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Abstract

We consider the elliptic-parabolic PDE system

{

ut = ∇ · (φ(u)∇u)−∇ · (ψ(u)∇v) , x ∈ Ω , t > 0 ,
0 = ∆v −M + u , x ∈ Ω , t > 0 ,

with nonnegative initial data u0 having mean valueM , under homogeneous Neumann bound-
ary conditions in a smooth bounded domain Ω ⊂ R

n. The nonlinearities φ and ψ are supposed
to generalize the prototypes

φ(u) = (u+ 1)−p
, ψ(u) = u(u+ 1)q−1

with p ≥ 0 and q ∈ R. Problems of this type arise as simplified models in the theoretical
description of chemotaxis phenomena under the influence of the volume-filling effect as intro-
duced by Painter and Hillen (Can. Appl. Math. Q. 10, 501-543 (2002)).
It is proved that if p + q < 2

n
then all solutions are global in time and bounded, whereas if

p+ q > 2

n
, q > 0, and Ω is a ball then there exist solutions that become unbounded in finite

time. The former result is consistent with the aggregation-inhibiting effect of the volume-
filling mechanism; the latter, however, is shown to imply that if the space dimension is at
least three then chemotactic collapse may occur even despite the presence of some nonlinear-
ities that supposedly model a volume-filling effect in the sense of Painter and Hillen.
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Introduction

The theoretical description of patterning phenomena in living organisms has become an increas-
ingly active and important field of mathematical biology through the last decades. One particular
principle that is known to govern such a process of cellular self-organization is the mechanism
of chemotaxis, by which one means the movement of cells that is directed in the sense that the
migrating cells preferably follow the concentration gradient of a certain chemical signal substance
(cf. [HP] for a recent survey providing numerous biological examples).
According to the emergence of spatial structures, Keller and Segel ([KS]) introduced a model where
the distribution of cells is continuous in space and thus determined by a function u = u(x, t) that
satisfies a PDE

ut = ∇ · (φ(u)∇u)−∇ · (χ(u, v)∇v) , (0.1)

where v = v(x, t) stands for the concentration of the chemical. Besides capturing undirected,
purely diffusive behavior measured by the (self-)diffusivity φ(u), (0.1) also accounts for cellular

1



movement towards (or away from) higher chemical concentrations by incorporating the mechanism
of cross-diffusion which enters through any nontrivial choice of the so-called chemotactic sensitivity
χ(u, v). In the last 15 years, a large variety of particular problems based on (0.1) has been studied,
and it has been shown that the simple element of cross-diffusion is indeed able to describe the
experimentally observed phenomenon of cell aggregation. Here the most commonly underlying,
albeit rather extreme, mathematical translation of the statement that (0.1) models aggregation
consists of requiring that (0.1) possesses solutions which become unbounded somewhere in space
either in finite or infinite time. This especially seems to be appropriate when (0.1) enjoys the mass
conservation property ∫

Ω

u(x, t)dx ≡ const. , t > 0 , (0.2)

which is, for instance, guaranteed if (0.1) is posed in the whole physical space, or in a bounded
region with no-flux boundary conditions; then, namely, the mass of unbounded solutions should
essentially concentrate near points where u is large.
In the original Keller-Segel model, (0.1) is supplemented by a parabolic equation for the unknown v
that reflects that the chemical diffuses and degrades, and that it is produced by the cells themselves;
a dimensionless prototype of such a diffusion equation is

vt = ∆v − v + u. (0.3)

However, the analysis of the full parabolic-parabolic system (0.1), (0.3) turned out to be quite
involved: Even the simplest reasonable choices φ(u) ≡ 1 and χ(u, v) = u, leading to the ‘classical’
Keller-Segel model, bring about severe difficulties. Although it is known that the corresponding
Neumann boundary value problem in bounded domains in R

n has only bounded solutions if n = 1
([OY]), or n = 2 and small total mass of cells ([NSY], [GZ]), and that aggregation may occur
for n = 2 and large mass ([HWa]), there is only one result available in the literature that asserts
(radially symmetric) aggregation in finite time when n = 2 ([HV]), and the latter actually refers
to one single unbounded solution only, leaving open the possibility that finite-time aggregation
might be a non-generic, unstable phenomenon.
On the basis of the fact that in many relevant applications the chemical diffuses much faster than
the cells move, in [JL] the stationary equation

0 = ∆v −M + u

is derived as a biologically still meaningful asymptotic limit, where M denotes the spatial mean of
the cell density. Upon this simplification and the further restriction to bounded domains and to
chemotactic sensitivities of the form χ(u, v) = ψ(u), one is led to studying the elliptic-parabolic
initial-boundary value problem





ut = ∇ ·
(
φ(u)∇u

)
−∇ ·

(
ψ(u)∇v

)
, x ∈ Ω, t > 0 ,

0 = ∆v −M + u , x ∈ Ω , t > 0 ,
∂u
∂ν

= ∂v
∂ν

= 0 , x ∈ ∂Ω , t > 0 ,
u(x, 0) = u0(x) , x ∈ Ω ,∫
Ω
v(x, t)dx = 0 , t > 0 ,

(0.4)

in a bounded domain Ω ⊂ R
n with smooth boundary, with ∂

∂ν
denoting outward normal derivatives

on ∂Ω, andM > 0. Representing a cell density, the initial function u0 is assumed to be nonnegative
and to satisfy 1

|Ω|

∫
Ω
u0 =M . Unlike in the previous lines, here and throughout the sequel v denotes

the deviation of the signal concentration from its spatial mean, rather than this concentration itself;
for convenience, however, we omit a relabelling.

Several functional forms of φ and ψ have been studied as ingredients to (0.4) or closely related
variants thereof in the literature. For instance, it is known that the classical choice φ(u) ≡ 1 and
ψ(u) = u in the case n = 2 leads to global boundedness if

∫
Ω
u0 is small but admits blow-up

solutions if
∫
Ω
u0 is large ([JL]). Whereas in space dimension n = 1, all solutions are global and
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bounded, blow-up occurs for some initial data if n ≥ 3 ([CW]).
As to nonlinear diffusion, the methods in [K] apply to n = 2, φ(u) = D(u + 1)−p, D > 0, p ∈ R,
and ψ(u) = u and show that if p < −1 then all solutions are global and bounded. In [CC], this
result was carried over to the case of any p < 0 and even that of p = 0 under the additional
assumption that D is sufficiently large. Recently, a further generalization was obtained in [CW],
where the same problem was investigated in arbitrary space dimension n ≥ 1. The boundedness
result was extended there to any p < 2

n
−1, whereas for each p > 2

n
−1 radially symmetric solutions

were constructed that blow up in finite time.
A similar critical relationship between power-type diffusion and cross-diffusion in (0.1) appears in
the case of positive powers in the corresponding Cauchy problem in Ω = R

n: Namely, it is known
that when φ(u) = u−p and ψ(u) = uq with some p ≤ 0 and q > 1

2 the condition q < p+ 2
n
excludes

blow-up, whereas if q > p + 2
n

then blow-up solutions exist (cf. [SK], [LS] and the references
therein).
In the present study we concentrate on nonlinearities φ and ψ that vanish asymptotically as
u→ ∞. The motivation for this stems from [PH], where via a random walk approach the crucial
Keller-Segel equation (0.1) was re-invented in such a way that it incorporates the fact that the
ability of cells to move becomes small when the cells are densely packed. The precise derivation
suggests to choose φ and ψ according to

φ(u) = Q(u)− uQ′(u) and ψ(u) = χuQ(u) (0.5)

with some constant χ > 0, where Q(u) is proportional to the probability that a cell, currently at
some position with density u, will move away from this position. In [HP1], it was proved that
if Q is chosen according to Q(u) = (A − u)+ for some A > 0 then no blow-up occurs in the
parabolic-parabolic system (0.1), (0.3) when posed on a compact Riemannian manifold without
boundary. It appears to be fairly open, however, if less restrictive decay conditions on Q(u) as
u→ ∞ will also prevent blow-up (cf. [CC] for a discussion of some mathematical difficulties).
We shall restrict our analysis on the situation when Q(u) decays algebraically; more generally,
we will consider the case where φ and ψ, independently and not necessarily linked through (0.5),
asymptotically behave according to

φ(u) ≃ u−p , ψ(u) ≃ uq , u ≃ ∞ , (0.6)

with some p ≥ 0 and q ∈ R. Within this context, we shall obtain the following results.

• If p+ q < 2
n
then all solutions of (0.4) are global and bounded (Corollary 2.3).

• If p+q > 2
n
and Ω is a ball then for any initial data having their mass concentrated sufficiently

close to the center of Ω, the corresponding solution will undergo a blow-up in finite time,
provided that q > 0 (Theorem 3.5).

For example, if the probability in (0.5) has the form Q(u) = (u + 1)−α with some α ≥ 0 (as
suggested in [CC], for instance) then φ and ψ satisfy (0.6) with p = α and q = 1 − α and hence
p+q = 1. Consequently, any rate of algebraic decay of Q(u) completely excludes blow-up in space
dimension one, whereas in the case n ≥ 3 none of these Q is sufficient to prevent aggregation. On
the one hand, this generalizes the results in [CC] that assert the same but only in space dimension
n = 2, and on the other it improves the outcome of [CM-R], where absence of any collapse was
proved when n = 3 under the assumption α > 2.

