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Abstract

We consider the chemotaxis system

(

ut = ∆u − χ∇ · (u∇v) + g(u), x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

in a smooth bounded domain Ω ⊂ R
n, where χ > 0 and g generalizes the

logistic function g(u) = Au − buα with α > 1, A ≥ 0 and b > 0.
A concept of very weak solutions is introduced, and global existence of
such solutions for any nonnegative initial data u0 ∈ L1(Ω) is proved under
the assumption that α > 2 − 1

n
.

Moreover, boundedness properties of the constructed solutions are stud-
ied. Inter alia, it is shown that if b is sufficiently large and u0 ∈ L∞(Ω)
has small norm in Lγ(Ω) for some γ > n

2
then the solution is globally

bounded.
Finally, in the case that additionally α > n

2
holds, a bounded set in

L∞(Ω) can be found which eventually attracts very weak solutions ema-
nating from arbitrary L1 initial data.
The paper closes with numerical experiments that illustrate some of the
theoretically established results.

Key words: chemotaxis, global existence, absorbing set
AMS Classification: 35K57 (primary), 35B35, 35B41 (secondary)

Introduction

In any living organism, the communication between individual cells evidently is
an indispensible tool for its survival. Accordingly, a large variety of means for
cellular communication has been provided during biological evolution. One –
rather simple – reaction to an external signal consists of moving either towards
or away from the stimulus, and the corresponding behavior is commonly named
X-taxis. Here, the template X indicates the particular nature of the stimulus:
For instance, haptotaxis means oriented movement resulting from a mechanical
impulse, phototaxis, thermotaxis or galvanotaxis are due to stimuli made up by
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some source of light, of heat, or of an electric current, respectively.
If a chemical substance is responsible for a change in motion, one is accordingly
concerned with chemotaxis, and this mechanism appears to be of particular
importance also in higher developed organisms, where, for example, it is be-
lieved to govern the movements of certain flexible cells such as phagocytes. One
distinguishes between chemoattraction – aka positive chemotaxis – appearing
when cells move towards higher concentrations of the substance, and the less
frequently observed chemorepulsion – the so-called negative chemotaxis – mean-
ing that the direction of movement is away from higher and thus towards lower
concentrations of the chemical.

In several situations, it is favorable for a cell population to accumulate in some
region in space; for instance, the slime mold Dictyostelium Discoideum forms
a fruiting body upon such an aggreation. Chemoattraction can enhance this
type of behavior if the individuals themselves secrete the attracting chemical.
In 1970, Keller and Segel ([KS]) pursued the problem of finding an appropriate
mathematical description of such processes of self-organization. They proposed
a model for the time evolution of both the cell density u and the signal substance
v, a dimensionless prototype of which reads

{

ut = ∇ · (m(u)∇u) −∇ · (f(u, v)∇v) + g(u, v), x ∈ Ω, t > 0,

Γvt = ∆v − v + u, x ∈ Ω, t > 0,
(0.1)

where Ω denotes the considered spatial region and Γ is a positive constant linked
to the speed of diffusion of the chemical. The function m measures the ability
of cells to diffuse, f represents the sensitivity with respect to chemotaxis, and
g models possible production or death of cells.

In the last two decades, considerable progress has been made in the analy-
sis of various particular cases of (0.1), the focus being mainly on the problem
whether the respective system of equations is appropriate in the sense that it is
able to give a qualitatively correct picture of the phenomenon of accumulation.
However, there has non consensus been found yet on the question whether ‘accu-
mulation’ means that solutions undergo a blow-up, that is, become unbounded
in either finite or infinite time, or if it is already correctly described by pattern
formation of bounded solutions.
As to the ‘classical’ Keller-Segel model, where m(u) ≡ 1, f(u, v) ≡ χ > 0 and
g(u, v) ≡ 0, it is known, for instance, that some solutions blow up if either the
space dimension is n = 2 and the total initial population mass is above some
threshold level, or if n ≥ 3; similar results have been asserted for the limit case
of this model obtained when Γ = 0 ([HV], [HMV], [H], [HWa], [N2], [SeS]).
Also, questions on pattern formation in bounded domains Ω could be answered
in some special cases of (0.1), for instance concerning convergence of all bounded
solutions to equilibria (when f(u) = u and n = 2, [FLP]), (meta-)stability of
steady states (for f(u, v) ∼ u(1− u), cf. [PH]), or existence of global attractors
(for f(u) = u and n = 1, [OY]).
More recently, variants of (0.1) involving non-vanishing sources g 6≡ 0 have
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received growing interest. Here, the most commonly considered choices of g ex-
ercise a significant dampening effect on the population density u at those points
where u itself is large; prototypes are the logistic function

g(u, v) = Au−Buα, A > 0, B > 0, α > 1, (0.2)

or modifications thereof, involving further zeros, such as given by the bistable
source

g(u, v) = u(B − u)(u−A), 0 < A < B. (0.3)

As to the latter, for Γ = 1 and Ω = R
n the behavior along the limiting procedure

εց 0 in m ≡ ε2 and f ≡ ε is studied in [MT] and [FMT], where travelling fronts
of the corresponding system are investigated by deriving interface equations that
are supposed to decribe the dynamics of certain layers.

Logistic sources of the shape (0.2) with the standard choice α = 2 have been
considered in [OTYM], where global existence of weak solutions in bounded
domains Ω along with the existence of a global attractor in an appropriate
functional analytical framework has been proved for f(u, v) ≡ u · χ(v) with
smooth bounded functions χ(v); part of the results can be carried over to the
case when χ becomes singular at v = 0, cf. [AOTYM].
In the present study we focus on the case Γ = 0 that is supposed to model the
situation when the chemoattractant diffuses very quickly. Moreover, we shall
restrict ourselves to the choices m ≡ 1, f(u, v) ≡ χv and g(u, v) ≡ g(u) and
hence subsequently consider the system



























ut = ∆u− χ∇ · (u∇v) + g(u), x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(0.4)

in a smooth bounded domain Ω ⊂ R
n, ∂

∂ν
denotes the outward normal derivative

on ∂Ω and χ is a given positive constant. The function g is assumed to generalize
(0.2) – and (0.3) as well – in the following way: Throughout, g is supposed to
belong to C1([0,∞)) and to satisfy g(0) ≥ 0. Moreover, with various α > 1 we
shall suppose that

(H1α) g(s) ≤ a− bsα for all s ≥ 0 with some a ≥ 0 and b > 0,

and in some places we will also require a corresponding lower estimate

(H2α) g(s) ≥ −c0(s+ sα) for all s ≥ 0 with some c0 > 0.

The system (0.4) – with g ≡ 0 – was first introduced in [JL] and later on taken
up frequently (see [HV], [N1], [N2], for instance).
Recently, in [TW] the case α = 2 in (0.4), (H1α) has been considered. Besides
some results on steady states concerning regularity, stability, uniqueness and
bifurcation, as to the evolution problem the following has been found.
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• Assume that g satisfies (H1α) with α = 2 and some a ≥ 0, b > 0 and
c0 > 0, and let u0 ∈ C0(Ω̄).

– If either n ≤ 2, or n ≥ 3 and b > n−2
n
χ, then (0.4) possesses a unique

global bounded classical solution.

– For arbitrary n ≥ 1 and b > 0, (0.4) admits at least one global weak
solution.

In particular, this implies the existence of global bounded solutions for any
choice of b > 0 in (H1α) if α > 2. It remains open, however, whether in space
dimensions n ≥ 3, a quadratic death rate in (0.4) with small coefficient b < n−2

n
χ

might be insufficient to prevent solutions from becoming unbounded.

The purpose of the present work is twofold: Firstly, we would like to investi-
gate whether death rates in (0.4) which are weaker than quadratic can enforce
a chemotactic collapse in the sense that, for some initial data, no global solu-
tion exists in any reasonable space. Secondly, albeit not quite independently,
we study the phenomena of of immediate and of eventual regularization of so-
lutions: Given some unbounded initial data, we ask whether the solution then
becomes less singular, possibly even bounded, after some finite time T , and if
it may even occur that T = 0. Evidently, these considerations are closely re-
lated to the possibility of a life after blow-up or, say, a life beyond collapse of a
chemotactically acting population.
For the heat equation ut = ∆u, it is well-known that solutions immediately
become smooth even when evolving from very irregular initial data such as the
dirac distribution; by more sophisticated techiques it has been shown that the
same is true also for some finite-time blow-up solutions of the semilinear equa-
tion ut = ∆u + up (with some supercritical p > 1) immediately after their
blow-up time ([FMP]).
To the best of our knowledge, only little is known about regularization in sys-
tems involving nonlinear cross-diffusion such as in (0.1); all available results
concentrate on immediately regularizing initial data that are at least sqare in-
tegrable. However, since even in the case g ≡ 0 any solution of (0.1) formally
enjoys the mass conservation property

∫

Ω u(x, t)dx ≡
∫

Ω u0(x)dx for all t > 0,
a more natural requirement on the initial data appears to be u0 ∈ L1(Ω). All
in all, we could not find any result about regularity – not even about existence
– of solutions to chemotaxis systems beyond some time at which the solution is
merely known to belong to L1(Ω).

In light of these premises, our main existence and regularity results may be
understood as saying that all α > 2 − 1

n
are admissible in (H1α) and (H2α)

(showing inter alia that α = 2 should in fact not be a critical number in this
respect), and that any u0 ∈ L1(Ω) is regular enough to allow for a globally de-
fined solution that, though being very weak, immediately becomes less singular
than u0. To be more precise,

• if g satisfies (H1α) and (H2α) with some α > 2 − 1
n

then
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– for any nonnegative u0 ∈ L1(Ω) the problem (0.4) admits a very weak
solution (u, v) (Theorem 1.6, cf. also Definitions 1.3 and 1.1-1.2),
and

– this solution satisfies u(·, t) ∈ Lp(Ω) for a.e. t > 0 and any











p ≤ ∞ if n = 1,

p <∞ if n = 2,

p ≤ α such that p < n
n−2 · min{α− 1, 1} if n ≥ 3.

