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Abstract

We consider the classical parabolic-parabolic Keller-Segel system{
ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ Rn.
It is proved that in space dimension n ≥ 3, for each q > n

2
and p > n one can find ε0 > 0 such

that if the initial data (u0, v0) satisfy ‖u0‖Lq(Ω) < ε and ‖∇v0‖Lp(Ω) < ε then the solution
is global in time and bounded and asymptotically behaves like the solution of a discoupled
system of linear parabolic equations. In particular, (u, v) approaches the steady state (m, m)
as t→∞, where m is the total mass m :=

∫
Ω

u0 of the population.
Moreover, we shall show that if Ω is a ball then for arbitrary prescribed m > 0 there exist
unbounded solutions emanating from initial data (u0, v0) having total mass

∫
Ω

u0 = m.
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Introduction

In the mathematical modeling of self-organization of living cells, the Keller-Segel system of partial
differential equations, {

ut = ∆u−∇ · (u∇v),

vt = ∆v − v + u,
(0.1)

has played an increasingly important role through the last decades. It is used to describe the overall
behavior of a collection of cells under the influence of chemotaxis. Under such circumstances,
the movement of each individual cell, though still not precisely predictable, follows a favourite
direction, namely that towards higher concentrations of a certain chemical signal substance. With
u = u(x, t) representing the density of cells and v = v(x, t) the concentration of the chemical,
the first equation in (0.1) thus reflects the interplay of undirected diffusive movement on the one
hand and ‘chemotactical movement’ driven by ∇v on the other. The second equation expresses the
model assumption that the signal substance, besides diffusing and degrading as most chemicals,
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is permanently produced by living cells. Such a coupling is known to occur, for instance, in the
paradigm species Dictyostelium discoideum ([KS]), but also believed to be present in many more
biologically meaningful situations involving chemotaxis ([HP]). A striking feature of (0.1) is that
despite its simple mathematical structure it has proved to be able to describe the phenomenon of
spatial self-organization of cells: It is known, for instance, that in the spatially two-dimensional
setting, (0.1) possesses solutions that undergo a blow-up in the sense that the cell density u(x, t)
becomes unbounded near some blow-up point in space when t approaches a certain blow-up time
T ≤ ∞; since the total mass of cells does not change during the evolution, this means that in such
cases the population will essentially aggregate around its blow-up points.
In order to summarize some known results in this direction more precisely, let us turn (0.1) into a
full initial-boundary value problem by considering

ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(0.2)

in a bounded domain Ω ⊂ Rn with smooth boundary, where ∂
∂ν denotes differentiation with respect

to the outward normal ν on ∂Ω. The initial functions u0 ∈ C0(Ω̄) and v0 ∈ C1(Ω̄) are assumed to
be nonnegative.
Within this framework, well-known results state that

• if n = 1 then all solutions of (0.2) are global in time and bounded ([OY]);

• if n = 2 then

– in the case
∫

Ω
u0 < 4π, the solution will be global and bounded ([NSY], [GZ]), whereas

– for any m > 4π satisfying m 6∈ {4kπ | k ∈ N} there exist initial data (u0, v0) with∫
Ω
u0 = m such that the corresponding solution of (0.2) blows up either in finite or

infinite time, provided Ω is simply connected ([HWa] and [SeS2]).

In the two-dimensional setting, the outcome in [CC] suggests that in the case Ω = R2 not consid-
ered here, a similar mass threshold phenomenon should decide between global existence and the
possibility of blow-up, but then the conjectured critical mass is 8π.

Some further information on the precise mechanism of blow-up is obtained in [HV], where par-
ticular radially symmetric solutions in Ω = B1(0) ⊂ R2 are constructed that exhibit a finite-time
collapse with an essentially Dirac-type blow-up profile. More generally, if n = 2 then any solu-
tion of (0.2) that is known to blow up in finite time has a finite sum of Dirac deltas plus some
f ∈ L1(Ω) as its asymptotic profile near the blow-up time ([NSS]). Apart from that, the large
time behavior of bounded solutions to (0.2) has been the objective of several studies. For instance,
in the two-dimensional setting all bounded solutions stabilize towards some member of the set of
equilibria of (0.2) ([FLP]), even though this set may have a complicated structure ([SeS1], [HNSS]).
In space dimension one, the dynamical system associated with (0.2) possesses a finite dimensional
exponential attractor in L2(Ω)×W 1,2(Ω) ([OY]).

All the above statements concentrate on the cases n = 1 and n = 2; as to the initial-boundary value
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problem (0.2) in higher space dimensions, only little appears to be known. In [Bo], it was proved
that if n = 3 then for each T > 0 one can find a smallness condition on u0 in W 1,2(Ω) ∩ L∞(Ω)
and on v0 in W 1,2(Ω) ensuring that (u, v) will exist at least up to time T ; on the other hand,
numerical evidence ([HP, Section 5.3]) suggests that also blow-up behavior occurs for some initial
data in the three-dimensional situation. This conjecture is furthermore confirmed by known results
on simplified variants of (0.2), in which after biologically justifiable limit procedures ([JL]), the
second equation is replaced with one of the elliptic equations 0 = ∆v + u− 1 ([HMV1], [HMV2]),
0 = ∆v+u ([BCKSV]), or 0 = ∆v−v+u ([N1]). In these works, namely, it could be shown that if
n = 3 (or even higher in some statements) then all these choices allow for solutions blowing up in
finite time. Moreover, for some particular initial data even a rather precise description of possible
blow-up mechanisms, revealing the occurrence of interesting shock-type blow-up phenomena, is
presented in [BCKSV], [HMV1] and [HMV2].

