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Abstract

We study a mathematical model from population genetics, describing a single-locus
diallelic (A/a) selection-migration process. The model consists of a coupled system of
three reaction-diffusion equations, one for the density of each genotype, posed in the
whole space R

n. The genotype AA is advantageous, due to a smaller death rate, and
we consider the fully recessive case where the other two genotypes aa and Aa have
the same (higher) death rate. In the nondiffusive (spatially homogeneous) case, the
disadvantageous gene a is always eliminated in the large time limit. In the presence
of diffusion, when the birth rate exceeds a certain threshold value, we prove that this
conclusion is still true for dimensions n ≤ 2, whereas for n ≥ 3 there exist initial dis-
tributions for which the advantageous gene A ultimately disappears. This is the first
rigorous result of this type for the full system, and it solves a problem which seems to
have been open since the celebrated work of Aronson and Weinberger (1975, 1977),
where similar results had been obtained for a simplified scalar model, that they de-
rived as an approximation of the full system. Interestingly, we moreover show that, at
the threshold value of the birth rate, the cut-off dimension shifts from n = 2 to n = 6.

Key words: population genetics, reaction-diffusion system, selection, extinction,
Fisher approximation
AMS Classification: 92D15, 92D25 (primary), 35B40, 35K40 (secondary)

Introduction

0.1 The model

We are concerned with the following mathematical model from population genetics, de-
scribing a single-locus diallelic selection-migration process. Consider a population of
diploid individuals. We assume that a specific gene exists in two allelic forms denoted
by a and A. The densities of individuals with genotypes aa, aA and AA are respectively
denoted by ρ1, ρ2 and ρ3, which are functions of x and t (here Aa is identified with aA).
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Within the population, we suppose that mating occurs at random, with a birth-rate de-
noted by r, independent of the genotype, and that diffusion takes place with unit diffusion
coefficient. We further assume that the death rate depends only on the genotype with
respect to the alleles a and A, and denote the corresponding death rates by τ1, τ2, τ3, re-
spectively. These death rates may differ, so that some genotypes are more viable than
others. We here assume that the habitat is the whole Euclidean space R

n. The triple
(ρ1, ρ2, ρ3) then satisfies the following reaction-diffusion system:



































∂tρ1 = ∆ρ1 − τ1ρ1 +
r

ρ̂

(

ρ1 +
1

2
ρ2

)2
, x ∈ R

n, t > 0,

∂tρ2 = ∆ρ2 − τ2ρ2 +
2r

ρ̂

(

ρ1 +
1

2
ρ2

)(

ρ3 +
1

2
ρ2

)

, x ∈ R
n, t > 0,

∂tρ3 = ∆ρ3 − τ3ρ3 +
r

ρ̂

(

ρ3 +
1

2
ρ2

)2
, x ∈ R

n, t > 0,

(0.1)

where ρ̂ = ρ1+ρ2+ρ3 is the total density of individuals at (x, t). Throughout this article,
we assume that r, τ1, τ2, τ3 are positive constants. The ODE version of this model seems
to have been first introduced by Kostitzin in 1937 [9]. The diffusive model (0.1) has been
studied in [1]. In [4], [11], [12], [16], [18], some variants of the model have been considered,
where r and τi are no longer constant but may depend on x, or even on t and ρi, the
domain is bounded, and no-flux boundary conditions are imposed. Moreover, r may be
replaced by separate functions r1, r2, r3, thus reflecting possible variable fitness according
to the genotype. See Remark 0.2 for more details and brief comments on the results
obtained in those works. There are various approaches and a large literature on diffusive
models of migration-selection processes; we refer for instance to [14], [10] for a discussion
of this topic.

From the point of view of applications, it is of interest to investigate the asymptotic
behavior of solutions. In particular an important question is to determine under which
conditions one can assert that some of the genotypes are outperformed by the others in
that their relative frequencies ρi/ρ approach 0 as t → ∞. However this question seems
difficult to study in general and, in previous work, attempts have been made to reduce
the question to the study of a simpler scalar equation, namely the equation of Fisher-KPP
(cf. [5, 8]) type:

ut = ∆u+ f(u), x ∈ R
n, t > 0, (0.2)

where
f(u) = u(1− u)

[

(τ1 − τ2)(1− u) + (τ2 − τ3)u
]

. (0.3)

In particular it was shown in [1] (see also [4]) that under certain assumptions, the ratio
z := (ρ3 +

1
2ρ2)/ρ̂, which measures the frequency of the allele A, can be expected to be

close to the solution of equation (0.2) with initial data z(·, 0). More precisely, if ε :=
|τ1 − τ2| + |τ1 − τ3| is small – in other words if the selection is weak, if r is large and if
ρ̂x/ρ̂ is suitably small initially, then |z − u| remains small up to times of order less than
ε−1 (see Remark 0.2(a) for more details).
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To go further, we shall now concentrate on the case

τ1 = τ2 > τ3. (0.4)

which we assume throughout the rest of the paper. Note that, in biological terms, this
means that the advantageous gene A is fully recessive, i.e., heterozygote individuals aA
do not have any improved viability. In this case the function f becomes

f(u) = (τ1 − τ3)u
2(1− u)

and, interestingly, it was proved in [2] that the large time behavior for the scalar equation
(0.2) crucially depends on the space dimension. Namely, for n ≤ 2 any nontrivial solution
converges to 1 locally uniformly (as do the solutions of the corresponding ODE), whereas
for n ≥ 3 the solution converges to 0 for suitably small initial data. In terms of the model,
this means that the disadvantageous gene a always ultimately disappears for n ≤ 2, but
that the advantageous gene A can disappear for suitable initial data if n ≥ 3. Note that
such a dimensional effect is absent if τ2 is different from τ1 and τ3, due to the fact that f
then behaves linearly near u = 0 and u = 1 (cf. [2]).
It is then a very natural question whether similar phenomena also occur in the original
model. Notice that, even in the case of weak selection, this cannot be easily deduced from
the results in [1] (since the closeness of u and z is only shown on –large but– finite time
intervals) and, as far as we know, this has remained an open question so far.

0.2 Main results

For convenience, we perform the following changes of dependent variables:

u = e(τ1−r)tρ1, v = e(τ1−r)tρ2, w = e(τ1−r)tρ3, (0.5)

We also denote
ρ := u+ v + w

and
β := τ1 − τ3 > 0. (0.6)

Because of (0.4), the system (0.1) becomes



































ut = ∆u− ru+
r

ρ

(

u+
1

2
v
)2
, x ∈ R

n, t > 0,

vt = ∆v − rv +
2r

ρ

(

u+
1

2
v
)(

w +
1

2
v
)

, x ∈ R
n, t > 0,

wt = ∆w + (β − r)w +
r

ρ

(

w +
1

2
v
)2
, x ∈ R

n, t > 0.