(Corollary 1.7).

If moreover the growth inhibition induced by g is strong enough then some
small-data solutions enjoy further boundedness properties in L∞(Ω):

• If (H1α) holds with α > 1 and suitably large b > 0, and if ‖u0‖L∞(Ω) is
sufficiently small then the above solution is bounded (Lemma 2.1).

• If g satisfies (H1α) with α > 1 and sufficiently small quotient a
b
, and if

u0 ∈ L∞(Ω) has small norm in Lγ(Ω) for some γ > max{1, n
2 }, then the

above solution is bounded (Theorem 2.4).

• If (H1α) and (H2α) are valid for some α > max{n
2 , 2 − 1

n
} then for all

τ > 0 one can prescribe an upper bound for both a
b

and ‖u0‖L1(Ω) that
ensures boundedness of the above solution for t > τ (Theorem 2.6).

Finally, in presence of appropriately strong g all of our solutions eventually enter
a bounded absorbing set in L∞(Ω):

• If g satisfies (H1α) and (H2α) with some α > max{n
2 , 2 − 1

n
} and suffi-

ciently small ratio a
b

then there exists a ball B in L∞(Ω) such that each
of the solutions constructed above eventually enters B and hence becomes
bounded after some finite time (Theorem 2.8).

1 Global solutions for initial data in L
1(Ω)

According to technical difficulties stemming mainly from the cross-diffusion term
in (0.4) and the fact that we merely assume u0 ∈ L1(Ω), our concept of weak
solutions differs from the natural notion. We shall deal with solutions that we
call very weak because as many derivatives concerning u as possible are removed
using integration by parts. Moreover, again for technical reasons we shall define
a weak solution not by requiring its first component u to satisfy one integral
identity, but instead to fulfill two integral inequalities slightly differing from
each other, but in summary indicating that u at the same time is a sub- and a
supersolution of the first equation in (0.4).
The first notion that we need is that of a very weak subsolution.
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Definition 1.1 Let T > 0. A pair (u, v) of nonnegative functions

u ∈ L1(Ω × (0, T )), v ∈ L1((0, T );W 1,1(Ω))

will be called a very weak subsolution of (0.4) in Ω × (0, T ) if

g(u) and u∇v belong to L1(Ω × (0, T )),

and if the relations

−

∫ T

0

∫

Ω

uϕt −

∫

Ω

u0ϕ(·, 0) ≤

∫ T

0

∫

Ω

u∆ϕ+ χ

∫ T

0

∫

Ω

u∇v · ∇ϕ+

∫ T

0

∫

Ω

g(u)ϕ

(1.1)
and

∫ T

0

∫

Ω

∇v · ∇ψ +

∫ T

0

∫

Ω

vψ =

∫ T

0

∫

Ω

uψ (1.2)

hold for all

ϕ ∈ C∞
0 (Ω̄ × [0, T )) with ϕ ≥ 0 and

∂ϕ

∂ν
on ∂Ω × (0, T ) (1.3)

and any
ψ ∈ C∞(Ω̄ × [0, T ]). (1.4)

Secondly, we will need some supersolution property. It turns out that the fol-
lowing concept of entropy subsolution is suitable for our purpose. In giving
names, we follow the notion of The name given here is adapted from the notion
of entropy solutions which is commonly used in the context of higher order thin
film equations ([DalPGG]).

Definition 1.2 Let T > 0 and γ ∈ (0, 1). Two nonnegative functions

u ∈ Lγ+1(Ω × (0, T )), v ∈ L1((0, T );W 1,1(Ω)) ∩ Lγ+1(Ω × (0, T ))

form a weak γ-entropy supersolution of (0.4) in Ω × (0, T ) if

uγ−2|∇u|2, uγ−1g(u) and uγ∇v belong to L1(Ω × (0, T )),

and if

−

∫ T

0

∫

Ω

uγϕt −

∫

Ω

u
γ
0ϕ(·, 0) ≥ γ(1 − γ)

∫ T

0

∫

Ω

uγ−2|∇u|2ϕ+

∫ T

0

∫

Ω

uγ∆ϕ

+(1 − γ)χ

∫ T

0

∫

Ω

uγvϕ− (1 − γ)χ

∫ T

0

∫

Ω

uγ+1ϕ

+χ

∫ T

0

∫

Ω

uγ∇v · ∇ϕ

+γ

∫ T

0

∫

Ω

uγ−1g(u)ϕ (1.5)

as well as (1.2) are valid for all ϕ and ψ satisfying (1.3) and (1.4).
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We finally end up with the following concept which is consistent with that of
a classical solution in that if a smooth function is a very weak solution in the
sense defined below, then it is a classical solution.

Definition 1.3 Let T > 0. We call a couple (u, v) a very weak solution of
(0.4) in Ω × (0, T ) if it is both a very weak subsolution and a weak γ-entropy
supersolution of (0.4) in Ω × (0, T ) for some γ ∈ (0, 1).
A global very weak solution of (0.4) is a pair (u, v) of functions defined in
Ω × (0,∞) which is a weak solution of (0.4) in Ω × (0, T ) for all T > 0.

When seeking for weak solutions of (0.4), it appears to be natural that one
considers appropriate regularizations of (0.4) which are known to admit global
smooth solutions. It turns out that in the present situation this can be done at
least in two different ways: The first consists of approximating the chemotactic
sensitivity function f(u) = χ · u in (0.4) by some sequence of functions fε (for,
say, small ε > 0) with sufficiently small (or even without) growth with respect
to u as u → ∞; for instance, it can be shown using the ideas in [HWi] that if
fε(u) ≤ Cεu

β with some β < 2
n

then all solutions of the accordingly modified
version of (0.4) are global, bounded and hence classical, provided that the initial
data are smooth.
For simplicity in presentation, however, we prefer to perform a second variant
of regularizing (0.4) which is based on strengthening the death rate in the lo-
gistic term rather than weakening the chemoattracting effect. More precisely,
throughout the paper we fix a number β > 2 and, for ε ∈ (0, 1), consider the
problems



























uεt = ∆uε − χ∇ · (uε∇vε) + g(uε) − εuβ
ε , x ∈ Ω, t > 0,

0 = ∆vε − vε + uε, x ∈ Ω, t > 0,

∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(1.6)

where (u0ε)ε∈(0,1) ⊂ C0(Ω̄) is such that u0ε > 0 in Ω and

‖u0ε − u0‖L1(Ω) ≤ ε. (1.7)

By Theorem 2.5 in [TW], (1.6) has a unique global bounded classical solution
(uε, vε). In view of the fact that g(0) ≥ 0 and the parabolic and elliptic com-
parison principles applied to in (1.6), uε ≥ 0 and hence also vε is nonnegative.
Moreover, we even have uε > 0 in Ω̄× [0,∞) by the strong maximum principle.

We proceed to derive ε-independent estimates. The first lemma provides some
easily obtained inequalities which nonetheless are crucial for almost everything
that follows.

Lemma 1.1 Suppose g satisfies (H1α) with some α > 1, and let m := (a
b
)

1
α |Ω|.

Then for any t0 ≥ 0 and each ε ∈ (0, 1) the inequalities
∫

Ω

uε(x, t)dx ≤ m+ e−αa
α−1

α b
1
α (t−t0) ·

(

∫

Ω

uε(x, t0)dx −m
)

for t ≥ t0 (1.8)
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and

b

∫ t

t0

∫

Ω

uα
ε +ε

∫ t

t0

∫

Ω

uβ
ε ≤ a|Ω|·(t−t0)+

∫

Ω

uε(x, t0)dx−

∫

Ω

uε(x, t)dx for t > t0

(1.9)
hold. In particular, writing

Mε := max{m, ‖u0ε‖L1(Ω)}, (1.10)

we have the a priori estimates
∫

Ω

uε(x, t)dx ≤Mε for all t > 0 (1.11)

and
∫ T

0

∫

Ω

uα
ε ≤

a|Ω|T +Mε

b
for all T > 0 (1.12)

as well as

ε

∫ T

0

∫

Ω

uβ
ε ≤

a|Ω|T +Mε

b
for all T > 0. (1.13)

Proof. We integrate the first equation in (1.6) over Ω and use (H1α) to see
that

d

dt

∫

Ω

uε(x, t)dx =

∫

Ω

g(uε) − ε

∫

Ω

uβ
ε

≤ a|Ω| − b

∫

Ω

uα
ε − ε

∫

Ω

uβ
ε for t > 0. (1.14)

From the Hölder inequality we obtain
∫

Ω
uε ≤ |Ω|

α−1
α · (

∫

Ω
uα

ε )
1
α , and hence

y(t) :=
∫

Ω uε(x, t)dx satisfies

y′(t) ≤ a|Ω| − b|Ω|1−αyα(t) for t > 0.

Substituting z(t) := y(t) −m, using the convexity of s 7→ sα on (−1,∞) and
recalling the definition of m we obtain

z′(t) ≤ a|Ω| − b|Ω|1−α(M + z)α

≤ a|Ω| − b|Ω|1−αmα
(

1 + α
z(t)

m

)

= −αb|Ω|1−αmα−1z(t)

= −αa
α−1

α b
1
α z(t) for t > 0.