However, to the best of our knowledge, no results are available for the parabolic-parabolic initial-
boundary value problem (0.2) that rigorously prove either the existence of bounded solutions, or
the occurrence of blow-up. It is not even clear yet whether at all (0.2) possesses any nonstationary
global solution if n ≥ 3. In view of the biological relevance of the particular case n = 3, we find it
worthwhile to clarify these questions in the present paper. Our main results state that

• if n ≥ 3, given any q > n
2 and p > n one can find a bound for u0 in Lq(Ω) and for ∇v0 in

Lp(Ω) guaranteeing that (u, v) is global in time and bounded (Theorem 2.1); on the other
hand,

• if n ≥ 3 and Ω is a ball then for arbitrarily small mass m > 0 there exist u0 and v0 having∫
Ω
u0 = m such that (u, v) blows up either in finite or infinite time (Theorem 3.5).

In other words: Unlike in space dimension n = 2, smallness of the population’s total mass is
definitely not sufficient to prevent chemotactic collapse in higher dimensions. Instead of a smallness
condition in L1(Ω), we need to require data for which u0 is small even in some of the smaller spaces
L
n
2 +ε(Ω) for some ε > 0. This is fully consistent with related results for the corresponding Cauchy

problem in the whole space Ω = Rn, where a similar feature of the integrability exponent n
2 was

detected in [CP] for (0.1) and for a parabolic-elliptic simplification thereof in [CPZ].
Moreover, it is possible to characterize the large-time behavior of small-data solutions:

• If both ‖u0‖Lq(Ω) < ε and ‖∇v0‖Lp(Ω) < ε with ε > 0 sufficiently small, then the solution
(u, v) of (0.2) satisfies

‖u(·, t)− uH(·, t)‖L∞(Ω) ≤ Cε2e−λ1t and

‖∇(v(·, t)− vH(·, t))‖Lp(Ω) ≤ Cε2e−λ1t for all t > 1,

with some C > 0, where λ1 denotes the smallest positive eigenvalue of −∆ in Ω and uH and
vH are the solutions of ∂tuH = ∆uH and ∂tvH = ∆vH − vH +uH under the same initial and
boundary data (Theorem 2.1).

This means that the solution (u, v) asymptotically behaves like the solution (uH , vH) of an actually
discoupled system of two linear parabolic equations, one of which is homogeneous and the other
one inhomogeneous. In particular, all of our small-data solutions will approach the constant
steady state (m,m) at an exponential rate as t → ∞, where m =

∫
Ω
u0. Similar statements on
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‘asymptotically linear behavior’ were found in the Cauchy problems in Ω = R2 ([N2]) and Ω = Rn,
n ≥ 3 ([CP]); there, however, the situation is somewhat different from the present one, because
the solution of the heat equation in the entire space Rn converges to zero and not to a positive
constant as t→∞.
Observe that the estimated error, as claimed above, decays in time like e−λ1t which is precisely the
optimal rate of convergence of uH towards the constant steady state m. Since the perturbation
−∇ · (u∇v) in (0.2) should generically affect all modes of u beyond the constant one, this order of
decay is the best that can be expected. However, the error is essentially controlled by ε2, whilst the
L∞ norm of both u and v are of order ε; this illustrates the decreasing influence of the chemotaxis
term with shrinking size of the initial data.
We have to leave it as an open question whether or not the integrability exponent q0 = n

2 is indeed
critical in respect of blow-up in the sense that smallness of u0 in Lq0(Ω) (or in Lq0−ε(Ω) for all
ε > 0) is insufficient to prevent blow-up. In fact, our Theorem 3.5 below will show that such a role
is played by the smaller number q = 2n

n+2 .

1 Preliminaries

It is well-known that (0.2) is well-posed in the sense that it allows for a unique classical solution for
any smooth initial data. Moreover, the solution cannot cease to exist unless u becomes unbounded
in L∞(Ω). More precisely, we have the following statement that is by far not optimal in respect
of regularity of the initial data, but it is sufficient for our purpose. For details and more general
assumptions, we refer to [Y], [Bi], [HWi] and the references therein, for instance.

Lemma 1.1 For any u0 ∈ C0(Ω̄) and v ∈ C1(Ω̄), there exist a maximal existence time Tmax(u0, v0) ∈
(0,∞] and a unique pair (u, v) of functions u, v ∈ C0(Ω̄×[0, Tmax(u0, v0)))∩C2,1(Ω×(0, Tmax(u0, v0)))
such that (u, v) solves (0.2) in the classical sense. Moreover, we have the following alternative:

Either Tmax(u0, v0) =∞, or lim inf
t↗Tmax(u0,v0)

‖u(·, t)‖L∞(Ω) =∞ (1.1)

The following elementary lemma provides some useful information on both the short-time and the
large-time behavior of certain integrals that appear in a natural way when standard estimates are
applied to variation-of-constants formulae.

Lemma 1.2 Let α < 1, β < 1 and γ and δ be positive constants such that γ 6= δ. Then there
exists C > 0 such that∫ t

0

(
1 + (t− s)−α

)
e−γ(t−s) · (1 + s−β)e−δsds ≤ C

(
1 + tmin{0,1−α−β}

)
e−min{γ,δ}·t (1.2)

for all t > 0.

Proof. Without loss of generality we may assume that γ < δ, since otherwise we can exchange
the roles of γ and δ upon substituting s′ = t− s. Then for some c > 0 we have

I :=
∫ t

0

(
1 + (t− s)−α

)
e−γ(t−s) · (1 + s−β)e−δsds

≤ c

∫ t

0

e−γ(t−s)e−δsds+ c

∫ t

0

(t− s)−αs−βe−γ(t−s)e−δsds
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=
c

δ − γ

(
e−γt − e−δt

)
+ c e−γt ·

∫ t

0

(t− s)−αs−βe−(δ−γ)sds.

