
Nonuniqueness in the quenching problem

Michael Winkler
Department of Mathematics I, RWTH Aachen,

52056 Aachen, Germany
micha win@gmx.de

Abstract

This paper deals with nonnegative solutions of

ut = ∆u− u−qχ{u>0} in Ω× (0,∞) (Q)

with q ∈ (0, 1) and prescribed continuous Dirichlet data B = B(x) on ∂Ω. It is proved
that for n ≤ 6 there is a critical parameter qc ∈ [0, 1) with the following property: If
q > qc then there exist at least two continuous weak solutions emanating from some
explicitly known stationary solution w: one that coincides with w and another one
that satisfies u ≥ w but u 6≡ w. For n ≤ 6 and q ≤ qc (or n ≥ 7), however, such a
second solution above w is impossible.
Moreover, it is shown that for n ≤ 6, q > qc and any sufficiently small nonnegative
boundary data B there exist initial values admitting at least two continuous weak
solutions of (Q). The final result asserts that for any n and q nonuniqueness for (Q)
holds at least for some boundary and initial data.

MSC 2000: 35K57, 35K60, 35R25
Keywords: Singular absorption, nonuniqueness, critical exponent

1 Introduction

This paper deals with the semilinear parabolic boundary value problem with singular
absorption,

ut = ∆u− u−qχ{u>0} in Ω× (0,∞),
u|∂Ω = B(x),
u|t=0 = u0(x). (1.1)

Here, Ω ⊂ Rn is a smooth bounded domain, q ∈ (0, 1) is a fixed parameter and χ{u>0}
denotes the characteristic function of the set of points where u is positive. The initial
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data u0 and the boundary function B are supposed to be nonnegative and continuous and
throughout we assume that the compatibility condition

u0|∂Ω = B (1.2)

holds.
It was shown in [19] that if B is a positive constant then (1.1) admits at least one non-
negative continuous weak solution. Recently, the requirement B > 0 could be relaxed in
[4], where it has been proved that also in the case B ≡ 0 there exists a nonnegative weak
solution; however, it was left open there if such solutions are continuous up to ∂Ω.
Several qualitative aspects of solutions to (1.1) with general q > −1 have been explored
during the last decades. Most of them concerned the possibility or the impossibility of
dead cores to occur in finite or in infinite time ([17], [6], [7]), or quenching rates and pro-
files ([15], [16], [8]). Also, various results on the evolution of the positivity set and on the
large time behavior of solutions are available ([5], [2], [1], [9], [12], [10], [3]).
A crucial role in many of these results is played by stationary solutions and especially by
the singular steady state wn,q that is explicitly given by

wn,q(x) := An,q|x|
2

q+1 ,

where

An,q :=
[ 2
q + 1

( 2
q + 1

+ n− 2
)]− 1

q+1
.

Observe that wn,q ∈ C1+θ(Ω̄) with θ = 1−q
q+1 ∈ (0, 1), but if 0 ∈ Ω then wn,q 6∈ C2(Ω),

whence wn,q is a continuous weak solution, but not a classical solution of (1.1).
As far as the uniqueness question for (1.1) is concerned, very little is known up to now: For
instance, it is easy to see upon a standard manipulation of the nonlinearity in (1.1) that
weak solutions are unique (and classical) under the extra assumption u ≥ c > 0. Similary,
uniqueness of weak solutions in the neighboring case q = −α ∈ (−1, 0] follows from a
straightforward argument; then, namely, the nonlinearity u 7→ uαχ{u>0} is nondecreasing
in u and hence well-behaved with respect to the comparison principle, although it also
causes typical effects of strong absorption ([5], [3]). By a more subtle reasoning, Dávila and
Montenegro in [4] achieved uniqueness for (1.1) with B ≡ 0 within the class of functions
satisfying u(x, t) ≥ c(dist (x, ∂Ω))γ for some γ < 2

q+1 and c > 0.
The principal goal of the present work is to prove that for a large class of boundary
functions B, weak solutions of (1.1) are in general not unique, even if they are assumed
to be continuous. Assuming henceforth that

0 ∈ Ω
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and writing

qc(n) :=

 0 if n ≤ 2,

(n−2)2−4n+8
√

n−1
(n−2)(10−n) if 3 ≤ n ≤ 6,

(1.3)

we can formulate the first of our main results as follows.

Theorem 1.1 If n ≤ 6 and q ∈ (0, 1) satisfies q > qc(n) then for any nonnegative initial
data u0 ∈ C0(Ω̄) ∩ C2(Ω̄ \ {0}) fulfilling

u0 ≤ wn,q in Ω̄ and u0 ≡ wn,q near x = 0,

there exist at least two distinct continuous weak solutions u, ũ of (1.1). These satisfy

u(0, t) = 0 ∀ t > 0 and ũ(0, t) > 0 for small t > 0. (1.4)

Particularly, the continuous weak solution u ≡ wn,q with initial value u0 = wn,q is not
unique.

Observe that Theorem 1.1 implies that for any continuous boundary data satisfying 0 ≤
B ≤ wn,q|∂Ω, there exist many initial functions for which (1.1) has more than one solution.
The exponent qc(n) indeed appears to be critical with respect to uniqueness. Namely, we
have

Lemma 1.2 Suppose n ≥ 3 and

0 < q ≤ qc(n) if 3 ≤ n ≤ 6,
0 < q < 1 if n ≥ 7.

(1.5)

Then the solution u ≡ wn,q of (1.1) with u0 ≡ wn,q is unique within the class{
v | v is a continuous weak solution of (1.1) with v ≥ wn,q in Ω× (0,∞)

}
;

equivalently, u ≡ wn,q is the maximal solution emanating from wn,q.

However, if we allow larger zero sets of u0 (measured e.g. in terms of their Hausdorff
dimension), we can prove nonuniqueness for arbitrary n and q ∈ (0, 1) – but then need
more technical restrictions on the initial and boundary data:

Theorem 1.3 Assume n ≥ 1, q ∈ (0, 1) and

u0(x) = wN,q(x1, ..., xN ) ∀x = (x1, ..., xn) ∈ Ω̄

with some N ≤ min{n, 6} satisfying qc(N) < q. Then (1.1) has at least two continuous
weak solutions with the properties (1.4).
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In the course of our analysis we will also prove that the problem (1.1) is at least partially
well-posed in the sense that

• for any nonnegative and continuous u0 and B satisfying (1.2), (1.1) possesses a
unique maximal continuous weak solution (Theorem 3.5), and that

• if (u0k)k∈N ⊂ C0(Ω̄) is a sequence of nonnegative initial data, uniformly convergent
to some u0, then a subsequence of the corresponding sequence of maximal solutions
converges locally uniformly in Ω̄ × [0,∞) to a continuous weak solution emanating
from u0 (Lemma 3.4).

Unfortunately, the latter limit need not coincide with the maximal solution corresponding
to the initial value u0, as the proof of Theorems 1.1 and 1.3 will show. As a consequence,

• the maximal continuous weak solution does not depend continuously on the initial
data

when we measure distances of initial data in C0(Ω̄) and distances between solutions in any
reasonable space that separates continuous functions u and ũ with the properties (1.4).
Anyhow, this supplements the previously established existence theory for (1.1) in so far
as it now provides continuous weak solutions for arbitrary – not necessarily positive –
boundary data.
We remark that the nonuniqueness result in Theorem 1.1 has an analogue in the study of
the Cauchy problem for ut = ∆u+up with n ≥ 3 and p > n

n−2 . For this problem, namely,
it is known that there is a critical exponent

pc :=

 ∞ if n ≤ 10,

(n−2)2−4n+8
√

n−1
(n−2)(n−10) if n ≥ 11,

which has, apart from a number of other interesting features (cf. [13], [14], [20]), the
following property ([11]): If n

n−2 < p < pc then there exist at least two distinct weak

solutions evolving from the explicit singular steady state w(x) = L|x|−
2

p−1 , where L is
given by L = ( 2

p−1(n−2− 2
p−1))

1
p−1 : One of these is ũ ≡ w and another one is a selfsimilar

solution u that is smooth for t > 0, so that particularly u(0, t) < ∞ for all t > 0. When
n ≥ 11 and p ≥ pc, however, such a self-similar solution does not exist, and moreover
the solution u ≡ w is the (unique) minimal solution (which is sometimes also called the
‘proper’ solution; cf. [11, Theorem 10.1]). Observe that if we extend the definition of qc
to n ≥ 11 then we have pc = −qc for such n.
Let us finally mention that for the degenerate counterpart of the PDE in (1.1), ut =
up∆u − u−qχ{u>0}, p > 0, it was proved in [23] that nonuniqueness of continuous weak
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solutions holds for p ≥ 1 and n = 1 in the whole range q ∈ (−1, p − 1] where continu-
ous solutions exist ([22]). However, nothing seems to be known in the intermediate case
p ∈ (0, 1), that is, when the degeneracy is of porous-medium type.

The paper is organzied as follows: In Section 2 we pursue some formal ideas based on
a self-similar ansatz. This will on the one hand indicate the criticality of qc, but on the
other hand our approach will also give useful suggestions how to construct nonstationary
solutions evolving from steady states. In the rather technical proofs of Section 3 we as-
sert some results on existence and convergence of continuous weak solutions for arbitrary
nonnegative initial and boundary data. We also derive a useful estimate from below near
t = 0 there (see Lemma 3.3) which will enable us to deal with initial data u0 6≡ w in The-
orem 1.1. Section 4 is devoted to a rigorous study of the ordinary differential inequality
proposed by our formal considerations. This prepares us to prove Theorems 1.1 and 1.3
and Lemma 1.2 in Section 5.

2 Formal analysis

Before going into technical details, let us first demonstrate the basic ideas of our approach.
We assume for simplicity that u0 coincides with w ≡ wn,q in the whole domain and seek
for a nonstationary solution u of the form

u(x, t) = w(x) + U(x, t),

which leads us to the equation

Ut = ∆U + w−q − (w + U)−q (2.1)

wherever u is positive, because ∆w = w−q. Let us pursue the self-similar ansatz

U(x, t) = tα · f(t−β|x|).

Such a function would solve (2.1) if and only if

αtα−1f(ξ)− βtα−1ξf ′(ξ) = tα−2β(f ′′(ξ) + n−1
ξ f ′(ξ)) +w−q(x)− (w(x) + tαf(ξ))−q, (2.2)

where ξ = t−β |x|, so that the only reasonable choice appears to be β = 1
2 . Upon this, we

now make use of the fact that

w(x) = An,q|x|
2

q+1 = An,q(t
1
2 ξ)

2
q+1 = t

1
q+1w(ξ).
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Thus, (2.2) turns into

tα−1
[
f ′′(ξ) +

n− 1
ξ

f ′(ξ) +
ξ

2
f ′(ξ)− αf(ξ)

]
+ t

− q
q+1w−q(ξ)− t

− q
q+1

(
w(ξ) + t

α− 1
q+1 f(ξ)

)−q
= 0,

which recommends the choice α = 1
q+1 . In this case, f should satisfy

L0f := f ′′ +
n− 1
ξ

f ′ +
ξ

2
f ′ − 1

q + 1
f + w−q − (w + f)−q = 0, (2.3)

the suppressed argument being ξ now everywhere.
In order to investigate the structure of the operator L0, let us proceed to transform f via

f(ξ) = h(ξ) · w(ξ),

the function h supposedly having small values such that u remains nonnegative. Then
(2.3) holds if h satisfies

0 = h′′w + 2h′w′ + hw′′ +
n− 1
ξ

(
h′w + hw′

)
+
ξ

2

(
h′w + hw′

)
− 1
q + 1

hw

+ w−q −
(
1 + h

)−q
w−q

= w ·
[
h′′ +

n− 1
ξ

h′ + 2
w′

w
h′ +

ξ

2
h′ − 1

q + 1
h+

ξ

2
w′

w
h

+
(w′′ + n−1

ξ w′)h+ w−q − (1 + h)−qw−q

w

]
.