(0.7)

System (0.7) is supplemented with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ R
n, (0.8)

3



with given functions

u0, v0, w0 ∈ C(Rn) ∩ L∞(Rn), u0, v0, w0 ≥ 0. (0.9)

It is easy to show that (0.7)-(0.8) possesses a unique global classical, nonnegative solution,
which will be denoted by (u, v, w) in the sequel. In particular, the global existence is clear
due to the fact that the nonlinearities are bounded by linear functions of (u, v, w). Our
focus lies on the large time behavior of the genotype frequencies. We shall thus consider
the fractions

ũ :=
u

ρ
, ṽ :=

v

ρ
and w̃ :=

w

ρ
. (0.10)

Note that, in view of (0.5), these fractions coincide with those associated with the original
system (0.1). Our main results are the following.

Theorem 0.1 Let r > 0, β = τ1 − τ3 > 0 and suppose (0.9), with v0 + w0 6≡ 0.

(i) If n ≤ 2, then we have

ũ(x, t) → 0, ṽ(x, t) → 0 and w̃(x, t) → 1

as t→ ∞, uniformly on compact subsets of Rn.
(0.11)

(ii) If 3 ≤ n ≤ 6, then (0.11) remains true under the additional assumption that β ≥ r.

(iii) If n ≥ 7, then (0.11) remains true under the additional assumption that β > r.

The optimality of our assumptions on n is shown by the next theorem.

Theorem 0.2 Let r > 0, β = τ1 − τ3 > 0 and assume (0.9). Let γ ≥ 0, c0, κ > 0 and
suppose that

u0(x) ≥ c0(1 + |x|)−γ for all x ∈ R
n, (0.12)

and that
v0(x) + w0(x) ≤ δ e−κ|x|

2
for all x ∈ R

n, (0.13)

where δ = δ(n, r, β, γ, c0, κ) > 0 is sufficiently small.

(i) If
n ≥ 3, β < r, γ < n− 2,

then there exists c > 0 such that

ṽ(x, t) ≤ c(t+ 1)−1 for all x ∈ R
n and t ≥ 0 (0.14)

and
w̃(x, t) ≤ c(t+ 1)−2 for all x ∈ R

n and t ≥ 0. (0.15)

In particular, we have

ũ(x, t) → 1, ṽ(x, t) → 0 and w̃(x, t) → 0

as t→ ∞, uniformly with respect to x ∈ R
n.

(0.16)
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(ii) If
n ≥ 7, β = r, γ < n− 6,

then one can find c > 0 such that

ṽ(x, t) ≤ c(t+ 1)−2 for all x ∈ R
n and t ≥ 0

and
w̃(x, t) ≤ c(t+ 1)−3 for all x ∈ R

n and t ≥ 0.

In particular, we have (0.16).

Theorems 0.1 and 0.2 confirm the observation made in [2] about the key role played by the
space dimension. Recall that the Fisher approximation in [1] required τ1 ≈ τ2 ≈ τ3 and
r large. Interestingly, for τ1 = τ2 > τ3, we here find that the dimension threshold is the
same as for the Fisher equation (0.2) whenever r > β = τ1 − τ3 > 0, but that it becomes
different for r = β and then disappears when r < β. Such phenomena are clearly diffusion
effects, and moreover rely on the fact that the physical domain is the entire space R

n.
Indeed we note that in the case when (0.7) is posed in a bounded domain Ω ⊂ R

n with
no-flux boundary conditions, for any positive r and β, all solutions with v(0) + w(0) 6≡ 0
satisfy the analogue of (0.11). This fact may be already known, but since we are not aware
of a precise reference in the literature, for the reader’s convenience we include a proof in
the appendix (see Proposition 4.1 below. We thank the anonymous referee for suggesting
a simplification of our original proof). Of course, the latter also covers the non-diffusive
or spatially homogeneous case, i.e. the ODE system corresponding to (0.7).

Remark 0.1 (a) For r, β, n as in Theorem 0.2, (0.11) also occurs for some initial data.
This is for instance the case for spatially homogeneous initial distributions.

(b) It is easy to check that the conclusion of Theorem 0.2 remains true if r in the third
equation of (0.1) is replaced with any number r̃ > 0. (Note that under this modification,
in the third equation of (0.7), the factor r in front of the quadratic term becomes r̃.)
As for Theorem 0.1, its proof can be adapted to cover any positive r̃ > r − β. This is
equivalent to r− τ3 > r− τ1, which is the natural definition of the statement that the AA
homozygote is fitter than the other genotypes. There is strong evidence that this should
remain true for any r̃ > 0, but presently we do not have a complete proof of this fact (see
Remark 2.1 below).

0.3 Strategy of proof and discussion

For proving our results, it will be useful to further transform the system. Namely, we set

ϕ = u+
1

2
v, ψ := w +

1

2
v, (0.17)
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which measure the respective densities of the alleles a and A. The triple (ϕ, ψ,w) then
satisfies the new system

ϕt = ∆ϕ, x ∈ R
n, t > 0, (0.18)

ψt = ∆ψ + βw, x ∈ R
n, t > 0, (0.19)

wt = ∆w + (β − r)w + r ·
ψ2

ϕ+ ψ
, x ∈ R

n, t > 0. (0.20)

Incidentally we note that the function ρ = u + v + w satisfies the same equation as ψ
and could be used instead of ψ. Observe that whereas the original system (0.1) is neither
cooperative nor competitive, the reduced system

P(ψ,w) := ψt −∆ψ − βw = 0, x ∈ R
n, t > 0, (0.21)

Qϕ(ψ,w) := wt −∆w − (β − r)w − r ·
ψ2

ϕ(x, t) + ψ
= 0, x ∈ R

n, t > 0, (0.22)

is cooperative when regarded as a system determining ψ and w with ϕ = ϕ(x, t) ≥ 0 a
given parameter function. Indeed,

d

dψ

[

r
ψ2

ϕ(x, t) + ψ

]

= r
[

1−
ϕ2

(ϕ+ ψ)2

]

≥ 0.

This fact will be useful for our analysis. Our proofs are based on a suitable combination of
various PDE techniques: comparison arguments based on the maximum principle, semi-
group techniques (variation-of-constant formula and heat kernel estimates), differential
inequalities, test-function and monotonicity arguments. Several parts of the proofs are
inspired by ideas in e.g. [1], [17], [3], [15]. We prefer to give the, relatively simpler, proof
of Theorem 0.2, before turning to that of Theorem 0.1, which is more delicate.

