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Abstract

We consider positive solutions of the Cauchy problem in R
n for the equation

ut = up∆u+ uq, p ≥ 1, q ≥ 1,

and show that concerning global solvability, the number q = p+1 appears as a critical growth

exponent which is, in contrast to the case 0 ≤ p < 1, independent of the space dimension.

MSC 1991: 35K55, 35K65

Introduction

When investigating the Cauchy problem for the semilinear heat equation ut = ∆u+ uq, q > 1,

the authors in [Fu] and [We] discovered that there is a critical exponent qc,heat = 1 + 2
n
having

the property that

(C1)

• for 1 ≤ q ≤ qc,heat, there is no positive global (in time) solution and

• for q > qc,heat, there are both global (small data) and non-global (large data)

positive solutions, where the latter ones become unbounded in finite time.

Among the numerous answers to challenging questions on critical exponents in different situa-

tions studied since these pioneering works (see [Le] and [DL] for a survey) there are also some

concerning degenerate parabolic equations such as the forced porous medium equation

vt = ∆vσ+1 + vβ , σ > 0, β > 1. (0.1)

After the transformation u(x, t) := avσ+1(bx, t), a := (σ+1)
σ+1
β−1 , b := (σ+1)

β−σ−1
2(β−1) , this equation

translates to

ut = up∆u+ uq (0.2)

with p = σ
σ+1 ∈ (0, 1) and q = σ+β

σ+1 ∈ (1,∞), and one of the results derived in [GKMS] reads as

follows:

(C2)

• For 1 ≤ q < qc,pme := p+ 1+ 2
n
(1− p) there are no global (positive) solutions.

• for q > qc,pme, there are both global solutions and solutions blowing up in

finite time.
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The aim of the present work is to see what happens if we drop the restriction p ∈ (0, 1) in (0.2)

by considering general positive p and thereby allowing the diffusion coefficient up in (0.2) to

decrease more rapidly as u ց 0. More precisely, we shall examine the Cauchy problem

ut = up∆u+ uq in R
n × (0, T ),

u|t=0 = u0 (0.3)

with u0 ∈ C0(Rn) ∩ L∞(Rn) positive and p ≥ 1 as well as q ≥ 1. That the exponent p = 1

indeed appears as some kind of turning point for the diffusion coefficient in degenerate parabolic

equations not in divegence form is already indicated in [LDalP] and [Win1] where it is e.g. proved

that the spatial support of (weak) solutions to (0.3) does not increase with time if p ≥ 1. This

behavior, drastically contrary to the case p < 1, may be interpreted as a consequence of the fact

that near points where u is small, diffusion is weakened more effectively when p ≥ 1. We will

therefore not be too much surprised if the corresponding assertion on the interaction between

the source term uq and global solvability of (0.3) essentially differs from (C2) in that it shows

for small q a significant tendency towards global existence. Roughly speaking, our main results

can be formulated as follows:

(C3)

• For 1 ≤ q < p+ 1 (resp. 1 ≤ q < 3
2 if p = 1), all positive solutions of (0.3) are

global but unbounded, provided that u0 decreases sufficiently fast in space (cf.

Lemma 2.1 and Theorem 2.7).

• For q = p+ 1, all positive solutions blow up in finite time (Theorem 3.1).

• For q > p+1, there are both global and non-global positive solutions, depend-

ing on the size of u0 (see Theorem 4.1).

It follows from (C3) that as in the previous cases there is a critical growth exponent qc = p+ 1

for (0.3) which now, however, has a slightly different meaning and is independent of the space

dimension n. Moreover, unlike the forced heat and porous medium equations, (0.2) for p ≥ 1 has

the property that this critical exponent would be the same if we replaced R
n with any smooth

bounded domain Ω ⊂ R
n; namely, in this case the results in [Wi2] and in [Win1] imply global

existence for 1 ≤ q < p + 1 and the proof of Theorem 4.1 will show that both global existence

and finite time blow-up may occur in Ω if q > p + 1. The critical case q = p + 1 in bounded

domains is more subtle (cf. [FMcL], [Wi1], [Wi2], or [Win1]).

Unfortunately, returning to the Cauchy problem, we are not able to close the gap appearing for

p = 1 between q = 3
2 and q = p + 1; we believe, however, that this is mainly due to technical

difficulties, and that for p = 1 the behavior is actually the same as for larger p.