An integration of this differential inequality yields (1.8), whereas (1.9) follows
upon integrating (1.14) with respect to time. Now (1.11), (1.12) and (1.13)
immediately result from (1.8) and (1.9) and the fact that

∫

Ω uε(x, t)dx is non-
negative. ////

We proceed to derive from the above lemma some bound for that spatial gradi-
ent of uε.
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Lemma 1.2 Suppose that g satisfies (H1α) and (H2α) with some α > 1. Then
for all γ ∈ (0, 1) satisfying γ ≤ α − 1 there exists C > 0 such that for any
ε ∈ (0, 1) and T > 0 we have

∫ T

0

∫

Ω

uγ−2
ε |∇uε|

2 ≤ C(1 + T ) (1.15)

and

g(0) ·

∫ T

0

∫

Ω

uγ−1
ε ≤ C(1 + T ). (1.16)

Proof. We multiply the first equation in (1.6) by uγ−1
ε and integrate by

parts over Ω × (0, T ) to obtain

(1 − γ)

∫ T

0

∫

Ω

uγ−2
ε |∇uε|

2 =
1

γ

∫

Ω

uγ
ε (x, T )dx−

1

γ

∫

Ω

u
γ
0ε(x)dx

+(1 − γ)χ

∫ T

0

∫

Ω

uγ−1
ε ∇uε · ∇vε

−

∫ T

0

∫

Ω

uγ−1
ε g(uε) + ε

∫ T

0

∫

Ω

uβ+γ−1
ε .(1.17)

By the Hölder inequality,

1

γ

∫

Ω

uγ
ε (x, T )dx ≤

|Ω|1−γ

γ

(

∫

Ω

uε(x, T )dx
)γ

. (1.18)

Once more integrating by parts, again from Hölder’s inequality we gain

(1 − γ)χ

∫ T

0

∫

Ω

uγ−1
ε ∇uε · ∇vε = −

(1 − γ)χ

γ

∫ T

0

∫

Ω

uγ
ε∆vε

≤
(1 − γ)χ

γ

(

∫ T

0

∫

Ω

uα
ε

)

γ
α

·
(

∫ T

0

∫

Ω

|∆vε|
α
)

1
α

· (|Ω|T )
α−γ−1

α . (1.19)

In view of the second equation in (1.6) and elliptic Lp theory we know that

∫ T

0

∫

Ω

|∆vε|
α ≤ c1

∫ T

0

∫

Ω

uα
ε

holds with some c1 > 0, so that (1.19) implies

(1 − γ)χ

∫ T

0

∫

Ω

uγ−1
ε ∇uε · ∇vε ≤ c2

(

∫ T

0

∫

Ω

uα
ε + 1 + T

)

(1.20)

with a certain c2 > 0. Furthermore, since g(s) ≥ g(0) − ĉ0(s+ sα) for all s ≥ 0
and some ĉ0 ≥ c0 by (H2α) and the fact that g ∈ C1([0,∞)), using Young’s
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inequality we find

−

∫ T

0

∫

Ω

uγ−1
ε g(uε) ≤ −g(0) ·

∫ T

0

∫

Ω

uγ−1
ε

+ĉ0 ·
(

∫ T

0

∫

Ω

uγ
ε +

∫ T

0

∫

Ω

uα+γ−1
ε

)

≤ −g(0) ·

∫ T

0

∫

Ω

uγ−1
ε +

∫ T

0

∫

Ω

uα
ε + c3T (1.21)

and

ε

∫ T

0

∫

Ω

uβ+γ−1
ε ≤ ε

∫ T

0

∫

Ω

uβ
ε + c4εT (1.22)

with some positive c3 and c4.
Collecting (1.17), (1.18) and (1.20)-(1.22), in view of (1.11), (1.12) and (1.13)
we arrive at

(1 − γ)

∫ T

0

∫

Ω

uγ−2
ε |∇uε|

2 + g(0) ·

∫ T

0

∫

Ω

uγ−1
ε

≤
|Ω|1−γ

γ
·Mγ

ε + c2 + (c2 + c3 + c4ε)T + (c2 + 1) ·
a|Ω|T +Mε

b
,

where Mε is given by (1.10). Since Mε ≤ max{(a
b
)

1
α |Ω|, ‖u0‖L1(Ω) +1} by (1.7),

this immediately gives (1.15) and (1.16). ////

The following bound on the time derivative of uε involves a very weak norm,
but is still sufficient for our purposes.

Lemma 1.3 Assume that (H1α) and (H2α) hold for some α > 1. Then for all
γ ∈ (0, 1) satisfying γ ≤ α − 1 there exist k ∈ N and C > 0 such that for each
ε ∈ (0, 1) and T > 0,

‖∂t(1 + uε)
γ
2 ‖

L1((0,T );(W k,2
0 (Ω))⋆) ≤ C(1 + T ). (1.23)

Proof. We fix k ∈ N large such that

W
k,2
0 (Ω) →֒ L∞(Ω) and W

k,2
0 (Ω) →֒W 1,p(Ω) (1.24)

holds for p := max{2, 2α
2α−γ−2}; for instance, we pick any k > n+2

2 . Given ψ ∈

W
k,2
0 (Ω), multiplying the first equation in (1.6) by (1+uε)

γ−2
2 ψ and integrating

by parts, for all t > 0 we find

2

γ

∫

Ω

∂t(1 + uε)
γ
2 · ψ =

∫

Ω

(1 + uε)
γ−2
2 uεt · ψ

=

∫

Ω

(1 + uε)
γ−2

2 ∆uε · ψ − χ

∫

Ω

(1 + uε)
γ−2

2 ∇ · (uε∇vε) · ψ

10



+

∫

Ω

(1 + uε)
γ−2

2 g(uε)ψ − ε

∫

Ω

(1 + uε)
γ−2
2 uβ

εψ

=
2 − γ

2

∫

Ω

(1 + uε)
γ−4
2 |∇uε|

2ψ −

∫

Ω

(1 + uε)
γ−2

2 ∇uε · ∇ψ

−χ

∫

Ω

(1 + uε)
γ−2

2 ∇ · (uε∇vε) · ψ

+

∫

Ω

(1 + uε)
γ−2

2 g(uε)ψ − ε

∫

Ω

(1 + uε)
γ−2
2 uβ

εψ. (1.25)

Since uε ≥ 0 and γ > 0 implies γ−4
2 < γ − 2, we have

∣

∣

∣

∫

Ω

(1 + uε)
γ−4

2 |∇uε|
2ψ

∣

∣

∣
≤

(

∫

Ω

(1 + uε)
γ−2|∇uε|

2
)

· ‖ψ‖L∞(Ω)

≤
(

∫

Ω

uγ−2
ε |∇uε|

2
)

· ‖ψ‖L∞(Ω), (1.26)

and

∣

∣

∣

∫

Ω

(1 + uε)
γ−2

2 ∇uε · ∇ψ
∣

∣

∣
≤

(

∫

Ω

(1 + uε)
γ−2|∇uε|

2
)

1
2

·
(

∫

Ω

|∇ψ|2
)

1
2

≤
1

2

(

1 +

∫

Ω

uγ−2
ε ∇uε|

2
)

· ‖∇ψ‖L2(Ω). (1.27)

Another integration by parts in conjunction with the second equation in (1.6)
shows that the chemotaxis term can be reaaranged according to

−χ

∫

Ω

(1 + uε)
γ−2

2 ∇ · (uε∇vε)ψ

= −χ

∫

Ω

(1 + uε)
γ−2

2 uε∆vε · ψ − χ

∫

Ω

(1 + uε)
γ−2

2 ∇uε · ∇vε · ψ

= −χ

∫

Ω

(1 + uε)
γ−2

2 uε∆vε · ψ +
2χ

γ

∫

Ω

∇(1 + uε)
γ
2 · ∇vε · ψ

= −χ

∫

Ω

(1 + uε)
γ−2

2 uε∆vε · ψ −
2χ

γ

∫

Ω

(1 + uε)
γ
2 ∆vε · ψ

−
2χ

γ

∫

Ω

(1 + uε)
γ
2 ∇vε · ∇ψ

= −χ

∫

Ω

(1 + uε)
γ−2

2 uεvεψ + χ

∫

Ω

(1 + uε)
γ−2
2 u2

εψ

−
2χ

γ

∫

Ω

(1 + uε)
γ
2 vεψ +

2χ

γ

∫

Ω

(1 + uε)
γ
2 uεψ

−
2χ

γ

∫

Ω

(1 + uε)
γ
2 ∇vε · ∇ψ

=: I1 + I2 + I3 + I4 + I5. (1.28)
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Here, applying Hölder’s inequality with the three exponents 2α
γ

, α and 2α
2α−γ−2

we obtain

|I1| ≤ χ

∫

Ω

(1 + uε)
γ
2 vε|ψ|

≤ χ
(

∫

Ω

(1 + uε)
α
)

γ
2α

·
(

∫

Ω

vα
ε

)
1
α

·
(

∫

Ω

|ψ|
2α

2α−γ−2

)

2α−γ−2
2α

. (1.29)

Similarly,

|I3| ≤
2χ

γ
·
(

∫

Ω

(1 + uε)
α
)

γ
2α

·
(

∫

Ω

vα
ε

)
1
α

·
(

∫

Ω

|ψ|
2α

2α−γ−2

)

2α−γ−2
2α

(1.30)

and

|I5| ≤
2χ

γ
·
(

∫

Ω

(1 + uε)
α
)

γ
2α

·
(

∫

Ω

|∇vε|
α
)

1
α

·
(

∫

Ω

|∇ψ|
2α

2α−γ−2

)

2α−γ−2
2α

, (1.31)

whereas Hölder’s inequality with exponents 2α
γ+2 and 2α

2α−γ−2 yields

|I2| + |I4| ≤
(

χ+
2χ

γ

)

·
(

∫

Ω

(1 + uε)
α
)