Since w′′ + n−1
ξ w′ = w−q and w′

w = 2
q+1 ·

1
ξ , this amounts to requiring

L̃0h := h′′ +
n− 1 + 4

q+1

ξ
h′ +

ξ

2
h′ +

[
1 + h− (1 + h)−q

]
w−q−1 = 0. (2.4)

Using the first-order expansion

1 + h− (1 + h)−q ≈ (q + 1)h, |h| << 1,

and the identity w−q−1 = A−q−1
n,q ξ−2, we obtain that h, if it remains small enough, should

satisfy

h′′ +
n− 1 + 4

q+1

ξ
h′ +

(q + 1)A−q−1
n,q

ξ2
h+

ξ

2
h′ ≈ 0.

6



Near ξ = 0, the last term is small as compared to the second one, whence we end up with
the Euler-type ODE

h′′ +
a1

ξ
h′ +

a2

ξ2
h ≈ 0, |h| << 1, ξ << 1, (2.5)

where a1 = n−1+ 4
q+1 and a2 = (q+1)A−q−1

n,q ≡ 2 · ( 2
q+1 +n−2). The characteristic roots

of this asymptotic equation, that is, the zeros of λ 7→ λ(λ− 1) + a1λ+ a2, are computed
as

λ± = −a1 − 1
2

± 1
2

√
(a1 − 1)2 − 4a2.

Both these roots have a nonzero imaginary part if and only if (a1 − 1)2 − 4a2 < 0 or,
equivalently,

0 < (q + 1)2 · [4a2 − (a1 − 1)2]

= 8(q + 1)2 · ( 2
q+1 + n− 2)− (q + 1)2 · (n− 2 + 4

q+1)2

= 8(n− 2)(q + 1)2 + 16(q + 1)− (n− 2)2(q + 1)2

−8(n− 2)(q + 1)− 16
= (n− 2)(10− n)(q + 1)2 + (32− 8n)(q + 1)− 16
= (n− 2)(10− n)q2 − 2(n2 − 8n+ 4)q − (n− 2)2.

Solving this inequality with respect to q ∈ (0, 1), we conclude that the linearized asymp-
totic equation (2.5) allows oscillating solutions of the form

h(ξ) = ξ−
a1−1

2 sin
(

ln ξ
1
2

√
4a2−(a1−1)2

)
(2.6)

(and, of course, their cosine counterparts), if and only if 2 ≤ n ≤ 6 and qc(n) < q < 1. In
the case n = 1, all solutions are given by

h(ξ) = c1ξ
− 2(1−q)

q+1 + c2ξ
−1 if q 6= 1

3
,

h(ξ) = c1ξ
−1 + c2ξ

−1 ln ξ if q =
1
3
. (2.7)

Let us develop from this a strategy on how to construct a solution u 6≡ w above w but
with initial value w. By the approximation procedure performed in Section 3 below, we
know that there exists a weak solution (for instance, the maximal solution) u ≥ w with
initial value w that is the limit of a decreasing sequence of smooth supersolutions of (1.1)
which initially lie strictly above w. Since all nontrivial solutions of the exact variant of
(2.5) are unbounded near ξ = 0 and therefore useless for our puspose, we confine ourselves
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with constructing subsolutions instead. Transformed back to the original coordinates,
such functions h, thus satisfying L̃0h ≥ 0 and required to be small, should give rise to
subsolutions ũ of (1.1) with initial value w. If now we are able to achieve

ũ ≤ w on the lateral boundary of some parabolic domain Q of the form t−
1
2 |x| < ξ0 (2.8)

and, say,
ũ(0, t) > 0 for small t > 0, (2.9)

then ũ ≤ u in Q by comparison and particularly u(0, t) > 0 for small positive t, whence u
cannot coincide with w, though having evolved from w.
Rewriting (2.8) and (2.9) in terms of f , we can formulate as our goal the construction of
a function f satisfying

L0f ≥ 0 in (0, ξ0),
f(0) > 0, f ′(0) = 0 and f(ξ0) = 0

for some ξ0 > 0. As it is easy to see that each positive constant δ satisfies L0(δ) ≥ 0
on (0, ξ1) for sufficiently small ξ1 (cf. Corollary 4.3), the main task will thus be to find
suitable δ, ξ1 and a subsolution f for ξ ≥ ξ1 with

f(ξ1) = δ, f ′(ξ1) = 0,

in such a way that

f reaches the value zero at some finite ξ.

It will be a consequence of the oscillatory nature of (2.5) that this in fact is possible under
the assumption 2 ≤ n ≤ 6 and qc(n) < q < 1. Indeed, in this case we can choose one of
the infinitely many decreasing positive branches of the function

f(ξ) = ηξ
2

q+1
−a1−1

2 sin
(

ln ξ
1
2

√
4a2−(a1−1)2

)
(2.10)

induced by (2.6). Here η > 0 is appropriately small in order to ensure that the smallness
conditions imposed above hold on the considered interval.
As to the case n = 1, the corresponding candidates take the form

f(ξ) = η1ξ
2q

q+1 + η2ξ
1−q
q+1 if q 6= 1

3
,

f(ξ) = η1ξ
1
2 + η2ξ

1
2 ln ξ if q =

1
3
, (2.11)

where all appearing terms are bounded near ξ = 0. Thus, if we choose η1 > 0 > η2 when
q < 1

3 and η1 < 0 < η2 when q ≥ 1
3 then, as desired, these functions attain a positive
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maximum and then decrease to −∞.
Let us briefly describe in how far this distinguishes from the case n ≥ 3 and q ≤ qc(n) in
which the roots of (2.5) become real again. Then, namely, we always have λ− ≤ −a1−1

2 =
−n−2

2 − 2
q+1 < − 2

q+1 and thus the first term making up

f(ξ) = η1ξ
2

q+1
+λ− + η2ξ

2
q+1

+λ+

becomes unbounded near ξ = 0. Consequently, the only possibility to enforce a positive
maximum of f consists of choosing η1 < 0; but then f will have no zero beyond this
maximum.

3 Maximal solutions and a convergence result

In the sequel, by a continuous weak solution of (1.1) we mean a function u ∈ C0(Ω̄×[0,∞))
that satisfies u|t=0 = u0 and u|∂Ω = B ≡ u0|∂Ω classically and

−
∫ ∞

0

∫
Ω
uϕt −

∫ ∞

0

∫
Ω
u∆ϕ+

∫ ∞

0

∫
Ω
χ{u>0}u

−qϕ =
∫

Ω
u0ϕ (3.1)

for all nonnegative ϕ ∈ C∞0 (Ω×[0,∞)). This implicitly requires, of course, that χ{u>0}u
−q ∈

L1
loc(Ω× [0,∞)).

A natural method to construct solutions of (1.1) consists of regularizing the problem and
consider solutions uε of

uεt = ∆uε − gε(uε) on Ω× (0,∞),
uε|∂Ω = Bε,

uε|t=0 = u0ε, (3.2)

where Bε, u0ε and gε are suitably chosen smooth approximations of B, u0 and u 7→
u−qχ{u>0}, respectively. There are several possible ways to accomplish this. For definite-
ness, let us define gε as follows: We pick a cut-off function χ ∈ C∞(R) such that χ(s) = 0
for s ≤ 1, χ(s) = 1 for s ≥ 2 and 0 ≤ χ′ ≤ 2 on R. For ε > 0, we set χε(s) := χ( s

ε) and

gε(s) :=

{
χε(s) · s−q, s > 0,

0, s ≤ 0.

Moreover, with a fixed sequence of numbers ε = εj ↘ 0, εj ∈ (0, 1), we let u0ε ∈W 1,∞(Ω)
be such that

u0 + ε ≤ u0ε ≤ u0 + 2ε in Ω, (3.3)

and that u0ε ↘ u0 as ε → 0. Here and below, in order to abbreviate notation, we fre-
quently use statements like ‘as ε→ 0’ or ‘for all ε ∈ (0, 1)’ which are to be understood as
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referring to the sequence ε = εj throughout. Let us also agree upon the convention that
if u0 ∈W 1,∞(Ω) then we always choose u0ε := u0 + ε. Finally, we set Bε := u0ε|∂Ω.
Using standard arguments involving parabolic Schauder theory and the comparison prin-
ciple, one can see that each of the problems (3.2) has a classical solution that satisfies

ε ≤ uε ≤ ‖u0ε‖L∞(Ω).

Moreover, the uε are ordered and

uε ↘ u as ε→ 0

holds for some nonnegative u ∈ L∞(Ω× (0,∞)).

Lemma 3.1 i) There exists c > 0 such that for each u0 ∈ C0(Ω̄) and all ε we have

|∇u
q+1
2

ε (x, t)| ≤ c · (1 + ‖u
q+1
2

0 ‖L∞(Ω)) ·
(
1 + t−

1
2 + (dist (x, ∂Ω))−1

)
(3.4)

for all (x, t) ∈ Ω× (0,∞).

ii) Moreover, if u
q+1
2

0 ∈W 1,∞(Ω) then

|∇u
q+1
2

ε (x, t)| ≤ c · (1 + ‖u
q+1
2

0 ‖W 1,∞(Ω)) ·
(
1 + (dist (x, ∂Ω))−1

)
(3.5)

is valid for any (x, t) ∈ Ω× (0,∞) and some c > 0.

Proof. The proof is a straightforward application of the well-known Berstein technique
as demonstrated for some closely related problems in [19], [4] or [18], for instance.
i) For small positive d and τ , fix ζ ∈ C∞(Ω̄ × [0,∞)) such that 0 ≤ ζ ≤ 1, ζ(x, t) = 1 if
dist (x, ∂Ω) ≥ d and t ≥ τ , ζ(x, t) = 0 if dist (x, ∂Ω) ≤ d

2 or t ≤ τ
2 , and such that

|ζt| ≤
c0
τ

and |∇ζ|2 + ζ|∆ζ| ≤ c0
d2

in Ω× (0,∞)

holds with some c0 > 0. The function v := u
q+1
2

ε satisfies

vt = ∆v +
1− q

q + 1
v−1|∇v|2 − q + 1

2
v
− 1−q

q+1 gε(v
2

q+1 )

and

1
2
(|∇v|2)t = ∇v · ∇vt

= ∇v · ∇∆v − 1− q

q + 1
v−2|∇v|4 +

2(1− q)
q + 1

v−1〈∇v,D2v · ∇v〉

−q + 1
2

d

dv

(
v
− 1−q

q+1 gε(v
2

q+1 )
)
· |∇v|2. (3.6)
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For any T > 0,

z(x, t) := ζ2(x, t)|∇v(x, t)|2

attains its maximum over Ω̄× [0, T ] at some point (x0, t0) ∈ Ω×(0, T ]; hence at this point,
∇z ≡ 2ζ∇ζ|∇v|2 + 2ζ2D2v · ∇v vanishes and zt ≥ 0 as well as ∆z ≤ 0. Therefore at
(x0, t0) we find, using (3.6),

0 ≤ 1
2
(zt −∆z)