1 Existence and approximation of solutions

In this section we briefly collect some results on existence and approximation of a local-in-time

solution to (0.3) under the assumption that

(H0) u0 ∈ C0(Rn) ∩ L∞(Rn) is positive.
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In order to approximate a solution, we write BR := BR(0) for R > 0 and let, for k ∈ N,

u0,k ∈ C1(B̄k) be such that 0 < u0,k < u0,k+1 in Bk, u0,k|∂Bk
= 0 and u0,k ր u0 in R

n as

k ր ∞. Then we have

Lemma 1.1 There is T ∈ (0,∞] such that the problem

∂tuk = u
p
k∆uk + u

q
k in Bk × (0, T ),

uk|∂Bk
= 0,

uk|t=0 = u0,k (1.1)

is uniquely solvable in C0(B̄k × [0, T )) ∩ C2,1(Bk × (0, T )). The solution can be obtained as the

C0
loc(B̄k× [0, T ))∩C

2,1
loc (Bk× (0, T ))–limit of a decreasing sequence of solutions uk,ε of (1.1) with

uk,ε|∂Bk
= ε and uk,ε|t=0 = u0,k + ε, ε ց 0.

If q < p+ 1, we can choose T = ∞.

For q < p+ 1, the assertion is proved in [Wi2], Thm. 3.2, while for q ≥ p+ 1 the proof is nearly

identical to that of Lemma 1.1 in [Win2].

Throughout, we shall assume the uk to be extended by zero to all of Rn× [0, T ). Taking k → ∞
now yields a solution to (0.3), according to

Lemma 1.2 There is Tmax ∈ (0,∞] such that (0.3) admits a positive classical solution u ∈
C0(Rn × [0, Tmax)) ∩ C2,1(Rn × (0, Tmax)) ∩ L∞

loc([0, Tmax);L
∞(Rn)). If uk denotes the solution

of (1.1), we have uk → u in C0
loc(R

n × [0, Tmax)) ∩ C
2,1
loc (R

n × (0, Tmax)).

The proof can be carried out in almost exactly the same way as that of Lemma 1.2 in [Win2].

Concerning the question of uniqueness, we do not know a satisfactory answer covering all the

cases we wish to consider below. However, let us at least remark that using the same ideas

as in Lemma 1.4 in [Win2], one can achieve uniqueness of u (within suitable function classes),

provided that

• n ≤ 2, or

• sup
t∈(0,T )

∫

Rn u
α(t) < ∞ for all T < Tmax and some α = α(T ) > 0, or

• lim
R→∞

‖u(t)‖L∞(∂BR) = 0 for all t ∈ [0, Tmax).

In particular, all the solutions to be discussed in Section 2 as well as the global solutions in Section

4 are unique. Unless otherwise stated we mean by ‘the’ solution u the limit u = limk→∞ uk from

Lemma 1.2 which clearly is actually a minimal solution in the sense that u ≤ v for any positive

classical solution v of (0.3).

2 The subcritical case q < p+ 1

In a smooth bounded domain Ω, every positive solution of the initial-boundary value problem

corresponding to (0.3) with zero Dirichlet data on ∂Ω exists globally and, as t → ∞, approaches
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a u0-independent steady state W which solves ∆W +W q−p = 0 in Ω, W |∂Ω = 0 (cf. [Wi2] and

[Win1]). In R
n, however, (0.3) has no nontrivial equilibria, so that it seems to be a plausible

guess that global positive solutions, if existing at all, must be unbounded. Indeed, we have

Lemma 2.1 Every global positive solution u to (0.3) is unbounded in the sense that as t → ∞,

u(t) → ∞ uniformly on compact subsets of Rn.

Proof. For any R > 0, let Θ be the principal Dirichlet eigenfunction of −∆ in BR corre-

sponding to the first eigenvalue λ1 = λ1(BR) > 0, with maxΘ = 1
2 . Letting v(x, t) := c0Θ(x)

with c0 > 0 small such that λ1c
p+1−q
0 ≤ 1 and c0 < u0 in BR, we have v < u on ∂BR and at

t = 0, while

vt − vp∆v − vq = λ1c
p+1
0 Θp+1 − c

q
0Θ

q

≤ c
q
0Θ

q(λ1c
p+1−q
0 − 1)

≤ 0 in BR × (0,∞),

hence v ≤ u in BR × (0,∞) by comparison. It follows that for all R > 0 there is c0(R) > 0 such

that u ≥ c0(R) in BR × (0,∞).

Next, defining y∞(R) :=
(

1
2λ1(BR)

)
1

p+1−q
, we let δ ∈ (0, 12) be such that δ ≤ c0(R)

y∞(R) , and y(t) be

in C1([0,∞)) and fulfil y(0) ≤ u0 in BR, 0 ≤ y′ ≤ δq−1

2 yq in (0,∞) as well as y(t) → y∞(R) as

t → ∞. Then the function w(x, t) := y(t)(Θ + δ) lies below u at t = 0 and, as yδ ≤ c0(R), also

on ∂BR, while y ≤ y∞(R) implies λ1y
p+1 ≤ 1

2y
q, so that

wt − wp∆w − wq =
(

y′ + λ1y
p+1(Θ + δ)p−1Θ− yq(Θ + δ)q−1

)

(Θ + δ)

≤
(

y′ + (λ1y
p+1 − yq)(Θ + δ)q−1

)

(Θ + δ)

≤ (y′ − δq−1

2
yq)(Θ + δ)

≤ 0 in BR × (0,∞).