Remark 0.2 (a) A different approach to the model (0.1) is to consider the equations
satisfied by the genotype frequencies fi = ρi/ρ̂ (which coincide with (ũ, ṽ, w̃)). In the
spatially homogeneous case with equal viabilities (τi = τ), simple computations show that
the frequencies satisfy the ODE system































f ′1 = r
[(

f1 +
1

2
f2

)2
− f1

]

, t > 0,

f ′2 = r
[

2
(

f1 +
1

2
f2

)(

f3 +
1

2
f2

)

− f2

]

, t > 0,

f ′3 = r
[(

f3 +
1

2
f2

)2
− f3

]

, t > 0

and it is fairly easy to see that all equilibria are given by the curve (f2)
2 = 4f1f3, subject

to f1+f2+f3 = 1. This curve is well known as the Hardy-Weinberg equilibrium [7]. Such
a simple solution is no longer available in the diffusive case with nonequal viabilities. Still,
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in the work [1] (see also [4], [12]), the system is transformed by considering the frequency
of the gene A as one of the new unknowns. Namely, setting

z = f3 +
1

2
f2, σ = (f2)

2 − 4f1f3, µ = ρ̂x/ρ̂,

it is shown that (z, σ, µ) solves the new system















































zt − zxx − f(z) = 2µzx +
1

4

[

(τ2 − τ1)z − (τ2 − τ3)(1− z)
]

σ, x ∈ R
n, t > 0,

σt − σxx = 2µσx −
[

r − (τ1 − τ3)(1− 2z) +
τ∗

4
σ
]

σ

+4τ∗z2(1− z)2 − 8(zx)
2, x ∈ R

n, t > 0,

µt − µxx =
∂

∂x

[

µ2 +
τ∗

4
σ + (τ2 − τ3)z

2 + (τ2 − τ1)(1− z)2
]

, x ∈ R
n, t > 0

(0.23)
where f is defined by (0.3), τ∗ = τ1 − 2τ2 + τ3, and n = 1 is taken for simplicity. Here the
quantities σ, µ respectively measure the deviation from the Hardy-Weinberg equilibrium
and the spatial inhomogeneity. The Fisher approximation in the weak selection limit
(cf. after (0.2)) is obtained by a suitable asymptotic analysis of system (0.23).

(b) In [16], [18], system (0.1) with spatially inhomogeneous coefficients τi = τi(x) and ri =
ri(x) (instead of r) are studied in bounded domains, in the context of the mathematical
modeling of optimal transgenic maize crop management. There the large time behavior is
investigated by numerical simulations. Their results suggest that the Fisher approximation
may not be relevant in general situations.

(c) In [12], system (0.1) is studied with r and the τi being nonlinear functions of the total
density ρ̂. Some results on the stability of the steady states (on bounded domains with
no-flux boundary conditions) are obtained by means of invariant region techniques.

1 Extinction of the advantageous gene A for suitable initial

data in high dimensions

As a first step, we shall use the following, more or less known, property of the linear heat
equation (0.18), which guarantees that a sufficiently slow spatial decay of ϕ0 := ϕ(·, 0)
implies a corresponding lower bound on the space-time decay of ϕ.

Lemma 1.1 Suppose that there exist γ ≥ 0 and c0 > 0 such that

ϕ0(x) ≥ c0(1 + |x|)−γ for all x ∈ R
n. (1.1)

Then for all λ > 0, the inequality

ϕ(x, t) ≥ cλ(t+ λ+ |x|2)−
γ
2 for all x ∈ R

n and t ≥ 0 (1.2)

is valid with cλ := c0 · (
λ

2nλ+1)
γ
2 > 0.
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Proof. We let

ϕ(x, t) := a ·
(

2n(t+ λ) + |x|2
)− γ

2
, x ∈ R

n, t ≥ 0,

where a := c0 · (
2nλ

2nλ+1)
γ
2 . Then by direct computation,

ϕ
t
= −nγa ·

(

2n(t+ λ) + |x|2
)− γ

2
−1

and

∆ϕ = −nγa ·
(

2n(t+ λ) + |x|2
)− γ

2
−1

+ γ(γ + 2)a ·
(

2n(t+ λ) + |x|2
)− γ

2
−2

· |x|2,

so that

ϕ
t
−∆ϕ = −γ(γ + 2)a ·

(

2n(t+ λ) + |x|2
)− γ

2
−2

· |x|2 ≤ 0 in R
n × (0,∞).

In view of a scalar parabolic comparison argument, we thus obtain

ϕ(x, t) ≥ ϕ(x, t) ≥ a · (2n)−
γ
2 ·

(

t+ λ+ |x|2
)− γ

2
= cλ ·

(

t+ λ+ |x|2
)− γ

2

for all x ∈ R
n and t ≥ 0, provided that ϕ0 ≥ ϕ(·, 0) in R

n. For the latter, however,
according to (1.1) it is sufficient that

h(s) :=
c0(1 + s)−γ

a(2nλ+ s2)−
γ
2

, s ≥ 0,

satisfies h(s) ≥ 1 for all s ≥ 0. Now a straightforward calculation shows that h attains its
minimal value at s = 2nλ with

h(2nλ) =
c0
a

·
(1 + 2nλ)−γ

(2nλ+ (2nλ)2)−
γ
2

=
c0
a

·
( 2nλ

2nλ+ 1

)
γ
2
= 1

due to our choice of a. �

The next lemma plays a key role in the proof of Theorem 0.2. Under the hypothesis
that both v0 and w0 are dominated by a small Gaussian, it provides a quantitative upper
estimate for v and w. The proof combines the above information on ρ with a comparison
argument applied to (0.21)-(0.22).
For convenience in notation, let us introduce the heat kernel

Gσ(x) := (4πσ)−
n
2 e−

|x|2

4σ , x ∈ R
n, σ > 0, (1.3)

which will be frequently used throughout the sequel.
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Lemma 1.2 (i) Assume r > β > 0, n ≥ 3 and let u0 satisfy

u0(x) ≥ c0(1 + |x|)−γ for all x ∈ R
n (1.4)

for some c0 > 0 and some
0 ≤ γ < n− 2. (1.5)

For all κ > 0 there exist δ > 0 such that if

v0(x) ≤ δ e−κ|x|
2

and w0(x) ≤ δ e−κ|x|
2

for all x ∈ R
n, (1.6)

then, for suitable c, λ > 0 the solution (u, v, w) of (0.7)-(0.8) satisfies

v(x, t) ≤ c(t+ λ)−1− γ
2 e

−
|x|2

4(t+λ) for all x ∈ R
n and t ≥ 0 (1.7)

and

w(x, t) ≤ c(t+ λ)−2− γ
2 e

−
|x|2

4(t+λ) for all x ∈ R
n and t ≥ 0. (1.8)

(ii) Assume r = β > 0 and n ≥ 7. Then assertion (i) remains valid if (1.5) is replaced
with

0 ≤ γ < n− 6 (1.9)

and γ in (1.7)-(1.8) is replaced with γ + 2.