Note that our results, in particular those concerning blow-up, apply to any space dimension n ≥ 1.
In particular, if φ(u) ≃ u−p and ψ(u) ≃ u2−p+ε with some p ≥ 0 and ε > 0 satisfying 2−p+ ε > 0
then blow-up occurs in the one-dimensional version of (0.4), even though elliptic theory and (0.2)
imply that ∇v is uniformly bounded.
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1 Local existence and uniqueness

The following local existence and uniqueness result is rather standard; a similar reasoning can
be found in [CW], for instance. Since we could not find a precise reference in the literature that
exactly matches to our situation, however, we include a short proof for the sake of completeness.

Theorem 1.1 Let Ω ⊂ R
n be a bounded domain with smooth boundary, and φ and ψ belong to

C1+θ
loc ([0,∞)) for some θ > 0 and satisfy φ > 0 and ψ ≥ 0 in [0,∞). Furthermore, assume that the

nonnegative function u0 belongs to Cα(Ω̄) for some α > 0, and that 1
|Ω|

∫
Ω
u0 = M . Then there

exists a unique classical solution (u, v) of (0.4) that can be extended up to its maximal existence
time Tmax ∈ (0,∞]. Here,

either Tmax = ∞ or lim
tրTmax

‖u(·, t)‖L∞(Ω) = ∞ . (1.1)

Proof. The proof is carried out in three steps.
Step 1. Let us first assert uniqueness of classical solutions.
To this end, assume that both (u1, v1) and (u2, v2) solve (0.4) in Ω×(0, T ) with some T > 0. Since
−∆(v1 − v2) = u1 − u2 and (u1 − u2)t belongs to C

0(Ω̄× (0, T )) by standard parabolic regularity
theory, elliptic estimates show that (v1 + v2)t exists and belongs to C0((0, T );C1+β(Ω̄)) for all
β ∈ (0, 1). It follows that |∇(v1 − v2)|2 has a continuous time derivative in Ω̄× (0, T ) with

1

2

d

dt

∫

Ω

|∇(v1 − v2)|2 = −
∫

Ω

∆(v1 − v2)t · (v1 − v2)

=

∫

Ω

(u1 − u2)t · (v1 − v2)

= −
∫

Ω

∇(Φ(u1)− Φ(u2)) · ∇(v1 − v2)

+

∫

Ω

(
ψ(u1)∇v1 − ψ(u2)∇v2

)
· ∇(v1 − v2) (1.2)

for all t ∈ (0, T ), with Φ(s) :=
∫ s
0
φ(σ)dσ. Using the mean value theorem, for all T0 < T we obtain

−
∫

Ω

∇(Φ(u1)− Φ(u2)) · ∇(v1 − v2) =

∫

Ω

(Φ(u1)− Φ(u2)) ·∆(v1 − v2)

= −
∫

Ω

(Φ(u1)− Φ(u2)) · (u1 − u2)

≤ −c1
∫

Ω

|u1 − u2|2 for all t ∈ (0, T0) , (1.3)

where abbreviating K ≡ K(T0) := max{‖u1‖L∞(Ω×(0,T0)), ‖u2‖L∞(Ω×(0,T0))} we have set c1 :=
min

s∈[0,K]
φ(s) > 0. Next, by the Cauchy-Schwarz inequality,

∫

Ω

(
ψ(u1)∇v1 − ψ(u2)∇v2

)
· ∇(v1 − v2) ≤

(∫

Ω

∣∣ψ(u1)∇v1 − ψ(u2)∇v2
∣∣2
) 1

2 ·
(∫

Ω

|∇(v1 − v2)|2
) 1

2

.

Here, in view of the Lipschitz regularity of ψ on [0,K(T0)] and elliptic theory,

|ψ(u1)− ψ(u2)| ≤ c2|u1 − u2|, ψ(u2) ≤ c3 and |∇v1| ≤ c4 in Ω× (0, T0)

hold with certain positive constants c2, c3 and c4 depending on K(T0) only, so that

∫

Ω

∣∣ψ(u1)∇v1 − ψ(u2)∇v2
∣∣2 ≤ 2

∫

Ω

|ψ(u1)− ψ(u2)|2|∇v1|2 + 2

∫

Ω

ψ2(u2) · |∇(v1 − v2)|2

≤ 2c22c
2
4

∫

Ω

|u1 − u2|2 + 2c23

∫

Ω

|∇(v1 − v2)|2 for all t ∈ (0, T0) .
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Hence, Young’s inequality entails

∫

Ω

(
ψ(u1)∇v1 − ψ(u2)∇v2

)
· ∇(v1 − v2) ≤

√
2c2c4

(∫

Ω

|u1 − u2|2
) 1

2 ·
(∫

Ω

|∇(v1 − v2)|2
) 1

2

+
√
2c3

∫

Ω

|∇(v1 − v2)|2

≤ c1

2

∫

Ω

|u1 − u2|2

+
(c22c24
c1

+
√
2c3

)
·
∫

Ω

|∇(v1 − v2)|2 (1.4)

for all t ∈ (0, T0). Inserting (1.3) and (1.4) into (1.2) and applying Grönwall’s lemma, we end up
with the inequality

1

2

∫

Ω

|∇(v1 − v2)|2(·, t) +
c1

2

∫ t

τ

∫

Ω

|u1 − u2|2 ≤
(1
2

∫

Ω

|∇(v1 − v2)|2(·, τ)
)
· ec5(t−τ), 0 < τ < t < T0,

with some c5 > 0 depending on T0 only. Since ∇(v1−v2) is continuous in Ω̄× [0, T0] by continuity
of u1 and u2 and elliptic estimates, we may let τ ց 0 and then T0 ր T to conclude that
(u1, v1) ≡ (u2, v2) in Ω× (0, T ).

Step 2. We next claim that for all K > M
2 one can find a positive number T (K) such that

whenever ū0 belongs to Cᾱ(Ω̄) with some ᾱ > 0 and satisfies 1
|Ω|

∫
Ω
ū0 =M as well as 0 ≤ ū0 ≤ K

in Ω then (0.4) has a classical solution (u, v) in Ω× (0, T (K)) with initial data u(·, 0) = ū0.
To see this, we let y = y(t) denote the solution of the initial-value problem

{
y′ = (2K −M)ψ(y) , t ∈ (0, Ty) ,

y(0) = K ,
(1.5)

defined up to its maximal existence time Ty ≤ ∞, and let

T (K) := min
{
1, sup{T ∈ (0, Ty] | y ≤ 2K on (0, T )}

}
. (1.6)

We now pick some functions φK and ψK belonging to C1+θ(R) and satisfying φK ≡ φ and ψK ≡ ψ

on [0, 2K] as well as

inf
s∈R

φK(s) > 0 , sup
s∈R

φK(s) <∞ , ψK(s) ≥ 0 for all s ≥ 0 and sup
s∈R

ψK(s) <∞ . (1.7)

We consider the fixed point problem Fu = u for the operator F , where Fū is defined to be the
first component u of the solution (u, v) to the discoupled system





ut = ∇ · (φK(u)∇u)−∇ · (ψK(u)∇v) , x ∈ Ω , t > 0 ,
0 = ∆v −M + u , x ∈ Ω , t > 0 ,
∂u
∂ν

= ∂v
∂ν

= 0 , x ∈ ∂Ω , t > 0 ,
u(x, 0) = ū0(x) , x ∈ Ω ,∫
Ω
v(x, t)dx = 0 , t > 0 .

(1.8)

Here, ū is taken from the closed bounded convex set

S :=
{
ū ∈ X

∣∣∣ 0 ≤ ū ≤ 2K in Ω̄× [0, T (K)] and
1

|Ω|

∫

Ω

ū(x, t)dx =M for all t ∈ [0, T (K)]
}

in the space X := Cβ,
β
2 (Ω̄× [0, T (K)]) with β ∈ (0, 1) small to be fixed below. According to (1.7)

and the regularity properties of φK and ψK , standard elliptic and parabolic theory imply that
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(1.8) possesses a unique classical solution (u, v) in Ω× (0, T0) with some T0 ∈ (0, T (K)). By (1.5)
and the definition of T (K), we have 0 ≤ y(t) ≤ 2K for all t ∈ [0, T (K)), so that û(x, t) := y(t)
satisfies

ût −∇ · (φK(û)∇û) +∇ · (ψK(û)∇v) = y′ − (û−M)ψK(y) ≥ y′ − (2K −M)ψ(y) = 0

in Ω × (0, T0). Hence, the comparison principle ensures that 0 ≤ u(x, t) ≤ û(x, t) = y(t) ≤ 2K
for all x ∈ Ω and t ∈ (0, T0), which implies that (u, v) can be extended so as to exist in all of
Ω× (0, T (K)). Since by elliptic theory and the Sobolev embedding theorem,

‖∇v‖L∞(Ω×(0,T )) ≤ c6‖∆v‖L∞((0,T );W 2,n+1(Ω)) ≤ c6c7 · (2K +M)

holds with some positive c6 and c7, parabolic theory ([LSU, Theorem V.1.1]) asserts a uniform

bound for u in Cα̂,
α̂
2 (Ω̄× [0, T (K)]) for some α̂ ∈ (0, ᾱ). Choosing β < α̂ now, we see that F (S)

is a relatively compact subset of X. As 0 ≤ u ≤ 2K and, evidently,
∫
Ω
u(x, t)dx ≡

∫
Ω
u0, we also

have F (S) ⊂ S. Moreover, since the solution of (1.8) is unique, it is easy to see using elliptic and
parabolic theory and compactness arguments that F is continuous with respect to the topology of
X. Therefore, the Schauder fixed point theorem states that Fu = u holds for some u ∈ S which
evidently solves (0.4) classically in Ω× (0, T ).