Thus, w ≤ u in BR × (0,∞) by comparison, which shows u(t) ≥ 1
4y∞(R) in the set {Θ ≥ 1

4} for

t large enough. But as Θ(x) = f(|x|) with f ′′(r) = −n−1
r

f ′(r)− λ1f(r) ≥ −λ1f(r), it is easy to

see that Θ(x) ≥ 1
4 if r ≤ 1√

λ1(BR)
=: r0(R). Consequently, for any K ⊂⊂ R

n and M > 0 we can

find R > 0 large such that K ⊂ Br0(R) and
1
4y∞(R) ≥ M and conclude by the above arguments

that u(t) ≥ M in K for large t. ////

Accordingly, although each of the uk exists for all times and converges to some W , it does not

seem to be too promising to look for global bounds on uk (or u); hence, the best we can hope

for is that some quantity involving uk(t) does not increase too rapidly with t, uniformly in k. In

spite of the absence of divergence structure in (0.3) (resp. (1.1), a testing procedure will turn

out to be the key to success and show that an adequate quantity for our purpose is ‖uk(t)‖Lα(Rn)

for small α > 0, where we have set ‖v‖α
Lα(Ω) :=

∫

Ω |v|α for measurable v. We shall therefore

require small summability powers in the Gagliardo-Nirenberg interpolation inequality which for

our purpose reads as follows.
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Lemma 2.2 Suppose r0 ∈ (0, 2]. Then there is a constant c0 = c0(n, r0) > 0 such that for all

r ∈ [r0, 2], any s ∈ (0,min{1, r}) and all ϕ ∈ Ls(Rn) with ∇ϕ ∈ L2(Rn), the estimate

‖ϕ‖Lr(Rn) ≤ c0‖∇ϕ‖aL2(Rn)‖ϕ‖1−a
Ls(Rn) (2.1)

holds, where the number a ∈ (0, 1) is defined by

−n

r
= (1− n

2
)a− n

s
(1− a). (2.2)

Proof. As r < s ≤ 2 and s < 1 < 2, Hölder’s inequality gives

‖ϕ‖Lr(Rn) ≤ ‖ϕ‖bL2(Rn)‖ϕ‖1−b
Ls(Rn) with b =

2(r − s)

r(2− s)

and

‖ϕ‖L1(Rn) ≤ ‖ϕ‖cL2(Rn)‖ϕ‖1−c
Ls(Rn) with c =

2(1− s)

2− s
.

Using the standard Gagliardo-Nirenberg inequality (cf. [Ta], Ch. 3.4.), we infer that

‖ϕ‖L2(Rn) ≤ c1‖∇ϕ‖dL2(Rn)‖ϕ‖1−d
L1(Rn)

, where d =
n

n+ 2
.

Combining these relations, we obtain

‖ϕ‖Lr(Rn) ≤ c
b

1−(1−d)c

1 ‖∇ϕ‖
bd

1−(1−d)c

L2(Rn)
‖ϕ‖

1−b+
b(1−c)(1−d)
1−(1−d)c

Ls(Rn) . (2.3)

As 1−s
2−s

≤ 1
2 , we estimate

b

1− (1− d)c
=

2

s

r − s

2− s

(

1− 4

n+ 2

1− s

2− s

)−1

≤ 2

s0

n+ 2

n
,

hence the constant in (2.3) is independent of r ∈ [r0, 2] and s ∈ (0,min{1, r}). Now an elementary

calculation shows that bc
1−(1−d)c coincides with a and thus (2.1) follows. ////

The next auxiliary assertion on an integral inequality is elementary.

Lemma 2.3 Let T > 0 and suppose y ∈ C0([0, T ]) satisfies

y(t) ≤ y0 + c0

∫ t

0
y1+λ(s)ds ∀ t ∈ [0, T ] (2.4)

with positive numbers y0, c0 and λ. Then

y(t) ≤ y0 · (1− λyλ0 c0t)
− 1

λ ∀ t ∈ [0, T ]. (2.5)

Proof. The assertion will follow as soon as we have shown that for all ε > 0 and all t ∈ [0, T ],

y(t) < (y0 + ε) · (1− λ(y0 + ε)λc0t)
− 1

λ =: yε(t). (2.6)
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Indeed, for t = 0 this is obvious, hence if (2.6) were false there were t0 ∈ (0, T ] such that

y(t) < yε(t) for all t < t0 and y(t0) = yε(t0). Noting that y′ε = c0y
1+λ
ε , we thus obtain

yε(t0) = y0 + ε+ c0

∫ t0

0
yε(s)

1+λds

> y0 + ε+ c0

∫ t0

0
y(s)1+λds

> y(t0),

a contradiction. ////

Basing upon the last two lemmas, the following one will be the main ingredient in Theorem 2.7.