Proof. Since ϕ(·, 0) ≥ u0, from (1.4) and Lemma 1.1 we know that there exists c1 > 0
such that

ϕ(x, t) ≥ c1

(

t+ 1 + |x|2
)− γ

2
for all x ∈ R

n and t ≥ 0. (1.10)

We then let

f(t) := η(t+ λ)α and g(t) :=
ηα

β
(t+ λ)α−1, t ≥ 0,

with η, α > 0, λ ≥ 1 to be chosen, and define

ψ(x, t) := f(t) ·Gλ+t(x) and w(x, t) := g(t) ·Gλ+t(x), x ∈ R
n, t ≥ 0,

where Gσ is taken from (1.3). Recall that the parabolic operators P, Qϕ are defined in
(0.21)-(0.22). Using f ′ = βg and ∂tGλ+t = ∆Gλ+t, we find that

P(ψ,w) = f ′(t)Gλ+t − βg(t)Gλ+t = 0 in R
n × (0,∞). (1.11)

By (1.10) and the fact that λ ≥ 1, we have

Qϕ(ψ,w) ≥ wt −∆w + (r − β)w −
r

c1

(

t+ λ+ |x|2
)

γ
2
ψ
2

= g′(t)Gλ+t + (r − β)g(t)Gλ+t −
r

c1

(

t+ λ+ |x|2
)

γ
2
f2(t)G2

λ+t

9



= g(t)Gλ+t ·

{

g′(t)

g(t)
+ r − β −

r

c1

(

t+ λ+ |x|2
)

γ
2
·
f2(t)

g(t)
Gλ+t

}

= g(t)Gλ+t ·

{

α− 1

t+ λ
+ r − β

−
r

c1

(

t+ λ+ |x|2
)

γ
2
·
ηβ

α
· (t+ λ)α+1 · (4π)−

n
2 (t+ λ)−

n
2 e

−
|x|2

4(t+λ)

}

= g(t)Gλ+t ·

{

α− 1

t+ λ
+ r − β

−
rηβ

(4π)
n
2 αc1

· (t+ λ)α+1+ γ−n
2 ·

(

1 +
|x|2

t+ λ

)
γ
2
e
−

|x|2

4(t+λ)

}

≥ g(t)Gλ+t ·

{

α− 1

t+ λ
+ r − β −

rηβc2

(4π)
n
2 αc1

· (t+ λ)α+1+ γ−n
2

}

,

where
c2 := sup

ξ≥0
(1 + ξ)

γ
2 e−

ξ
4 <∞. (1.12)

Now, if r > β, then (1.5) allows the choice

α =
n− γ

2
− 1 > 0, (1.13)

hence

Q(ψ)w ≥ g(t)Gλ+t ·

{

r − β − λ−1 −
rηβc2

(4π)
n
2 αc1

}

≥ 0 (1.14)

if we choose λ large enough and η small enough. Next, if r = β, then (1.9) allows the
choice

α =
n− γ

2
− 2 > 1, (1.15)

hence

Q(ψ)w ≥
g(t)Gλ+t
t+ λ

·

{

α− 1−
rηβc2

(4π)
n
2 αc1

}

≥ 0 (1.16)

if we choose η small enough. Assuming in addition λ ≥ 1
4κ and δ small enough, we see

that at t = 0,

ψ(x, 0) = w0(x) +
1

2
v0(x) ≤

3

2
δ e−κ|x|

2
≤ ηλα(4πλ)−

n
2 e−

|x|2

4λ = ψ(x, 0) for all x ∈ R
n,

(1.17)
and that similarly

w(x, 0) ≤ δ e−
|x|2

4λ ≤
ηα

β
λα−1(4πλ)−

n
2 e−

|x|2

4λ = w(x, 0) for all x ∈ R
n. (1.18)

Since (ψ,w) solves the cooperative parabolic system (0.21)-(0.22), we may collect (1.11),
(1.14), (1.16), (1.17) and (1.18), to see upon invoking a comparison principle that ψ ≤ ψ
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and w ≤ w in R
n × (0,∞). In view of (1.13) and (1.15), this immediately implies (1.7)

and (1.8). �

Now Theorem 0.2 actually reduces to a corollary.

Proof of Theorem 0.2. We only consider case (i), the other case being completely
similar. By combining (1.2) in Lemma 1.1, (1.7) in Lemma 1.2 and (1.12), we obtain

v(x, t)

ρ(x, t)
≤ c(t+ λ)−1− γ

2 e
−

|x|2

4(t+λ) · c−1
1

(

t+ λ+ |x|2
)

γ
2

= cc−1
1 (t+ λ)−1

(

1 +
|x|2

t+ λ

)
γ
2
e
−

|x|2

4(t+λ)

≤ cc−1
1 c2(t+ λ)−1 for all x ∈ R

n and t ≥ 0,

This yields (0.14), whereas (0.15) can be deduced from (1.8) in quite a similar manner. �

Remark 1.1 For a slightly easier, but more particular, example of extinction of the ad-
vantageous gene, one may consider the choice u0 ≡ c0 (positive constant), v0 ≡ 0 and
w0 ≤ δe−κ|x|

2
in Theorem 0.2. Indeed in that case ϕ ≡ c0, so that Lemma 1.1 is not

required, and also the computation in the proof of Lemma 1.2 becomes a bit simpler.

2 Unconditional extinction of the disadvantageous gene a

in low dimensions

This section is devoted to the proof of Theorem 0.1. Let us first note that

0 ≤ ϕ = u+
1

2
v ≤ A0 := ‖u0 +

1

2
v0‖L∞(Rn), (x, t) ∈ R

n × (0,∞) (2.1)

by the maximum principle. Therefore, in order to prove our desired statement w
ρ → 1, it

is sufficient to show that the function ψ appearing in (0.21)-(0.22) diverges appropriately
as t → ∞. This will be done in a series of steps. We first settle the case r < β, which is
fairly easy.

2.1 Proof of Theorem 0.1 in the case r < β

Since wt ≥ ∆w + (β − r)w, the function e(r−β)tw is a supersolution of the linear heat
equation. It follows from the maximum principle that

w(x, t) ≥ e(β−r)t(4πt)−
n
2

∫

Rn

e−
|x−y|2

4t w0(y)dy.