Step 3. We are now in the position to conclude the proof: Applying Steps 1 and 2 to ū0 := u0,
we obtain a local solution (u, v) of (0.4) in Ω × (0, T ) with some T > 0. Since u(·, t) is Hölder
continuous in Ω̄ for each t ∈ (0, T ) by parabolic regularity theory, and since the constant T (K)
in Step 2 depends on ‖ū0‖L∞(Ω) only, it follows from a standard argument that (u, v) can be
extended up to some maximal Tmax ≤ ∞ and that (1.1) holds. ////

2 Boundedness for p+ q <
2
n

In our boundedness proof below, we shall use the following version of the Gagliardo-Nirenberg
inequality in which special attention is paid to the dependence of the appearing constants on the
integrability powers.

Lemma 2.1 Let Ω ⊂ R
n be a bounded domain with smooth boundary, and let 2⋆ :=

{
2n
n−2 , n > 2 ,

∞ , n ≤ 2 .
Then for all p⋆ ∈ (2,∞) satisfying p⋆ ≤ 2⋆ and any θ ∈ (0, 2) there exists a positive constant CGN
such that whenever s ∈ [θ, p⋆],

‖w‖Ls(Ω) ≤ CGN
(
‖∇w‖aL2(Ω) · ‖w‖1−aLθ(Ω)

+ ‖w‖Lθ(Ω)

)
for all w ∈W 1,2(Ω) (2.1)

is valid with

a =
n
θ
− n

s

1− n
2 + n

θ

. (2.2)

Proof. By the Hölder inequality,

‖w‖Ls(Ω) ≤ ‖w‖b
Lp⋆ (Ω)‖w‖

1−b
Lθ(Ω)

,

where b =
1
θ
− 1

s
1
θ
− 1

p⋆
. Since p⋆ ≤ 2⋆, the standard Gagliardo-Nirenberg inequality ([F]) says that

‖w‖Lp⋆ (Ω) ≤ C̄GN‖w‖dW 1,2(Ω)‖w‖1−dLθ(Ω)

with some C̄GN > 0 and d =
n
θ
− n

p⋆

1−n
2 +n

θ

. Since bd = a, these estimates together with the Poincaré

inequality in the form

‖w‖W 1,2(Ω) ≤ CP (‖∇w‖L2(Ω) + ‖w‖Lθ(Ω))
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and the fact that (A + B)a ≤ 2a(Aa + Ba) for A ≥ 0 and B ≥ 0 imply that (2.1) holds with
CGN = (2CP )

a · (C̄GN )b. ////

We can now prove the following key lemma towards global boundedness of solutions under the
assumption that ψ asymptotically is weak enough as compared to φ. The method we perform is
strongly inspired by Alikakos’ iteration technique ([A]), but the original idea needs some adaptation
to the present situation. This is mainly due to the fact that the diffusive term may be significantly
weakened when u becomes large.

Lemma 2.2 Assume that φ and ψ are continuous on [0,∞) and such that φ is positive, ψ is
nonnegative and

φ(s) ≥ cφs
−p and ψ(s) ≤ cψs

q for all s ≥ 1 (2.3)

with constants cφ > 0, cψ > 0 and p ≥ 0 and q ∈ R satisfying

p+ q <
2

n
. (2.4)

Then for all L > 0 there exists C(L) > 0 such that whenever (u, v) is a classical solution of (0.4)
in Ω× (0, T ) with some T ∈ (0,∞] fulfilling 0 ≤ u0 ≤ L in Ω, we have

‖u(·, t)‖L∞(Ω) ≤ C(L) for all t ∈ (0, T ) . (2.5)

Proof. Passing to q̄ := max{q,−p} if necessary, we may assume without loss of generality that
(2.3) holds with p ≥ 0 and some q satisfying both (2.4) and the lower estimate p+ q ≥ 0. Writing
ω := max{1, 1

|Ω|}, from (2.3) we infer the existence of positive constants ĉφ and ĉψ such that

φ(s) ≥ ĉφ(s+ ω)−p and ψ(s) ≤ ĉψ(s+ ω)q for all s ≥ 0 . (2.6)

Let us fix θ ∈ (0, 1] small such that

(n− 2)θ <
4

p
and (1− p− q)θ < 2 , (2.7)

and set

γk := Γ · Zk − Γ + 1 , k ∈ N0 ,

with

Z :=
2

θ
and Γ := 1 +

p
2
θ
− 1

.

Then γ0 = 1, γk increases with k and

Zk ≤ γk ≤ Γ · Zk for all k ∈ N0 . (2.8)

Moreover, for k ∈ N0 we define

Kk := sup
t∈(0,T )

∫

Ω

(u+ ω)γk(x, t)dx ≤ ∞ ,

so that K0 = (M + ω)|Ω| due to the mass conservation property in (0.4). In the case that
Kkj ≤

∫
Ω
(u0 +ω)γkj occurs along some sequence kj → ∞, we may take the 1

γkj

-th power on both

sides here and let j → ∞ to easily end up with (2.5) upon the choice C(L) := L + ω. We thus
only need to consider the case when S := {k ∈ N0 | Kj >

∫
Ω
(u0 +ω)γj for all j > k} is not empty,

in which k⋆ := minS is well-defined and

Kk >

∫

Ω

(u0 + ω)γk for all k > k⋆ (2.9)
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holds as well as

Kk⋆ ≤
∫

Ω

(u0 + ω)γk⋆ . (2.10)

We now multiply the first equation in (0.4) by γk(u+ ω)γk−1 for k ≥ 1 and integrate by parts to
obtain

d

dt

∫

Ω

(u+ ω)γk + γk(γk − 1)

∫

Ω

(u+ ω)γk−2φ(u)|∇u|2

= γk(γk − 1)

∫

Ω

(u+ ω)γk−2ψ(u)∇u · ∇v

= γk(γk − 1)

∫

Ω

∇χ(u) · ∇v for t ∈ (0, T ) ,

where we have set

χ(s) :=

∫ s

0

(σ + ω)γk−2 · ψ(σ)dσ for s ≥ 0 .

By (2.6) and the fact that γk + q − 1 ≥ γ1 + q − 1 = 2
θ
+ p+ q − 1 > 0 for all k ≥ 1 due to (2.7),

χ(s) ≤ ĉψ ·
∫ s

0

(σ + ω)γk+q−2dσ ≤ ĉψ

γk + q − 1
(s+ ω)γk+q−1 for all s ≥ 0 .

Hence, once more integrating by parts and taking into account the equation ∆v = M − u =
(M + ω)− (u+ ω), we find

γk(γk − 1)

∫

Ω

∇χ(u) · ∇v = −γk(γk − 1)

∫

Ω

χ(u)∆v

= −γk(γk − 1)(M + ω)χ(u) + γk(γk − 1)

∫

Ω

(u+ ω)χ(u)

≤ γk(γk − 1)

∫

Ω

(u+ ω)χ(u)

≤ γk(γk − 1)ĉψ
γk + q − 1

∫

Ω

(u+ ω)γk+q ,

because χ(u) ≥ 0. Using the lower estimate for φ in (2.6), we therefore deduce the inequality

d

dt

∫

Ω

(u+ ω)γk +
4γk(γk − 1)ĉφ

(γk − p)2

∫

Ω

∣∣∣∇(u+ ω)
γk−p

2

∣∣∣
2

≤ γk(γk − 1)ĉψ
γk + q − 1

∫

Ω

(u+ ω)γk+q (2.11)

for all t ∈ (0, T ). Since for all k ∈ N we have

4γk(γk − 1)ĉφ
(γk − p)2

≥ 4(γk − 1)ĉφ
γk

≥ 4(γ1 − 1)ĉφ
γ1

=: c1

and

γk(γk − 1)ĉψ
γk + q − 1

≤ γk

γk + q − 1
ĉψγk ≤ max

{
1,

γ1

γ1 + q − 1

}
· ĉψγk = c2γk

with an obvious choice of c2, (2.11) implies

d

dt

∫

Ω

(u+ ω)γk + c1

∫

Ω

∣∣∣∇(u+ ω)
γk−p

2

∣∣∣
2

≤ c2γk

∫

Ω

(u+ ω)γk+q for t ∈ (0, T ) . (2.12)

To estimate the term on the right, we observe that Lemma 2.1 provides a constant CGN , indepen-
dent of k, such that

‖w‖
L

2(γk+q)
γk−p (Ω)

≤ CGN

(
‖∇w‖aL2(Ω) · ‖w‖1−aLθ(Ω)

+ ‖w‖Lθ(Ω)

)
for all w ∈W 1,2(Ω)
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with

a =

n
θ
− n(γk−p)