Before formulating it, we now state the announced decay condition on u0 (see (C3)) which will

finally imply global existence.

(H1) There is a radially symmetric ϕ ∈ C∞(Rn) with R 7→ ‖ϕ‖L∞(∂BR) nonincreasing such that

u0 ≤ ϕ and

∫

Rn

ϕα ≤ cα−Λ0+ν

for some ν > 0 and all sufficiently small α > 0, where

Λ0 :=

{

n
2 · p+1−q

q−1 if p > 1,

n
2 · 3−2q

q−1 if p = 1.

Remark. Hypothesis (H1) is fulfilled if Λ0 > 0 (that is, p > 1 or p = 1 and q < 3
2) and e.g.

u0(x) ≤ c1e
−c2|x|l in R

n

for some l > n
Λ0

and positive numbers c1 and c2.

Lemma 2.4 Suppose q > 1 and (H1) holds. Then for all T0 > 0 there exists α > 0 and C0 > 0

such that

sup
t∈(0,T0)

‖uk(t)‖Lα(Rn) ≤ C0 ∀k ∈ N. (2.7)

Proof. We multiply the equation defining uk,ε by uα−1
k,ε , 0 < α < 1 to be chosen later, and

integrate over Bk × (τ, t), 0 < τ < t ≤ T0, to obtain

1

α

∫

Bk

uαk,ε(t) + (p+ α− 1)

∫ t

τ

∫

Bk

u
p+α−2
k,ε |∇uk,ε|2 −

∫ t

τ

∫

∂Bk

u
p+α−1
k,ε ∂Nuk,ε

=
1

α

∫

Bk

uαk,ε(τ) +

∫ t

τ

∫

Bk

u
q+α−1
k,ε . (2.8)
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As uk,ε ≥ ε in Bk × (0,∞) by comparison and uk,ε|∂Bk
= ε, the third term on the left is

nonnegative, while the second equals 4(p+α−1)
(p+α)2

∫ t

τ

∫

Bk
|∇u

p+α
2

k,ε |2. We now let τ and then ε tend

to zero; taking into account that uk,ε → uk uniformly in B̄k × [0, t] and ∇u
p+α
2

k,ε → ∇u
p+α
2

k a.e.

in Bk × (0, t), we gain from Fatou’s Lemma that

1

α

∫

Bk

uαk (t) + (p+ α− 1)

∫ t

0

∫

Bk

u
p+α−2
k |∇uk|2 ≤

1

α

∫

Bk

uα0,k +

∫ t

0

∫

Bk

u
q+α−1
k . (2.9)

If we define v := u
p+α
2

k then uαk = vγ with γ = 2α
p+α

and u
q+α−1
k = vδ with δ = 2(q+α−1)

p+α
, and

(2.9) reads

1

α
‖v(t)‖γ

Lγ(Bk)
+

4(p+ α− 1)

(p+ α)2

∫ t

0
‖∇v(s)‖2L2(Bk)

ds ≤ 1

α
‖v(0)‖γ

Lγ(Bk)
+

∫ t

0
‖v(s)‖δLδ(Bk)

ds. (2.10)

In order to take advantage from the gradient term on the left, we estimate by the Gagliardo-

Nirenberg inequality, Lemma 2.2,

‖v(s)‖δLδ(Bk)
≤ cδ0‖∇v(s)‖aδL2(Bk)

‖v(s)‖(1−a)δ
Lγ(Bk)

, (2.11)

where

a =

1
γ
− 1

δ

1
n
− 1

2 + 1
γ

.

Let us continue with the case p > 1 first. Then the coefficient of the gradient term in (2.10) is

bounded below by cp :=
4(p−1)
(p+1)2

> 0. To the right hand side of (2.11) we apply Young’s inequality

in the form

AB ≤ ηAr + c(r, η)B
1

1− 1
r , ∀A,B > 0, where c(r, η) :=

r − 1

r
(rη)−

1
r−1 , (2.12)

with η :=
cp

cδ0
, r := 2

aδ
. If α → 0 then also γ → 0 and thus aδ → 2(q−1)

p
and r → p

q−1 > 1, so that

we may assume α to be small enough such that c(r, η) ≤ c1 < ∞, whence we have altogether

‖v(s)‖δLδ(Bk)
≤ cp‖∇v(s)‖2L2(Bk)

+ c1

(

‖v(s)‖Lγ(Bk)

)

(1−a)δ

1−aδ
2 . (2.13)

