are quite hopeful that the techniques of
this paper will be applicable to more complex problems.
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Mezić, I., and S. Wiggins [1999], A method for visualization of invariant sets of dynamical
systems based on the ergodic partition. Chaos 9(1), 213–218.

Nadler, B, S. Lafon, R. Coifman and I. G. Kevrekidis [2004], Diffusion maps, spectral
clustering and the reaction coordinates of dynamical systems (preprint).

Padberg, K. [2005], Numerical Analysis of Transport in Dynamical Systems. Ph.D. thesis,
University of Paderborn.

Raithel, G., M. Fauth, and H. Walther [1991], Quasi-Landau resonances in the spectra of
rubidium Rydberg atoms in crossed electric and magnetic fields. Phys. Rev. A 44(3),
1898–1909.

Raithel, G., and H. Walther [1994], Ionization energy of rubidium Rydberg atoms in strong
crossed electric and magnetic fields. Phys. Rev. A 49(3), 1646–1665.



REFERENCES 25

Truhlar, D.G., B.C. Garrett, and S.J. Klippenstein [1996], Current status of transition-state
theory. J. Phys. Chem. 100(31), 12771–12800.
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