Thanks to the fact that w0 is continuous and w0 6≡ 0, there exist c1, δ > 0 and x0 ∈ R
n

such that w0 ≥ c1 in B(x0, δ). Therefore, for any R > 0, there exists c(R) > 0 such that

w(x, t) ≥ c1e
(β−r)t(4πt)−

n
2

∫

|y−x0|<δ
e−

|x−y|2

4t dy ≥ c(R)e(β−r)t(4πt)−
n
2 , |x| < R, t > 0.

In particular, w(x, t) → ∞ locally uniformly as t → ∞. By (2.1), we know that both u
and v are bounded. The result follows immediately.
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2.2 Reduction to a cooperative system

By (2.1), we see that (ψ,w) satisfies























ψt = ∆ψ + βw, x ∈ R
n, t > 0,

wt ≥ ∆w + (β − r)w + r ·
ψ2

ψ +A0
, x ∈ R

n, t > 0,

ψ(x, 0) = w0(x) +
1

2
v0(x), w(x, 0) = w0(x), x ∈ R

n,

(2.2)

(where A0 is replaced by any positive number if u0 = v0 ≡ 0). For given A > 0, let us
thus consider the system























ψt = ∆ψ + βw, x ∈ R
n, t > 0,

wt = ∆w + (β − r)w + r ·
ψ2

ψ +A
, x ∈ R

n, t > 0,

ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), x ∈ R
n,

(2.3)

with given initial data

ψ0, w0 ∈ C(Rn) ∩ L∞(Rn), ψ0, w0 ≥ 0. (2.4)

System (2.3) has a unique globally defined nonnegative classical solution in R
n × (0,∞).

Global existence is clear due to the fact that the nonlinearity (in the second equation) is
bounded by a linear function of ψ. Since (2.3) is cooperative, we have ψ ≥ ψ, w ≥ w,
where (ψ,w) is the solution of (2.3) for A = A0. To establish Theorem 0.1, in view of
(2.1), it is then sufficient to prove the following.

Theorem 2.1 Let A > 0 and assume (2.4), with ψ0 6≡ 0. Denote by (ψ,w) the solution
of (2.3). Also assume that either

r > β > 0, n ≤ 2,

or
r = β > 0, n ≤ 6.

Then we have
ψ(x, t) and w(x, t) → ∞ as t→ ∞, (2.5)

the convergence being uniform on compact subsets of Rn.

In the rest of the paper, we shall keep the notation (ψ,w) to denote the solution of (2.3).
One favorable technical advantage of (2.3) as compared to (0.21)-(0.22) is that it preserves
radial symmetry and radial monotonicity.

Lemma 2.2 Let β > 0 and r > 0. Suppose that for some x0 ∈ R
n, both ψ0 and w0 are

radially symmetric about x0 and nonincreasing with respect to |x−x0|. Then for all t > 0,
the solution (ψ(·, t), w(·, t)) of (2.3) is also radially symmetric with respect to x = x0 and
nonincreasing in |x− x0|.

12



Proof. The symmetry property immediately results from uniqueness of nonnegative
solutions to (2.3) and the fact that for radial ψ0 and w0, one can easily construct a radial
solution of (2.3). To verify the monotonicity statement, we differentiate both PDEs in
(2.3) with respect to η = |x− x0| to obtain that the radial derivatives ψη and wη satisfy







∂tψη = ∆ψη + βwη, x ∈ R
n, t > 0,

∂twη = ∆wη − (r − β)wη + r · ψ
2+2Aψ

(ψ+A)2
· ψη x ∈ R

n, t > 0.

Since β > 0, r > 0 and ψ ≥ 0, this linear parabolic system again is cooperative. Hence,
a standard comparison principle states that ψη and wη, both nonpositive initially, remain
nonpositive for all times. �

Before proceeding further, we note that the boundedness property of v (cf. (2.1)) for
system (0.7) has its counterpart in the reduced system, which will be used later on in
proving Theorem 2.1. Namely, the solution of (2.3) satisfies

ψ − w ≤M := max
(

A, sup
Rn

(ψ − w)
)

. (2.6)

Indeed, since z := ψ − w satisfies

zt −∆z + r(z −A) = r ·
(

ψ −
ψ2

ψ +A
−A

)

≤ 0, x ∈ R
n, t > 0,

inequality (2.6) follows from the maximum principle.

2.3 Unboundedness

The following lemma forms an essential step of our procedure in this section. It provides
some, albeit weak, first unboundedness feature of ψ which will be successively improved
afterwards. For the moment, we focus on the case r > β, n ≤ 2, which requires more new
ideas. For the case r = β, n ≤ 6 several of the main steps will follow from results in [3].

Lemma 2.3 Let n ≤ 2, r > β > 0, A > 0, and assume that ψ0 6≡ 0. Then there exists
c > 0 such that the solution (ψ,w) of (2.3) satisfies

‖ψ(·, t)‖L1(Rn) ≥ c · h(t) for all t ≥ 0, (2.7)

where

h(t) :=

{

(1 + t)
1
2 if n = 1,

ln(1 + t) if n = 2.
(2.8)

Proof. Let µ := r−β > 0. Thanks to the fact that ψ0 is continuous and ψ0 6≡ 0, there
exist c1 > 0 and a ball B ⊂ R

n such that ψ0 ≥ c1 in B. By the first equation in (2.3), ψ
is represented according to

ψ(·, t) = et∆ψ0 + β

∫ t

0
e(t−s)∆w(·, s)ds, t ≥ 0. (2.9)
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As both β and w are nonnegative, we thus have

ψ(x, t) ≥ (et∆ψ0)(x) =

∫

Rn

Gt(x− y)ψ0(y)dy for all x ∈ R
n and t > 0,

where Gσ is defined in (1.3). Writing R := sup{|y| | y ∈ B} and estimating |x − y|2 ≤
2|x|2 + 2|y|2, we find that in particular

ψ(x, t) ≥ c1 · (4πt)
−n

2

∫

B
e−

|x−y|2

4t dy ≥ c1 · (4πt)
−n

2 e−
R2

2 · |B| · e−
|x|2

2t

= c2t
−n

2 e−
|x|2

2t for all x ∈ R
n and t ≥ 1,

where c2 = c1 · (4π)
−n

2 e−
R2

2 |B| > 0. Therefore, at each point (x, t) ∈ R
n× (1,∞) at which

ψ(x, t) ≤ A, we have
ψ2

ψ +A
≥
ψ2

2A
≥

c22
2A

t−n e−
|x|2

t , (2.10)

whereas if (x, t) is such that ψ(x, t) > A, then

ψ2

ψ +A
≥
ψ

2
≥
c2
2
t−

n
2 e−

|x|2

2t . (2.11)