Inserting this into (2.10) and writing y(t) := ‖v(t)‖γ
Lγ(Bk)

≡ ‖uk(t)‖αLα(Bk)
, t ∈ [0, T0], we obtain

y(t) ≤ y(0) + c1α

∫ t

0
y1+λ(α)(s)ds (2.14)

with λ(α) := (1−a)δ

1−aδ
2

1
γ
− 1. An elementary calculation reveals that

λ(α) =
q − 1

n
2 (p+ 1− q) + α

> 0,

and Lemma 2.3 guarantees

y(t) ≤ y(0)
(

1− λ(α)yλ(α)(0) · c1αt
)− 1

λ(α)
. (2.15)
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Since λ(α) ր λ0 :=
q−1

n
2
(p+1−q) as α ց 0, we can now choose α > 0 fulfilling

T :=
1

cλ(α)c1λ(α)α
1−

λ(α)
λ0

+νλ(α)
≥ 2T0, (2.16)

where ν and c have been taken from hypothesis (H1). With this value of α fixed henceforth,

(2.15) yields for t ∈ [0, T0] and all k
∫

Bk

uαk (t) ≤
∫

Bk

uα0 ·
[

1− 1

2
λ(α)

(

∫

Bk

uα0

)λ(α)
c1αT

]− 1
λ(α)

≤
∫

Bk

uα0 ·
[

1− 1

2
λ(α)

(

cα
− 1

λ0
+ν

)λ(α)
c1αT

]− 1
λ(α)

≤
∫

Bk

uα0 · 2
1

λ(α) ,

which proves (2.7).

If p = 1, however, letting α ց 0 means also taking the second coefficient 4α
(1+α)2

on the left of

(2.10) to zero. We have to respect this in the choice of η in (2.12), so that we use η := 4α
(1+α)2cδ0

.

But then c(r, η) ≤ c1α
− 1

r−1 needs no longer be bounded as α ց 0. Fortunately, r − 1 → 2−q
q−1 so

that at least for any ξ > 0 and all sufficiently small α < α0(ξ), we have c(r, η) ≤ c1α
− q−1

2−q
−ξ

. Let

us set κ := 3−2q
2−q

and fix ξ ∈ (0, νλ0
2 ). Then with an obvious change in (2.13), we obtain (2.14)

in the modified form

y(t) ≤ y(0) + c1α
κ−ξ

∫ t

0
y1+λ(α)(s)ds.

Accordingly, the final choice of α will be such that

1

cλ(α) · c1λ(α)α−λ(α)Λ0+νλ(α)+κ−ξ
≥ 2T0,

which is possible since −λ(α)Λ0 + νλ(α) + κ− ξ → −λ0Λ0 + νλ0 + κ− ξ > νλ0
2 > 0 as α → 0.

Now the remaining part of the proof is as before. ////

Unfortunately, using Lemma 2.4 alone we cannot exclude the case that e.g. u blows up at single

points in finite time. However, if u0 is radially symmetric and decreasing in |x|, Lemma 2.6 will

show that this is impossible. Its proof relies on

Lemma 2.5 For all k ∈ N, we have

∂tuk

uk
≥ − 1

pt
in R

n × (0,∞). (2.17)

Proof. For fixed τ > 0, classical regulartiy theory tells us that the approximate solutions uk,ε
are in C2,1(B̄k×[τ,∞)), hence the function zk,ε :=

∂tuk,ε

uk,ε
= u

p−1
k,ε ∆uk,ε+u

q−1
k,ε is in C0(B̄k×[τ,∞))

and fulfils

∂tzk,ε = (p− 1)up−1
k,ε (∆uk,ε + u

q−p
k,ε )zk,ε + u

p−1
k,ε

(

∆(uk,εzk,ε) + (q − p)uq−p
k,ε zk,ε

)

= pz2k,ε + (q − p− 1)uq−1
k,ε zk,ε + u

p−1
k,ε (2∇uk,ε · ∇zk,ε + uk,ε∆zk,ε).
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zk,ε vanishes at ∂Bk × [τ,∞), while at t = τ , zk,ε ≥ −M for all M ≥ Mε and some sufficiently

large Mε > 0. Hence, by comparison, zk,ε ≥ fM on Bk × (τ,∞) for all M ≥ Mε, where fM (t) is

the solution of f ′
M = pf2

M on (τ,∞), fM (τ) = −M , i.e. fM (t) = − 1
p(t−τ)+M−1 ; note here that

fM is negative, so that (q− p− 1)uq−1
k,ε fM ≥ 0. Consequently, zk,ε ≥ − 1

p(t−τ) on Bk × (τ,∞) for

all τ > 0, hence also zk,ε ≥ − 1
pt

on Bk × (0,∞). Taking ε → 0, we arrive at (2.17). ////

Lemma 2.6 If u = limk→∞ uk is radially symmetric and decreasing in |x| for each t then either

u exists globally or there is T < ∞ and a sequence tj ր T such that u(x, tj) → ∞ for all x ∈ R
n.