Substituting s = σt in the latter integral, we find

I ≤ c

δ − γ
e−γt + ce−γt · t1−α−β ·

∫ 1

0

(1− σ)−ασ−βe−(δ−γ)σtdσ, (1.3)

from which (1.2) follows in the case α + β ≥ 1. If α + β < 1, however, (1.3) proves (1.2) at least
for t ≤ 1, whereas for t > 1 we have

∫ 1
2 t
− 1−α−β

1−β

0

(1− σ)−ασ−βe−(δ−γ)σtdσ ≤
(1

2

)−α
· 1

1− β
·
(1

2
t−

1−α−β
1−β

)1−β

=
t−(1−α−β)

21−α−β(1− β)

and ∫ 1

1
2 t
− 1−α−β

1−β
(1− σ)−ασ−βe−(δ−γ)σtdσ

≤
(1

2
t−

1−α−β
1−β

)−β
e−(δ−γ)· 12 t

1− 1−α−β
1−β ·

∫ 1

0

(1− σ)−αdσ

=
2β

1− α
t
β(1−α−β)

1−β e−
δ−γ

2 t
α

1−β
.

We thus gain from (1.3) that

I ≤ c

δ − γ
e−γt +

c

21−α−β(1− β)
e−γt +

2βc
1− α

· e−γt · t
1−α−β

1−β · e−
δ−γ

2 t
α

1−β

for all t > 1. Since t 7→ t
1−α−β

1−β · e−
δ−γ

2 t
α

1−β is bounded for t > 1 due to the fact that δ > γ, we see
that (1.2) is valid also for all t > 0 when α+ β < 1. ////

In order to determine the large-time behavior of small-data solutions to (0.2) as precisely as possi-
ble, we need another preparation which collects some facts on the asymptotics of the heat semigroup
under Neumann boundary conditions. Although most of the statements below are essentially well-
known (cf.[QS, Section 48] in case of Dirichlet boundary conditions), we could not find a precise
reference in the literature that covers all that is necessary for our purpose; therefore we include a
short proof here.

Lemma 1.3 Let (et∆)t≥0 be the Neumann heat semigroup in Ω, and let λ1 > 0 denote the first
nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions. Then there exist constants
C1, ..., C4 depending on Ω only which have the following properties.

i) If 1 ≤ q ≤ p ≤ ∞ then

‖et∆w‖Lp(Ω) ≤ C1(1 + t−
n
2 ( 1

q−
1
p ))e−λ1t‖w‖Lq(Ω) for all t > 0 (1.4)
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holds for all w ∈ Lq(Ω) satisfying
∫

Ω
w = 0.

ii) If 1 ≤ q ≤ p ≤ ∞ then

‖∇et∆w‖Lp(Ω) ≤ C2

(
1 + t−

1
2−

n
2 ( 1

q−
1
p )
)
e−λ1t‖w‖Lq(Ω) for all t > 0 (1.5)

is true for each w ∈ Lq(Ω).

iii) If 2 ≤ p <∞ then

‖∇et∆w‖Lp(Ω) ≤ C3e
−λ1t‖∇w‖Lp(Ω) for all t > 0 (1.6)

is valid for all w ∈W 1,p(Ω).

iv) Let 1 < q ≤ p <∞. Then

‖et∆∇ · w‖Lp(Ω) ≤ C4

(
1 + t−

1
2−

n
2 ( 1

q−
1
p )
)
e−λ1t‖w‖Lq(Ω) for all t > 0 (1.7)

holds for all w ∈ (C∞0 (Ω))n. Consequently, for all t > 0 the operator et∆∇· possesses a uniquely
determined extension to an operator from Lq(Ω) into Lp(Ω), with norm controlled according to
(1.7).

Proof. i) For t < 2, (1.4) is a consequence of the well-known smoothing estimate

‖et∆z‖Lp(Ω) ≤ c1t−
n
2 ( 1

q−
1
p )‖z‖Lq(Ω) for all t < 2, (1.8)

which can be checked for some c1 independent of p and q and all z ∈ Lq(Ω) using pointwise
estimates for Green’s function of the Neumann heat semigroup ([M, Theorem 2.2]). As to t ≥ 2,
we first note that upon integrating the heat equation and using the variational definition of λ1 we
obtain

1
2
d

dt

∫
Ω

|et∆w|2 = −
∫

Ω

|∇et∆w|2 ≤ −λ1

∫
Ω

|et∆w|2

for all t > 0 and each smooth w satisfying
∫

Ω
w = 0. Therefore,

‖et∆w‖L2(Ω) ≤ e−λ1t‖w‖L2(Ω) for all t > 0 (1.9)

holds for all w ∈ L2(Ω) with
∫

Ω
w = 0. Now for p < 2, using Hölder’s inequality and then (1.9)

and (1.8) we find

‖et∆w‖Lp(Ω) ≤ |Ω|
2−p
2p ‖et∆w‖L2(Ω) ≤ |Ω|

2−p
2p e−λ1(t−1)‖e∆w‖L2(Ω) ≤ |Ω|

2−p
2p c1e

−λ1(t−1)‖w‖Lq(Ω)

for all t ≥ 2. By a similar reasoning, for p ≥ 2 we derive

‖et∆w‖Lp(Ω) ≤ c1‖e(t−1)∆w‖L2(Ω) ≤ c1e−λ1(t−2)‖e∆w‖L2(Ω) ≤ c21e−λ1(t−2)‖w‖Lq(Ω)

for all t ≥ 2, from which the claim follows.
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ii) We first note that for some c2 > 0 independent of p,

‖∇et∆w‖Lp(Ω) ≤ c2t−
1
2 ‖w‖Lp(Ω) for all t ≤ 1 (1.10)

holds for all w ∈ Lp(Ω). In fact, for p = 1 and for p = ∞ this can be seen using pointwise
estimates for the spatial gradient of Green’s function of et∆ ([M, Theorem 2.2]), whereby (1.10)
for 1 < p <∞ follows from a Marcinkiewicz-type interpolation argument (cf. [GT, Theorem 9.8]).
In order to combine this with (1.4), we write w̄ := 1

|Ω|
∫

Ω
w and thus have

∫
Ω

(w − w̄) = 0. Since
constants are invariant under et∆, we thus obtain from (1.10) and (1.4)