Since for any t ≥ 1 and x ∈ R
n, we have t−

n
2 e−

|x|2

2t ≥ t−n e−
|x|2

t , we conclude from (2.10)
and (2.11) that

ψ2

ψ +A
≥ c3t

−n e−
|x|2

t = c4t
−n

2 G t
4
(x) for all x ∈ R

n and t ≥ 1,

with positive constants c3 and c4. Consequently, the variation of constants formula applied
to the second equation in (2.3) says that for all t > 1,

w(·, t) = e−µ(t−1)e(t−1)∆w(·, 1) +

∫ t

1
e−µ(t−s)e(t−s)∆ · r

ψ2

ψ +A
(·, s)ds

≥ c4

∫ t

1
e−µ(t−s)s−

n
2 e(t−s)∆G s

4
ds in R

n,

because w(·, 1) ≥ 0. By the heat kernel property of Gσ, we have eξ∆Gσ = Gσ+ξ, so that

w(·, t) ≥ c4

∫ t

1
e−µ(t−s)s−

n
2Gt− 3s

4
ds in R

n for all t > 1.

Going back to (2.9), this new information gives

ψ(·, t) ≥ β

∫ t

1
e(t−s)∆w(·, s)ds ≥ c4β

∫ t

1

∫ s

1
e−µ(s−σ)σ−

n
2 e(t−s)∆Gs− 3σ

4
dσds, (2.12)

where again we can explicitly compute

e(t−s)∆Gs− 3σ
4
= Gs− 3σ

4
+t−s = Gt− 3σ

4
.
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Therefore, the latter integral in (2.12) can be simplified using Fubini’s theorem so as to
yield

ψ(·, t) ≥ c4β ·

∫ t

1

∫ s

1
e−µ(s−σ)σ−

n
2Gt− 3σ

4
dσds

= c4β ·

∫ t

1

(
∫ t

σ
e−µsds

)

· eµσσ−
n
2Gt− 3σ

4
dσ

=
c4β

µ
·

∫ t

1

(

1− e−µ(t−σ)
)

· σ−
n
2Gt− 3σ

4
dσ

≥
c4β(1− e−µ)

µ
·

∫ t−1

1
σ−

n
2Gt− 3σ

4
dσ in R

n for all t > 2, (2.13)

because for such t and any σ ∈ {1, t − 1} we have e−µ(t−σ) ≤ e−µ. Since
∫

Rn Gt− 3σ
4

= 1,

integrating (2.13) in space gives

‖ψ(·, t)‖L1(Rn) ≥ c5

∫ t−1

1
σ−

n
2 dσ for all t > 2,

with some c5 > 0, and thus immediately leads to (2.7) with h as defined by (2.8). �

In turning this L1-divergence assertion into a statement on pointwise unboundedness, we
shall need the following blow-up result for an ODE system arising in Lemma 2.5 below.

Lemma 2.4 Let a, b, c > 0. There exist M1,M2 > 0, depending only on a, b, c, such that
if, for some ε > 0 and t0 ≥ 0, (y, z) is a solution of

{

y′ ≥ az − εy, t ≥ t0,

z′ ≥ by2 − cz, t ≥ t0,
(2.14)

with
y(t0) ≥M1ε and z(t0) ≥M2ε

2, (2.15)

then (y, z) blows up in finite time.

Proof. Step 1. We can assume a = b = 1 without loss of generality (this can be seen
easily upon replacing (y, z) with (aby, a2bz)). Moreover, it suffices to verify the assertion
when (2.14) is replaced with the ODE system

{

y′ = z − εy, t ≥ t0,

z′ = y2 − cz, t ≥ t0,
(2.16)

and assumption (2.15) is replaced with

y(t0) =M1ε and z(t0) =M2ε
2. (2.17)

Indeed, since (2.16) is cooperative, this follows immediately by a comparison argument.
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Step 2. For given η > 0, we define the two functions

f(Y, Z) := Z − (ε+ 2η)Y, g(Y, Z) := Y 2 − (c+ 3η)Z, (Y, Z) ∈ (0,∞)2,

and the region

Rη :=
{

(Y, Z) ∈ (0,∞)2
∣

∣

∣
f(Y, Z) > 0 and g(Y, Z) > 0

}

.

We claim that Rη is positively invariant for system (2.16). To see this, let

f̃(t) = f(y(t), z(t)), g̃(t) = g(y(t), z(t))

and assume for the sake of contradiction that, for some t1 > t0, (y(t), z(t)) ∈ Rη on
[t0, t1) and (y(t1), z(t1)) ∈ ∂Rη. Note that f̃ , g̃ > 0 implies y′, z′ > 0 on [t0, t1), hence
y(t1), z(t1) > 0.
Two possibilities arise: First if f̃(t1) = 0 and g̃(t1) ≥ 0, then z = (ε+ 2η)y, y′ = 2ηy and
z′ ≥ 3ηz at t = t1. Therefore

f̃ ′(t1) = z′ − (ε+ 2η)y′ ≥ 3ηz − (ε+ 2η)2ηy = (ε+ 2η)(3ηy − 2ηy) = (ε+ 2η)ηy > 0,

hence (y(t), z(t)) 6∈ Rη for t < t1 close to t1: a contradiction.
Otherwise, we have f̃(t1) > 0 and g̃(t1) = 0. Then y2 = (c+ 3η)z, y′ ≥ 2ηy and z′ = 3ηz
at t = t1. Therefore

g̃′(t1) = 2yy′ − (c+ 3η)z′ ≥ 4ηy2 − (c+ 3η)3ηz = (c+ 3η)(4ηz − 3ηz) = (c+ 3η)ηz > 0,

which gives a similar contradiction and proves the claim.

Step 3. We next claim that if (y(t0), z(t0)) ∈ Rη for some η > 0, then (y, z) blows up in
finite time. Indeed, under this assumption, we have f(y(t), z(t)), g(y(t), z(t)) > 0 for all
t ≥ t0, due to Step 2. Therefore,

y′ = ε(ε+ 2η)−1f(y, z) + 2η(ε+ 2η)−1z ≥ c1z

and
z′ = c(c+ 3η)−1g(y, z) + 3η(c+ 3η)−1y2 ≥ c2y

2

for all t ≥ t0, with c1, c2 > 0. By Young’s inequality, we deduce

(yz)′ = y′z + yz′ ≥ c1z
2 + c2y

3 ≥ c3(z
5/3 + y5/2)6/5 ≥ c4(yz)

6/5,

for all t ≥ t0, with some c3, c4 > 0, hence the finite time blow-up of (y, z).