2(γk+q)

1− n
2 + n

θ

,

because, in view of our choice θ ≤ 1,

θ ≤ 1 ≤ 2(γk + q)

γk − p
= 2 +

2(p+ q)

γk − p
≤ 2 +

2(p+ q)

γ1 − p
= 2 + θ(p+ q) < 2 +

2

n
for all k ∈ N (2.13)

and (n− 2) · (2 + 2
n
) < 2n for n ≥ 1. Applying this to w := (u+ ω)

γk−p

2 and using the inequality
(A+B)α ≤ 2α(Aα +Bα), valid for all positive A,B and α, we have

c2γk

∫

Ω

(u+ ω)γk+q = c2γk‖w‖
2(γk+q)

γk−p

L

2(γk+q)
γk−p (Ω)

≤ c2γk · C
2(γk+q)

γk−p

GN

(∥∥∥∇(u+ ω)
γk−p

2

∥∥∥
a

L2(Ω)
·
∥∥∥(u+ ω)

γk−p

2

∥∥∥
1−a

Lθ(Ω)
+
∥∥∥(u+ ω)

γk−p

2

∥∥∥
Lθ(Ω)

) 2(γk+q)

γk−p

≤ c2γk · (2CGN )
2(γk+q)

γk−p

(∥∥∥∇(u+ ω)
γk−p

2

∥∥∥
2(γk+q)a

γk−p

L2(Ω)
·
∥∥∥(u+ ω)

γk−p

2

∥∥
2(γk+q)(1−a)

γk−p

Lθ(Ω)

+
∥∥∥(u+ ω)

γk−p

2

∥∥∥
2(γk+q)

γk−p

Lθ(Ω)

)

≤ c3γk

∥∥∥∇(u+ ω)
γk−p

2

∥∥∥
2(γk+q)a

γk−p

L2(Ω)
·
∥∥∥(u+ ω)

γk−p

2

∥∥
2(γk+q)(1−a)

γk−p

Lθ(Ω)
+ c3γk ·

∥∥∥(u+ ω)
γk−p

2

∥∥∥
2(γk+q)

γk−p

Lθ(Ω)
(2.14)

for all t ∈ (0, T ) with some c3 > 0 which, again by (2.13), does not depend on k ∈ N. Now the
smallness condition (2.4) becomes crucial in that it guarantees that for any k ∈ N we have

2(γk + q)a

γk − p
=

( 2
θ
− 1)n

1− n
2 + n

θ

+
2(p+ q)n

θ

(1− n
2 + n

θ
)(γk − p)

≤ ( 2
θ
− 1)n

1− n
2 + n

θ

+
2(p+ q)n

θ

(1− n
2 + n

θ
)(γ1 − p)

=
( 2
θ
− 1 + p+ q)n

1− n
2 + n

θ

<
( 2
θ
− 1)n

1− n
2 + n

θ

+
2

1− n
2 + n

θ

= 2 . (2.15)

It is therefore possible to apply Young’s inequality,

AB ≤ ηAs + (s− 1)s−
s

s−1 · η− 1
s−1 ·B s

s−1 ∀A ≥ 0 , B ≥ 0 , η > 0 , and s > 1

with s = 2
2(γk+q)a

γk−p

= γk−p
(γk+q)a

to estimate

c3γk

∥∥∥∇(u+ ω)
γk−p

2

∥∥∥
2(γk+q)a

γk−p

L2(Ω)
·
∥∥∥(u+ ω)

γk−p

2

∥∥
2(γk+q)(1−a)

γk−p

Lθ(Ω)

≤ c1

2

∫

Ω

∣∣∣∇(u+ ω)
γk−p

2

∣∣∣
2

+ (s− 1)s−
s

s−1 ·
( 2

c1

) 1
s−1 · (c3γk)

s
s−1 ·

∥∥∥(u+ ω)
γk−p

2

∥∥∥
2(γk+q)(1−a)s

(γk−p)(s−1)

Lθ(Ω)
.(2.16)

Here, (2.15) implies s ≥ s⋆ := 2 · 1−n
2 +n

θ

( 2
θ
−1+p+q)n

> 1 for all k ≥ 1, whereas evidently

s ≡ 1− n
2 + n

θ
n
θ
− n

2 + n
θ
· p+q
γk−p

≤ 1− n
2 + n

θ
n
θ
− n

2

=: s⋆ ,
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because γk > p. Therefore,

(s− 1)s−
s

s−1 ·
( 2

c1

) 1
s−1 · (c3γk)

s
s−1 ≤ c4γk

b (2.17)

with some c4 > 0 independent of k and b := s⋆

s⋆−1 > 1. The power appearing in the last term in
(2.16) can explicitly be computed according to

2(γk + q)(1− a)s

(γk − p)(s− 1)
= 2 · (γk + q)(1− a)

(γk − p)(1− (γk+q)a
γk−p

)
= 2 · γk + q − (γk + q)a

γk − p− (γk + q)a

= 2 ·
(
1 +

p+ q

γk − p− (γk + q)a

)
= 2 ·

(
1 +

p+ q

γk − p− (γk−p)(
n
θ
−n

2 )+(p+q)n
θ

1−n
2 +n

θ

)

= 2 +
2(p+ q)(1− n

2 + n
θ
)

γk − p− (p+ q)n
θ

.

Altogether, from (2.12), (2.14), (2.16) and (2.17) we thus infer that

d

dt

∫

Ω

(u+ ω)γk +
c1

2

∫

Ω

∣∣∣∇(u+ ω)
γk−p

2

∣∣∣
2

≤ c4γk
b
∥∥∥(u+ ω)

γk−p

2

∥∥∥
2+

2(p+q)(1−n
2

+n
θ

)

γk−p−(p+q)n
θ

Lθ(Ω)

+c3γk

∥∥∥(u+ ω)
γk−p

2

∥∥∥
2+

2(p+q)
γk−p

Lθ(Ω)
(2.18)

for all t ∈ (0, T ), where we have rewritten 2(γk+q)
γk−p

in a convenient way.
Next, we invoke the Poincaré inequality in the version

c5‖w‖2Lpθ+2(Ω) ≤
∫

Ω

|∇w|2 + ‖w‖2Lθ(Ω) for all w ∈W 1,2(Ω) ,

which is valid with some c5 > 0 because of the fact that (2.7) implies (n − 2)(pθ + 2) < 2n.
Combining this with the Hölder inequality, we see that

∫

Ω

∣∣∣∇(u+ ω)
γk−p

2

∣∣∣
2

+
∥∥∥(u+ ω)

γk−p

2

∥∥∥
2

Lθ(Ω)
≥ c5

(∫

Ω

(u+ ω)
(γk−p)(pθ+2)

2

) 2
pθ+2

≥ c5|Ω|−( pθ
pθ+2−

p
γk

) ·
(∫

Ω

(u+ ω)γk
) γk−p

γk

≥ c6

(∫

Ω

(u+ ω)γk
) γk−p

γk for all t ∈ (0, T )

is true with c6 := c5 min{1, |Ω|−
pθ

pθ+2 }. Inserted into (2.18) this yields

d

dt

∫

Ω

(u+ ω)γk ≤ −c1c6
2

(∫

Ω

(u+ ω)γk
) γk−p

γk

+
c1

2

∥∥∥(u+ ω)
γk−p

2

∥∥∥
2

Lθ(Ω)

+c4γk
b
∥∥∥(u+ ω)

γk−p

2

∥∥∥
2+

2(p+q)(1−n
2

+n
θ

)

γk−p−(p+q)n
θ

Lθ(Ω)

+c3γk

∥∥∥(u+ ω)
γk−p

2

∥∥∥
2+

2(p+q)
γk−p

Lθ(Ω)
for all t ∈ (0, T ) .
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We now recall the definitions of Kk−1 and Z and note that γk−p
2 θ = γk−1 in further estimating

d

dt

∫

Ω

(u+ ω)γk ≤ −c1c6
2

(∫

Ω

(u+ ω)γk
) γk−p

γk + c7γk
bK

Z(1+ε̄k)
k−1 for all t ∈ (0, T ) , (2.19)

where c7 := c1
2 + c4 + c3 and

ε̄k := max

{
p+ q

γk − p
,
(p+ q)(1− n

2 + n
θ
)

γk − p− (p+ q)n
θ

}
. (2.20)

Here we have used that 1 ≤ γk ≤ γk
b for all k because of b > 1, and that our choice of ω made in

the beginning of the proof ensures that Kk−1 ≥ 1.
Integrating the differential inequality (2.19), we find
∫

Ω

(u+ ω)γk(·, t) ≤ max

{∫

Ω

(u0 + ω)γk ,
[ 2c7
c1c6

γk
b(Kk−1)

Z(1+ε̄k)
] γk

γk−p

}
for all t ∈ (0, T ) .