γ+2
2α

·
(

∫

Ω

|ψ|
2α

2α−γ−2

)

2α−γ−2
2α

. (1.32)

Now from the second equation in (1.6) together with standard elliptic Lp esti-
mates we know that

max
{

‖vε(·, t)‖Lα(Ω) + ‖∇vε(·, t)‖Lα(Ω)

}

≤ ‖vε(·, t)‖W 2,α(Ω) ≤ c1‖uε(·, t)‖Lα(Ω)

for t > 0 holds with some constant c1. Inserting this into (1.29)-(1.32) shows
that

|I1| + |I2| + |I3| + |I4| + |I5|

≤
(

χc1 +
2χ

γ
c1 + χ+

2χ

γ

)

·
(

∫

Ω

(1 + uε)
α
)

γ+2
2α

· ‖ψ‖
L

2α
2α−γ−2 (Ω)

+
2χ

γ
c1 ·

(

∫

Ω

(1 + uε)
α
)

γ+2
2α

· ‖∇ψ‖
L

2α
2α−γ−2 (Ω)

≤ c2

(

1 +

∫

Ω

(1 + uε)
α
)

· ‖ψ‖
W

1, 2α
2α−γ−2 (Ω)

(1.33)

is valid for some c2 > 0.
As to the logistic term in (1.25), we observe that (H1α) and (H2α) imply that
|g(s)| ≤ c̃0(1 + s)α holds for all s ≥ 0 and some c̃0 > 0, whence

∣

∣

∣

∫

Ω

(1 + uε)
γ−2

2 g(uε) · ψ
∣

∣

∣
≤ c̃0 ·

∫

Ω

(1 + uε)
2α+γ−2

2 |ψ|

≤ c̃0 ·
(

∫

Ω

(1 + uε)
α
)

2α+γ−2
2α

·
(

∫

Ω

|ψ|
2α

2−γ

)

2−γ
2α

≤ c3

(

1 +

∫

Ω

(1 + uε)
α
)

· ‖ψ‖
L

2α
2−γ (Ω)

(1.34)
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with suitably large c3 > 0 folows upon applying Hölder’s and Young’s inequali-
ties. By the same tokens, we find c4 > 0 such that

∣

∣

∣
− ε

∫

Ω

(1 + uε)
γ−2

2 uβ
εψ

∣

∣

∣
≤ ε

∫

Ω

u
2β+γ−2

2
ε |ψ|

≤ ε
(

∫

Ω

uβ
ε

)

2β+γ−2
2β

·
(

∫

Ω

|ψ|
2β

2−γ

)

2−γ
2β

≤ c4ε
(

1 +

∫

Ω

uβ
ε

)

· ‖ψ‖
L

2β
2−γ (Ω)

. (1.35)

Collecting (1.25)-(1.28) and (1.33)-(1.35) and recalling the definition of p, we
arrive at the estimate

∣

∣

∣

2
γ

∫

Ω

∂t(1 + uε)
γ
2 ψ

∣

∣

∣
≤ c5

(

1 +

∫

Ω

uγ−2
ε |∇uε|

2 +

∫

Ω

(1 + uε)
α + ε

∫

Ω

uβ
ε

)

×

×
(

‖ψ‖W 1,p(Ω) + ‖ψ‖L∞(Ω)

)

for all ψ ∈ W
k,2
0 (Ω)

with a certain c5 independent of ε ∈ (0, 1), t > 0 and ψ ∈W
k,2
0 (Ω).

We now observe that (1 + uε)
α ≤ 2α(1 + uα

ε ) and remember (1.24) to obtain

∣

∣

∣

2

γ

∫

Ω

∂t(1 + uε)
γ
2 ψ

∣

∣

∣

≤ c6

(

1 +

∫

Ω

uγ−2
ε |∇uε|

2 +

∫

Ω

uα
ε + ε

∫

Ω

uβ
ε

)

‖ψ‖
W

k,2
0 (Ω)

for all ψ ∈ W
k,2
0 (Ω) with some c6 > 0. Hence,

∥

∥

∥
∂t

(

1 + uε(·, t)
)

γ
2
∥

∥

∥

(W k,2
0 (Ω))⋆

≤ c6

(

1 +

∫

Ω

uγ−2
ε |∇uε|

2 +

∫

Ω

uα
ε + ε

∫

Ω

uβ
ε

)

,

which upon integration over t ∈ (0, T ) yields (1.23) in virtue of the estimates
(1.12), (1.13) and (1.15) provided by Lemma 1.1 and Lemma 1.2. ////

As a consequence of the last three lemmata, we obtain the following.

Lemma 1.4 Let (H1α) and (H2α) be satisfied with some α > 1. Then for all
T > 0 and any p ∈ (1, α),

(uε)ε∈(0,1) is strongly precompact in Lp(Ω × (0, T )). (1.36)

Proof. Let T > 0, p ∈ (1, α) and a sequence (εj)j∈N ⊂ (0, 1) be given. From
(1.12) we know that there exists a nonnegative function u such that

uε ⇀ u in Lp(Ω × (0, T )) (1.37)

along a subsequence ε = εji
, i → ∞. On the other hand, Lemma 1.1, Lemma

1.2 and Lemma 1.3 imply that if we pick any γ ∈ (0, 1) such that γ ≤ α − 1
then we have

‖(1 + uε)
γ
2 ‖L2((0,T );W 1,2(Ω)) + ‖∂t(1 + uε)

γ
2 ‖

L1((0,T );(W k,2
0 (Ω))⋆) ≤ c
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with some c > 0 and k ∈ N. Since (W k,2
0 (Ω))⋆ is a Hilbert space, the Aubin-

Lions lemma (Theorem 2.3 in [T]) applies to yield strong precompactness of
((1 + uε)

γ
2 )ε∈(0,1) in the space L2((0, T );L2(Ω)); in particular,

uε → u a.e. in Ω × (0, T ) (1.38)

holds along a further subsequence.
Again by Lemma 1.1, (uε)ε∈(0,1) is bounded in Lq(Ω× (0, T )) with q = α

p
. Since

q > 1, this entails that

up
ε ⇀ w in Lq(Ω × (0, T )) (1.39)

for another subsequence, where (1.38) asserts the identification w = up. Choos-
ing ϕ ≡ 1 ∈ (Lq(Ω × (0, T )))⋆ as a test functional, we thus find

∫ T

0

∫

Ω

up
ε →

∫ T

0

∫

Ω

up.

Together with (1.37), this proves the strong convergence uε → u in the uniformly
convex space Lp(Ω × (0, T )). ////

One final preparation will provide a compactness property of (vε)ε∈(0,1).

Lemma 1.5 Assume (H1α) and (H2α) with some α > 1. Then for all q ∈
(1, nα

n−1 ) there exists C > 0 such that

‖∇vε‖Lq(Ω×(0,T )) ≤ C(1 + T ) for all T > 0. (1.40)

Proof. Without loss of generality we may assume that q ≥ (n+1)α
n

, so that

r := n(q−α)
α

satisfies r ∈ [1, n
n−1 ). Thus, according to a classical result due to

Brézis and Strauss ([BS]), there exists CBS > 0 such that for any w ∈ C2(Ω̄)
satisfying ∂w

∂ν
= 0 on ∂Ω, the estimate

‖w‖W 1,r(Ω) ≤ CBS‖∆w‖L1(Ω) (1.41)

holds. Since evidently
∫

Ω vε(·, t) =
∫

Ω uε(·, t) for all t > 0, from the second
equation in (1.6) and Lemma 1.1 we infer that ‖∆vε(·, t)‖L1(Ω) ≤ c1 for all t > 0
and some c1 > 0. Therefore (1.41) yields

‖vε(·, t)‖W 1,r(Ω) ≤ cBS · c1 for all t > 0. (1.42)

We now invoke the Gagliardo-Nirenberg inequality ([F]) to estimate

‖∇vε(·, t)‖Lq(Ω) ≤ cGN‖vε(·, t)‖
θ
W 2,α(Ω) · ‖vε(·, t)‖

1−θ
W 1,r(Ω)

for all t > 0 with some cGN > 0, where

1 −
n

q
=

(

2 −
n

α

)

θ +
(

1 −
n

r

)

(1 − θ),
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that is,

θ =
nα(q − r)

q(αr − nr + nα)
≡
α

q

in view of our definition of r. Since ‖vε(·, t)‖W 2,α(Ω) ≤ c2‖uε(·, t)‖Lα(Ω) for some
constant c2 by elliptic Lp theory applied to the second equation in (1.6), from
(1.42) we obtain

‖∇vε(·, t)‖
q

Lq(Ω) ≤ c
q
GN(cBS · c1)

q(1−θ) · cqθ
2 · ‖uε(·, t)‖

α
Lα(Ω)

for all t > 0 and ε ∈ (0, 1). Integrating this with respect to t ∈ (0, T ) and
recalling (1.12), we end up with (1.40). ////

We are now in the position to prove our main result concerning existence of
very weak solutions.

Theorem 1.6 Let χ > 0, and suppose that g satisfies (H1α) and (H2α) with
some α > 2 − 1

n
. Then for each nonnegative u0 ∈ L1(Ω), the problem (0.4)

possesses at least one global very weak solution (u, v). This solution can be ob-
tained as the limit of an appropriate sequence

(

(uε, vε)
)

ε=εjց0
of global bounded

classical solutions of (1.6) in the sense that

uε → u a.e. in Ω × (0,∞), (1.43)

u
γ
2
ε ⇀ u

γ
2 in L2

loc([0,∞);W 1,2(Ω)), (1.44)

uε ⇀ u in Lα
loc(Ω̄ × [0,∞)) and (1.45)

vε ⇀ v in Lα
loc([0,∞);W 2,α(Ω)) (1.46)

as ε = εj ց 0 for any γ ∈ (0, 1) satisfying γ ≤ α− 1.