In other words, for such a solution finite time blow-up occurs either nowhere or everywhere in

R
n.

Proof. If u does not exist globally, there is T < ∞ and a sequence tj ր T such that

u(0, tj) ր ∞. For fixed tj , define a function f on [0,∞) by u(x, tj) =: f(|x|). From Lemma 2.5

we infer ∆u(tj) ≥ − 1
ptj

u1−p(tj) − uq−p(tj) and thus f ′′(r) + n−1
r

f ′(r) ≥ − 1
fp(r)(c0f(r) + f q(r))

with c0 ≥ 1
ptj

independent of j. Writing a := f(0), the claim will follow as soon as we have

shown that f ≥ a
2 on an interval [0, ra] of length ra which satisfies ra → ∞ as a → ∞.

To see this, suppose f(ra) =
a
2 for some ra < ∞ – if no such ra exists, we are done. As f ′ ≤ 0

and f ′(0) = 0, we have

f(ra) =
a

2
= a+

∫ ra

0

∫ r

0
f ′′(ρ)dρdr

≥ a−
∫ ra

0

∫ r

0

1

fp(ρ)

(

c0f(ρ) + f q(ρ)
)

dρdr

≥ a−
(2

a

)p

(c0a+ aq)
r2a
2
,

hence r2a ≥ 2−p ap+1−q

1+c0a1−q which yields the assertion, for p+ 1 > q. ////

Now we have collected all the tools to be used in

Theorem 2.7 Suppose p ≥ 1 and 1 ≤ q < p + 1 with q < 3
2 if p = 1. If either q = 1 or u0

satisfies (H1) then the solution u = limk→∞ uk exists globally.

Proof. Without loss of generality we may assume q > 1 since in the case q = 1 it is easily

seen by comparison that uk(x, t) ≤ ‖u0‖L∞(Rn)e
t uniformly in k, so that u clearly exists globally.

As u lies below a radially symmetric and (with respect to |x|) nonincreasing solution with initial

value satisfying (H1), we may furthermore restrict ourselves to the case that u itself has these

properties.

Suppose such a u blew up at some time T < ∞. We apply Lemma 2.4 with T0 := T + 1 and

obtain α > 0 and C0 > 0 such that

‖uk(t)‖Lα(Bk) ≤ C0 ∀ t ∈ (0, T + 1). (2.18)

Let M be any number larger than 4C0 and τ := min{T
2 , p

T
4 ln 2, 1}. As u blows up in all of

R
n by Lemma 2.6, there is t0 ∈ [T − τ, T ) such that u(x, t0) > M where x is any point on
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∂Br and r is – for convenience – such that |Br| = 1. As uk ր u, we find k0 ∈ N such that

uk(x, t0) ≥ M for all k ≥ k0. Now Lemma 2.5 tells us that ∂tuk(x, t) ≥ − 1
pT

2

uk(x, t) and

thus uk(x, t) ≥ Me
− 2

pT
(t−t0) for all t ≥ t0 and all k ≥ k0. Hence if t ∈ (T, T + τ), we have

t− t0 ≤ (T + τ)− (T − τ) = 2τ ≤ pT
2 ln 2 and therefore uk(x, t) ≥ M

2 . By radial symmetry and

monotonicity,

uk(t) ≥
M

2
on Br for k ≥ k0 and t ∈ (T, T + τ).

But then we have for such t and k ≥ k0
(

∫

Bk

uαk (t)
)

1
α ≥

(

∫

Br

(
M

2
)α
)

1
α
=

M

2
> 2C0,

which contradicts (2.18). ////

3 The critical case q = p+ 1

If q = p + 1, it follows from the results in [Wi1] that for large k (such that the first eigenvalue

of −∆ in Bk with zero Dirichlet boundary data is less than one), uk blows up in finite time, no

matter how small (but positive) u0,k has been chosen. As, by comparison, u ≥ uk in Bk for any

solution u of (0.3), we can state without further comment

Theorem 3.1 Suppose q = p+ 1. Then any positive solution of (0.3) blows up in finite time.

4 The supercritical case q > p+ 1

Rewriting (0.2) as ut =
1

p+1∆up+1 − pup−1|∇u|2 + uq and using an equivalent version of (C2)

identifying β = σ+1+ 2
n
as critical exponent in (0.1), it is easy to see by a comparison argument

that (0.3) has global solutions evolving from sufficiently small initial data, provided q > p+1+ 2
n
.