Step 4. Now assume (2.17) with M1 = 2c and M2 = 3c. Then, at t = t0, we have
z− εy = (3c− 2c)ε2 > 0 and y2 − cz = (4c2 − 3c2)ε2 > 0. Therefore (y(t0), z(t0)) ∈ Rη for
some small η > 0, so that (y, z) blows up in finite time by Step 3. The Lemma is proved.
�

We shall now derive the unboundedness of ψ in L∞. In the case r > β, arguing by
contradiction, we shall rely on Lemmas 2.3 and 2.4 and on a variant of the classical Fujita
argument [6], testing with Gaussians. In the case r = β, this will be a direct consequence of
a result of Escobedo and Herrero [3] concerning the system with pure power nonlinearities.
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Lemma 2.5 Under the assumptions of Theorem 2.1, there exists (tj)j∈N ⊂ (0,∞) such
that tj → ∞ and

‖ψ(·, tj)‖L∞(Rn) → ∞ as j → ∞. (2.18)

Proof. Suppose on the contrary that there exists c1 > 0 such that ψ ≤ c1 in R
n×(0,∞).

Then
wt ≥ ∆w − µw + dψ2 in R

n × (0,∞) (2.19)

holds with d := r
c1+A

, where we again have set µ := r − β.

In the case r = β, i.e. µ = 0, then (ψ,w) is a positive supersolution of the system







ψt = ∆ψ + βw, x ∈ R
n, t > 0,

wt = ∆w + dψ2, x ∈ R
n, t > 0.

(2.20)

It follows from the Fujita-type result in [3] and the comparison principle that (ψ,w) blows
up in finite time when n ≤ 6: a contradiction.

From now on, we thus assume r > β, hence µ > 0, and n ≤ 2. For any λ > 0, we define
the quantities

yλ(t) :=

∫

Rn

ψ(x, t)Gλ(x)dx and zλ(t) :=

∫

Rn

w(x, t)Gλ(x)dx,

where Gλ is defined by (1.3). Multiplying both (2.19) and the first equation in (2.3) by
Gλ(x), we find upon integrating over Rn that

y′λ(t) =

∫

Rn

(∆ψ + βw) ·Gλ =

∫

Rn

ψ∆Gλ + β

∫

Rn

wGλ for all t > 0

and

z′λ(t) ≥

∫

Rn

(∆w − µw + dψ2) ·Gλ

=

∫

Rn

w∆Gλ − µ

∫

Rn

wGλ + d

∫

Rn

ψ2Gλ for all t > 0.

Using

∆Gλ(x) = −
n

2λ
Gλ(x) +

|x|2

4λ2
Gλ(x) ≥ −

n

2λ
Gλ(x) for all x ∈ R

n,

and
∫

Rn ψ
2Gλ ≤ (

∫

Rn ψGλ)
2 (due to Hölder’s inequality and

∫

Rn Gλ(x)dx = 1), this leads
to the inequalities







y′λ ≥ − n
2λyλ + βzλ, t > 0,

z′λ ≥ −
(

n
2λ + µ

)

zλ + dy2λ, t > 0.
(2.21)
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Let M > 0 to be determined later (depending only on n, β, µ, d). Then according to
Lemma 2.3 we can pick t0 = t0(M) > 0 such that

(4π)−
n
2

∫

Rn

ψ(x, t0)dx ≥ 2M.

Since e−
|x|2

4λ ր 1 as λ→ ∞ for each x ∈ R
n, and since w(·, t0) 6≡ 0 by the strong maximum

principle, we can now fix λ = λ(M) > 1 large enough satisfying

(4π)−
n
2

∫

Rn

ψ(x, t0) · e
−

|x|2

4λ dx ≥M and (4π)−
n
2

∫

Rn

w(x, t0) · e
−

|x|2

4λ dx ≥Mλ−2+n
2 .

The last inequality only required n < 4, but now using n ≤ 2, it follows that

yλ(t0) = (4πλ)−
n
2

∫

Rn

ψ(x, t0) e
−

|x|2

4λ dx ≥Mλ−
n
2 ≥

M

λ
,

and

zλ(t0) = (4πλ)−
n
2

∫

Rn

w(x, t0) e
−

|x|2

4λ dx ≥
M

λ2
.

Finally, we apply Lemma 2.4 with a = β, b = d, c = µ + (n/2) and ε = n/(2λ), and we
take M > max(nM1/2, n

2M2/4), where M1,M2 are given by Lemma 2.4. It then follows
that (yλ, zλ) must blow up in finite time. This contradicts the global existence of ψ and
w and thereby proves that ψ cannot be bounded. �

Next, we proceed to show that ψ becomes large at some time, uniformly in any compact
subset of Rn. At this point we essentially rely on the use of radially decreasing solutions
of (2.3).

Lemma 2.6 Under the assumptions of Theorem 2.1, for all R > 0, there exists (tj)j∈N ⊂
(0,∞) such that tj → ∞ and

inf
x∈BR(0)

ψ(x, tj) → ∞ as j → ∞. (2.22)

Proof. Replacing t by t̃ := t− 1 if necessary, we may assume that

w(x, 0) ≥ δ e−κ|x|
2
=: w0(x) and ψ(x, 0) ≥ ψ

0
(x) := w0(x) for all x ∈ R

n

with some δ > 0 and κ > 0. By the cooperativity of (2.3), we find that

ψ ≥ ψ and w ≥ w in R
n × (0,∞), (2.23)

where (ψ,w) denotes the solution of (2.3) with initial data (ψ
0
, w0). By Lemma 2.2, both

ψ and w are radially symmetric with respect to x = 0 and nonincreasing with respect to
|x|. As a consequence, for all R > 0 we have

inf
x∈BR(0)

ψ(x, t) = ψ(xR, t) for all t > 0 (2.24)

18



with any xR ∈ ∂BR(0).
Next, let R > 0 be given and fix an arbitrary xR ∈ ∂BR(0). It is then possible to find
a positive function w

0
∈ C∞(Rn) such that w

0
≤ w0 in R

n, and such that w
0
is radially

symmetric about xR and nonincreasing with respect to |x−xR|. (In fact, a possible choice
to achieve this is w

0
(x) := δ e−2κR2

· e−2κ|x−xR|2 .) Then, again by Lemma 2.2, the solution
(ψ,w) of (2.3) with initial data (ψ

0
, w

0
) is radially symmetric with respect to x = xR and

nonincreasing in |x− xR| for all t > 0, and by comparison it satisfies

ψ ≥ ψ and w ≥ w in R
n × (0,∞). (2.25)

But Lemma 2.5 ensures that ψ is unbounded, which in view of the asserted monotonicity

properties means that ψ(xR, tj) → ∞ must hold along an appropriate sequence of times

tj → ∞. Combining this with (2.23), (2.24) and (2.25) yields

inf
x∈BR(0)

ψ(x, tj) ≥ inf
x∈BR(0)

ψ(x, tj) = ψ(xR, tj) ≥ ψ(xR, tj) → ∞

as j → ∞, and the proof is complete. �

2.4 Construction of time monotone solutions and conclusion

Building on the results from Lemma 2.6, it is now possible to show that divergence in
fact occurs along the whole net t → ∞ and is not restricted to subsequences. The proof
is based on comparison from below by solutions of system (2.3) that increase with t. To
construct such solutions we need the following preparation.