Proof. From (1.12) and elliptic theory applied to the equation for vε, we
know that (vε)ε∈(0,1) is bounded in Lα((0, T );W 2,α(Ω)) for all T > 0. In view
of Lemma 1.4, Lemma 1.2, (1.12) and Lemma 1.5, we can thus pick a sequence
of numbers ε = εj ց 0 such that (1.43)-(1.46) as well as

uε → u in Lp(Ω × (0, T )) for all p ∈ [1, α) (1.47)

and

vε ⇀ v in Lq((0, T );W 1,q(Ω)) for all q ∈
(

1,
nα

n− 1

)

(1.48)

as ε = εj ց 0 hold for all T > 0 and any γ ∈ (0, 1) satisfying γ ≤ α − 1 with
some nonnegative functions u and v.

In order to check that (u, v) is a very weak subsolution of (0.4) in Ω× (0, T ), let

15



a test function ϕ satisfying (1.3) be given. Then multiplying the first equation
in (1.6) by ϕ and integrating by parts, for all ε ∈ (0, 1) we have

−

∫ T

0

∫

Ω

uεϕ−

∫

Ω

u0εϕ(·, 0) −

∫ T

0

∫

Ω

uε∆ϕ− χ

∫ T

0

∫

Ω

uε∇vε · ∇ϕ

=

∫ T

0

∫

Ω

g(uε)ϕ− ε

∫ T

0

∫

Ω

uβ
εϕ. (1.49)

By (1.47) and (1.7),

−

∫ T

0

∫

Ω

uεϕt → −

∫ T

0

∫

Ω

uϕt, (1.50)

−

∫

Ω

u0εϕ(·, 0) → −

∫

Ω

u0ϕ(·, 0) and (1.51)

−

∫ T

0

∫

Ω

uε∆ϕ→ −

∫ T

0

∫

Ω

u∆ϕ (1.52)

as ε = εj ց 0. Since α > 2 − 1
n

= 2n−1
n

, we have 1
α

+ 1
nα

n−1
= 2n−1

nα
< 1, and

hence we can choose p > 1 close to α and q > 1 close to nα
n−1 such that 1

p
+ 1

q
≤ 1.

Then (1.47) and (1.48) ensure that

−χ

∫ T

0

∫

Ω

uε∇vε · ∇ϕ→ −χ

∫ T

0

∫

Ω

u∇v · ∇ϕ (1.53)

as ε = εj ց 0.
As to the logistic term, we split g according to g(s) = g+(s) − g−(s), where
g+(s) = max{0, g(s)} and g−(s) = max{0,−g(s)} are nonnegative. By (1.47)
and the dominated convergence theorem,

∫ T

0

∫

Ω

g+(uε)ϕ→

∫ T

0

∫

Ω

g+(u)ϕ,

because g+ evidently is bounded on [0,∞). Since Fatou’s lemma implies

∫ T

0

∫

Ω

g−(u)ϕ ≤ lim inf
ε=εjց0

∫ T

0

∫

Ω

g−(uε)ϕ,

we obtain
∫ T

0

∫

Ω

g(u)ϕ ≥ lim sup
ε=εjց0

∫ T

0

∫

Ω

g(uε)ϕ. (1.54)

Altogether, (1.50)-(1.54) and the fact that the last term in (1.49) is nonpositive
entail that u satisfies (1.1), whereas (1.46) implies that (1.2) holds for all ψ
fulfilling (1.4). Since the regularity requirements made in Definition 1.1 are
readily checked to be consequences of (1.44)-(1.46) and (1.48), we conclude that
(u, v) in fact is a very weak subsolution of (0.4) in Ω × (0, T ) for all T > 0.
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We next assert that (u, v) is a weak γ-entropy supersolution for any γ ∈ (0, α−1].
To this end, we fix ϕ as required by (1.3) and test the first equation in (1.6) by
uγ−1

ε ϕ to obtain

−

∫ T

0

∫

Ω

uγ
εϕt −

∫

Ω

u
γ
0εϕ(·, 0)

= γ(1 − γ)

∫ T

0

∫

Ω

uγ−2
ε |∇uε|

2ϕ+

∫ T

0

∫

Ω

uγ
ε∆ϕ

+(1 − γ)χ

∫ T

0

∫

Ω

uγ
εvεϕ− (1 − γ)χ

∫ T

0

∫

Ω

uγ+1
ε ϕ

+χ

∫ T

0

∫

Ω

uγ
ε∇vε · ∇ϕ

+γ

∫ T

0

∫

Ω

uγ−1
ε g(uε)ϕ− γε

∫ T

0

∫

Ω

uβ+γ−1
ε ϕ. (1.55)

Since γ < 1, we can again use (1.47) and (1.7) to see that

−

∫ T

0

∫

Ω

uγ
εϕt → −

∫ T

0

∫

Ω

uγϕt, (1.56)

−

∫

Ω

u
γ
0εϕ(·, 0) → −

∫

Ω

u
γ
0ϕ(·, 0) and (1.57)

∫ T

0

∫

Ω

uγ
ε∆ϕ→

∫ T

0

∫

Ω

uγ∆ϕ, (1.58)

and a simplified variant of the reasoning leading to (1.53) shows that

χ

∫ T

0

∫

Ω

uγ
ε∇vε · ∇ϕ→ χ

∫ T

0

∫

Ω

uγ∇v · ∇ϕ (1.59)

as well as

(1 − γ)χ

∫ T

0

∫

Ω

uγ
εvεϕ→ (1 − γ)χ

∫ T

0

∫

Ω

uγvϕ (1.60)

as ε = εj ց 0.
Now in order to prove that

γ

∫ T

0

∫

Ω

uγ−1
ε g(uε)ϕ→ γ

∫ T

0

∫

Ω

uγ−1g(u)ϕ, (1.61)

we first split g via g(s) = g(0) + h(s) with h ∈ C1([0,∞)) satisfying h(0) = 0
and thus |h(s)| ≤ c̄0(s+ sα) for s ≥ 0 in view of (H1α) and (H2α) . Therefore,

∫ T

0

∫

Ω

uγ−1
ε g(uε)ϕ = g(0) ·

∫ T

0

∫

Ω

uγ−1
ε ϕ+

∫ T

0

∫

Ω

uγ−1
ε h(uε)ϕ, (1.62)
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where for r := α
α+γ−1 > 1 we have

∫ T

0

∫

Ω

|uγ−1
ε h(uε)|

r ≤ c̄r0

∫ T

0

∫

Ω

|uγ
ε + uα+γ−1

ε |r

≤ c1

(

1 +

∫ T

0

∫

Ω

uα
ε

)

(1.63)

with some c1 > 0. By (1.12) amd (1.43), we thus infer that uγ−1
ε h(uε) ⇀

uγ−1h(u) in Lr(Ω × (0, T )) and hence

∫ T

0

∫

Ω

uγ−1
ε h(uε)ϕ→

∫ T

0

∫

Ω

uγ−1h(u)ϕ (1.64)

as ε = εj ց 0. If g(0) = 0, this immediately proves (1.61), while in the
case g(0) > 0 we apply Lemma 1.2 with γ replaced by any γ0 ∈ (0, γ) to see
that (uγ−1

ε )ε∈(0,1) is bounded in Ls(Ω × (0, T )) with s = 1−γ0

1−γ
> 1, so that

uγ−1
ε ⇀ uγ−1 in Ls(Ω × (0, T )) due to (1.43) and therefore

g(0) ·

∫ T

0

∫

Ω

uγ−1
ε ϕ→ g(0) ·

∫ T

0

∫

Ω

uγ−1ϕ

as ε = εj ց 0. Together with (1.64), this completes the proof of (1.61).
As to the last term in (1.55), we apply the Hölder inequality to obtain

∣

∣

∣
− γε

∫ T

0

∫

Ω

uβ+γ−1
ε ϕ

∣

∣

∣
≤ γ · ε

1−γ
β ·

(

ε

∫ T

0

∫

Ω

uβ
ε

)

β+γ−1
β

·
(

∫ T

0

∫

Ω

ϕ
β

1−γ

)

1−γ
β

and thus infer from (1.13) that

−γε

∫ T

0

∫

Ω

uβ+γ−1
ε ϕ→ 0 (1.65)

as ε→ 0.
Finally, the estimate (1.15) guarantees that (∇u

γ
2
ε )ε∈(0,1) is bounded and hence

weaky precompact in L2(Ω× (0, T )). Once more due to (1.43), this means that

∇u
γ
2
ε ⇀ ∇u

γ
2 in L2(Ω× (0, T )). Thus, by lower semicontinuity of the seminorm

||| · ||| on L2(Ω× (0, T )) defined by |||w||| := (
∫ T

0

∫

Ωw
2ϕ)

1
2 with respect to weak

convergence, we find

γ(1 − γ)

∫ T

0

∫

Ω

uγ−2|∇u|2ϕ ≤ γ(1 − γ) · lim inf
ε=εjց0

∫ T

0

∫

Ω

uγ−2
ε |∇uε|

2ϕ. (1.66)

Collecting (1.55)-(1.61), (1.65) and (1.66), we see that (1.5) in fact is valid.
Since the required regularity of (u, v) can be derived from (1.44)-(1.46), (1.48)
and (1.63), we thereby see that (u, v) is a γ-entropy supersolution. ////

Combining the regularity properties that u inherits from uε via (1.44) and (1.45)
with the Sobolev embedding W 1,2(Ω) →֒ Lq(Ω) for n = 1 and q = ∞, or n ≥ 2
and any q <∞ satisfying (n− 2)q ≤ 2n, we immediately obtain
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Corollary 1.7 Under the assumptions of Theorem 1.6, we have u(·, t) ∈ Lp(Ω)
for a.e. t > 0 and any











p ≤ ∞ if n = 1,

p <∞ if n = 2,

p ≤ α such that p < n
n−2 · min{α− 1, 1} if n ≥ 3.