Since γk
γk−p

= 1 + p
γk−p

≤ 1 + pθ
2 for all k ≥ 1, in view of (2.8) this implies

∫

Ω

(u+ ω)γk(·, t) ≤ max

{∫

Ω

(u0 + ω)γk , c8 · Zdk(Kk−1)
Z(1+εk)

}
for all t ∈ (0, T ) (2.21)

with d := (1 + pθ
2 )b, c8 := ( 2c7Γ

b

c1c6
)1+

pθ
2 , and

εk :=
γkε̄k + p

γk − p
. (2.22)

Taking supt∈(0,T ) on both sides of (2.21) and noting (2.9), we thus arrive at the recursive estimate

Kk ≤ c8 · Zdk(Kk−1)
Z(1+εk) for all k > k⋆ + 1 ,

whereas

Kk⋆+1 ≤ c8 · Zd(k⋆+1) max{[ 1

c8Zd(k⋆+1)

∫

Ω

(u0 + ω)γk⋆+1 ]
1

Z(1+εk⋆+1)Kk⋆}Z(1+εk⋆+1)

=: c8 · Zd(k⋆+1)(K̃k⋆)
Z(1+εk⋆+1) . (2.23)

(2.24)

A straightforward induction shows that

Kk⋆+j ≤ c
1+

j−1
∑

i=1

Zi·
i−1
∏

l=0

(1+εk⋆+j−l)

8 · Z
d

(
k⋆+j+

j−1
∑

i=1
(k⋆+j−i)·Z

i·
i−1
∏

l=0

(1+εk⋆+j−l)

)

· K̃
Zj ·

j
∏

l=1

(1+εk⋆+l)

k⋆
(2.25)

for all j ≥ 1. We now observe that by (2.20), (2.22) and (2.8), we have

εk ≤ c9 · Z−k for all k ≥ 1

with some c9 > 0, so that we can estimate, using that ln(1 + ξ) ≤ ξ for all ξ ≥ 0,

j∏

l=1

(1 + εk⋆+l) = e

j
∑

l=1

ln(1+εk⋆+l) ≤ e

j
∑

l=1

εk⋆+l ≤ e
c9

Z−1

and

1 +

j−1∑

i=1

Zi ·
i−1∏

l=0

(1 + εk⋆+j−l) ≤ 1 +

j−1∑

i=1

Zi · e
c9·

i−1
∑

l=0

Z−(k⋆+j−l)

≤ 1 +

j−1∑

i=1

Zi · e
c9

Z−1

≤ 1 +
Zj − Z

Z − 1
· e

c9
Z−1

≤ Zj · e
c9

Z−1
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for all j ≥ 1. Similarly,

k⋆ + j +

j−1∑

i=1

(k⋆ + j − i) · Zi ·
i−1∏

l=0

(1 + εk⋆+j−l) ≤ k⋆ + j +

j−1∑

i=1

(k⋆ + j − i) · Zi · e
c9

Z−1

≤ e
c9

Z−1 ·
j−1∑

i=0

(k⋆ + j − i) · Zi

= e
c9

Z−1 · 1

(Z − 1)2
[k⋆ · (Zj+1 − Zj − Z + 1)

−j(Z − 1) + Zj+1 − Z]

≤ e
c9

Z−1 · 1

(Z − 1)2
[k⋆ · (Zj+1 + 1) + Zj+1]

for all j ≥ 1, whereupon taking the γk⋆+j-th root on both sides of (2.25) in view of (2.8) leads to

K
1

γk⋆+j

k⋆+j
≤ K

1

Zk⋆+j

k⋆+j
≤ cZ

−k⋆e
c9

Z−1

8 · Zde
c9

Z−1 · 1
(Z−1)2

[k⋆·(Z
1−k⋆+Z−k⋆−j)+Z1−k⋆ ] · K̃Z−k⋆e

c9
Z−1

k⋆

for all j ≥ 1. Recalling (2.10) and (2.23), we infer that the right-hand side is bounded, uniformly
in j and irrespective of the particular value of k⋆, by a constant that can be estimated from above
by c10‖u0 + ω‖c11

L∞(Ω) with certain positive c10 and c11. After letting j → ∞ we easily arrive at

(2.5), as asserted. ////

Combining the above lemma with Theorem 1.1, we immediately obtain the following.

Corollary 2.3 Suppose that φ and ψ are in C1+θ
loc ([0,∞)) for some θ > 0, that φ > 0 and ψ ≥ 0

on [0,∞), and that

φ(s) ≥ cφs
−p and ψ(s) ≤ cψs

q for all s ≥ 1

with cφ > 0, cψ > 0, p ≥ 0 and q ∈ R such that

p+ q <
2

n
.

Then for any nonnegative and uniformly Hölder continuous u0, (0.4) possesses a unique global
bounded solution.

3 Finite-time blow-up for p+ q >
2
n

In the sequel we set Ω = BR := B(0, R) and assume that the nonnegative data are radially
symmetric and satisfy u0 ∈ Cϑ(Ω) for some ϑ > 0 and

φ, ψ ∈ C1+θ
loc ([0,∞)) , φ > 0 , ψ ≥ 0

for some θ > 0. By Theorem 1.1 there exists a classical solution (u, v) up to a maximal existence
time Tmax ∈ (0,∞], where (u, v) is also radially symmetric because of the uniqueness result.
Without any danger of confusion we shall write u = u(r, t) for r = |x| throughout.
We will use some transformations in order to achieve a differential equation which allows for some
kind of comparison principle. Multiplying rn−1 and integrating the radial differential equation for
u in





ut = 1
rn−1 (r

n−1φ(u)ur)r − 1
rn−1 (r

n−1ψ(u)vr)r , r ∈ (0, R) , t ∈ (0, Tmax) ,
0 = 1

rn−1 (r
n−1vr)r + u−M , r ∈ (0, R) , t ∈ (0, Tmax) ,

ur = 0 , r = R , t ∈ [0, Tmax) ,
vr = 0 , r = R , t ∈ [0, Tmax) ,

u(r, 0) = u0 , r ∈ [0, R) ,
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over (0, r) implies

d
dt

∫ r
0
ρn−1udρ =

∫ r
0
(ρn−1φ(u)ur)rdρ−

∫ r
0
(ρn−1ψ(u)vr)rdρ

= rn−1φ(u)ur − [rn−1vr]ψ(u)
= rn−1φ(u)ur + ψ(u)

∫ r
0
ρn−1udρ− M

n
rnψ(u) .

We set

U(r, t) :=

∫ r

0

ρn−1u(ρ, t)dρ .

Then we have

u =
Ur

rn−1
, ur =

Urr

rn−1
− (n− 1)

Ur

rn
,

which implies the following differential equation for U

Ut = φ

(
Ur

rn−1

)
·
(
Urr −

n− 1

r
Ur

)
+ ψ

(
Ur

rn−1

)
U − M

n
rnψ

(
Ur

rn−1

)
.

By

W (s, t) := n · U
(
s

1
n , t
)

one obtains, substituting with r = s
1
n ,

U =
1

n
W , Ut =

1

n
Wt , Ur =Wss

n−1
n , Urr = ns2−

2
nWss + (n− 1)s1−

2
nWs .

Defining the differential operator P by

PW̃ := W̃t − F (s, W̃ , W̃s, W̃ss) (3.1)

with
F (x, u, y, z) := n2x2−

2
nφ(y)z + (u−Mx)ψ(y) (3.2)

we arrive at the following problem for W :





PW = 0 , s ∈ (0, Rn) , t ∈ (0, Tmax) ,
W (0, t) = 0 , t ∈ [0, Tmax) ,

W (Rn, t) = MRn , t ∈ [0, Tmax) ,

W (s, 0) = W0(s) := n
∫ s 1

n

0
ρn−1u0(ρ)dρ , s ∈ [0, Rn] .

We want to apply a comparison principle to this differential equation. Since the subsolutions we
have in mind (see below) do not possess second order derivatives with respect to s at all points,
we need a weak comparison principle.

Theorem 3.1 (Weak comparison principle) Let W,W : [0, Rn]× [0, T ] → [0,∞) be two non-
negative functions with

W (s, 0) ≤W (s, 0) for all s ∈ [0, Rn]

and
W (0, t) =W (0, t) = 0 and W (Rn, t) ≤W (Rn, t) for all t ∈ [0, T ] .

We also assume W,W ∈ C1([0, Rn] × [0, T ]) ∩ L1([0, T ];W 2,∞([0, Rn])) with W s,W s ≥ 0, and
suppose that W,W possess a second order derivatives with respect to s almost everywhere, and
that PW ≤ PW almost everywhere with P taken from (3.1) and (3.2). Then it follows that

W ≤W on [0, Rn]× [0, T ] .
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Proof. From

W t − n2s2−
2
nφ(W s)W ss − (W −Ms)ψ(W s) ≥W t − n2s2−

2
nφ(W s)W ss − (W −Ms)ψ(W s)

we obtain, writing z(s, t) := (W −W )(s, t), after dividing by s2−
2
n that almost everywhere

s−2+ 2
n zt ≤ n2(φ(W s)W ss − φ(W s)W ss) + s−2+ 2

n [(W −Ms)ψ(W s)− (W −Ms)ψ(W s)] .

Now observe z+zt = z+(z+)t =
1
2 (z

2
+)t and z+(·, 0) = 0. Multiplying this by z+ and integrating

over [0, Rn]× [0, τ ] for τ ∈ (0, T ] we find

1
2

∫ Rn

0
s−2+ 2

n z2+(s, τ) = 1
2

∫ Rn

0

∫ τ
0
s−2+ 2

n (z2+)t =
∫ Rn

0

∫ τ
0
s−2+ 2

n z+zt

≤ n2
∫ τ
0

∫ Rn

0
(φ(W s)W ss − φ(W s)W ss)z+

+
∫ τ
0

∫ Rn

0
s−2+ 2

n [(W −Ms)ψ(W s)− (W −Ms)ψ(W s)]z+ .