‖∇et∆w‖Lp(Ω) = ‖∇e t2 ∆e
t
2 ∆(w − w̄)‖Lp(Ω)

≤ c2

( t
2

)− 1
2 ‖e t2 ∆(w − w̄)‖Lp(Ω)

≤ c2C1

( t
2

)− 1
2
(

1 +
( t

2

)−n2 ( 1
q−

1
p ))

e−λ1
t
2 ‖w − w̄‖Lq(Ω), (1.11)

which implies (1.5) for t < 2. For t ≥ 2 we split et∆ in a different way to see that

‖∇et∆w‖Lp(Ω) = ‖∇e∆e(t−1)∆(w − w̄)‖Lp(Ω) ≤ c2‖e(t−1)∆(w − w̄)‖Lp(Ω)

≤ c2C1

(
1 + (t− 1)−

n
2 ( 1

q−
1
p )
)
e−λ1(t−1)‖w − w̄‖Lq(Ω)

≤ 4c2C1e
−λ1(t−1)‖w‖Lq(Ω)

for all t ≥ 2. This together with (1.11) proves (1.5).

iii) Passing to ŵ := w− 1
|Ω|
∫

Ω
w if necessary, we may assume that

∫
Ω
w = 0. We first consider the

case t ≥ 1, in which we apply ii), i) and the Poincaré inequality to find

‖∇et∆w‖Lp(Ω) ≤ 2C2‖e(t−1)∆w‖Lp(Ω) ≤ 4C2C1e
−(λ1−1)t‖w‖Lp(Ω) ≤ 4C2C1cP e

−(λ1−1)t‖∇w‖Lp(Ω),

which yields (1.6) for all t ≥ 1 and any p ∈ (1,∞), because, as can easily be verified, the Poincaré
constant cP can be chosen independent of p.
Next, for p = 2, multiplying (et∆w)t = ∆et∆w by −∆et∆w and integrating shows that

‖∇et∆w‖L2(Ω) ≤ ‖∇w‖L2(Ω) for all t ≥ 0. (1.12)

On the other hand, it is known ([M, formula (2.39)]) that for some c3 ≥ 1,

‖∇et∆w‖L∞(Ω) ≤ c3‖∇w‖L∞(Ω) for all t ∈ (0, 1) (1.13)

for each w ∈ Ĉ1(Ω̄) := {z ∈ C1(Ω̄) | ∂z∂ν = 0 on ∂Ω}. A Marcinkiewicz interpolation as in ii)
now asserts that (1.6) is valid for each p ∈ [2,∞) and t ∈ (0, 1) and all w ∈ Ĉ1(Ω̄), so that
all that remains to be shown is that Ĉ1(Ω̄) is dense in W 1,p(Ω). To sketch a possible way to
see this, we let w ∈ W 1,p(Ω) be given and fix ε > 0. Then there exists w1 ∈ C1(Ω̄) such that
‖w − w1‖W 1,p(Ω) < ε

2 . Given x0 ∈ ∂Ω, applying a shifting and local flattening procedure if
necessary, we may assume that x0 = 0, that Ω ⊂ {xn > 0} := {x = (x1, ..., xn) ∈ Rn | xn > 0}
and that ∂Ω is a part of {xn = 0} near x0. For x near x0, we define wx0(x) := w1(x1, ..., xn−1, 0)
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for x ∈ Ω, so that wx0 = w1 on ∂Ω and ∂wx0
∂ν = 0 on ∂Ω hold near x0. The same is thus valid for

wx0,k(x) := wx0(x) · (1−χ(kxn)) +w1(x) ·χ(kxn), where χ ∈ C∞(R) satisfies χ[2,∞) ≤ χ ≤ χ[1,∞).
Since w1 ∈ C1(Ω̄), it is easily checked that wx0,k → w1 in W 1,p in a neighborhood of x0, so that
returning to the original coordinates via a suitable partition of unity will provide some w2 ∈ Ĉ1(Ω̄)
such that ‖w1 − w2‖W 1,p(Ω) <

ε
2 , which proves the claim.

iv) Given ϕ ∈ C∞0 (Ω), we use that et∆ is self-adjoint in L2(Ω) and integrate by parts to see that∣∣∣ ∫
Ω

et∆∇ · wϕ
∣∣∣ =

∣∣∣− ∫
Ω

w · ∇et∆ϕ
∣∣∣

≤ ‖w‖Lq(Ω) · ‖∇et∆ϕ‖Lq′ (Ω)

≤ C2

(
1 + t

− 1
2−

n
2 ( 1

p′−
1
q′ )
)
e−λ1t‖w‖Lq(Ω)‖ϕ‖Lp′ (Ω)

for all t > 0 holds in view of ii), where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Since 1
p′ −

1
q′ = 1

q −
1
p , taking

the supremum over all such ϕ satisfying ‖ϕ‖Lp′ (Ω) ≤ 1 we arrive at (1.7). ////

2 Small-data global solutions and their asymptotics

Having at hand the preliminary material collected above, we are now prepared to prove our main
result on global-in-time existence of solutions emanating from suitably small initial data. The proof
is organized in such a way that at the same time it yields the desired assertion on the asymptotic
behavior of solutions. As compared to the several-step iterative procedure performed in [CP] in
the case Ω = Rn, our proof is based on an essentially one-step contradiction argument and thereby
somewhat simpler, but our method seems to be restricted to the case of bounded domains.