= ζζt|∇v|2 +
1
2
ζ2 · (|∇v|2)t −

1
2
∆z

= ζζt|∇v|2 + ζ2 ·
[
∇v · ∇∆v − 1− q

q + 1
v−2|∇v|4 +

2(1− q)
q + 1

v−1〈∇v,D2v · ∇v〉

−q + 1
2

d

dv

(
v
− 1−q

q+1 gε(v
2

q+1 )
)
· |∇v|2

]
−(|∇ζ|2 + ζ∆ζ)|∇v|2 − 4ζ〈∇ζ,D2v · ∇v〉 − ζ2|D2v|2 − ζ2∇v · ∇∆v

= ζζt −
1− q

q + 1
ζ2v−2|∇v|4 − 2(1− q)

q + 1
ζv−1|∇v|2∇v · ∇ζ

−q + 1
2

d

dv

(
v
− 1−q

q+1 gε(v
2

q+1 )
)
· |∇v|2

−(|∇ζ|2 + ζ∆ζ)|∇v|2 + 4|∇ζ|2|∇v|2 − ζ2|D2v|2. (3.7)

By Young’s inequality, we find∣∣∣2(1− q)
q + 1

ζv−1|∇v|2∇v · ∇ζ
∣∣∣ ≤ 1− q

2(q + 1)
ζ2v−2|∇v|4 +

2(1− q)
q + 1

|∇ζ|2|∇v|2

and thus obtain from (3.7) that either ∇v(x0, t0) = 0 or

1− q

2(q + 1)
ζ2|∇v|2 ≤

[
ζζt +

(
3 +

2(1− q)
q + 1

)
|∇ζ|2 − ζ∆ζ

]
v2

−q + 1
2

v2 · d
dv

(
v
− 1−q

q+1 gε(v
2

q+1 )
)
. (3.8)

Since gε(s) ≤ s−q and g′ε(s) ≥ −qs−q−1 for all s > 0 and ε > 0, we find

−q + 1
2

v2 · d
dv

(
v
− 1−q

q+1 gε(v
2

q+1 )
)

=
1− q

2
v

2q
q+1 gε(v

2
q+1 )− v2g′ε(v

2
q+1 )

≤ 1− q

2
+ q,
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so that (3.8) yields

ζ2|∇v|2 ≤
[c0
τ

+
q + 5
q + 1

· c0
d2

+
c0
d2

]
· ‖∇v‖2

L∞(Ω×(0,∞)) +
q + 1

2
(3.9)

at the pont (x0, t0). As uε ≤ ‖u0ε‖L∞(Ω), this implies (3.4).

ii) The proof in the case u
q+1
2

0 ∈ W 1,∞(Ω) (implying u0 ∈ W 1,∞(Ω) and hence u0ε =
u0 + ε) can be run in quite a similar way if we choose ζ independent of t. Then the
maximum of z either satisfies an estimate of the form (3.9) without the term containing
τ , or it is attained initially. In the latter case, however, we use that u0ε = u0 + ε implies

‖∇u
2

q+1

0ε ‖L∞(Ω) ≤ c‖∇u
2

q+1

0 ‖L∞(Ω) for some c > 0 to conclude (3.5). ////

The obtained regularity in space can be used to achieve regularity in time by a standard
argument.

Corollary 3.2 i) For any u0 ∈ C0(Ω̄),

(uε)ε∈(0,1) is locally equicontinuous in Ω× (0,∞). (3.10)

ii) If even u
q+1
2

0 ∈W 1,∞(Ω) then

(uε)ε∈(0,1) is locally equicontinuous in Ω× [0,∞). (3.11)

Proof. i) Since ṽ := uq+1
ε satisfies

ṽt = ∆ṽ − q

q + 1
ṽ−1|∇ṽ|2 − (q + 1)ṽ

q
q+1 gε(ṽ

1
q+1 )

with ∣∣∣− (q + 1)ṽ
q

q+1 gε(ṽ
1

q+1 )
∣∣∣ ≤ q + 1

and

q

q + 1
ṽ−1|∇ṽ|2 =

4q
q + 1

|∇u
q+1
2

ε |2,

the estimate from Lemma 3.1 i) shows that ṽt−∆ṽ is locally bounded in Ω×(0,∞). Thus,
standard parabolic theory entails uniform Hölder estimates for ṽ (and thereby also for uε)
on arbitrary compact subsets of Ω× (0,∞).

ii) The argument in the case u
q+1
2

0 ∈W 1,∞(Ω) is quite similar. ////

Remark. Involving results on maximal Sobolev regularity and suitable embeddings,
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for t ≥ τ > 0 the method in the above corollary in fact yields uniform Hölder regularity
with respect to t for uq+1

ε with any Hölder exponent γ < 1. A more subtle approach shows
that away from t = 0, in fact γ = 1 is allowed, that is, uq+1

ε satisfies the corresponding
locally uniform Lipschitz estimates in time. The same improvement is possible near t = 0,

provided that instead of u
q+1
2

0 ∈ W 1,∞(Ω), the slightly stronger condition u0 ∈ C2(Ω̄) is
imposed. Both these refinements can be found in [4].

However, in the sequel we shall also need a Lipschitz-type estimate for ut, but only from
below and only at t = 0. This can be obtained via a simple barrier argument under the
weak assumption that ∆u0 be uniformly bounded from below. Since we intend to choose
u0 equal to the singular function w near x = 0, it is important for us that we do not
require an upper bound for ∆u0.

Lemma 3.3 Suppose that u
q+1
2

0 ∈W 1,∞(Ω) and that

∆u0 ≥ −c0 in Ω (3.12)

holds in the sense of distributions with some c0 > 0. Then for each compact K ⊂ Ω there
exists cK > 0 such that

uq+1
ε (x, t) ≥ uq+1

0ε (x)− cKt ∀ (x, t) ∈ K × (0,∞) (3.13)

holds.

Proof. Given K ⊂⊂ Ω, we fix a smooth domain Ω′ ⊃ K with Ω′ ⊂ Ω and let
ζ ∈ C∞0 (Ω′) be such that 0 ≤ ζ ≤ 1 in Ω and ζ ≡ 1 in K. Recalling our convention that

u0ε = u0 + ε in case of u
q+1
2

0 ∈W 1,∞(Ω), we calculate

∆uq+1
0ε = (q + 1)(u0 + ε)q∆u0 +

4q
q + 1

( u0

u0 + ε

)1−q∣∣∣∇u q+1
2

0

∣∣∣2
≥ −(q + 1)(u0 + ε)qc0

≥ −c1 in Ω

in the distributional sense, which implies ∆(ζuq+1
0ε ) ≥ −c2 = −c2(u0,K) in Ω′, that is,∫

Ω′
∇(ζuq+1

0ε ) · ∇ϕ ≤ c2

∫
Ω′
ϕ for any nonnegative ϕ ∈W 1,2

0 (Ω′). (3.14)

Recalling that v = uq+1
ε satisfies

vt = ∆v − q

q + 1
v−1|∇v|2 − (q + 1)v

q
q+1 gε(v

1
q+1 )

≥ ∆v − 4q
q + 1

|∇u
q+1
2

ε |2 − (q + 1),

13



we see from Lemma 3.1 ii) that

vt ≥ ∆v − c3 in Ω′ × (0,∞) (3.15)

with c3 depending on u0 and Ω′ (hence on K) only. We now let

z(x, t) := ζ(x) · uq+1
0ε (x)− cKt− v(x, t), (x, t) ∈ Ω′ × (0,∞),

with cK := c2 + c3. Then z(x, 0) ≤ (ζ(x)− 1)uq+1
0ε (x) ≤ 0 in Ω′, so that (3.14) and (3.15)

yield

1
2

∫
Ω′
z2
+(x, t) =

1
2

∫
Ω′
z2
+(x, 0) +

∫ t

0

∫
Ω′
z+ · z+t

=
∫ t

0

∫
Ω′
z+ · (−cK − vt)

≤ −cK
∫ t

0

∫
Ω′
z+ +

∫ t

0

∫
Ω′
∇z+ · ∇v + c3

∫ t

0

∫
Ω′
z+

= −cK
∫ t

0

∫
Ω′
z+ +

∫ t

0

∫
Ω′
∇z+ · ∇(ζuq+1

0ε )−
∫ t

0

∫
Ω′
|∇z+|2 + c3

∫ t

0

∫
Ω′
z+

≤ (−cK + c2 + c3)
∫ t

0

∫
Ω′
z+ −

∫ t

0

∫
Ω′
|∇z+|2

≤ 0 ∀ t > 0.

This shows that z+ ≡ 0 and thus v(x, t) ≥ ζ(x)uq+1
0ε (x) − cKt in Ω′ × (0,∞), whereby

(3.13) follows since ζ ≡ 1 in K. ////

We now turn our attention to the question of existence of continuous weak solutions. In
order to avoid a repetition of arguments, we already combine this with the question of con-
vergence of sequences of such weak solutions under the assumption that the corresponding
sequences of initial data converge uniformly. This is done in the following lemma.

Lemma 3.4 Let u0 ∈ C0(Ω̄) and suppose (u0k)k∈N ⊂ C0(Ω̄) is a sequence of nonnegative
initial data such that u0k → u0 uniformly in Ω. Set uk := lim

ε→0
ukε, where ukε denotes

the solution of (3.2) with u0 replaced by u0k. Then the functions uk are continuous in
Ω̄× [0,∞) and along a subsequence kl →∞, we have

ukl
→ ũ locally uniformly in Ω̄× [0,∞)

as kl →∞, where ũ is a continuous weak solution of (1.1) with initial value u0.

Before giving the somewhat technical proof, let us state two almost immediate but impor-
tant consequences.
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Theorem 3.5 For any nonnegative u0 ∈ C0(Ω̄), (1.1) possesses the unique maximal con-
tinuous weak solution u = lim

ε→0
uε; here, maximality means that if ũ is any continuous weak

solution of (1.1) then necessarily ũ ≤ u.

Proof. Choosing u0k ≡ u0 in Lemma 3.4 immediately shows that u in fact is a
continuous weak solution. To see its maximality, suppose ũ is another continuous weak
solution. Due to parabolic regularity theory, ũ is smooth in {ũ > 0}∩{t > 0} and satisfies

ũt = ∆ũ− ũ−q

≤ ∆ũ− gε(ũ) in {ũ > 0} ∩ {t > 0}

classically. Since uε ≥ ε and |g′ε(s)| ≤ qε−q−1 for all s ∈ R, z := (ũ− uε)+ satisfies

1
2

∫
Ω
z2
+(·, t) =

1
2

∫
Ω
z2
+(·, 0) +

∫ t

0

∫
Ω
z+ · z+t

≤ −
∫ t

0

∫
Ω
|∇z+|2 + qε−q−1

∫ t

0

∫
Ω
z2
+ ∀ t > 0.

By Gronwall’s lemma, z+ ≡ 0 and hence ũ ≤ uε in Ω× (0,∞) for any ε > 0, which proves
ũ ≤ u. ////

If the u0k are ordered, then it is easy to deduce from (3.3) that the same ordering holds
for uk. Thus, Theorem 3.5 and Lemma 3.4 directly entail

Corollary 3.6 Assume that u0 and u0k are nonnegative and continuous in Ω̄ and such
that u0k → u0 monotonically in Ω̄. Then as k →∞, the maximal solutions uk emanating
from u0k converge locally uniformly in Ω̄× [0,∞) to a continuous weak solution ũ of (1.1).

