Christian Fleischhack Universität Paderborn

Analysis I

Übungsblatt 2

Die Lösungsblätter sind bis

Montag, 26. Oktober 2009, 11:00 Uhr

in die in Flur D1 befindlichen grünen Schließfächer Nr. 116 (Gruppen 1 bis 3) bzw. Nr. 129 (Gruppen 4 bis 7) zu werfen.

Aufgabe 8 (3 Punkte)

Seien $a, b \in \mathbb{R}$ mit a, b > 0.

Welches der Relationszeichen >, \geq , =, \leq bzw. < gehört zwischen $\sqrt{a+b}$ und $\sqrt{a}+\sqrt{b}$?

Aufgabe 9 (5 Punkte)

Zeigen Sie für jede nichtleere Teilmenge M von \mathbb{R} :

- Ist $\sup M < \infty$, so existiert zu jedem reellen $\varepsilon > 0$ ein $x \in M$ mit $\sup M \varepsilon < x$.
- Ist $\sup M = \infty$, so existiert zu jedem reellen k ein $x \in M$ mit k < x.

Aufgabe 10 (6 Punkte)

Zeigen Sie für alle natürlichen Zahlen m und n, daß

- $m, n \ge 0$ gilt;
- mn wieder eine natürliche Zahl ist;
- m-n eine natürliche Zahl ist, sobald $m \geq n$ ist.

Aufgabe 11 (4 Punkte)

Zeigen Sie: Jede nichtleere Menge natürlicher Zahlen hat ein Minimum.

Hinweis: Kombinieren Sie Aufgabe 9 mit Aufgabe 10.

Aufgabe 12 (4 Punkte)

Beweisen Sie, daß für alle $n \in \mathbb{N}$ gilt

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{1}{6}n(n+1)(2n+1),$$

$$1^{3} + 2^{3} + \ldots + n^{3} = (1+2+\ldots+n)^{2}.$$

Aufgabe 13 (5 Punkte)

Für welche $x \in \mathbb{R}$ gilt $(1+x)^n \ge 1 + nx$ für alle $n \in \mathbb{N}$?

Aufgabe 14 (4 Punkte)

Auf welchen Wochentag fällt der 13. eines Monats im derzeit gültigen Gregorianischen Kalender im langjährigen Durchschnitt am häufigsten?

Aufgabe 15 (4 Punkte)

Bestimmen Sie alle Lösungen $x \in \mathbb{C}$ der Gleichung $x^2 = i$.