However, this reduction to a problem similar to (0.1) does neither – at least not immediately –

give us any information about the gap q ∈ (p+ 1, p+ 1+ 2
n
], nor does it clarify whether we can

expect blow-up for large data. The Lα-approach, having been successful in the subcritical case

yet, seems to fail as well. Alternatively, we shall look for explicit global solutions on the one

hand and on the other hand attempt to prove blow-up in the case of large data by an energy-type

method as performed e.g. in [FMcL] in a slightly different setting.

Theorem 4.1 Let q > p+ 1.

i) There exists a one-parameter family (wa)a>0 of radially symmetric positive functions wa(x)

vanishing at infinity with wa(0) = a such that whenever u0 satisfies (H0) and u0 ≤ wa in R
n

then the corresponding solution u exists globally and obeys the decay estimate

‖u(t)‖L∞(Rn) ≤ c(1 + t)
− 1

q−1 .

ii) For each w satisfying (H0) there is b > 0 such that if u0 = bw then any positive classical

solution u evolving from u0 blows up in finite time.
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Proof. i) Let us look for radially symmetric similarity solutions to (0.3) of the form

u(x, t) := (1 + t)−αf((1 + t)−β|x|) (4.1)

with positive α and β to be determined. Abbreviating r := (1 + t)−β |x|, we have for such u

ut − up∆u− uq = −α(1 + t)−α−1f(r)− β(1 + t)−α−β−1|x|f ′(r)

−(1 + t)−pαfp(r)
(

(1 + t)−α−2βf ′′(r)− (1 + t)−α−β n− 1

|x| f ′(r)
)

−(1 + t)−qαf q(r)

= −α(1 + t)−α−1f(r)− β(1 + t)−α−1rf ′(r)

−(1 + t)−pα−α−2βfp(r)(f ′′(r) +
n− 1

r
f ′(r))− (1 + t)−qαf q(r).

If qα = α + 1 and pα + α + 2β = α + 1, i.e. α = 1
q−1 and β = q−p−1

2(q−1) , all time exponents are

equal, so that u solves the first in (0.3) if and only if f is a positive solution on (0,∞) of the

initial value problem

f ′′ +
n− 1

r
f ′ +

1

fp
(βrf ′ + αf + f q) = 0, r ∈ (0,∞),

f(0) = a, f ′(0) = 0, (4.2)

with some a > 0. Therefore the claim of part i) of the theorem follows if we show that for any

a > 0, (4.2) has a positive solution f ∈ C2([0,∞)). We first prove local solvability of (4.2) near

r = 0 by rewriting the differential equation as 1
rn−1 (r

n−1f ′)′ = g(r, f, f ′) with g smooth near the

point (0, a, 0), and considering the equivalent integral equation

f(r) = a+

∫ r

0

1

ρn−1

∫ ρ

0
σn−1g(σ, f(σ), f ′(σ))dσdρ

which is solved by standard fixed point arguments in the space C1([0, R]) with sufficiently small

R > 0. A posteriori, g̃(σ) := g(σ, f(σ), f ′(σ)) is continuous at σ = 0, hence

∣

∣

∣

1

r
f ′(r)− g̃(0)

n

∣

∣

∣
=

∣

∣

∣

1

rn

∫ r

0
σn−1(g̃(σ)− g̃(0))dσ

∣

∣

∣
≤ 1

n
max
σ∈[0,r]

|g̃(σ)− g̃(0)| → 0 as r → 0.

Thus, f ′′ is continuous at r = 0 and f ∈ C2([0, R]). Moreover, f ′′(0) = limr→0(−n−1
r

f ′(r) +

g̃(r)) = 1
n
g̃(0) < 0, so that f decreases near r = 0 and hence as long as being positive, for (4.2)

shows that f cannot have a positive local minimum. Thus, there is a maximal R ≤ ∞ such that

f exists and remains strictly positive on (0, R). To see that actually R = ∞, suppose on the

contrary that R < ∞ and consider the case p > 1 first. Letting ε := β
p−1(

R
2 )

n, we observe that

for r ∈ (R2 , R), the function ϕ(r) := εf1−p(r)− rn−1f ′(r) satisfies

1

rn−1
ϕ′ =

(

βr − ε(p− 1)

rn−1

) f ′

fp
+ αf1−p + f q−p

≤ f1−p(α+ aq−1).

Thus, writing γ := Rn−1(α+aq−1)
ε

and noting that εf1−p ≤ ϕ, we obtain

ϕ′ ≤ γϕ,
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so that ϕ(r) ≤ ϕ(R2 )e
γ(r−R

2
) for all r ∈ (R2 , R). In this interval we therefore have

|f ′| ≤ c and c−1 ≤ f ≤ a,

which contradicts the maximality of R.