2 Boundedness properties

We now turn our attention to the question of boundedness of the very weak
solutions constructed above.

2.1 Globally bounded small-data solutions

We start with an observation that is a simple consequence of the parabolic
comparison priciple.

Lemma 2.1 Suppose that g satisfies (H1α) with some α > 1, a ≥ 0 and suffi-
ciently large b > 0 such that there exists a positive number s0 satisfying

χs20 + a− bsα
0 ≤ 0. (2.1)

Then for all nonnegative u0 ∈ L∞(Ω) with ‖u0‖L∞(Ω) ≤ s0, (0.4) possesses a
global bounded very weak solution (u, v).

Proof. In (1.6), besides (1.7) we can achieve that u0ε ≤ s0 in Ω. Differen-
tiating the cross-diffusion term in (1.6) and using the equation for vε, we find
that uε satisfies

uεt = ∆uε − χ∇uε · ∇vε − χuεvε + χu2
ε + g(uε) − εuβ

ε

≤ ∆uε − χ∇uε · ∇vε + χu2
ε + a− buα

ε (2.2)

in Ω × (0,∞) for all ε ∈ (0, 1). Since w(x, t) := s0 solves wt ≥ ∆w −
χ∇w · ∇vε + χw2 + a − bwα with ∂w

∂ν
= 0 on ∂Ω and lies above u0ε ini-

tially, the comparison pronciple shows that uε ≤ s0 in Ω × (0,∞). Since
maxx∈Ω̄ vε(x, t) ≤ maxx∈Ω̄ uε(x, t) holds for all t > 0 due to an elliptic maxi-
mum principle argument, we also have vε ≤ s0.
In order to make Theorem 1.6 directly applicable without a re-inspection of
its proof, we now manipulate g(s) beyond s = s0 so as to obtain a function
g̃ ∈ C1([0,∞)) that coincides with g on [0, s0] and satisfies (H1α) and (H2α)
with some α ∈ (2− 1

n
, 2). Since (uε, vε) still solves (1.6) with g replaced by g̃, we

may conclude from Theorem 1.6 that along an appropriate sequence ε = εj ց 0,
we obtain a global very weak solution (u, v) of (0.4) satisfying u ≤ s0 and v ≤ s0
in Ω × (0,∞). ////

The reasoning in the following lemma was partly inspired by that in Theorem 7
in [HR]. Relying on the mass evolution results from Lemma 1.1, it provides an
autonomous ordinary differential inequality for uε in Lγ(Ω) for arbitrary γ > 1.
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Lemma 2.2 Let (H1α) hold with some α > 1. For t0 ≥ 0 and ε ∈ (0, 1), let

Mε(t0) := max{m, ‖uε(·, t0)‖L1(Ω)} (2.3)

with m = (a
b
)

1
α |Ω| as in Lemma 1.1.

Then for all γ > 1 satisfying γ > n
2 there exist positive constants κ > 1, η, µ

and C such that for any t0 ≥ 0 and ε ∈ (0, 1) we have

d

dt

∫

Ω

uγ
ε (x, t)dx ≤ C

(

∫

Ω

uγ
ε

)κ

− η

∫

Ω

uγ
ε + C

(

Mγ+1
ε (t0) +Mµ

ε (t0)
)

(2.4)

for all t > t0.

Remark. Observe that the right-hand side in (2.4) is negative for small
positive values of

∫

Ω
uγ

ε whenever Mε(t0) is small. Below, this property will be
used in two different situations to achieve boundedness of the norm of u(·, t) in
Lγ(Ω) (cf. Theorem 2.4 and lemma 2.5).

Proof. We multiply the first equation in (1.6) by uγ−1
ε , integrate by parts

and use the identity ∆vε = vε − uε as well as (H1α) to see that

1

γ

d

dt

∫

Ω

uγ
ε (x, t)dx + (γ − 1)

∫

Ω

uγ−2
ε |∇uε|

2

= −
χ(γ − 1)

γ

∫

Ω

uγ
εvε +

χ(γ − 1)

γ

∫

Ω

uγ+1
ε

+

∫

Ω

uγ−1
ε g(uε) − ε

∫

Ω

uβ+γ−1
ε

≤
χ(γ − 1)

γ

∫

Ω

uγ+1
ε + a

∫

Ω

uγ−1
ε (2.5)

for t > 0. Here, in the case γ ≤ 2 we invoke the Hölder inequality to estimate

a

∫

Ω

uγ−1
ε ≤ a|Ω|2−γ ·

(

∫

Ω

uε

)γ−1

,

while if γ > 2 then Young’s inequality gives

a

∫

Ω

uγ−1
ε ≤

χ(γ − 1)

γ

∫

Ω

uγ+1
ε + c1

∫

Ω

uε

with some c1 > 0. Writing µ := min{γ − 1, 1}, we thus have

d

dt

∫

Ω

uγ
ε (x, t)dx+

4(γ − 1)

γ

∫

Ω

|∇u
γ
2
ε |2 ≤ 2χ(γ−1)

∫

Ω

uγ+1
ε +c2

(

∫

Ω

uε

)µ

(2.6)

with c2 = max{γa|Ω|2−γ , γc1}.

We now use that W 1,2(Ω) →֒ L
2(γ+1)

γ (Ω) because γ > n
2 > n

2 − 1, and hence
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may apply the Gagliardo-Nirenberg inequality to find cGN > 0 such that

2χ(γ − 1)

∫

Ω

uγ+1
ε = 2χ(γ − 1)‖u

γ
2
ε ‖

2(γ+1)
γ

L
2(γ+1)

γ (Ω)

≤ cGN

(

‖∇u
γ
2
ε ‖

2(γ+1)
γ

θ

L2(Ω) · ‖u
γ
2
ε ‖

2(γ+1)
γ

(1−θ)

L2(Ω) + ‖u
γ
2
ε ‖

2(γ+1)
γ

L
2
γ (Ω)

)

,(2.7)

where

−
nγ

2(γ + 1)
=

(

1 −
n

2

)

θ −
n

2
(1 − θ) ≡ θ −

n

2
,

that is,

θ =
n

2

(

1 −
γ

γ + 1

)

=
n

2(γ + 1)
.

Since γ > n
2 , we may employ Young’s inequality with exponents 2γ

n
and 2γ

2γ−n

to gain

cGN‖∇u
γ
2
ε ‖

2(γ+1)
γ

θ

L2(Ω) · ‖u
γ
2
ε ‖

2(γ+1)
γ

(1−θ)

L2(Ω) = cGN‖∇u
γ
2
ε ‖

n
γ

L2(Ω) · ‖u
γ
2
ε ‖

2(γ+1)−n

γ

L2(Ω)

≤
2(γ − 1)

γ
‖∇u

γ
2
ε ‖2

L2(Ω) + c3‖u
γ
2
ε ‖

2· 2(γ+1)−n

2γ−n

L2(Ω)

with some c3 > 0. Thus, (2.6) and (2.7) imply

d

dt

∫

Ω

uγ
ε (x, t)dx +

2(γ − 1)

γ

∫

Ω

|∇u
γ
2
ε |2

≤ c3

(

∫

Ω

uγ
ε

)

2(γ+1)−n

2γ−n

+ cGN

(

∫

Ω

uε

)γ+1

+ c2

(

∫

Ω

uε

)µ

. (2.8)

Finally, the Poincaré inequality provides some cP > 0 such that
∫

Ω

uγ
ε = ‖u

γ
2
ε ‖2

L2(Ω) ≤ cP

(

‖∇u
γ
2
ε ‖2

L2(Ω) + ‖u
γ
2
ε ‖2

L
2
γ Ω)

)

= cP

(
∫

Ω

|∇u
γ
2
ε |2 +

(

∫

Ω

uε

)γ
)

, (2.9)

which inserted into (2.8) yields

d

dt

∫

Ω

uγ
ε (x, t)dx ≤ c3

(

∫

Ω

uγ
ε

)

2(γ+1)−n

2γ−n

−
2(γ − 1)

γcP

∫

Ω

uγ
ε

+cGN

(

∫

Ω

uε

)γ+1

+
2(γ − 1)

γcP

(

∫

Ω

uε

)γ

+ c2

(

∫

Ω

uε

)µ

.

Here, in treating the last three terms we use that the mass evolution estimate
(1.8) from Lemma 1.1 implies

∫

Ω uε(x, t)dx ≤ Mε(t0) whenever t > t0. Since
γ + 1 > γ > µ, a simple interpolation allows us to bound Mγ

ε (t0) by some
multiple of (Mγ+1

ε (t0) +Mµ
ε (t0)), so that (2.4) follows. ////

As another preliminary, we shall need the following smoothing property of (1.6).
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Lemma 2.3 Let (H1α) be satisfied with some α > 1, and assume that there
exist γ0 >

n
2 , C > 0, ε0 > 0 and 0 ≤ t1 < t2 ≤ ∞ such that

‖uε(·, t)‖Lγ0(Ω) ≤ C for all t ∈ (t1, t2) (2.10)

is valid for all ε ∈ (0, ε0). Then for any τ > 0 we can find C(τ) > 0 such that

‖uε(·, t)‖L∞(Ω) ≤ C(τ) for all t ∈ (t1 + τ, t2) (2.11)

holds whenever ε ∈ (0, ε0).