Theorem 2.1 Let p > n and q > n
2 . Then there exist ε0 > 0 and C > 0 with the following

property: If u0 ∈ C0(Ω̄) and v0 ∈W 1,p(Ω) are nonnegative with

‖u0‖Lq(Ω) ≤ ε and ‖∇v0‖Lp(Ω) ≤ ε (2.1)

for some ε < ε0 then the solution (u, v) of (0.2) exists globally in time, is bounded and satisfies∥∥∥u(·, t)− et∆u0

∥∥∥
L∞(Ω)

≤ Cε2e−λ1t for all t > 1 (2.2)

and ∥∥∥∇(v(·, t)− et(∆−1)v0 −
∫ t

0

e(t−s)(∆−1)es∆u0ds
)∥∥∥

Lp(Ω)
≤ Cε2e−λ1t for all t > 1, (2.3)

where λ1 > 0 denotes the smallest nonzero eigenvalue of −∆ in Ω subject to homogeneous Neumann
boundary conditions.
In particular, such solutions satisfy

‖u(·, t)−m‖L∞(Ω) ≤ C̄e−λ1t and

‖v(·, t)−m‖L∞(Ω) ≤ C̄e−λ1t for all t > 1 (2.4)
(2.5)

8



with some constant C̄ > 0.

Remark. At the cost of some technical expense, on the basis of Theorem 2.1 and the ideas in
[CP] it is possible to extend the above result to less regular initial data: Upon an approximation
argument, namely, one can assert global existence of small-data weak solutions with the asymptotic
properties (2.2) and (2.3) for initial data with possibly discontinuous u0 and ∇v0, satisfying only
(2.1).

Proof. Since q > n
2 and p > n, it is possible to fix q0 ∈ (n2 , q) and p0 ∈ (n, p] such that q0 < n

and 1
p0

> 1
q0
− 1

n . With ε0 > 0 to be specified below, let us assume that (2.1) holds for some
ε ∈ (0, ε0), and let

T := sup
{
T̂ > 0

∣∣∣ ‖u(·, t)− et∆u0‖Lθ(Ω) ≤ ε
(

1 + t−
n
2 ( 1

q0
− 1
θ )
)
e−λ1t

for all t ∈ (0, T̂ ) and each θ ∈ [p0,∞]
}
≤ ∞.

Then T is well-defined and positive with T ≤ Tmax(u0, v0), because both u(·, t) and et∆u0 are
bounded near t = 0, while on the other hand, as 1 > t→ 0 we have t−

n
2 ( 1

q0
− 1
θ ) ≥ t−

n
2 ( 1

q0
− 1
p0

) →∞
uniformly with respect to θ ∈ [p0,∞].
We first claim that if ε0 is sufficiently small then actually T =∞ (and hence Tmax(u0, v0) =∞).
To this end, we apply ∇ to both sides of the variation-of-constants formula

v(·, t)− et(∆−1)v0 =
∫ t

0

e−(t−s)(∆−1)u(·, s)ds, t ∈ (0, Tmax(u0, v0)), (2.6)

to obtain from Lemma 1.3 ii) that∥∥∥∇(v(·, t)− et(∆−1)v0

)∥∥∥
Lp0 (Ω)

≤ c1
∫ t

0

(
1 + (t− s)− 1

2

)
e−(λ1+1)(t−s)‖u(·, s)‖Lp0 (Ω)ds, t ∈ (0, T ),

(2.7)
with some c1 > 0. By definition of T and Lemma 1.3 i), there exist c2 > 0 and c3 > 0 such that
For each θ ∈ [p0,∞],

‖u(·, s)‖Lθ(Ω) ≤ ‖u(·, s)− es∆u0‖Lθ(Ω) + ‖es∆u0‖Lθ(Ω)

≤ ε
(

1 + s−
n
2 ( 1

q0
− 1
θ )
)
e−λ1s + c2

(
1 + s−

n
2 ( 1

q0
− 1
θ )
)
e−λ1s · ‖u0‖Lq0 (Ω)

≤ c3ε
(

1 + s−
n
2 ( 1

q0
− 1
θ )
)
e−λ1s for all s ∈ (0, T ), (2.8)

so that in particular, according to Lemma 1.2,∥∥∥∇(v(·, t)− et(∆−1)v0)
∥∥∥
Lp0 (Ω)

≤ c1c3ε ·
∫ t

0

(
1 + (t− s)− 1

2

)
e−(λ1+1)(t−s) ×

×
(

1 + s−
n
2 ( 1

q0
− 1
p0

)
)
e−λ1s ds

≤ c4ε
(

1 + tmin{0,1− 1
2−

n
2 ( 1

q0
− 1
p0

)}
)
e−min{λ1+1,λ1}·t

= 2c4εe−λ1t for all t ∈ (0, T ) (2.9)
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with a certain c4 > 0, because our choices of p0 and q0 ensure that 1
2 −

n
2 ( 1

q0
− 1

p0
) > 0.

Since by Lemma 1.3 iii),

‖∇et(∆−1)v0‖Lp0 (Ω) ≤ c5e
−(λ1+1)t‖∇v0‖Lp0 (Ω)

≤ c5|Ω|
p−p0
pp0 εe−(λ1+1)t for all t ∈ (0, T )

for some c5 > 0, we thus have

‖∇v(·, t)‖Lp0 (Ω) ≤ c6εe−λ1t for all t ∈ (0, T ) (2.10)

with an appropriate c6 > 0. We now make use of the representation formula for u,

u(·, t)− et∆u0 = −
∫ t

0

e(t−s)∆∇ · (u(·, s)∇v(·, s))ds, t ∈ (0, Tmax(u0, v0)).