Proof (of Lemma 3.4). The proof proceeds in six steps.
Step 1. We first claim that for each η > 0 there exist ε0 > 0, k0 ∈ N and ν > 0 such that

|ukε(x, t)− u0(x)| ≤
η

2
∀ (x, t) ∈ Ων × (0,∞), ∀ε < ε0, ∀k > k0, (3.16)

where Ων := {x ∈ Ω | dist (x, ∂Ω) < ν}.
To this end, let η > 0 be given and set ε̃0 := η

8 . Since u0k → u0 uniformly, u0ε̃0 > u0 and
u0kε ≤ u0k + 2ε in Ω̄, there exist k0 ∈ N and ε0 < ε̃0 such that

u0kε ≤ u0ε̃0 in Ω ∀ ε < ε0, ∀ k > k0. (3.17)

Since u0ε̃0 beolgs to W 1,∞(Ω) and u0ε̃0 ≤ u0+2ε̃0, we can pick some large c > 0 (depending
possibly on ε̃0) such that

u0ε̃0(x) ≤ 2ε̃0 + ce(x) in Ω, (3.18)
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where e ∈ C0(Ω̄) ∩ C2(Ω) denotes the solution of −∆e = 1 in Ω with e|∂Ω = u0|∂Ω. As
(x, t) 7→ 2ε̃0 + ce(x) is easily seen to be a supersolution of ut = ∆u − gε(u) for all ε > 0,
the comparison principle yields

ukε ≤ 2ε̃0 + ce(x) in Ω× (0,∞) ∀ ε < ε0, ∀ k > k0 (3.19)

in view of (3.17) and (3.18).
If we now choose ν > 0 small such that ce(x) ≤ u0(x) + η

4 in Ων , we obtain from (3.19)
and the choice of ε̃0 that

ukε(x, t) ≤ u0(x) +
η

2
in Ων × (0,∞) ∀ ε < ε0, ∀ k > k0. (3.20)

In order to prove (3.16), we thus only need to show the corresponding estimate

ukε(x, t) ≥ u0(x) <
η

2
in Ων × (0,∞) ∀ ε > 0, ∀ k > k0 (3.21)

from below with some possibly smaller ν and larger k0.
To this end, again by uniform convergence and uniform continuity we can fix ρ0 > 0 and
enlarge k0 if necessary so as to obtain

|u0k(x)− u0(x0)| ≤
η

8
∀x0 ∈ ∂Ω, ∀x ∈ Ω̄ with |x− x0| ≤ ρ0, ∀ k > k0. (3.22)

Moreover, since ∂Ω is smooth, we find R < ρ0

4 such that for any x0 ∈ ∂Ω there exists
y = y(x0) ∈ Rn \ Ω̄ such that B̄R(y) ∩ Ω̄ = {x0}.
Now given x0 ∈ ∂Ω satisfying u0(x0) ≥ η

4 , we intend to compare ukε from below with the
explicit time-independent barrier function v = vx0 defined by

v(x, t) := b ·
[
1− |x− y| −R

ρ

]κ
in Q :=

{
(x, t) ∈ Ω× (0,∞)

∣∣∣ R < |x− y| < R+ ρ
}
,

where κ := 2
q+1 > 1, y = y(x0), b := u0(x0)− η

8 and

ρ := min
{ρ0

2
,

(κ− 1)R
2(n− 1)

,
√
κ(κ− 1) ·

(η
8

) q+1
2

}
.

In fact, if x ∈ Ω is such that R < |x−y| < R+ρ then |x−x0| ≤ |x−y|+|y−x0| ≤ 2R+ρ < ρ0

according to the choices of R and ρ, so that (3.22) implies

u0kε(x) ≥ u0(x0)−
η

8
= b ≥ v(x, 0)

for such x. In quite a similar fashion one can see that ukε ≥ v also holds if x ∈ ∂Ω and
R < |x − y| < R + ρ; since v vanishes when |x − y| = R + ρ, we therefore find that ukε
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lies above v on the parabolic boundary of Q for all ε > 0 and k > k0. Furthermore, we
compute

vt −∆v + gε(v) ≤ vt −∆v + v−q

=
(n− 1)κb
ρ|x− y|

·
[
1− |x− y| −R

ρ

]κ−1
− κ(κ− 1)b

ρ2
·
[
1− |x− y| −R

ρ

]κ−2

+b−q ·
[
1− |x− y| −R

ρ

]−qκ

=: I1 − I2 + I3 in Q

and estimate, using the definition of ρ,

I1
1
2I2

=
2(n− 1)ρ

(κ− 1)|x− y|
·
[
1− |x− y| −R

ρ

]
≤ 2(n− 1)ρ

(κ− 1)R
≤ 1 in Q

and

I3
1
2I2

=
ρ2

κ(κ− 1)bq+1
≤ ρ2

κ(κ− 1) · (η
8 )q+1

≤ 1 in Q,

because b = u0(x0) − η
8 ≥ η

4 −
η
8 = η

8 . Hence, vt − ∆v + gε(v) ≤ 0 in Q, so that the
comparison principle tells us that ukε ≥ v in Q for all ε > 0 and k > k0.
Now (3.21) follows from this upon a standard argument: Let ν < ρ be small enough
such that (1 − ν

ρ )κ ≥ z− η
2

z− η
4

for all z satisfying η
2 ≤ z ≤ ‖u0‖L∞(Ω). Further diminishing

ν if necessary, we may assume that for all x ∈ Ων there exists a unique x0(x) ∈ ∂Ω
with |x− x0(x)| = dist (x, ∂Ω). Note that this entails that x0(x) lies on the line segment
spanned by x and y(x0(x)), so that |x− y(x0(x))| = dist (x, ∂Ω) +R.
Now if x ∈ Ωnu and u0(x) < η

2 , (3.21) is trivially fulfilled. When u0(x) ≥ η
2 , however, by

(3.22) we find |u0(x)− u0(x0(x))| ≤ η
8 and particularly u0(x0(x)) > η

4 , so that

ukε(x, t) ≥ vx0(x)(x, t)

= b ·
[
1− |x− y(x0(x))| −R

ρ

]κ

≥
(
u0(x0(x))−

η

8

)
·
[
1− ν

ρ

]κ

≥
(
u0(x)−

η

4

)
·
[
1− ν

ρ

]κ

≥ u0(x)−
η

2
∀ ε > 0, ∀ k > k0

in accordance with our choice of ν. Thus, (3.21) holds for all x ∈ Ων .
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Step 2. If we additionally require u
q+1
2

0 ∈ W 1,∞(Ω) then the convergence uε → u is
uniform in Ω̄× [0, T ] for any T > 0.

In fact, let η > 0 be given. Applying Step 1 upon the particular choice u0k ≡ u0, we
obtain ε0 > 0 and ν > 0 such that

|uε(x, t)− u0(x)| ≤
η

2
∀ (x, t) ∈ Ων × (0,∞) ∀ ε < ε0. (3.23)

From Corollary 3.2 ii) and the Arzelà-Ascoli theorem we now gain that uε → u uniformly
in (Ω̄ \ Ων)× [0, T ], whence there exists ε̄0 > 0 such that

|uε − uε′ | ≤ η in (Ω̄ \ Ων)× [0, T ] ∀ ε, ε′ < ε̄0.

Combining this with (3.23) completes Step 2.

Step 3. We next claim that for any η > 0, there exist ε1 > 0, k1 ∈ N and τ1 > 0 such
that

u0 −
η

2
≤ ukε ≤ u0 +

η

2
in Ω× (0, τ1) ∀ ε < ε1, ∀k > k1. (3.24)

Indeed, given η > 0 let us choose an auxiliary nonnegative function u−0 such that (u−0 )
q+1
2 ∈

W 1,∞(Ω) and u0 − η
4 ≤ u−0 ≤ (u0 − η

8 )+ in Ω. Then, according to Step 2, the monotonic
limit u− := lim

ε→0
u−ε is continuous in Ω̄×[0,∞); here, clearly, u−ε denotes the solution to (3.2)

emanating from u−0ε = u−0 + ε. Thus, there exists τ1 > 0 such that u−(x, t) ≥ u−0 (x) − η
4

in Ω× (0, τ1).
Next, due to the uniform convergence u0k → u0 we can pick k1 ∈ N such that u0k ≥
(u0 − η

8 )+ and hence u0k ≥ u−0 in Ω for all k ≥ k1. Since this implies ukε ≥ u− for all
ε > 0 by a comparison argument, we obtain

ukε ≥ u− ≥ u−0 −
η

4
≥ u0 −

η

2
in Ω× (0, τ1) ∀ ε > 0, ∀ k > k1. (3.25)

As to the right inequality in (3.24), let us fix ε̃1 > 0 such that u0ε̃1 ≤ u0 + η
4 . Then, thanks

to the continuity of uε̃1 , we can diminish τ1 so that

uε̃1 ≤ u0 +
η

2
in Ω× (0, τ1).

We now enlarge k1 and diminish ε1 so as to satisfy ε1 < ε̃1 and u0kε ≤ u0ε̃1 in Ω holds for
all k > k1 and any ε < ε1. Then, again since gε ≥ gε̃1 for ε < ε̃1, comparison yields

uεk ≤ uε̃1 ≤ u0 +
η

2
in Ω× (0, τ1) ∀ k > k1, ∀ ε < ε1,

which together with (3.25) entails (3.24).
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Step 4. We next assert that for any u0 we have

uε → u locally uniformly in Ω̄× [0,∞),

whence particularly u is continuous in Ω̄× [0,∞).

To see this, we consider the particular sequence (u0k)k∈N given by u0k ≡ u0 for all k. Let
T > 0 and η > 0 and fix ε0, ν, ε1 and τ1 as in Step 1 and Step 3. From Corollary 3.2 i) and
the Arzel/‘a-Ascoli theorem we infer that |uε−uε′ | ≤ η in (Ω̄\Ων)× [τ1, T ] for sufficiently
small ε and ε′, while Step 1 and Step 3 yield

|uε − uε′ | ≤ uε ≤ η in Ων × (0, T ) for 0 < ε′ < ε < ε0 (3.26)

and

|uε − uε′ | ≤
(
u0 +

η

2

)
−

(
u0 −

η

2

)
= η in Ω̄× (0, τ1) for 0 < ε′ < ε < ε1 (3.27)

respectively.

Step 5. The functions uk are continuous in Ω̄ × [0,∞), and a subsequence of (uk)k∈N
converges locally uniformly in Ω̄× [0,∞) to some ũ ∈ C0(Ω̄× [0,∞)).

In fact, applying Step 4 to uk for fixed k, we see that uk is continuous. In taking k →∞,
we argue in a similar way as above: We fix T > 0 and η > 0 and take k0, ν, k1 and τ1 as
provided by Step 1 and Step 3. By Corollary 3.2 i) and Arzelà-Ascoli, we can extract a
subsequence (kl)l∈N along which |ukl

− ukm | ≤ η holds in (Ω̄ \ Ων)× (τ1, T ) for all large l
and m. Letting ε → 0 in Step 1 and Step 3, we obtain estimates quite similar to (3.26)
and (3.27) and conclude that |ukl

− ukm | ≤ η also holds in Ων × (0, T ) and in Ω× (0, τ1),
provided that kl and km are greater than max{k0, k1}. A standard diagonal extraction
procedure now yields the assertion on the whole time interval [0,∞).

Step 6. We finally claim that ũ is a weak solution of (1.1).