We set Φ(x) :=
∫ x
0
φ(s)ds. Then because of z+(0, τ) = z+(R

n, τ) = 0 for all τ ∈ [0, T ], we have

1
2

∫ Rn

0
s−2+ 2

n z2+(s, τ) ≤ n2
∫ τ
0

∫ Rn

0
(Φ(W s)− Φ(W s))sz+

+
∫ τ
0

∫ Rn

0
s−2+ 2

n [(W −Ms)ψ(W s)− (W −Ms)ψ(W s)]z+

= −n2
∫ τ
0

∫ Rn

0
(Φ(W s)− Φ(W s))(z+)s

+
∫ τ
0

∫ Rn

0
s−2+ 2

n [(W −Ms)ψ(W s)− (W −Ms)ψ(W s)]z+ .

Now, we define
C1 := max{‖W s‖C([0,Rn]×[0,T ]), ‖W s‖C([0,Rn]×[0,T ])} <∞

and
C2 := min{φ(x) | x ∈ [0, C1]} > 0 .

Φ is nondecreasing since φ > 0. Thus one obtains by the mean value theorem

(Φ(W s)− Φ(W s))(z+)s = |Φ(W s)− Φ(W s)||W s −W s|χ{z≥0}

≥ C2(W s −W s)
2χ{z≥0}

= C2((z+)s)
2 .

This implies

∫ Rn

0
s−2+ 2

n z2+(s, τ) ≤ −2C2n
2
∫ τ
0

∫ Rn

0
((z+)s)

2

+2
∫ τ
0

∫ Rn

0
s−2+ 2

n [(W −Ms)ψ(W s)− (W −Ms)ψ(W s)]z+

= −2C2n
2
∫ τ
0

∫ Rn

0
((z+)s)

2

+2
∫ τ
0

∫ Rn

0
s−2+ 2

n (W −Ms)(ψ(W s)− ψ(W s)) · z+
+2
∫ τ
0

∫ Rn

0
s−2+ 2

nψ(W s) · (z+)2 .

With the aid of Young’s inequality and

C3 := sup{s−2+ 2
n (W −Ms)2 | s ∈ (0, Rn] , τ ∈ [0, T ]} <∞

and
C4 := max{ψ(x) | x ∈ [0, C1]} <∞ ,

in the case C3C4 > 0 for ε := C2n
2

4C2
4C3

> 0 one sees that

∫ τ
0

∫ Rn

0
s−2+ 2

n (W −Ms)(ψ(W s)− ψ(W s)) · z+
≤ ε

∫ τ
0

∫ Rn

0
s−2+ 2

n (W −Ms)2(ψ(W s)− ψ(W s))
2 + 1

4ε

∫ τ
0

∫ Rn

0
s−2+ 2

n (z+)
2

≤ ε4C2
4C3

∫ τ
0

∫ Rn

0
(ψ(W s)− ψ(W s))

2 + 1
4ε

∫ τ
0

∫ Rn

0
s−2+ 2

n (z+)
2 ,
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hence ∫ Rn

0

s−2+ 2
n z2+(s, τ) ≤ 2

(
C4 +

C2
4C3

C2n2

)∫ τ

0

∫ Rn

0

s−2+ 2
n · (z+)2

which trivially holds in the other case C3C4 = 0. Now, we apply Grönwall’s lemma which leads to

∫ Rn

0

s−2+ 2
n z2+(s, τ) ≤ 0 for all τ ∈ [0, T ] .

Because z+ is continuous and nonnegative, it follows that z+ = 0 and therefore W ≤ W on
[0, Rn]× [0, T ]. ////

In the sequel we additionally assume

0 < φ(s) ≤ c1s
−p , ψ(s) ≥ c2s(1 + s)q−1 , ψ(0) = 0 (3.3)

for suitable

c1, c2 > 0 , p ≥ 0 , q > 0 , and p+ q >
2

n
. (3.4)

In order to reduce the PDE in question to an ordinary differential equation we take a selfsimilar
ansatz

W̃ (s, t) := (T − t)α · w((T − t)−βs) , s ∈ [0, Rn] , t ∈ [0, T ) . (3.5)

Let us assume for a moment that

w ≥ 0 , w′ > 0 , w′′ ≤ 0 .

Then this implies with ξ := (T − t)−βs

PW̃ = −α(T − t)α−1[w(ξ)] + β(T − t)α−1ξ[w′(ξ)]

−n2ξ2− 2
n (T − t)(2−

2
n
)β+α−2β [w′′(ξ)]φ((T − t)α−βw′(ξ))

−[(T − t)αw(ξ)−M(T − t)βξ]ψ((T − t)α−βw′(ξ))

≤ −c1n2ξ2−
2
n (T − t)(2−

2
n
)β−p(α−β)+α−2β [w′′(ξ)][w′(ξ)]−p

+β(T − t)α−1ξ[w′(ξ)]− α(T − t)α−1[w(ξ)]
−[(T − t)αw(ξ)−M(T − t)βξ]ψ((T − t)α−βw′(ξ)) .

Because of q > 0 we can choose α and β such that (2− 2
n
)β−p(α−β)+α−2β = α−1 = α+q(α−β),

which is equivalent to

α =
n(p

q
+ 1)

2
− 1

q
, β =

n(p
q
+ 1)

2
. (3.6)

We remark at this point that α and β are positive because of p+ q > 2
n
. Then we obtain

(T − t)1−αPW̃ ≤ −c1n2ξ2−
2
n [w′′(ξ)][w′(ξ)]−p + βξ[w′(ξ)]− α[w(ξ)]

−c2[w(ξ)][w′(ξ)][(T − t)
1
q + w′(ξ)]q−1 ·Ψ((T − t)−

1
qw′(ξ))

+c2Mξ(T − t)
1
q [w′(ξ)][(T − t)

1
q + w′(ξ)]q−1Ψ((T − t)−

1
qw′(ξ))

=: Ew

(3.7)

with

Ψ(s) :=
ψ(s)

c2s(1 + s)q−1
≥ 1 , s > 0 . (3.8)

Lemma 3.2 (Linear functions as subsolutions) Assume that (3.3) holds with parameters sat-
isfying (3.4), and let m be a positive number fulfilling

m ≥





(
22−q

c2q

) 1
q

, if 0 < q < 1 ,
(

2
c2q

) 1
q

, if q ≥ 1 ,
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and let
w1(ξ) := mξ , ξ ∈ [0,∞) .

Then we have w′
1 > 0, w′′

1 = 0, and Ew1 ≤ 0 on [0,∞) for all

T ≤
{

min{( m2M )q,mq} , if 0 < q < 1 ,
( m2M )q , if q ≥ 1 ,

with E as determined by (3.7) and (3.8).

Proof. Obviously, w′
1 > 0 and w′′

1 = 0. Moreover,

Ew1 = mξ

[
1

q
− c2Ψ

(
(T − t)−

1
qm
) [

(T − t)
1
q +m

]q−1 (
m−M(T − t)

1
q

)]
.

Therefore Ew1 ≤ 0 is equivalent to

1

qc2Ψ
(
(T − t)−

1
qm
) ≤

[
(T − t)

1
q +m

]q−1 (
m−M(T − t)

1
q

)
.

Since Ψ ≥ 1, it is sufficient to ensure that

1

qc2
≤
[
(T − t)

1
q +m

]q−1 (
m−M(T − t)

1
q

)
.

This holds in the case 0 < q < 1 because of the estimate

[
(T − t)

1
q +m

]q−1 (
m−M(T − t)

1
q

)
≥ (2m)q−1m

2
,

whereas in the case q ≥ 1 we find

[
(T − t)

1
q +m

]q−1 (
m−M(T − t)

1
q

)
≥ mq

2
.

This implies the assertion in both cases. ////

Because this value plays an important role in the following, we set

η̃ :=

{ ∞ if np− 2 ≤ 0 ,
n

np−2 if np− 2 > 0 .
(3.9)

Lemma 3.3 (Further subsolutions for sufficiently large ξ) Suppose that (3.3) holds with pa-
rameters (3.4), and let η ∈ (0, η̃) with η̃ from (3.9), a ≥ 0, and ξ0 > a be arbitrary. Then for
all

ε ∈
(
α

β
− α

β + η
,min

{
α

β
,
α

β
− 1 +

2

np

})

with α, β from (3.6) there exists A0 = A0(a, c1, c2, n, p, q, ε, η, ξ0) > 0 such that

w2(ξ) := A(ξ − a)
α
β
−ε , ξ ∈ [a,∞)

has the properties w2 > 0, w′
2 > 0, w′′

2 < 0, and Ew2 < 0 on [ξ0,∞) for all A > A0 and for all

T ≤ min





[
A

(
α

β
− ε

)
(ξ0 − a)

α
β
−ε−1

]q
,

(
η

c3M [2A(α
β
− ε)(ξ0 − a)

α
β
−ε−1]max{0,q−1}

)max{1,q}




with c3 := sup
{

ψ(s)
s(1+s)q−1 | s ∈ (0, (α

β
− ε)M)

}
≥ c2 wherein E again is taken from (3.7) and (3.8).
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Proof. First one notices that α
β
− ε ∈ (0, 1), so that we obtain w2 > 0, w′

2 > 0, and w′′
2 < 0.