Proof. The proof closely follows that of Lemma 2.3 and Lemma 2.4 in [TW],
and thus we may restrict ourselves to outlining the main steps.
First, we fix any γ > γ0 and proceed as in deriving (2.6) to obtain

d

dt

∫

Ω

uγ
ε (x, t)dx +

4(γ − 1)

γ

∫

Ω

|∇u
γ
2
ε |2 ≤ 2χ(γ − 1)

∫

Ω

uγ+1
ε + c1 (2.12)

for ε ∈ (0, ε0) and some c1 > 0 depending on ‖u0‖L1(Ω). By the Gagliardo-
Nirenberg inequality,

∫

Ω

uγ+1
ε = ‖u

γ
2
ε ‖

2(γ+1)
γ

L
2(γ+1)

γ (Ω)

≤ cGN

(

‖∇u
γ
2
ε ‖

2(γ+1)
γ

θ

L2(Ω) · ‖u
γ
2
ε ‖

2(γ+1)
γ

(1−θ)

L
2γ0

γ (Ω)

+ ‖u
γ
2
ε ‖

2(γ+1)
γ

L
2
γ (Ω)

)

(2.13)

holds with some cGN > 0 and

θ =
nγ(γ + 1 − γ0)

(γ + 1)(nγ − nγ0 + 2γ0)
.

Since γ0 >
n
2 , it is easily checked that

2(γ + 1)

γ
θ =

2n(γ + 1 − γ0)

nγ − nγ0 + 2γ0
< 2.

Hence, from (2.13) we infer upon applying Young’s inequality that

(

1 + 2χ(γ − 1)
)

∫

Ω

uγ+1
ε (x, t)dx ≤

4(γ − 1)

γ

∫

Ω

|∇u
γ
2
ε |2 + c2 for all t ∈ (t1, t2),

and thus (2.12) gives

d

dt

∫

Ω

uγ
ε (x, t)dx ≤ −

∫

Ω

uγ+1
ε + c3

≤ −|Ω|−
1
γ

(

∫

Ω

uεγ
)

γ+1
γ

+ c3 for t ∈ (t1, t2),

where c2 and c3 depend on ‖u0‖L1(Ω) and C only. Upon integration we obtain,

since γ+1
γ

> 1, that for all ε ∈ (0, ε0) and arbitrary γ > γ0,

‖uε(·, t)‖Lγ(Ω) ≤ c4 = c4(‖u0‖L1(Ω), C, γ, τ) for t ∈ (t1 + τ, t2). (2.14)
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Applying elliptic regularity theory to the second equation in (1.6), we therefore
conclude that (uε∇vε)ε∈(0,ε0) is bounded in L∞((t1+τ, t2);L

p(Ω)) for all p <∞.
Now standard arguments relying, for instance, on explicit representation of uε

involving the semigroup (et∆)t≥0 generated by the Neumann Laplacian in Ω,
finally yield the desired uniform bound for uε in L∞

loc(Ω̄ × (t1, t2]) (cf. Lemma
2.4 in [TW] for details on this, or [A] for an alternative reasoning). ////

We now can prove our main result on global bounded small-data solutions.

Theorem 2.4 Assume that g fulfills (H1α) with some α > 1. Then there exists
δ > 0 with the property that if a

b
< δ then for all γ > max{1, n

2 } one can find
λ > 0 such that whenever u0 ∈ L∞(Ω) satisfies ‖u0‖Lγ(Ω) < λ, the problem
(0.4) possesses a global bounded very weak solution (u, v).

Proof. Given γ > max{1, n
2 }, let κ, η, µ and C be the constants provided

by Lemma 2.2. For M ≥ 0, let

φM (ξ) := Cξκ − ηξ + C(Mγ+1 +Mµ), ξ ≥ 0, (2.15)

and

SM :=
{

ξ > 0
∣

∣

∣
∃ ξ̄ ≥ ξ such that φM (ξ̄) = 0

}

.

Since κ > 1 and η > 0, the number ξ0 := ( η
C

)
1

κ−1 belongs to S0, and thus from a
continuous dependence argument it follows that there exists M0 > 0 such that
ξ0

2 ∈ SM for all M ≤M0. We set

δ :=
(M0

|Ω|

)α

and λ := min

{

(ξ0

2

)
1
γ

,
M0

|Ω|
γ−1

γ

}

, (2.16)

and henceforth suppose that a
b
< δ and ‖u0‖Lγ(Ω) < λ.

Then
∫

Ω

u0 ≤ |Ω|
γ−1

γ · ‖u0‖Lγ(Ω) < M0, (2.17)

and hence, in view of the definition of δ, Mε(0) = max{(a
b
)

1
α |Ω|, ‖u0ε‖L1(Ω)} as

introduced in Lemma 2.2 satisfies Mε(0) ≤ M0 for all sufficiently small ε > 0.
Since after possibly regularizing u0ε we may assume that also ‖u0ε‖Lγ(Ω) < λ

holds for small ε, we obtain
∫

Ω

u
γ
0ε < λγ ≤

ξ0

2
(2.18)

for such ε. Now Lemma 2.2 applies to ensure that y(t) :=
∫

Ω
uγ

ε (x, t)dx satisfies
y′(t) ≤ φM0(y(t)) for all t > 0, because Mε(0) ≤M0 and φM obviously increases
with M . Since y(0) =

∫

Ω
u

γ
0ε lies below some zero ξ̄0 of φM0 , it follows from an

ODE comparison that y(t) ≤ ξ̄0 for all t > 0, and therefore

‖uε(·, t)‖Lγ(Ω) ≤ ξ̄0 for all t > 0 (2.19)
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holds for all sufficiently small ε > 0.
In order to be able to apply Lemma 2.3 with an appropriate τ > 0, let us make
sure that (uε)ε∈(0,1) is bounded in L∞(Ω × (0, τ)) for some τ > 0. Indeed,
the fact that u0 ∈ L∞(Ω) allows us to assume without loss of generality that
‖u0ε‖L∞(Ω) ≤ c1 holds for all ε ∈ (0, 1) and some c1 > 0. Recalling (2.2), we
see that

uεt ≤ ∆uε − χ∇uε · ∇vε + χu2
ε + a in Ω × (0,∞),

which by parabolic comparison implies that

‖uε(·, t)‖L∞(Ω) ≤ z(t) for all t ∈ (0, τz), (2.20)

where z denotes the solution of
{

z′ = χz2 + a, t ∈ (0, τz),

z(0) = c1,

and τz > 0 its maximal existence time.
Now due to (2.19), Lemma 2.3 guarantees that for some ε0 > 0, (uε)ε∈(0,ε0) is
bounded in L∞(Ω× ( τz

2 ,∞)) which together with (2.20) proves boundedness of
(uε)ε∈(0,ε0) in L∞(Ω × (0,∞)). Arguing as in Lemma 2.1, from this we easily

conclude that some limit (u, v) of
(

(uε, vε)
)

ε∈(0,ε0)
as ε = εj ց 0 is a globally

bounded very weak solution of (0.4). ////

2.2 Eventual boundedness

Our next goal is to show boundedness beyond some prescribed τ > 0. Again, this
can be achieved upon imposing a suitable smallness condition on u0, measured
however in L1(Ω) rather than in Lγ(Ω) as in Theorem 2.4. Here we once more
rely on the differential inequality (2.4).

Lemma 2.5 Assume that g satisfies (H1α) with some α > n
2 . Then for all

τ > 0 there exist positive constants δ(τ) and C(τ) with the following property:
If there exist t0 ≥ 0 and ε0 > 0 such that the number

Mε(t0) = max
{

(
a

b
)

1
α |Ω|, ‖uε(·, t0)‖L1(Ω)

}

from Lemma 2.2 satisfies

Mε(t0) < δ(τ)

then

‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖L∞(Ω) ≤ C(τ) for all t ≥ t0 + τ (2.21)

is valid whenever ε ∈ (0, ε0).
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Proof. As in the proof of Theorem 2.4, for ξ ≥ 0 and M ≥ 0 we let
φM (ξ) = Cξκ − ηξ+C(Mα+1 +Mµ) with κ, η, µ and C taken from Lemma 2.2
upon the choice γ = α > n

2 . Again we find ξ0 > 0 and M0 > 0 such that for all

M ≤M0 there exists a zero ξ̄0 ≥ ξ0

2 of φM . We let

δ(τ) := min
{(ξ0

8

)
1
α

|Ω|
α−1

α ,
ξ0bτ

8
, M0

}

(2.22)

and claim that if Mε(t0) < δ(τ) for ε < ε0 then (2.21) holds for an appropriately
large C(τ).
To this end, we first employ Lemma 1.1 to obtain

∫

Ω

uε(x, t)dx ≤ δ(τ) for all t > t0 (2.23)

and

∫ t0+τ

t0

∫

Ω

uα
ε ≤

a|Ω|τ + δ(τ)

b

for ε < ε0, so that necessarily there must exist some tε ∈ (t0, t0 + τ
2 ) such that

∫

Ω

uα
ε (x, tε)dx ≤

2

τ
·
a|Ω|τ + δ(τ)

b
.

Since, by the definition of Mε(t0) and (2.22),

2

τ
·
a|Ω|τ + δ(τ)

b
≤ 2|Ω| ·

(Mε(t0)

|Ω|

)α

+
2δ(τ)

bτ

≤ 2|Ω| ·
(

δ(τ)|Ω|
)α

+
2δ(τ)

bτ

≤
ξ0

4
+
ξ0

4
=
ξ0

2
,

we thereby have found tε ∈ (t0, t0 + τ
2 ) such that

∫

Ω

uα
ε (x, tε)dx ≤

ξ0

2
.