In the remaining part p = 1, we proceed similarly, using that ϕ(r) := −ε ln f(r) − rn−1f ′(r),

with ε := β(R2 )
n, satisfies ϕ′(r) ≤ rn−1(α+ f q−1) ≤ c on (R2 , R).

Let us finally show that f(r) → 0 as r → ∞ and thereby complete the proof of part i). Indeed,

suppose that we had f ≥ δ > 0 on (0,∞). Then, by (4.2),

f ′′ = −
(n− 1

r
+

β

fp
r
)

f ′ − αf + f q

fp
≤ −2c1rf

′ − c2 for r ≥ 1

with positive numbers c1 and c2. An integration of the differential equation y′(r) = −2c1ry(r)−
c2 leads to

f ′ ≤ f ′(1)e−c1(r2−1) − c2

∫ r

1
ec1[τ

2−r2]dτ.

We estimate the second integral as follows:
∫ r

1
ec1(τ−r)(τ+r)dτ ≥

∫ r

1
e2c1r(τ−r)dτ =

1

2c1r
(1− e−2c1r(r−1)).

Hence, for r0 sufficiently large and some c3 > 0,

f ′(r) ≤ −c3

r
∀ r ≥ r0,

so that f(r) ≤ f(1)− c3 ln
r
r0

for r > r0, implying f(r) → −∞ as r → ∞ which is again absurd.

Thus, f(r) → 0 as r → ∞.

ii) We fix an arbitrary smooth bounded domain Ω ⊂ R
n with principal eigenvalue λ1 of −∆

and a corresponding eigenfunction Θ ≥ 0 with
∫

ΩΘ = 1. Considering p > 1 first, we suppose u

exists for t ≤ T and let y(t) := 1
p−1

∫

Ω u1−p(t)Θ, t ∈ [0, T ]. Then y ∈ C0([0, T ])∩C1((0, T ]) and

since ∂NΘ|∂Ω < 0, we have

y′ = −
∫

Ω

ut

up
Θ = −

∫

Ω
∆u ·Θ−

∫

Ω
uq−pΘ

≤ λ1

∫

Ω
uΘ−

∫

Ω
uq−pΘ. (4.3)

We claim that as long as y ≤ 1
p−1(

1
2λ1

)
p−1

q−p−1 =: c0, we have

y′ ≤ −λ1(p− 1)
− 1

p−1 y
− 1

p−1 , (4.4)

from which it will follow that if b is so large that y0 :=
(

1
p−1

∫

Ωw1−pΘ
)

b1−p ≤ c0 then y decreases

and hence remains below c0 for t ∈ [0, T ]; an integration of (4.4) shows that then

y(t) ≤ (y
p

p−1

0 − c1t)
p−1
p
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with c1 := λ1p(p−1)
− p

p−1 , and thus T cannot exceed c1y
− p

p−1

0 < ∞, that is, u becomes unbounded

in finite time.

To prove (4.4), we observe first that due to the Hölder inequality,
∫

Ω
u1−pΘ ≥

(

∫

Ω
uΘ

)1−p

and

∫

Ω
uq−pΘ ≥

(

∫

Ω
uΘ

)q−p

, (4.5)

where we have used
∫

ΩΘ = 1, so that if y ≤ c0 then

∫

Ω
uq−p(t)Θ ≥

(

∫

Ω
uΘ

)q−p−1
∫

Ω
uΘ

≥
(

∫

Ω
u1−pΘ

)− q−p−1
p−1

∫

Ω
uΘ

= [(p− 1)y]
− q−p−1

p−1

∫

Ω
uΘ

≥ 2λ1

∫

Ω
uΘ.

Hence, by (4.3) and (4.5),

y′ ≤ −λ1

∫

Ω
uΘ ≤ −λ1

(

∫

Ω
u1−pΘ

)− 1
p−1

= −λ1(p− 1)−
1

p−1 y
− 1

p−1 ,

as claimed.

If p = 1, we let y(t) := −
∫

Ω lnu(t)Θ and the proof is similar: Using Hölder’s and Jensen’s

inequalities in estimating
∫

Ω uq−1Θ ≥ (
∫

Ω uΘ)q−1 and
∫

Ω uΘ ≥ e
∫
Ω lnu·Θ, we see as above that

as long as y ≤ ln( 1
2λ1

)
1

q−2 =: c2, we have
∫

Ω uΘ ≤ 1
2λ1

∫

Ω uq−1Θ and thus

y′ ≤ λ1

∫

Ω
uΘ−

∫

Ω
uq−1Θ ≤ −λ1

∫

Ω
uΘ ≤ −λ1e

∫
Ω lnu·Θ = −λ1e

−y,

so that if y(0) ≤ c2 – which is true for all sufficiently large b – then ey(t) ≤ ey(0) − λ1t which

shows T ≤ 1
λ1
ey(0). ////
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