Invoking Lemma 1.3 iv), (2.8) and (2.10), there exists c7 > 0 such that for arbitrary θ ∈ [p0,∞]
we can estimate

‖u(·, t)− et∆u0‖Lθ(Ω) ≤ c7

∫ t

0

(
1 + (t− s)−

1
2−

n
2 ( 1

p0
− 1
θ )
)
e−λ1(t−s) ×

×‖u(·, s)∇v(·, s)‖Lp0 (Ω) ds

≤ c7

∫ t

0

(
1 + (t− s)−

1
2−

n
2 ( 1

p0
− 1
θ )
)
e−λ1(t−s) ×

×‖u(·, s)‖L∞(Ω)‖∇v(·, s)‖Lp0 (Ω) ds

≤ c7

∫ t

0

(
1 + (t− s)−

1
2−

n
2 ( 1

p0
− 1
θ )
)
e−λ1(t−s) ×

× c3ε
(

1 + s−
n

2q0

)
e−λ1s · c6εe−(λ1+1)s ds

for all t ∈ (0, T ). Since 2λ1 + 1 > λ1 and 1
2 + n

2 ( 1
p0
− 1

θ ) ≤ 1
2 + n

2p0
< 1 because of p0 > n, we may

apply Lemma 1.2 to see that with some c8 > 0,

‖u(·, t)− et∆u0‖Lθ(Ω) ≤ c8ε
2
(

1 + tmin{0,1− 1
2−

n
2 ( 1

p0
− 1
θ )− n

2q0
}
)
e−λ1t

= c8ε
2
(

1 + tmin{0,−n2 ( 1
q0
− 1
θ )+ 1

2−
n

2p0
}
)
e−λ1t

≤ 2c8ε2
(

1 + t−
n
2 ( 1

q0
− 1
θ )
)
e−λ1t for all t ∈ (0, T ) (2.11)

holds irrespective of the sign of −n2 ( 1
q0
− 1
θ )+ 1

2−
n

2p0
, where we have used that 1

2−
n

2p0
is nonnegative.

Therefore, if ε0 <
1

2c8
then the continuity of t 7→ ‖u(·, t) − et∆u0‖Lθ(Ω) excludes the possibility

that T be finite. As a consequence, (u, v) exists globally and u satisfies (2.2) in view of (2.11).
Moreover, from Lemma 1.3 ii), formula (2.11) (applied to θ = ∞) and Lemma 1.2 we conclude
that ∥∥∥∇(v(·, t)− et(∆−1)v0 −

∫ t

0

e(t−s)(∆−1)es∆u0ds
)∥∥∥

Lp(Ω)
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=
∥∥∥ ∫ t

0

∇e(t−s)(∆−1)
(
u(·, s)− es∆u0

)
ds
∥∥∥
Lp(Ω)

≤ c9ε
2

∫ t

0

(
1 + (t− s)− 1

2

)
e−(λ1+1)(t−s)

(
1 + s−

n
2q0

)
e−λ1s ds

≤ c10ε
2
(

1 + tmin{0,1− 1
2−

n
2q0
}
)
e−λ1t

for all t > 0 and certain positive constants c9 and c10. This proves (2.3).
Now (2.4) is an obvious consequence of this and the identity for the total mass of the chemical,∫

Ω
v(·, t) = m + (

∫
Ω
v0 −m)e−t, that can easily be checked upon integrating the second equation

in (0.2). ////

3 Aggregation

In parabolic-elliptic simplifications of (0.2), a rather striking method of detecting blow-up in space
dimension n ≥ 2 is based on deriving a favorable ordinary differential inequality for the n-th
moment

∫
Ω
|x|nu(x, t)dx ([N2], [N1]). In view of the more complex coupling in the full parabolic-

parabolic system (0.2), however, it seems that an adaptation of this approach to the present
situation is linked to a number of technical obstacles, and we are not aware of any work in the
literature in which blow-up in (0.2) is proved by means of controlling moments.

Proceeding alternatively, we will essentially build our blow-up argument on the use of the functional

F (u, v) :=
1
2

∫
Ω

|∇v|2 +
1
2

∫
Ω

v2 −
∫

Ω

uv +
∫

Ω

u lnu,

which is known to play the role of an energy in that it satisfies∫ t

0

∫
Ω

v2
t +

∫ t

0

∫
Ω

u
∣∣∣∇ lnu−∇v

∣∣∣2 + F (u(·, t), v(·, t)) = F (u0, v0) for t ∈ (0, T ) (3.1)

whenever (u, v) is a classical solution of (0.2) in Ω × (0, T ) ([NSY, Lemma 3.3]). This dissipated
quantity has frequently been utilized (see also [GZ] or [CC], for instance) in order to exclude
unboundedness; here we shall employ it to enforce blow-up. The strategy we shall pursue is
roughly the same as already performed in the study of two-dimensional blow-up phenomena for
initial data with large mass (see [SeS2], for instance). The plan is to find a lower bound for the
energy of all conceivable steady states and then prove that there exist solutions, having energy
below this bound, that cannot be bounded since otherwise they should approach some steady state
with a forbidden energy. This approach is quite familiar in the context of scalar parabolic equations
(see [L] for a survey), but in the present case of (0.2) it seems that establishing a lower bound for
steady-state energies is by far not trivial. We shall therefore restrict ourselves to the setting of
radial symmetry, which will essentially be used in the key Lemma 3.4.