As ‖uε(·, tε)‖L1(Ω) ≤ δ(τ) ≤ M0 by (2.23) and (2.22), the properties of φM0

in conjunction with the differential inequality (2.4) imply that ‖uε(·, t)‖Lα(Ω)

is bounded by a constant independent of t ∈ (t0 + τ
2 ,∞) and ε ∈ (0, ε0). Now

an application of lemma 2.3 provides the desired L∞ bound for uε in Ω× (t0 +
τ,∞) and thus also for vε, again because of the fact that ‖vε(·, t)‖L∞(Ω) ≤
‖uε(·, t)‖L∞(Ω) for all t > 0. ////

Now the first of our main results of this section reduces to a corollary that we
may state without further comment.
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Theorem 2.6 Suppose that g fulfills (H1α) and (H2α) with some α > max{n
2 , 2−

1
n
}. Then for all τ > 0 there exists δ(τ) > 0 such that if

max
{(a

b

)
1
α

|Ω|, ‖u0‖L1(Ω)

}

< δ(τ)

then the weak solution (u, v) constructed in Theorem 1.6 is bounded in Ω×(τ,∞).

Let us finally make sure that any of our solutions eventually becomes bounded,
regardless of its initial size in L1(Ω). In fact, we shall find a bound in L∞(Ω)
that is independent of ‖u0‖L1(Ω); clearly, however, the time beyond which the
corresponding estimate holds will depend on u0.

Lemma 2.7 Let (H1α) be satisfied with some α > n
2 . Then there exist positive

constants δ and C with the property that if a
b
< δ then for all nonnegative

u0 ∈ L1(Ω) one can pick T > 0 such that for all ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖L∞(Ω) ≤ C for all t ≥ T. (2.24)

Proof. Let δ(1) and C(1) be the constants provided by Lemma 2.5 upon
the special choice τ = 1. We set

δ :=
(δ(1)

|Ω|

)α

and assume that a
b
< δ, so that m := (a

b
)

1
α |Ω| satisfies m < δ(1). Then from the

inequality (1.8) in Lemma 1.1 and our overall assumption (1.7) we know that

∫

Ω

uε(x, t)dx ≤ m+
(

‖u0‖L1(Ω) + 1
)

· e−kt

holds for all t > 0 and ε ∈ (0, 1) with some k > 0. In particular, there exists
t0 > 0 such that

∫

Ω

uε(x, t0)dx < δ(1)

and hence Mε(t0) = max{m, ‖uε(·, t0)‖L1(Ω)} < 1 for all ε ∈ (0, 1). Accordingly,
Lemma 2.5 says that (2.24) must be true for C := C(1) and all ε ∈ (0, 1) if we
let T := t0 + 1. ////

Taking ε = εj ց 0 along an appropriate sequence, we immediately obtain our
final result.

Theorem 2.8 Suppose that g satisfies (H1α) and (H2α) with a fixed number
α > max{n

2 , 2 − 1
n
}. Then there exist δ > 0 and a ball B in L∞(Ω) such that

whenever a
b
< δ and u0 ∈ L1(Ω) is nonnegative, there exists T > 0 with the

property that the very weak solution (u, v) constructed in Theorem 1.6 satisfies
u(·, t) ∈ B and v(·, t) ∈ B for all t ≥ T .
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3 Numerical examples

Let us finally illustrate some of our theoretical results by numerical calculations.
In doing so, we restrict ourselves to the case where χ = 1, Ω = B1(0) is the
unit ball in R

n, and where the initial data u0 and hence the solution (u, v) are
radially symmetric with respect to x = 0. The resulting system (0.4) is then
actually one-dimensional in space, which considerably reduces the technical ex-
pense necessary for our spatial discretization. In particular, we then only need

to approximate the radial differential operators ∂
∂r

and ∂2

∂r2 in the standard way
by the usual difference operators.
Throughout our numerical experiments, at each time step we first interpret the
second equation in (0.4) as a Helmholtz equation for the unknown v with known
inhomogeneity u taken from the previous time step. Having thereby found v

at the current time, we insert this into the first in (0.4) and then perform an
explicit Euler discretization to compute u from this equation, where the time
step size can be cotrolled via standard methods familiar from the numerical
solution of ODE systems (cf. [S]).

3.1 Smoothing action of the chemotaxis system

A first example refers to problem (0.4) in space dimension n = 2, with logistic
term given by

g(u) = 1 − u1.8, u ≥ 0,

and initial data

u0(x) =
0.1

(|x| + 0.001)1.5
, 0 ≤ |x| ≤ 1.

Observe that the choice α = 1.8 < 2 has not been covered by known results
in the literature (for instance by [TW]). The initial data are supposed to be a
‘good’ approximation of the singular function given by u0(x) = 0.1|x|−1.5 that is
not in L2(Ω) (the largest previously considered space of admissible initial data
in chemotaxis problems, cf. the introduction).

Figure 1 shows the short time behavior of the first component u of the numerical
solution, depicted in dependence of the scalar variable r = |x|. This illustrates
the regularizing effect of the evolution governed by (0.4) even for α < 2 and
‘bad’ initial data, as asserted by Theorem 1.6 and Corollary 1.7.

27



Fig. 1. Abscissa: r = |x|; ordinate: First solution component
u = u(r, t) at times t = 0; t = 1.22 · 10−5; t = 2.44 · 10−5;
t = 4.88 · 10−5; t = 1.22 · 10−4; t = 4.46 · 10−4. Decreasing
values of u at r = 0 correspond to increasing values of t: The
graph with u(0, t) > 1000 represents t = 0.

3.2 Boundedness of small-data solutions

The motivation for the following example is to demonstrate the assertion on
boundedness of solutions emenating from initial data that are sufficiently small
in Lγ(Ω) for some γ > max{1, n

2 }, provided that the quotient a
b

in (H1α) is small
enough. For this purpose, we consider the three-dimensional radial version of
(0.4) with logistic term

g(u) = 1 − 100u1.2, u ≥ 0,

and approach the ‘small’ initial data

u0(x) = 0.0001 · |x|−1.2, 0 < |x| ≤ 1,

by the bounded approximates

u
(ε)
0 (x) =

0.0001

(|x| + ε)1.2
, 0 ≤ |x| ≤ 1,

where ε will attain certain small positive values. Observe that since the integral
∫ 1

0 r
2 · r−1.2γdr is finite for all γ < 2.5, the singular data belong to Lγ(Ω) for

such γ; we thus may believe that all these data u
(ε)
0 are appropriately small in

Lγ(Ω) for some γ > 3
2 .

Figure 2 shows the time evolution of the spatial L∞ norm of u(ε) for some small
ε. Though our computational capacity reaches its limit at ε = 2.4 · 10−8, we
believe that the corresponding graph can be regarded as a good approximation
of the one to be expected for the singular initial function. In any event, Fig. 2
indicates the global boundedness of all approximate solutions. Actually, a closer
look at the spatial profile shows that all these numerical solutions approach the
constant steady state determined by u∞ ≡ ( 1

100 )
1

1.2 ≈ 0.0215 as t→ ∞.
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Fig. 2. Abscissa: time t; ordinate: L∞(Ω) norm of the

solution u(ε)(·, t) corresponding to the initial data u
(ε)
0 with

ε = 3 · 10−5; ε = 10−5; ε = 3 · 10−6; ε = 10−6; ε = 3 · 10−7;
ε = 10−7; ε = 6 · 10−8; ε = 4 · 10−8; ε = 2.4 · 10−8. The
graphs increase when ε decreases, the largest one belonging to
ε = 2.4 · 10−8.

3.3 Unbounded very weak solutions; blow-up

We finally give an example which indicates that in spite of the asserted regu-
larizing effects, very weak solutions need not remain bounded even if they have
become smooth at some positive time. To be more precise, we numerically
investigate the possibility of finite-time blow-up in (0.4) when n = 2 and

g(u) = 1 − bu1.8, u ≥ 0,

where we consider both b = 1 and b = 0.01. The initial data are chosen to be

u0(x) =
0.1

(|x| + 0.001)1.5
, 0 ≤ |x| ≤ 1.

Fig. 3. Abscissae: t; ordinates: L∞(Ω) norm of the solution u(·, t) in the case g(u) = 1−0.01u1.8

29



Fig. 4. Abscissae: t; ordinates: L∞(Ω) norm of the solution u(·, t) in the case g(u) = 1 − u1.8

Figure 3 shows that finite-time blow-up occurs when the dampening effect in
the logistic term is small (b = 0.01), whereas according to Figure 4, the same
initial data lead to a globally bounded solution (again stabilizing to the constant
equilibrium (u, v) ≡ 1) when the growth inhibition is stronger (b = 1).

Fig. 5. Abscissa: time T ; ordinate: Lα(Ω × (0, T )) norm of
the blow-up solution u in the case g(u) = 1 − 0.01u1.8

But our numerical solution, though blowing up in finite time with respect to the
norm in L∞(Ω), complies with the space-time summability assertion in Theorem

1.6: As indicated by Figure 5, the integral
∫ T

0

∫

Ω
uα(x, t)dxdt remains bounded

across – but at least up to – the blow-up time.

3.4 Conclusion

Unfortunately, our algorithm, being essentially of experimental nature and of
course lacking any justification by numerical analysis, is not able to compute an
unbounded solution beyond its blow-up time. However, in our opinion the above
illustrations strongly indicate that logistic growth inhibition gives rise to much a
larger variety in the dynamics of (0.4) than one possibly might expect: Besides
some mechanisms of regularization and stabilization, we have found numerical
evidence suggesting the existence of solutions that model cell aggregation in the
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sense of finite-time blow-up – in spite of superlinear logistic dampening. Though
the latter needs to be proved in future work, we regard this as a strong advice
to rely on (very) weak rather than on classical solutions in the present context.
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