To this end, we employ a modified variant of the method used in [19, Theorem 1]: We fix
a nonnegative ϕ ∈ C∞0 (Ω̄ × [0,∞)) and multiply the equation ukεt = ∆ukε − gε(ukε) by
χδ(ukε) · ϕ, where χδ is the cut-off function introduced above and δ > 0. Integration by
parts yields

−
∫ ∞

τ

∫
Ω

Φδ(ukε)ϕt −
∫ ∞

τ

∫
Ω

Φδ(ukε)∆ϕ+
∫ ∞

τ

∫
Ω
χδ(ukε)gε(ukε)ϕ

=
∫

Ω
Φδ(ukε(·, τ))ϕ(·, τ)−

∫ ∞

τ

∫
Ω
χ′δ(ukε)|∇ukε|2ϕ (3.28)
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for any τ > 0. Choosing τ > 0 we particularly obtain
∫∞
0

∫
Ω χδ(ukε)gε(ukε)ϕ ≤ c(ϕ) for

all k, ε and δ. Here we successively let ε → 0, then k = kl → ∞ and finally δ > 0 to
achieve with the aid of Fatou’s lemma that

ũ−qχ{ũ>0} ∈ L1
loc(Ω× [0,∞)). (3.29)

This allows us to return to perform appropriate limit procedures in (3.28) along the lines
presented in [19], [18] and [4]: Due to Step 4 and Step 5, for any δ > 0 the sets {ukε ≥
δ} ∩ suppϕ lie in a compact subset of {ũ > δ

2} for large k and sufficiently small ε < ε(k).
Therefore parabolic Schauder theory together with the Arzelà-Ascoli theorem entails

lim
k=kl→∞

lim
ε→0

∫ ∞

τ

∫
Ω
χ′δ(ukε) · |∇ukε|2ϕ =

∫ ∞

τ

∫
Ω
χ′δ(ũ) · |∇ũ|2ϕ.

Thus from (3.28) we easily deduce upon letting ε→ 0 and then k = kl →∞ that

−
∫ ∞

τ

∫
Ω

Φδ(ũ)ϕt −
∫ ∞

τ

∫
Ω

Φδ(ũ)∆ϕ+
∫ ∞

τ

∫
Ω
χδ(ũ) · ũ−qϕ

=
∫

Ω
Φδ(ũ(·, τ))ϕ(·, τ)−

∫ ∞

τ

∫
Ω
χ′δ(ũ) · |∇ũ|2ϕ. (3.30)

Here we have used that as a consequence of the cut-off property of χδ, both convergences
χδ(ukε)gε(ukε) → χδ(uk) · u−q

k as ε → 0 and χδ(uk) · u−q
k → χδ(ũ) · ũ−q as k = kl → ∞

hold uniformly in suppϕ because of Step 4 and Step 5.
Now by Lemma 3.1 i), we have |∇ũ

q+1
2 |2 ≤ c(τ, ϕ) in suppϕ ∩ {t ≥ τ} and hence the

second term on the right of (3.30) can be estimated according to∣∣∣ ∫ ∞

τ

∫
Ω
χ′δ(ũ) · |∇ũ|2ϕ

∣∣∣ ≤ 4
(q + 1)2

· c(τ, ϕ) · 2
δ
·
∫ ∞

τ

∫
{δ≤ũ(·,t)≤2δ}

ũ1−qϕ

≤ 8
(q + 1)2

· c(τ, ϕ) ·
∫ ∞

τ

∫
{δ≤ũ(·,t)≤2δ}

ũ−qϕ

→ 0 as δ → 0

in view of (3.29) and the dominated convergence theorem.
Since χδ ↗ χ{0,∞} and Φδ(s) ↗ s as δ → 0, we once again invoke the dominated conver-
gence theroem and (3.29) to obtain from (3.30) in the limit δ → 0

−
∫ ∞

τ

∫
Ω
ũϕt −

∫ ∞

τ

∫
Ω
ũ∆ϕ+

∫ ∞

τ

∫
Ω
ũ−qχ{ũ>0}ϕ =

∫
Ω
ũ(·, τ)ϕ(·, τ).

Finally, from (3.29) and the fact that ũ is continuous down to t = 0 it is clear that we can
take τ → 0 in the latter identity to conclude that ũ in fact is a weak solution of (1.1). ////
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4 ODE analysis

The aim of the present section is to construct explicit subsolutions of the operator L0

introduced in Section 2. More generally, for any Λ ≥ 0 and all supercritical q we shall find
f ∈W 2,∞((0,∞)) such that

LΛf := f ′′ +
n− 1
ξ

f ′ +
ξ

2
f ′ −

( 1
q + 1

+ Λ
)
f + w−q −

(
w + f

)−q
≥ 0 a.e. in (0,∞).

Here and throughout this section, we may write w instead of wn,q since there is no danger
of confusion. The parameter Λ will finally be set zero in the proof of Theorem 1.1, but
we need to choose Λ > 0 in the proof of Theorem 1.3 in order to compensate some effects
that are due to a possibly positive difference n−N in that theorem. This role of positive
Λ will become clear in the proof of Lemma 5.3.
The construction of f basically consists of three steps. The first and third of these provide
a constant subsolution near ξ = 0 and a negative subsolution near ξ = ∞, starting from
any prescribed zero with arbitrary negative initial slope. The main part is done in the
second step which essentially uses the ideas from Section 2 in constructing subsolutions
in an intermediate region which suitably match the constant inner subsolution and reach
zero at some finite ξ0.
For later reference, let us start with the following lemma, the elementary proof of which
may be omitted. It quantifies the error made in formal expansions of the form (1± s)α ≈
1± αs.

Lemma 4.1 Let q > 0.
i) For any s0 > 0,

(1 + s)−q ≤ 1− (1− µ(s0))qs ∀ s ∈ [0, s0]

holds with µ(s0) := 1− (1 + s0)−q−1.
ii) Given s1 ∈ (0, 1),

(1− s)−q ≤ 1 + (1 + ν(s1))qs ∀ s ∈ [0, s1]

is valid with ν(s1) := (1− s1)−q−1 − 1.
iii) For s2 ∈ (0, 1) we can estimate

(1− s)q+1 ≤ 1− (1− θ(s2)) · (q + 1)s ∀ s ∈ [0, s2]

with θ(s2) = 1− (1− s2)q.
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4.1 Subsolutions near ξ = 0

We first intend to detect up to which maximal value of ξ the constant function ξ 7→ δ
remains a subsolution. This is prepared by

Lemma 4.2 Given Λ ≥ 0, let

Pδ(ξ) := −
( 1
q + 1

+ Λ
)
δ + w−q(ξ)−

(
w(ξ) + δ

)−q
for ξ > 0 and δ ∈ (0, 1).

Then P ′δ(ξ) < 0 for all ξ ∈ (0,∞), and there exists a unique ξ̄δ ∈ (0,∞) such that
Pδ(ξ̄δ) = 0. Moreover, we have lim inf

δ→0
ξ̄δ ≥ ξ̄, where

ξ̄ :=

√√√√ qA−q−1
n,q

1
q+1 + Λ

. (4.1)

Proof. Since w′ > 0, we have

P ′δ(ξ) = −qw−q−1w′ + q(w + δ)−q−1w′

< 0 ∀ ξ > 0

due to the fact that δ > 0. Thus Pδ has a unique positive zero ξ̄δ, because Pδ(ξ) → +∞
as ξ → 0 and Pδ(ξ) → −( 1

q+1 + Λ) < 0 as ξ →∞. To see that lim inf
δ→0

ξ̄δ ≥ ξ̄ we only need

to show that for any fixed ξ < ξ̄ we have Pδ(ξ) > 0 for sufficiently small δ. To this end we
fix µ > 0 small such that

− 1
q + 1

− Λ + (1− µ)qA−q−1
n,q ξ−2 > 0, (4.2)

which is possible for any ξ < ξ̄. Next, we choose s0 > 0 small such that µ(s0) ≡ 1− (1 +
s0)−q−1 < µ. Then for all δ < s0 · w(ξ) we infer from Lemma 4.1 that

Pδ(ξ) = −
( 1
q + 1

+ Λ
)
δ + w−q(ξ)− w−q(ξ) ·

(
1 +

δ

w(ξ)

)−q

≥ −
( 1
q + 1

+ Λ
)
δ + (1− µ(s0))qw−q−1(ξ)δ

>
[
− 1
q + 1

− Λ + (1− µ)qA−q−1
n,q ξ−2

]
δ

> 0

by (4.2), whence the proof is complete. ////

22



Remark. It is easy to see that Pδ is negative on [ξ̄,∞) for all δ, whence it actually
follows that ξ̄δ → ξ̄ as δ → 0, but we do not need this in the sequel.

As an obvious consequence of Lemma 4.2 we state

Corollary 4.3 Let Λ ≥ 0. Then there exists δ0 > 0 such that for all δ ≤ δ0,

LΛ(δ) ≡ −
( 1
q + 1

+ Λ
)
δ + w−q(ξ)− (w(ξ) + δ)−q ≥ 0 ∀ ξ < ξ̄

2
.

4.2 Subsolutions in the intermediate region

The shape of our candidates for subsolutions in a region away from ξ = 0 is strongly
aligned with the functions formally found in (2.10) and (2.11); accordingly, the criticality
of qc(n) will now become evident. Since we are interested in qualitative behavior only, we
do not aim at rediscovering the exact exponents appearing proposed in these equations.
This significantly eases the proof and particularly enables us to avoid a distinction between
the cases q 6= 1

3 and q = 1
3 in the one-dimensional setting, as suggested by (2.11).

Lemma 4.4 Let n ≤ 6 and q > qc(n). Then for any Λ ≥ 0, each ξ̄0 > 0 and all
sufficiently small δ > 0 there exist positive numbers ξ0 and ξ1 with ξ1 < ξ0 < ξ̄0 and a
function fim ∈ C2([ξ1, ξ0]) such that

fim > 0 on (ξ1, ξ0), fim(ξ0) = 0, f ′im(ξ0) < 0, (4.3)
fim(ξ1) = δ and f ′im(ξ1) = 0 (4.4)

hold as well as

LΛfim ≥ 0 on (ξ1, ξ0).

Proof. According to the different formal expansions obtained in (2.10) and (2.11), we
split the proof into the cases n ≥ 2 and n = 1.
i) For 2 ≤ n ≤ 6, we shall take fim as a decreasing positive branch of the rapidly oscillating
function

f(ξ) := ηξ−γ sin(ln ξκγ), (4.5)

where γ is close to n−2
2 and η and κ are sufficiently small positive numbers.

To be more precise, observe that due to q > qc(n), we have qA−q−1
n,q > n−2

2 , whence it is
possible to choose q̃ ∈ (0, q) still fulfilling q̃A−q−1

n,q > n−2
2 , and then s0 > 0 small such that

the constant µ(s0) ≡ 1− (1 + s0)−q−1 from Lemma 4.1 satisfies (1−µ(s0))q ≥ q̃. We next

pick γ ∈ (n−2
2 , q̃A−q−1

n,q ), which enables us to find a positive κ with κ2 <
q̃A−q−1

n,q

γ2 − 1.
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Then for any η > 0, f as defined through (4.5) is positive in (ξ−m, ξ
+
m) and has a zeros in

ξ±m, where ln(ξ−m)κγ = −2mπ and ln(ξ+m)κγ = −(2m− 1)π, that is,

ξ−m = exp
(
− 2mπ

κγ

)
and ξ+m = exp

(
− (2m− 1)π

κγ

)
for arbitrary integers m. Since ξ+m → 0 as m → ∞, it is clear that we can fix a large
positive m such that ξ0 := ξ+m lies below ξ̄0 and satisfies

ξ0 ≤

√√√√ q̃A−q−1
n,q − (1 + κ2)γ2

γ
2 + 1

q+1 + Λ
and ξ0 ≤

√
2(2γ + 2− n). (4.6)

We now let ξ1 denote the unique point in (ξ−m, ξ
+
m) where f attains its maximum over this

interval, i.e. we set

ξ1 := exp
(arctanκ− 2mπ

κγ

)
.