Now, α
β
− α

(β+η) <
α
β
− 1 + 2

np
is equivalent to

η(np− 2) < n

which holds because of η ∈ (0, η̃). Therefore the interval which defines ε is nonempty. Observe
that

Ew2 = c1n
2ξ2−

2
n (1 + ε− α

β
)(α
β
− ε)1−pA1−p(ξ − a)

α
β
−ε−2+p(1+ε−α

β
)

+βξA(α
β
− ε)(ξ − a)

α
β
−ε−1

−αA(ξ − a)
α
β
−ε

−c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1Ψ((T − t)−

1
qw′(ξ))[w(ξ)−Mξ(T − t)

1
q ] .

We distinguish between two possible cases.

• Case 1: w(ξ) ≥Mξ(T − t)
1
q :

Then

−c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1Ψ((T − t)−

1
qw′(ξ))[w(ξ)−Mξ(T − t)

1
q ]

≤ −c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1[w(ξ)−Mξ(T − t)

1
q ] .

• Case 2: w(ξ) < Mξ(T − t)
1
q :

Then 0 < (T − t)−
1
qw′(ξ) = (T − t)−

1
q
(α
β
−ε)

ξ
w(ξ) < (α

β
− ε)M . Furthermore, c3 :=

sup
{

ψ(s)
s(1+s)q−1 | s ∈ (0, (α

β
− ε)M)

}
is finite because of lim

sց0

ψ(s)
s

= ψ′(0) <∞, hence Ψ(s) ≤
c3
c2

for all s ∈ (0, (α
β
− ε)M). This implies

−c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1Ψ((T − t)−

1
qw′(ξ))[w(ξ)−Mξ(T − t)

1
q ]

≤ −c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1w(ξ)

+c3[w
′(ξ)][(T − t)

1
q + w′(ξ)]q−1Mξ(T − t)

1
q .

Because of c3 ≥ c2 we can summarize both cases as

−c2[w′(ξ)][(T − t)
1
q + w′(ξ)]q−1Ψ((T − t)−

1
qw′(ξ))[w(ξ)−Mξ(T − t)

1
q ]

≤ −c2A(ξ − a)
α
β
−ε[w′(ξ)][(T − t)

1
q + w′(ξ)]q−1

+c3A(
α
β
− ε)(ξ − a)

α
β
−ε−1[(T − t)

1
q + w′(ξ)]q−1Mξ(T − t)

1
q .

This implies

Ew2 ≤ c1n
2ξ2−

2
n (1 + ε− α

β
)(α
β
− ε)1−pA1−p(ξ − a)

α
β
−ε−2+p(1+ε−α

β
)

+βξA(α
β
− ε)(ξ − a)

α
β
−ε−1

−αA(ξ − a)
α
β
−ε

−c2A(ξ − a)
α
β
−ε[w′(ξ)][(T − t)

1
q + w′(ξ)]q−1

+c3MξA(α
β
− ε)(ξ − a)

α
β
−ε−1(T − t)

1
q [(T − t)

1
q + w′(ξ)]q−1 .

Next, we again consider two different cases:

• Case i): 0 < q < 1:

By the assumption T ≤ min
{
[w′(ξ0)]

q, η
c3M

}
it follows that for all ξ ≥ ξ0

−c2A(ξ − a)
α
β
−ε[w′(ξ)][(T − t)

1
q + w′(ξ)]q−1

+c3MξA(α
β
− ε)(ξ − a)

α
β
−ε−1(T − t)

1
q [(T − t)

1
q + w′(ξ)]q−1

≤ −c2[2w′(ξ0)]
q−1(α

β
− ε)A2(ξ − a)2(

α
β
−ε)−1

+c3M(T − t)
1
q
+ q−1

q (α
β
− ε)Aξ(ξ − a)

α
β
−ε−1 .

≤ −c2[2w′(ξ0)]
q−1(α

β
− ε)A2(ξ − a)2(

α
β
−ε)−1

+η(α
β
− ε)Aξ(ξ − a)

α
β
−ε−1 .
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• Case ii): q ≥ 1:

By the assumption T ≤ min
{
[w′(ξ0)]

q,
(

η
c3M [2w′(ξ0)]q−1

)q}
we obtain for all ξ ≥ ξ0

−c2A(ξ − a)
α
β
−ε[w′(ξ)][(T − t)

1
q + w′(ξ)]q−1

+c3MξA(α
β
− ε)(ξ − a)

α
β
−ε−1(T − t)

1
q [(T − t)

1
q + w′(ξ)]q−1

≤ −c2(αβ − ε)qAq+1(ξ − a)
α
β
−ε+q(α

β
−ε−1)

+c3M [2w′(ξ0)]
q−1T

1
q (α
β
− ε)Aξ(ξ − a)

α
β
−ε−1 .

≤ −c2(αβ − ε)qAq+1(ξ − a)
α
β
−ε+q(α

β
−ε−1)

+η(α
β
− ε)Aξ(ξ − a)

α
β
−ε−1 .

Collecting both cases, we arrive at

Ew2 ≤ c1n
2ξ2−

2
n (1 + ε− α

β
)(α
β
− ε)1−pA1−p(ξ − a)

α
β
−ε−2+p(1+ε−α

β
)

+(β + η)ξA(α
β
− ε)(ξ − a)

α
β
−ε−1

−αA(ξ − a)
α
β
−ε

−I4
=: I1 + I2 − I3 − I4

with

I4 :=

{
c2[2w

′(ξ0)]
q−1(α

β
− ε)A2(ξ − a)2(

α
β
−ε)−1 , if 0 < q < 1 ,

c2(
α
β
− ε)qAq+1(ξ − a)

α
β
−ε+q(α

β
−ε−1) , if q ≥ 1 .

Since ε > α
β
− α

(β+η) , there exists µ = µ(n, p, q, ε, η) ∈ (0, 1) with

α(1− µ) >

(
α

β
− ε

)
(β + η) .

Then the expression

X = X(a, n, p, q, ε, η) := a+
a

α(1−µ)
(α
β
−ε)(β+η) − 1

is well-defined. In particular, for all ξ ≥ X we have

ξ

ξ − a
= 1 +

a

ξ − a
≤ 1 +

a

X − a
=

α(1− µ)

(α
β
− ε)(β + η)

.

Now, one has the following equivalences (assuming A > 0):

I1 < µI3 ⇔ Ap >
c1n

2(α
β
− ε)1−p(1 + ε− α

β
)
(

ξ
ξ−a

)2− 2
n

(ξ − a)−
2
n
+p(1+ε−α

β
)

µα

and

I2 ≤ (1− µ)I3 ⇔ ξ

ξ − a
≤ α(1− µ)

(α
β
− ε)(β + η)

.

Due to − 2
n
+ p(1 + ε− α

β
) < 0 and ξ

ξ−a = 1 + a
ξ−a ≤ 1 + a for all ξ ≥ a+ 1 we have

I1 < µI3 for all ξ ≥ a+ 1 and A > A1 :=

(
c1n

2(α
β
− ε)1−p(1 + ε− α

β
)(1 + a)2−

2
n

µα

) 1
p

and by definition of X
I2 ≤ (1− µ)I3 for all ξ ≥ X .

In order to achieve estimates for I4 we split into two cases again.
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• Case I): 0 < q < 1:

Assuming A > 0 we obviously have the equivalences

I1 <
1

2
I4 ⇔ Ap+q >

22−qc1n
2(1 + ε− α

β
)

c2(
α
β
− ε)p+q−1(ξ0 − a)(1−q)(1+ε−

α
β
)
ξ2−

2
n (ξ − a)−2+(p+1)(1+ε−α

β
)

and

I2 ≤ 1

2
I4 ⇔ Aq ≥

22−q(β + η)(α
β
− ε)1−q

c2(ξ0 − a)(1−q)(1+ε−
α
β
)
ξ(ξ − a)ε−

α
β .

In the case ξ0 < a+ 1, in particular we obtain I1 <
1
2I4 for all ξ ∈ [ξ0, a+ 1] if

A > A2 :=

(
22−qc1n

2(1 + ε− α
β
)

c2(
α
β
− ε)p+q−1(ξ0 − a)(1−q)(1+ε−

α
β
)

max
ξ∈[ξ0,a+1]

{
ξ2−

2
n (ξ − a)−2+(p+1)(1+ε−α

β
)
}) 1

p+q

.

If ξ0 < X, however, we set

b = b(a, n, p, q, ε, η, ξ0) := max
ξ∈[ξ0,X]

{
ξ(ξ − a)ε−

α
β

}
.

Then one finally concludes

I2 ≤ 1

2
I4 for all ξ ∈ [ξ0, X] and A ≥ A3 :=

(
22−q(β + η)(α

β
− ε)1−qb

c2(ξ0 − a)(1−q)(1+ε−
α
β
)

) 1
q

.