We start by stating the following fact which can be proved in quite the same way as its two-
dimensional analogue (see [SeS2, Section 2] or also [HWi, Lemma 6.1]); for the sake of completeness,
we sketch a possible proof here.
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Lemma 3.1 Suppose that (u, v) is a global bounded solution of (0.2). Then there exist a sequence
of times tk →∞ and nonnegative functions u∞, v∞ ∈ C2(Ω̄) such that u(·, tk)→ u∞ and v(·, tk)→
v∞ in C2(Ω̄) and 

−∆v∞ + v∞ = u∞, x ∈ Ω,
∇(lnu∞ − v∞) = 0, x ∈ Ω,
∂v∞
∂ν = 0, x ∈ ∂Ω,∫
Ω
u∞ =

∫
Ω
v∞ = m :=

∫
Ω
u0

(3.2)

as well as
F (u∞, v∞) ≤ F (u0, v0). (3.3)

Proof. From the boundedness of (u, v) and parabolic Schauder theory ([LSU]) it follows that
both (u(·, t))t>1 and (v(·, t))t>1 are relatively compact in C2(Ω̄), and that F (u, v) is bounded
for t > 1. Hence, along a suitable sequence of times tk → ∞ we obtain u(·, tk) → u∞ and
v(·, tk)→ v∞ in C2(Ω̄) for some nonnegative u∞, v∞ ∈ C2(Ω̄) and thus also F (u(·, tk), v(·, tk))→
F (u∞, v∞) which entails (3.3). In view of (3.1), both integrals

∫∞
1

∫
Ω
v2
t and

∫∞
1

∫
Ω
u|∇(lnu−v)|2

are finite, whence extracting a subsequence if necessary we may also assume that
∫

Ω
v2
t (x, tk)dx→ 0

and
∫

Ω
u(x, tk)|∇(lnu(x, tk) − v(x, tk))|2dx → 0 as k → ∞. Here, the former relation yields

−∆v∞+ v∞ = u∞ in Ω upon evaluating the second equation in (0.2) at t = tk and letting k →∞,
whereas the second immediately gives

u∞|∇(lnu∞ − v∞)|2 = 0 in Ω̄. (3.4)

The last two lines in (3.2) are obvious due to the mass conservation property
∫

Ω
u(x, t)dx ≡ m and

the first equation in (3.2). Accordingly, we must have u∞ 6≡ 0, so that the set {u∞ > 0} possesses
at least one connected component C which we claim to coincide with Ω̄. In fact, if there were
x0 ∈ ∂C \C then there would exist xj ∈ C such that xj → x0, By (3.4), we have ∇(lnu∞−v∞) ≡ 0
in C and thus, since C is connected and relatively open in Ω̄, lnu∞−v∞ ≡ L in C for some constant
L ∈ R. But then

u∞(xj) = ev∞(xj)+L → ev∞(x0)+L

as j → ∞, which is absurd since u∞(x0) was assumed to be zero. Having thereby shown that
C = Ω̄, we have established the second identity in (3.2) and thus completed the proof. ////

We next assert that there exist initial data with arbitrary mass
∫

Ω
u0 but having energy below any

prescribed bound. In fact, it turns out that it is even possible to bound not only the L1(Ω) norm∫
Ω
u0 but also the Lq(Ω) norm of u0 for any q < 2n

n+2 .

Lemma 3.2 Assume n ≥ 3, and let q ∈ (1, 2n
n+2 ) be given. Then there exists C = C(Ω, q) > 0

such that for all m > 0 one can find (uk)k∈N ⊂ C∞(Ω̄) and (vk)k∈N ⊂ C∞(Ω̄) with the properties∫
Ω

uk = m and ‖uk‖Lq(Ω) ≤ Cm for all k ∈ N, (3.5)

but which satisfy
F (uk, vk)→ −∞ as k →∞. (3.6)
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Proof. Without loss of generality we may assume that 0 ∈ Ω, and that BR0(0) ⊂ Ω ⊂ BR(0)
for some positive R0 and R. Since n ≥ 3 and q < 2n

n+2 , we can pick a number α ∈ (n − n
q ,

n−2
2 )

and, for k ∈ N, define

uk(x) := Ak(|x|2 +
1
k

)
−n+α

2 and vk(x) := (|x|2 +
1
k

)−
α
2 for x ∈ Ω̄,

where

Ak :=
m∫

Ω
(|x|2 + 1

k )
−n+α

2

.

Observe that since α > 0, Ak decreases to the positive number m/(
∫

Ω
|x|−n+αdx) as k →∞, and

that our choice of Ak asserts that
∫

Ω
uk = m for all k. Moreover,∫

Ω

uqk ≤ ωnA
q
k ·
∫ R

0

rn−1(r2 +
1
k

)
−n+α

2 qdr

≤ ωnA
q
k ·
∫ R

0

rn−1+(−n+α)qdr for all k ∈ N,

where ωn denotes the area of the unit sphere in Rn. Since α > n− n
q , this shows that ‖uk‖Lq(Ω) ≤

c1m and, as a consequence, also ∫
Ω

uk lnuk ≤ c2 (3.7)

hold for all k ∈ N with positive constants c1 and c2. As to vk, we estimate∫
Ω

|∇vk|2 ≤ ωn ·
∫ R

0

rn−1 ·
[
αr(r2 +

1
k

)
−α−2

2

]2
dr

≤ ωnα
2 ·
∫ R

0

rn−2α−3dr.

Using the fact that α < n−2
2 and estimating

∫
Ω
v2
k similarly, we conclude that

1
2

∫
Ω

|∇vk|2 +
1
2

∫
Ω

v2
k ≤ c3 (3.8)

is valid for some c3 > 0 and all k ∈ N.
But ∫

Ω

ukvk ≥
∫
BR0 (0)

ukvk = ωnAk ·
∫ R0

0

rn−1(r2 +
1
k

)−
n
2 dr.

Since rn−1(r2 + 1
k )−

n
2 increases to 1

r as k → ∞ for each r > 0, we see that
∫

Ω
ukvk → ∞ and

hence, in view of (3.7) and (3.8), that F (uk, vk)→ −∞ as k →∞. ////

From now on, we restrict ourselves to the case when Ω is a ball in Rn, which allows us to derive
some common properties of all conceivable radially symmetric solutions of (3.2), our particular
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interest being to find a lower bound for their energies. As a preparation for this, we first assert
that the second component v of all such solutions satisfies a universal L∞ estimate away from the
center of the ball.
Throughout the sequel, we shall write w = w(r) when referring to functions w depending on the
variable r = |x| only. Also, we abbreviate BR := BR(0) for R > 0.