In order to complete the definition of f , we finally let

η0 := s0 ·An,q · ξ
γ+ 2

q+1

1 and
δ0 := η0ξ

−γ
1 sin(ln ξκγ

1 )

and, given any δ < δ0, set η := δ
ξ−γ
1 sin(ln ξκγ

1 )
∈ (0, η0). This guarantees that f(ξ1) = δ,

f ′(ξ1) = 0 and, moreover, that f satisfies

f(ξ)
w(ξ)

≤ η

An,q
ξ
−γ− 2

q+1 ≤ s0 ∀ ξ ∈ (ξ1, ξ0).

As a consequence, Lemma 4.1 tells us that

w−q − (w + f)−q = w−q − w−q
(
1 +

f

w

)−q

≥ w−q − w−q
[
1− (1 + µ(s0))q

f

w

]
= (1 + µ(s0))qw−q−1f

≥ q̃A−q−1
n,q ξ−2f ∀ξ ∈ (ξ1, ξ0).

Thus, computing

f ′(ξ) = −ηγξ−γ−1 sin
(

ln(ξκγ)
)

+ ηκγξ−γ−1 cos
(

ln(ξκγ)
)
,

f ′′(ξ) = η[γ(γ + 1)− κ2γ2]ξ−γ−2 sin
(

ln(ξκγ)
)
− ηκγ(2γ + 1)ξ−γ−2 cos

(
ln(ξκγ)

)
,
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we obtain

LΛf ≥ η[γ(γ + 1)− κ2γ2 − (n− 1)γ]ξ−γ−2 sin
(

ln(ξκγ)
)

−η[κγ(2γ + 1)− (n− 1)κγ]ξ−γ−2 cos
(

ln(ξκγ)
)

−ηγ
2
ξ−γ sin

(
ln(ξκγ)

)
+
ηκγ

2
ξ−γ cos

(
ln(ξκγ)

)
−η

( 1
q + 1

+ Λ
)
ξ−γ sin

(
ln(ξκγ)

)
+ η · q̃A−q−1

n,q ξ−γ−2 sin
(

ln(ξκγ)
)

= η ·
{

[(1− κ2)γ2 − (n− 2)γ + q̃A−q−1
n,q ]ξ−γ−2 sin

(
ln(ξκγ)

)
−κγ(2γ + 2− n)ξ−γ−2 cos

(
ln(ξκγ)

)
−

(γ
2

+
1

q + 1
+ Λ

)
ξ−γ sin

(
ln(ξκγ)

)
+
κγ

2
ξ−γ cos

(
ln(ξκγ)

)}
∀ ξ ∈ (ξ1, ξ0).

Let S denote the set of points in (ξ1, ξ0) where cos
(

ln(ξκγ)
)
≥ 0. For ξ ∈ S, we observe

that ξ > ξ1 implies tan ξ ≥ κ, so that κ cos
(

ln(ξκγ)
)
≤ sin

(
ln(ξκγ)

)
. Hence

1
η
· LΛf ≥

[
(1− κ2)γ2 − (n− 2)γ) + q̃A−q−1

n,q − γ(2γ + 2− n)
]
ξ−γ−2 sin

(
ln(ξκγ)

)
−

(γ
2

+
1

q + 1
+ Λ

)
ξ20ξ

−γ−2 sin
(

ln(ξκγ)
)

=
[
− (1 + κ2)γ2 + q̃A−q−1

n,q −
(γ

2
+

1
q + 1

+ Λ
)
ξ20

]
ξ−γ−2 sin

(
ln(ξκγ)

)
≥ 0 ∀ ξ ∈ S

in view of the first condition in (4.6). If ξ ∈ (ξ1, ξ0) \ S, however, we have

−κγ(2γ + 2− n)ξ−γ−2 cos
(

ln(ξκγ)
)

+
κγ

2
ξ−γ cos

(
ln(ξκγ)

)
= κγξ−γ−2 ·

[
− cos

(
ln(ξκγ)

)]
·
[
2γ + 2− n− 1

2
ξ2

]
= κγξ−γ−2 ·

[
− cos

(
ln(ξκγ)

)]
·
[
2γ + 2− n− 1

2
ξ20

]
= 0

by the second restriction in (4.6). Therefore

1
η
· LΛf ≥

[
(1− κ2)γ2 − (n− 2)γ + q̃A−q−1

n,q −
(γ

2
+

1
q + 1

+ Λ
)
ξ20

]
ξ−γ sin

(
ln(ξκγ)

)
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≥
[
(1− κ2)γ2 − (n− 2)γ + (1 + κ2)γ2

]
ξ−γ sin

(
ln(ξκγ)

)
= [2γ2 − (n− 2)γ]ξ−γ sin

(
ln(ξκγ)

)
≥ 0 ∀ ξ ∈ (ξ1, ξ0) \ S

due to (4.6) and the fact that γ > n−2
2 . Altogether, we conclude that LΛf ≥ 0 in (ξ1, ξ0),

so that fim := f |[ξ1,ξ0] has all the desired properties.

ii) The case n = 1 runs similarly, involving

f(ξ) := η
(
ξγ − κξ

1
2

)
instead, where η and γ < 1

2 are small positive numbers and κ will be large.
In contrast to the former case, we now fix any q̃ ∈ (0, q) (not necessarily close to q) and
then, as before, s0 > 0 such that (1− µ(s0))q ≥ q̃. First choosing γ small and then κ > 0
large, we can achieve that

γ(γ − 1) + q̃A−q−1
1,q −

(1
4

+
1

q + 1
+ Λ

)
κ
− 2

1
2−γ > 0 (4.7)

holds as well as

ξ0 :=
(1
κ

) 1
1
2−γ < ξ̄0.

Introducing furthermore

ξ1 :=
(2γ
κ

) 1
1
2−γ ,

we then see that for each positive η, f will be positive and decreasing on (ξ1, ξ0) with

f(ξ0) = f ′(ξ1) = 0. Set η0 := s0A1,qξ
γ− 2

q+1

1 and δ0 := η0 · [ξγ
1 − κξ

1
2
1 ]. Then, given δ < δ0,

we choose η := δ

ξγ
1−κξ

1
2
1

, so that η < η0 and hence for all ξ ∈ (ξ1, ξ0) we have

f(ξ)
w(ξ)

≤ f(ξ1)
w(ξ1)

≤ ηξγ
1

A1,q · ξ
2

q+1

1

≤ s0.

Therefore again w−q − (w + f)−q ≥ q̃A−q−1
1,q ξ−2f in (ξ1, ξ0) and, consequently,

1
η
· LΛf ≥ γ(γ − 1)ξγ−2 +

κ

4
ξ−

3
2 +

γ

2
ξγ − κ

4
ξ

1
2
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−
( 1
q + 1

+ Λ
)
ξγ + κ

( 1
q + 1

+ Λ
)
ξ

1
2

+q̃A−q−1
1,q ξγ−2 − κq̃A−q−1

1,q ξ−
3
2

≥
[
γ(γ − 1) + q̃A−q−1

1,q − κ

4
ξ

5
4
−γ −

( 1
q + 1

+ Λ
)]
ξγ−2

+κ
[1
4
− q̃A−q−1

1,q

]
ξ−

3
2 .

Since q̃ < q, we find

1
4
− q̃A−q−1

1,q >
1
4
− qA−q−1

1,q =
1
4
− 2q(1− q)

(q + 1)2
=

(3q − 1)2

4(q + 1)2
≥ 0.

Furthermore, as long as ξ < ξ0,

κ

4
ξ

5
4
−γ +

( 1
q + 1

+ Λ
)
ξ2 ≤ κ

4
·
(1
κ

) 5
2−γ

1
2−γ +

( 1
q + 1

+ Λ
)
·
(1
κ

) 2
1
2−γ

=
(1

4
− 1
q + 1

+ Λ
)
κ
− 2

1
2−γ .

Hence, using (4.7) we obtain LΛf ≥ 0 in (ξ1, ξ0). ////

4.3 Subsolutions in the outer region

We now make sure that it is possible to construct a negative subsolution starting from
a given positive zero with prescribed negative initial slope and certain asymptotics near
infinity. This behavior for large ξ ensures that on the one hand |f | remains small as
compared to w, so that one more linearization will be justifyable (cf. the proof of Lemma
5.2). On the other hand, |f | decays so slowly at infinity that the induced parabolic
subsolution remains below uε on some line |x| = ξ2t

1
2 , even if the initial data are above w

only near x = 0 (which will also be important in the proof of Lemma 5.2).

Lemma 4.5 Let Λ ≥ 0 and q ∈ (0, 1). Then, given ξ0 > 0 and c0 > 0, there exists
fout ∈W 2,∞((ξ0,∞)) such that

fout(ξ0) = 0, f ′out(ξ0) = −c0, −w < fout < 0 on (ξ0,∞) and
fout(ξ)
w(ξ)

→ 0 as well as wq(ξ)fout(ξ) → −∞ as ξ →∞ (4.8)

hold, and such that
LΛf ≥ 0 a.e. in (ξ0,∞) (4.9)

is valid.
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Proof. For small positive δ < 1 to be specified below, let

f2(ξ) := cδ · (ξδ − ξ)2 − δ for ξ ∈
[
ξ0, ξ0 +

4δ
c0

]
,

where cδ and ξδ are adjusted in such a way that f2(ξ0) = 0 and f ′2(ξ0) = −c0, that is,

cδ =
c20
4δ

and ξδ = ξ0 +
2δ
c0
.

Then f2 < 0 on (ξ0, ξ0 + 4δ
c0

) and if we restrict δ so as to satisfy δ ≤ 1
2w(ξ0) then we have

the lower estimate f2(ξ)
w(ξ) ≥

−δ
w(ξ0) ≥ −1

2 . Therefore from Lemma 4.1 we find (1 + f2

w )−q ≤
1− q · 2q+1 f2

w and hence

w−q − (w + f2)−q = w−q
[
1−

(
1 +

f2

w

)−q]
≥ q · 2q+1w−q−1f2

≥ − a

ξ2
δ in

(
ξ0, ξ0 +

4δ
c0

)
with a := q · 2q+1A−q−1

n,q . Thus, calculating the derivatives of f2 and using f2 ≤ 0 we can
estimate

Lf2 ≥ 2cδ −
n− 1
ξ

· 2cδ(ξδ − ξ)− cδξ(ξδ − ξ)−
( 1
q + 1

+ Λ
)
f2 −

a

ξ2
δ

≥ 2cδ −
n− 1
ξ0

· 2cδ(ξδ − ξ0)− cδξδ(ξδ − ξ0)−
a

ξ20
δ

=
c20
2δ
− n− 1

ξ0
· c

2
0

2δ
· 2δ
c0
− c20

4δ
·
(
ξ0 +

2δ
c0

)
· 2δ
c0
− a

ξ20
δ in

(
ξ0, ξ0 +

4δ
c0

)
.