• Case II): q ≥ 1:

Analogously we consider the equivalences (again assuming A > 0)

I1 <
1

2
I4 ⇔ Ap+q >

2c1n
2(1 + ε− α

β
)

c2(
α
β
− ε)p+q−1

ξ2−
2
n (ξ − a)−2+(p+q)(1+ε−α

β
)

and

I2 ≤ 1

2
I4 ⇔ Aq ≥ 2(β + η)

c2(
α
β
− ε)q−1

ξ

(ξ − a)1−q(1+ε−
α
β
)
.

In particular, in the case ξ0 < a+ 1 we have I1 <
1
2I4 for all ξ ∈ [ξ0, a+ 1], provided that

A > A2 :=

(
2c1n

2(1 + ε− α
β
)

c2(
α
β
− ε)p+q−1

max
ξ∈[ξ0,a+1]

{
ξ2−

2
n (ξ − a)−2+(p+q)(1+ε−α

β
)
}) 1

p+q

.

If ξ0 < X, we set

b = b(a, n, p, q, ε, η, ξ0) := max
ξ∈[ξ0,X]

{
ξ

(ξ − a)1−q(1+ε−
α
β
)

}
.

Finally, we end up with

I2 ≤ 1

2
I4 for all ξ ∈ [ξ0, X] and A ≥ A3 :=

(
2(β + η)b

c2(
α
β
− ε)q−1

) 1
q

.

Therefore the lemma has been proven upon the choice A0 := max{A1, A2, A3}. ////
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Corollary 3.4 (Combined subsolution) Assume (3.3) and (3.4). Then for all ξ1 > 0, η ∈
(0, η̃) with η̃ taken from (3.9) and

ε ∈
(
α

β
− α

β + η
,min

{
α

β
,
α

β
− 1 +

2

np

})

with α, β from (3.6) there exist a = a(n, p, q, ε, ξ1) ∈ (0, ξ1), A = A(c1, c2, n, p, q, ε, η, ξ1), and
m = m(c1, c2, n, p, q, ε, η, ξ1) > 0 such that

w(ξ) :=

{
mξ , ξ ∈ [0, ξ1) ,

A(ξ − a)
α
β
−ε , ξ ∈ [ξ1,∞) ,

lies in W 2,∞([0,∞)), and that

W (s, t) := (T − t)α · w((T − t)−βs) , s ∈ [0, Rn] , t ∈ [0, T )

has the properties W ≥ 0, W s > 0, W ss ≤ 0, W (0, t) = 0 for all t ∈ [0, T ] and PW ≤ 0 almost
everywhere for all

T ≤





min{( m2M )q,mq,
[
A
(
α
β
− ε
)
(ξ1 − a)

α
β
−ε−1

]q
, η
c3M

} , 0 < q < 1 ,

min{( m2M )q,
[
A
(
α
β
− ε
)
(ξ1 − a)

α
β
−ε−1

]q
,

(
η

c3M [2A(α
β
−ε)(ξ1−a)

α
β

−ε−1
]q−1

)q
} , q ≥ 1 ,

with c3 := sup
{

ψ(s)
s(1+s)q−1 | s ∈

(
0, (α

β
− ε)M

)}
. Herein P is taken from (3.1) and (3.2).

Proof. One easily checks that the graphs of

w1(ξ) := mξ and w2(ξ) := A(ξ − a)
α
β
−ε

touch each other at ξ1 if

a =

(
1 + ε− α

β

)
ξ1 and m =

(
α

β
− ε

)α
β
−ε

ξ
−(1+ε−α

β
)

1 ·A .

In this case, evidently, w ∈ W 2,∞([0,∞)). Therefore we define a :=
(
1 + ε− α

β

)
ξ1 and ξ0 := ξ1.

Then a ∈ (0, ξ1). Finally we pick some A > A0(a, c1, c2, n, p, q, ε, η, ξ0) such that

m :=

(
α

β
− ε

)α
β
−ε

ξ
−(1+ε−α

β
)

1 ·A ≥





(
22−q

c2q

) 1
q

, if 0 < q < 1 ,
(

2
c2q

) 1
q

, if q ≥ 1 ,

so that Ew1 ≤ 0 on [0,∞) by Lemma 3.2. Moreover, Lemma 3.3 implies Ew2 ≤ 0 on [ξ1,∞).
From w ≥ 0, w′ > 0, and w′′ ≤ 0 it immediately follows that W ≥ 0, W s > 0, and W ss ≤ 0. In
particular we obtain PW ≤ 0 for all T as given above. Obviously, W (0, t) = 0. ////

Theorem 3.5 (Finite-time blow-up) Assume (3.3) and (3.4), and suppose that u0 is radially
nonincreasing. Then there exists R0 = R0(c1, c2,M, n, p, q, R) ∈ (0, R] such that Tmax < ∞
for all those u0 which additionally fulfil supp(u0) ⊂ B(R0, 0). To be more precise: For all ε ∈(
0,min

{
1− 2

n(p+q) ,
2
np

− 2
n(p+q)

})
and M,R > 0 there exists a constant C = C(c1, c2, n, p, q, ε) ∈

(0, 1] such that for all

T ≤ Cmin

{
1,

1

Mq
, (c3M)−max{1,q}, R

2q
p+q ,M

2q
n(p+q)εR

2q
(p+q)ε (

2
n(p+q)

+ε)
}
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with c3 := sup
{

ψ(s)
s(1+s)q−1 | s ∈

(
0,
(
1− 2

n(p+q) − ε
)
M
)}

and

R0 ≤ min{R,CM 1
nT

1
nqR} ,

all solutions for radially nonincreasing initial data u0 with supp(u0) ⊂ B(R0, 0) andM = 1
|BR|

∫
BR

u0dx

undergo a finite-time blow-up at Tmax ≤ T .

Proof. Let ε ∈
(
0,min

{
α
β
, α
β
− 1 + 2

np

})
be arbitrary. Then there exists η ∈ (0, η̃) with

ε ∈
(
α
β
− α

β+η ,min
{
α
β
, α
β
− 1 + 2

np

})
. Then we apply Corollary 3.4 with ξ1 := 1. Let further be

in the case 0 < q < 1

T ≤ min

{( m

2M

)q
,mq,

[
A

(
α

β
− ε

)
(1− a)

α
β
−ε−1

]q
,
η

c3M
,R

n
β ,

(
M

A
Rn(1+ε−

α
β
)

) 1
βε

}

and in the case q ≥ 1

T ≤ min

{
(
m
2M

)q
,
[
A
(
α
β
− ε
)
(1− a)

α
β
−ε−1

]q
,

(
η

c3M
[

2A(α
β
−ε)(1−a)

α
β

−ε−1
]q−1

)q
, R

n
β ,
(
M
A
Rn(1+ε−

α
β
)
) 1

βε

}
.

Apart from this, let

R0 ≤ min



R,

(
MT

1
q

m

) 1
n

R





be arbitrary. Then for all t ∈ [0, T ) we have (T − t)−βRn ≥ T−βRn ≥ 1 = ξ1 and therefore

W (Rn, t) = (T − t)αw((T − t)−βRn)

= (T − t)αA[(T − t)−βRn]
α
β
−ε

≤ T βεARn(
α
β
−ε)

≤ MRn .

Hence,
W (s, 0) ≤W (Rn, 0) ≤MRn =W (s, 0) for all s ∈ [Rn0 , R

n]

and
W (s, 0) = Tαw(T−βs) ≤ mTαT−βs = msT− 1

q

in view of w(0) = 0, w′(0) = m, and w′′ ≤ 0. Next, we show msT− 1
q ≤W (s, 0) for all s ∈ [0, Rn0 ).

In order to verify this, we set

f(s) :=W (s, 0) = n

∫ s
1
n

0

ρn−1u0(ρ)dρ .

This implies

f ′(s) = s
1
n
−1s1−

1
nu0

(
s

1
n

)
= u0

(
s

1
n

)

which is nonincreasing in s. Hence we get for all s ∈ [0, Rn0 )

W (s, 0) = f(s) ≥ f(Rn0 )− f(0)

Rn0 − 0
s =

MRns

Rn0
.

By the choice of R0 it follows thatW (s, 0) ≥W (s, 0) for all s ∈ [0, Rn0 ). Thus, assuming Tmax > T ,
we obtain from the weak comparison principle (Theorem 3.1) that for all τ ∈ (0, T ),

W (s, t) ≤W (s, t) for all s ∈ [0, Rn] and t ∈ [0, τ ] .
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Because τ ∈ (0, T ) was arbitrary, this inequality therefore holds for all t ∈ [0, T ). Recalling

W (s, t) = n
∫ s 1

n

0
ρn−1u(ρ, t)dρ, we infer

W (h, t)

h
=
n

h

∫ h
1
n

0

u(ρ, t)dρ =
1

h

∫ h

0

u(rn, t)dr → u(0, t) for hց 0 .

Hence, together with
W s(s, t) = (T − t)α−βw′((T − t)−βs)

one finally obtains

u(0, t) = lim
hց0

W (h, t)

h
≥ lim
hց0

W (h, t)

h
=W s(0, t) = (T − t)α−βm = (T − t)−

1
qm

for all t ∈ [0, T ), which contradicts the assumption T < Tmax. ////
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