Lemma 3.3 Let n ≥ 3 and suppose that Ω = BR for some R > 0. Then for all m > 0 and
R0 ∈ (0, R) there exists C = C(R,R0) > 0 such that for all radially symmetric solutions (u, v) of
(3.2) we have

v(r) ≤ Cm for all r ∈ [R0, R]. (3.9)

Proof. Since ‖u‖L1(BR) = m, for each p ∈ [1, n
n−1 ) elliptic regularity theory applied to the

Neumann problem for −∆v + v = u ([BS]) provides a constant c1 = c1(R, p) such that

‖∇v‖Lp(Ω) ≤ c1m. (3.10)

As also
∫
BR

v = m, we trivially have v(r0) ≤ m
|BR\BR0 |

for some r0 ∈ [R0, R] possibly depending
on v. For arbitrary r ∈ [R0, R] we now estimate

v(r) = v(r0) +
∫ r

r0

vr(ρ)dρ

≤ m

|BR \BR0 |
+R1−n

0 ·
∫ R

R0

ρn−1|vr(ρ)|dρ,

which in conjunction with (3.10) (applied to p = 1) yields (3.9). ////

We now pass to the core of our blow-up argument. It consists of finding a lower bound for F (u, v)
for all radially symmetric solutions of (3.2). The method used here is based on the use of the
Pohozaev multiplier (x · ∇v) in the elliptic equation −∆v + v = u. Of course, this has to be
combined with the second identity in (3.2) in order to cope with the term involving u. The main
advantage of the radial setting here is that the Neumann condition is sufficient to ensure that no
boundary terms involving ∇v appear.

Lemma 3.4 Let n ≥ 3 and Ω = BR for some R > 0. Then for all m > 0 there exists CF =
CF (R,m) > 0 such that

F (u, v) ≥ −CF (3.11)

holds for all radially symmetric solutions (u, v) of (3.2).

Proof. First, in order to cope with the mixed term
∫
BR

uv contributing to F (u, v), we test the
first equation −∆v + v = u in (3.2) by v to obtain

∫
BR

uv =
∫
BR
|∇v|2 +

∫
BR

v2 and hence

F (u, v) = −1
2

(∫
BR

|∇v|2 +
∫
BR

v2
)

+
∫
BR

u lnu

≥ −1
2

(∫
BR

|∇v|2 +
∫
BR

v2
)
− |BR|

e
, (3.12)
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so that we only need to concentrate on finding an upper bound for
∫
BR
|∇v|2 +

∫
BR

v2. To achieve
this, we strongly rely on the radial symmetry, which allows to rewrite the first equation in (3.2) in
the form r1−n(rn−1vr)r = v − u. Multiplying this by r2n−2vr, we obtain

1
2
(
(rn−1vr)2

)
r

=
1
2
r2n−2(v2)r − r2n−2uvr.

Another multiplication by r2−n and an integration by parts over (0, R) yields in view of the
boundary condition vr(R) = 0 that

n− 2
2

∫ R

0

rn−1v2
r(r)dr ≡ n− 2

2

∫ R

0

r1−n(rn−1vr)2(r)dr

=
1
2
Rnv2(R)− n

2

∫ R

0

rn−1v2(r)dr −
∫ R

0

rnu(r)vr(r)dr.

Now the second equation in (3.2) provides the identity ur
u − vr = 0, whereby the last term on the

right becomes

−
∫ R

0

rnu(r)vr(r)dr = −
∫ R

0

rnur(r)dr = −Rnu(R) + n

∫ R

0

rn−1u(r)dr ≤ n
∫ R

0

rn−1u(r)dr.

Recalling Lemma 3.3 we find

n− 2
2

∫
BR

|∇v|2 ≤ c1 −
n

2

∫
BR

v2 + n

∫
BR

u

= c1 −
n

2

∫
BR

v2 + nm

for some c1 > 0 and hence

1
2

∫
BR

|∇v|2 +
1
2

∫
BR

v2 ≤ c1 + nm

n− 2
− 1
n− 2

∫
BR

v2 ≤ c1 + nm

n− 2
. (3.13)

Together with (3.12), this yields the desired estimate (3.11) with CF (R,m) = c1+nm
n−2 + |BR|

e . ////

We can now collect all ingredients to prove the existence of unbounded solutions in the radial
setting.

Theorem 3.5 Let Ω be a ball in Rn for some n ≥ 3.
i) For all m > 0 there exist initial data (u0, v0) ∈ (C∞(Ω̄))2 satisfying

∫
Ω
u0 = m such that the

corresponding solution (u.v) of (0.2) blows up either in finite or infinite time.
ii) Given any q ∈ (1, 2n

n+2 ) and ε > 0, (0.2) possesses solutions blowing up, either in finite or
infinite time, emanating from initial data (u0, v0) ∈ (C∞(Ω̄))2 fulfilling ‖u0‖Lq(Ω) < ε.

Proof. i) Given m > 0, assuming Ω = BR we let CF = CF (R,m) be as in Lemma 3.4. Then
Lemma 3.2 provides a smooth pair (u0, v0) of radially symmetric functions satisfying

∫
Ω
u0 = m

and F (u0, v0) < −CF . Evidently, the corresponding solution (u, v) of (0.2) will inherit the radial
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symmetry of the data. Thus, if (u, v) were global in time and bounded in L∞(Ω × (0,∞)) then
Lemma 3.1 would ensure the existence of a radially symmetric solution (u∞, v∞) of (3.2) such that
F (u∞, v∞) ≤ F (u0, v0) < CF , contradicting the outcome of Lemma 3.4.
ii) This part can be proved similarly: For fixed ε > 0, we pick any m < ε

C , where C = C(Ω, q) is
as given by Lemma 3.2. Then this lemma asserts that the above choice of (u0, v0) can be made in
such a way that ‖u0‖Lq(Ω) ≤ Cm < ε. ////
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