Choosing now δ small enough we can achieve Lf2 ≥ 0 on (ξ0, ξ0 + 4δ
c0

). With this value of δ
and any γ ∈ (0, 2q

q+1) fixed henceforth, we observe that since f2 attains a negative minimum
at ξ = ξδ, it is possible to pick some ξ1 > ξδ close to ξδ such that c1 := −f2(ξ1) ∈ (0, 1

2w(ξ0))
and c2 := f ′2(ξ1) is a positive number small enough such that

γ2ξ0c1
2c2

≥ γ(γ + 1) + a. (4.10)

We then define

f3(ξ) := −d(ξ − ξ2)−γ for ξ ∈ [ξ1,∞),
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where d and ξ2 are such that f3(ξ1) = f2(ξ1) = −c1 and f ′3(ξ1) = f ′2(ξ1) = c2, i.e.

d =
γγcγ+1

1

cγ2
and ξ2 = ξ1 −

γc1
c2
.

Then f3 increases on (ξ1,∞), so that particularly f3(ξ)
w(ξ) ≥

f3(ξ1)
w(ξ) ≥ f3(ξ1)

w(ξ0) > −1
2 and thus

again

w−q − (w + f3)−q ≥ a

ξ2
f3 on (ξ1,∞).

Consequently, noting f3 ≤ 0 and f ′3 ≥ 0 we obtain

Lf3 ≥ −dγ(γ + 1)(ξ − ξ2)−γ−2 +
ξ

2
· γd(ξ − ξ2)−γ−1 − a

ξ2
d(ξ − ξ2)−γ

= d(ξ − ξ2)−γ−2 ·
[
− γ(γ + 1) +

γξ

2
(ξ − ξ2)− a

(ξ − ξ2
ξ

)2]
≥ d(ξ − ξ2)−γ−2 ·

[
− γ(γ + 1) +

γξ0
2

(ξ1 − ξ2)− a
]

= d(ξ − ξ2)−γ−2 ·
[
− γ(γ + 1) +

γξ0
2
· γc1
c2

− a
]

≥ 0 in (ξ1,∞)

in view of (4.10). As we chose γ positive but smaller than 2q
q+1 , we furthermore have

f3(ξ) → 0 (whence also f3(ξ)
w(ξ) → 0) and

wq(ξ)f3(ξ) = −dAq
n,qξ

2q
q+1

−γ → −∞

as ξ →∞.
It is now evident that

fout(ξ) :=

{
f2(ξ), ξ ∈ [ξ0, ξ1],

f3(ξ), ξ ∈ (ξ1,∞),

belongs to W 2,∞((ξ0,∞)) and fulfills Lf ≥ 0 a.e. in (ξ0,∞). ////

4.4 Subsolutions on the whole interval [0,∞)

All that remains is to glue the three subsolutions together appropriately to obtain
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Lemma 4.6 Suppose n ≤ 6 and q > qc(n). Then for each Λ ≥ 0 there exists a function
f ∈W 2,∞((0,∞)) with the properties

f(0) > 0, f ′(0) = 0,
f(ξ)
w(ξ)

→ 0 and wq(ξ)f(ξ) → −∞ as ξ →∞

as well as

LΛf ≡ f ′′ +
n− 1
ξ

f ′ +
ξ

2
f ′ −

( 1
q + 1

+ Λ
)
f + w−q − (w + f)−q ≥ 0 a.e. in (0,∞).

Proof. Our plan is to set

f(ξ) :=


δ, ξ ≤ ξ1,

fim(ξ), ξ1 < ξ ≤ ξ0,

fout(ξ), ξ > ξ0,

(4.11)

with suitably small δ > 0, 0 < ξ1 < ξ0 and the functions fim and fout being taken from
Lemma 4.4 and Lemma 4.5, respectively.
For this purpose, let δ0 and ξ̄ be as in Corollary 4.3. Then from Lemma 4.4 we know there
exist numbers ξ0 and ξ1 with 0 < ξ1 < ξ0 <

ξ̄
2 and a function fim ∈ C2([ξ1, ξ0]) such that

δ := fim(ξ1) ≤ δ0, f ′im(ξ1) = 0,
fim(ξ0) = 0, f ′im(ξ0) < 0

and

LΛfim ≥ 0 in (ξ1, ξ0).

Furthermore, since δ ≤ δ0 and ξ1 <
ξ̄
2 , it results from Corollary 4.3 that LΛ(δ) ≥ 0 on

(0, ξ1).
Let now fout be as provided by Lemma 4.5 with prescribed derivative f ′out(ξ0) = f ′im(ξ0).
It is then an immediate consequence of our construction that f defined by (4.11) has all
the desired properties. ////

5 Nonuniqueness: The main results

5.1 Solutions remaining below steady states

In the first part of this section we shall utilize our convergence lemma 3.4 (resp. Corollary
3.6) to show that if the initial data u0 are bounded above by some of the mentioned explicit
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steady states then the same will be true for some continuous weak solution evolving from
u0. This may be little surprising and one might suspect it to be a trivial consequence of
some comparison argument. However, as we shall see below in Theorems 1.1 and 1.3, this
implication does in general not hold for the maximal solution.
For the construction of suitable candidates for comparison, let us introduce for any n ∈ N,
q ∈ (0, 1) and δ > 0 the radially symmetric regular steady states wδ = wn,q,δ defined
through the initial-value problem

wδrr + n−1
r wδr = w−q

δ in (0,∞),
wδ(0) = δ, wδr(0) = 0. (5.1)

Here and below we will identify wδ with the induced radial function w̃δ(x) := wδ(|x|)
defined on Rn. It is known (see [6] and [24, Lemma 6.2.2], for instance) that

wn,q,δ → wn,q locally uniformly in Rn. (5.2)

Lemma 5.1 If there exists N ≤ n such that

u0(x) ≤ wN,q(x1, ..., xN ) ≡ AN,q ·
∣∣∣(x1, ..., xN )

∣∣∣ 2
q+1 ∀x = (x1, ..., xN , ..., xn) ∈ Ω̄

then the exists a continuous weak solution ũ of (1.1) satisfying

ũ(x, t) ≤ wN,q(x1, ..., xN ) ∀ (x, t) ∈ Ω× (0,∞). (5.3)

Proof. For brevity let us write w = wN,q and x = (x′, x′′) with x′ = (x1, ..., xN ) and
x′′ = (xN+1, ..., xn).
For δ > 0, let wδ be the regular steady state in RN given by (5.1). Then, since

wδ(x′) → w(x′) as δ → 0 uniformly in bounded subsets of RN (5.4)

by (5.2), we can choose a nondecreasing sequence of nonnegative functions u0k ∈ C0(Ω̄)
satisfying

u0k(x) < w 1
k
(x′) in Ω̄ and (5.5)

u0k ↗ u0 in Ω̄. (5.6)

Then Corollary 3.6 ensures that the maximal solutions uk of (1.1) emanating from u0k

increase to a continuous weak solution ũ with initial data u0. In order to estimate ũ from
above, we consider the solutions ukε of (3.2) with suitable initial values u0kε lying between
u0k +ε and u0k +2ε. Due to our particular choice of gε, we have gε(s) = s−q for all s ≥ 2ε,
whence for any δ > 0,

wδt −∆wδ − gε(wδ) = −∆wδ − w−q
δ = 0 in Ω× (0,∞)
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holds for all ε ≤ δ
2 , because wδ ≥ δ. Therefore, from (5.5) and a comparison argument we

find ukε(x, t) ≤ w 1
k
(x′) in Ω× (0,∞) for sufficiently small ε, so that uk = lim

ε→0
ukε satisfies

uk(x, t) ≤ w 1
k
(x′) ∀ (x, t) ∈ Ω× (0,∞). (5.7)

In view of (5.4), (5.3) immediately follows from (5.7). ////

5.2 Solutions instantaneously lifting off steady states

On the other hand, the subsolutions supplied by Section 4 give rise to maximal solutions
which immediately lift off at x = 0, provided that q is supercritical and u0 does not fall
below wn,q near the origin. A combination of the lower Lipschitz estimate in time (Lemma
3.3) with the behavior of f for large ξ (Lemma 4.6) makes it possible to abstain from any
further condition on u0 such as, for instance, a further estimate from below on the whole
domain.

Lemma 5.2 Suppose n ≤ 6, qc(n) < q < 1, and that u0 satisfies u
q+1
2

0 ∈ W 1,∞(Ω),
∆u0 ≥ −c0 in the sense of distributions on Ω and

u0(x) ≥ w(x) ≡ An,q|x|
2

q+1 ∀x ∈ B̄R(0) ⊂ Ω (5.8)

with some c0 > 0 and R > 0. Then there exist t0 > 0 and δ > 0 such that the maximal
continuous weak solution u of (1.1) satisfies

u(0, t) ≥ δt
1

q+1 ∀ t ∈ (0, t0). (5.9)

Proof. Since ∆u0 ≥ −c0 in Ω and u0 ≥ w in B̄R(0), we can apply Lemma 3.3 with
K := B̄R(0) to obtain

uq+1
ε (x, t) ≥ uq+1

0ε (x)− cKt

≥ wq+1(x)− cKt ∀ (x, t) ∈ B̄R(0)× (0,∞). (5.10)

Let us take f from Lemma 4.6 (with Λ := 0) and θ := θ(1
2) as in Lemma 4.1 iii). Then

There exists some large ξ2 such that

f(ξ2)
w(ξ2)

≥ −1
2

(5.11)

and
wq(ξ2) · f(ξ2) ≤

−cK
(1− θ)(q + 1)

. (5.12)
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We set t0 := ( R
ξ2

)2 and define the comparison function

u−(x, t) := w(x) + t
1

q+1 f(t−
1
2 |x|), (x, t) ∈ Q,

on the parabolic domain

Q :=
{

(x, t) ∈ Rn+1 | t ∈ (0, t0) and |x| < ξ2t
1
2

}
.

If |x| = ξ2t
1
2 then, by the identity w(x) = t

1
q+1w(ξ2), we obtain from (5.11) that

t
1

q+1 f(t−
1
2 |x|)

w(x)
=
f(ξ2)
w(ξ2)

≥ −1
2
.

Therefore Lemma 4.1 iii) and (5.12) entail that if |x| = ξ2t
1
2 then

(u−(x, t))q+1 = wq+1(x) ·
(
1 +

t
1

q+1 f(t−
1
2 |x|)

w(x)

)q+1

≤ wq+1(x) ·
(
1 + (1− θ)(q + 1) · t

1
q+1 f(ξ2)
w(x)

)
≤ wq+1(x) + (1− θ)(q + 1) · wq(x) · t

1
q+1 f(ξ2)

= wq+1(x) + (1− θ)(q + 1) · wq(ξ2) · f(ξ2) · t
≤ wq+1(x)− cKt

≤ uq+1
ε (x, t) ∀ t ∈ (0, t0)

in virtue of (5.10), because our choice of t0 guarantees that such x satisfy |x| ≤ ξ2t
1
2
0 = R

for all t < t0. Thus, z := u− − uε fulfills

z ≤ 0 on ∂Ω(t) ∀ t ∈ (0, t0), (5.13)

where Ω(t) := {x ∈ Rn | |x| < ξ2t
1
2 }. Furthermore, from the differential inequality satisfied

by f we derive, writing ξ = t−
1
2 |x|,

u−t − ∆u− + gε(u−) ≤ u−t −∆u− + (u−)−q

=
1

q + 1
t
− −q

q+1 f(ξ)− 1
2
t
− q

q+1 ξf ′(ξ)−∆w(x)− t
− q

q+1

(
f ′′(ξ) +

n− 1
ξ

f ′(ξ)
)

+
(
w(x) + t

1
q+1 f(ξ)

)−q

= −t−
q

q+1 ·
[
f ′′(ξ) +

n− 1
ξ

f ′(ξ) +
ξ

2
f ′(ξ)− 1

q + 1
f(ξ) + w−q(ξ)−

(
w(ξ) + f(ξ)

)−q ]
≤ 0 a.e. in Q,
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where we again have used the scaling property w(x) = t
1

q+1w(ξ). Consequently,

zt −∆z ≤ −gε(u−) + gε(uε)
≤ cεz+ a.e. in Q

holds with cε := ‖g′ε‖L∞((0,∞)). In view of (5.13), z+ vanishes on ∂Ω(t) for each t ∈ (0, t0),
which we apply twice in deducing

1
2

∫
Ω(t)

z2
+(·, t) =

1
2

∫
Ω(τ)

z2
+(·, τ)

∫ t

τ

∫
Ω(s)

z+ · zt

≤ −
∫ t

τ

∫
Ω(s)

|∇z+|2 + cε

∫ t

τ

∫
Ω(s)

z2
+(s) ∀ 0 < τ < t < t0.(5.14)

Since furthermore the assumption u0ε ≥ u0 +ε in Ω̄ together with the continuity of uε and
u− implies that u− ≤ uε for small t, Gronwall’s lemma turns (5.14) into the inequality
z+ ≤ 0 in Q. Thus, uε ≥ u− in Q and, particularly,

uε(0, t) ≥ u−(0, t) = f(0)t
1

q+1 ,

which results in (5.9) with δ := f(0) > 0. ////

Proof (of Theorem 1.1). We only need to combine Lemma 5.1 with Lemma 5.2; in
applying the latter, we observe that the lower estimate ∆u0 ≥ −c0 holds for any u0 from
the hypothesis of Theorem 1.1, because ∆u0 ≡ ∆w ≥ 0 within some ball BR(0) and
∆u0 ≥ −‖u0‖C2(Ω̄\BR(0)) outside. ////

The above method can be modified to construct lift-off solutions also for arbitrary n and
q. The idea here is to choose any N ≤ n such that q is supercritical with respect to N and
then work with wN,q, adding ‘dummy’ variables xN+1, ..., xn. This, however, means that
we are no longer free to choose the boundary values at will. The proof of the following
lemma is the only place in which we need to choose Λ > 0.

Lemma 5.3 Suppose n ≥ 1, q ∈ (0, 1), and that

u0(x) ≥ wN,q(x1, ..., xN ) ≡ AN,q|(x1, ..., xN )|
2

q+1 ∀x = (x1, ..., xN , ..., xn) ∈ Ω̄ (5.15)

with some N ≤ min{n, 6} fulfilling qc(N) < q. Then there exist t0 > 0 and δ > 0 such
that the maximal continuous weak solution u of (1.1) satisfies

u(0, t) ≥ δt
1

q+1 ∀ t ∈ (0, t0). (5.16)
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Proof. Throughout the proof we abbreviate w = wN,q and write x = (x′, x′′) with
x′ = (x1, ..., xN ) and x′′ = (xN+1, ..., xn). Here we may assume that N < n, for the case
N = n has already been covered by Theorem 1.1.
First observe that (5.15) implies that for all ε we have

uε(x, t) ≥ w(x′) in Ω× (0,∞) (5.17)

by classical comparison, because uε is positive and w is smooth and satisfies wt −∆w +
w−q = 0 classically wherever it is positive.
Since 0 ∈ Ω, there exists R > 0 such that the set of points x = (x′, x′′) satisfying both
|x′| ≤ R and |x′′| ≤ R is contained in Ω. Let Λ > 0 denote the principal eigenvalue of
the (n − N)-dimensional Laplacian in the ball {x′′ ∈ Rn−N | |x′′| < R} and Θ be the
corresponding eigenfunction with max Θ ≡ Θ(0) = 1. According to Lemma 4.6, we can
pick ξ0 > 0 and a function f ∈W 2,∞((0, ξ0)) satisfying f ′(0) = 0, f(ξ) > 0 for ξ ∈ [0, ξ0),
f(ξ0) = 0 and

f ′′(ξ)+
N − 1
ξ

f ′(ξ)−
( 1
q + 1

+Λ
)
f(ξ)+w−q(ξ)−

(
w(ξ)+f(ξ)

)−q
≥ 0 for a.e. ξ ∈ (0, ξ0).

(5.18)
We define

u−(x, t) := w(x′) + t
1

q+1 f(t−
1
2 |x′|) ·Θ(x′′)

for (x, t) ∈ Q, where

Q :=
{

(x, t) ∈ Rn+1
∣∣∣ t ∈ (0, t0), |x′′| < R and |x′| < ξ0t

1
2

}
lies in Ω × (0, t0) if we let t0 := min{1, ( R

ξ0
)2}. For each cross-section Ω(t) := {x ∈

Rn| ||x′′| < R and |x′| < ξ0t
1
2 }, 0 < t < t0, in view of (5.17) we find

u− ≤ uε on ∂Ω(t), (5.19)

because if |x′′| = R then Θ(x′′) = 0, while f(t−
1
2 |x′|) = 0 whenever |x′| = ξ0t

1
2 . In order

to derive a parabolic inequality for u−, we calculate, writing ξ = t−
1
2 |x′|,

u−t −∆u− + gε(u−) ≤ u−t −∆u− + (u−)−q

=
1

q + 1
t

1
q+1

−1
f(ξ)Θ(x′′)− 1

2
t

1
q+1

− 3
2 |x′|f ′(ξ)Θ(x′′)

−∆x′w(x′)− t
1

q+1
−1

(
f ′′(ξ) +

N − 1
ξ

f ′(ξ)
)
·Θ(x′′)

−t
1

q+1 f(ξ) ·∆x′′Θ(x′′) +
(
w(x′) + t

1
q+1 f(ξ)Θ(x′′)

)−q
a.e. in Q.
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Using the equations defining w and Θ and the identity w(x′) = t
1

q+1w(ξ), we derive from
this

u−t −∆u− + gε(u−) ≤ 1
q + 1

t
− q

q+1 fΘ− 1
2
t
− q

q+1 ξf ′Θ− t
− q

q+1w−q(ξ)

−t−
q

q+1

(
f ′′ +

N − 1
ξ

f ′
)
Θ + Λt

1
q+1 fΘ + t

− q
q+1

(
w(ξ) + fΘ

)−q

= −t−
q

q+1 Θ ·
[
f ′′ +

N − 1
ξ

f ′ +
ξ

2
f ′ −

( 1
q + 1

+ Λt
)
f

+
w−q(ξ)− (w(ξ) + fΘ)−q

Θ

]
a.e. in Q. (5.20)

Fortunately, for each ξ > 0 the function

ϕ(s) :=
w−q(ξ)− (w(ξ) + f(ξ) · s)−q

s
, s > 0,

satisfies

ϕ′(s) =
q
(
w(ξ) + f(ξ)s

)−q−1
· f(ξ)s− w−q(ξ) +

(
w(ξ) + f(ξ)s

)−q

s2

≤ 0 ∀ s > 0,

because the convexity of σ 7→ (1− σ)−q on (0, 1) implies that

w−q(ξ) =
(
w(ξ) + f(ξ)s− f(ξ)s

)−q
≥

(
w(ξ) + f(ξ)s

)−q
− q

(
w(ξ) + f(ξ)s

)−q−1
· f(ξ)s

for all s > 0. Therefore, since Θ(x′′) ∈ (0, 1] for all |x′′| < R, we have ϕ(Θ(x′′)) ≥ ϕ(1)
and thus (5.20) gives

u−t −∆u− + gε(u−) ≤ −t−
q

q+1 Θ ·
[
f ′′ +

N − 1
ξ

f ′ +
ξ

2
f ′ −

( 1
q + 1

+ Λt
)
f

+w−q − (w(ξ) + fΘ)−q
]

a.e. in Q.

Recalling (5.18) and the restriction t < t0 ≤ 1 in Q, we end up with

u−t −∆u− + gε(u−) ≤ 0 a.e. in Q.

Now we may use the same comparison argument as in the proof of Theorem 1.1 to achieve
u− ≤ uε and thereby verify (5.16) with δ := f(0). ////

Proof (of Theorem 1.3). This is an immediate consequence of Lemma 5.1 and Lemma
5.3. ////
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5.3 A uniqueness result for q ≤ qc(n)

We now prove that for n ≥ 3 and q ≤ qc(n) (any q ∈ (0, 1) if n ≥ 7), the stationary solution
u ≡ wn,q is unique ‘from above’ in the sense that there is no continuous weak solution
other than u which remains bounded from below by wn,q for all times. The argument
we use essentially relies on the knowledge of the optimal constant 4

(n−2)2
in the Hardy

inequality ∫
Ω
|x|−2ϕ2(x)dx ≤ 4

(n− 2)2

∫
Ω
|∇ϕ|2 ∀ϕ ∈W 1,2

0 (Ω) (5.21)

which can easily be verified for n ≥ 3 and any open set Ω ⊂ Rn ([21]). Quite a similar
reasoning was used in [20, Proposition 3.5] to show L2 stability of steady states of ut =
∆u+ up for n ≥ 11 and p ≥ pc = (n−2)2−4n+8

√
n−1

(n−2)(n−10) .

Proof (of Lemma 1.2). Assuming that u is a solution with u ≥ w = wn,q in Ω×(0,∞),
we know from the continuity of u and parabolic regularity theory that wherever u is
positive, u is smooth and satisfies ut = ∆u−u−q. Thus, at the points where z := u−w > 0,
we have that

zt −∆z = −u−q + w−q = qψ−q−1(x, t) · z

with some ψ fulfilling ψ(x, t) ≥ w(x) = An,q|x|
2

q+1 , because u ≥ w. Accordingly,

zt −∆z ≤ qA−q−1
n,q |x|−2z

at such points, which upon multiplication by (z − δ)+, δ > 0, gives

1
2
d

dt

∫
Ω
(z − δ)2+ +

∫
Ω
|∇(z − δ)+|2 ≤ qA−q−1

n,q

∫
Ω
|x|−2(z − δ)2+ + δqA−q−1

n,q

∫
Ω
|x|−2(z − δ)+

(5.22)
for all t > 0. Using the Hardy inequality (5.21) we obtain, since z|∂Ω = 0,

qA−q−1
n,q

∫
Ω
|x|−2(z − δ)2+ ≤ qA−q−1

n,q · 4
(n− 2)2

∫
Ω
|∇(z − δ)+|2

≤
∫

Ω
|∇(z − δ)+|2, (5.23)

provided that

ϕ(q) := qA−q−1
n,q ≡ 2q

q + 1

( 2
q + 1

+ n− 2
)
≤ (n− 2)2

4
. (5.24)

In the case n ≥ 7, we have n− 1 ≤ (n−2)2

4 . Hence we can use the easily verified fact that
ϕ′(q) > 0 for q ∈ (0, 1) to obtain

ϕ(q) ≤ ϕ(1) = n− 1 ≤ (n− 2)2

4
∀ q ∈ (0, 1). (5.25)
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For n ≤ 6, (5.24) is equivalent to the quadratic inequality

Q(q) := (10− n)(n− 2)q2 − 2(n2 − 8n+ 4)q − (n− 2)2 ≤ 0, (5.26)

the larger root of which is precisely qc(n), while the smaller one is nonpositive, forQ(0) ≤ 0.
Therefore, if 0 < q ≤ qc(n) then (5.26) holds. From (5.22)-(5.26) we conclude that if (1.5)
holds then

1
2
d

dt

∫
Ω
(z − δ)2+ ≤ δqA−q−1

n,q

∫
Ω
|x|−2(z − δ)+ ∀ t > 0

for each δ > 0. In the limit δ → 0 this means that z+ ≡ 0 and thus u ≤ w. ////
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