Lemma 2.7 Let M,β,R0 > 0. Then there exist R1 > R0 and a nonnegative χ ∈
C∞(B̄R1(0)) such that

{

∆χ+ βχ ≥M in BR1(0),

χ = 0 on ∂BR1(0).
(2.26)

Proof. We fix two nonnegative functions g1 and g2 belonging to C∞(B̄1(0)) such that

g1(x) = 1 for |x| ≤
1

4
and g1(x) = 0 for |x| ≥

1

2

and

g2(x) = 1 for
3

4
≤ |x| ≤ 1 and g2(x) = 0 for |x| ≤

1

2
.

Then for i ∈ {1, 2}, the problems
{

−∆χi = gi in B1(0),

χi = 0 on ∂B1(0),
(2.27)

possess nonnegative solutions χi ∈ C∞(B̄1(0)). In view of the Hopf boundary point lemma,
there exist positive constants ci and Ci such that

ci dist(x, ∂B1(0)) ≤ χi(x) ≤ Ci dist(x, ∂B1(0)) for all x ∈ B1(0).
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Picking any ε ∈ (0, c1/C2) and defining the function χ̃ := χ1 − εχ2, it follows that χ̃ > 0
in B1(0). It is therefore possible to fix R1 > R0 large such that

δ := β · inf
x∈B3/4(0)

χ̃(x)−
‖g2‖L∞(B1(0))

R2
1

> 0. (2.28)

Upon this choice, setting χ̂(x) := χ̃(x/R1), x ∈ B̄R1(0), one defines a nonnegative χ̂ ∈
C∞(B̄R1(0)) that vanishes on ∂BR1(0) and satisfies

∆χ̂(x) + βχ̂(x) =
1

R2
1

∆χ̃
( x

R1

)

+ βχ̂(x)

≥ −
‖g2‖L∞(B1(0))

R2
1

+ βχ̂(x) ≥ δ for all x ∈ B3R1/4(0),

by (2.27) and (2.28). Moreover, at all remaining points we have

∆χ̂(x) + βχ̂(x) ≥ ∆χ̂(x) =
1

R2
1

for all x ∈ BR1(0) \B3R1/4(0),

so that altogether we obtain

∆χ̂+ βχ̂ ≥ δ̂ := min
{

δ,
1

R2
1

}

in BR1(0).

Now it immediately follows that χ := M
δ̂
χ̂ has the desired properties. �

We are now in a position to conclude.

Proof of Theorem 0.1. SetM := max(rA, supRn (ψ−w)). Fix R0 > 0 and let R1 > R0

and χ be as provided by Lemma 2.7. By Lemma 2.6 applied with R = R1, we infer that
for some t0 ≥ 0, ψ satisfies

inf
x∈BR1

(0)
ψ(x, t0) ≥ sup

x∈BR1
(0)
χ(x) +M.

By (2.6), this entails that

ψ(x, t0) ≥ χ(x) and w(x, t0) ≥ χ(x) for all x ∈ BR1(0).

Denote by (ψ,w) the solution of (2.3) with initial time t0 instead of 0, and initial data
(ψ

0
, w0), where

ψ
0
(x) := w0(x) :=

{

χ(x), if x ∈ BR1(0),

0 else.

By the comparison principle, it follows that ψ ≥ ψ and w ≥ w on R
n × (t0,∞). Conse-

quently, recalling also (2.6), it is sufficient for proving (2.5) to show that

inf
x∈BR0

(0)
ψ(x, t) → ∞ as t→ ∞. (2.29)
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To prove (2.29), we first apply Lemma 2.6 with R = R0 to ψ(·, · − t0) and w(·, · − t0), to
gain a sequence of times tj → ∞ such that

inf
x∈BR0

(0)
ψ(x, tj) → ∞ as j → ∞. (2.30)

But the properties of χ ensure that

∆ψ
0
+ βw0 = ∆χ+ βχ ≥M > 0 for all x ∈ BR1(0) (2.31)

and

∆w0 − (r − β)w0 + r ·
ψ2
0

ψ
0
+A

= ∆χ+ βχ+ r
( χ2

χ+A
− χ

)

= ∆χ+ βχ−
rAχ

χ+A

≥ M −
rAχ

χ+A
≥M − rA,

hence

∆w0 − (r − β)w0 + r ·
ψ2
0

ψ
0
+A

≥ 0 for all x ∈ BR1(0). (2.32)

We then claim that
ψ
t
, wt ≥ 0 in R

n × (t0,∞) (2.33)

which, combined with (2.30), will show that (2.29) is valid and thereby complete the proof.
Claim (2.33) follows from a well-known and simple argument (see e.g. [15, Ch. 52.6]), which
we recall for the convenience of the reader. By the comparison principle for cooperative
systems, we infer from (2.31), (2.32) that ψ ≥ ψ

0
, w ≥ w0 in BR1(0)× (t0,∞), hence

ψ ≥ ψ
0
, w ≥ w0 in R

n × (t0,∞). (2.34)

For any fixed h > 0, letting (ψ
h
, wh) := (ψ(·, ·+h), w(·, ·+h)) and applying the comparison

principle once again, we deduce from (2.34) that ψ
h
≥ ψ, wh ≥ w in R

n×(t0,∞). Dividing
by h and letting h→ 0, we finally obtain (2.33). �

Remark 2.1 The conclusion of Lemma 2.6 remains true if in the second equation of (2.3),
the factor r in front of the quadratic term is replaced with any r̃ > 0. Accordingly, for any
r̃ > 0, ψ grows up to infinity locally uniformly along some time sequence. However, the
monotonicity argument of Section 2.4 (here given for r̃ = r) can only be adapted to cover
the case r̃ > r − β. Thus, extending to arbitrary r̃ > 0 the full statement of Theorem 0.1
(grow-up along the whole net t→ ∞) seems to require some new idea.
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3 Conclusion

In this paper we are concerned with a mathematical model from population genetics,
describing a single-locus diallelic selection-migration process. Here a specific gene gives
rise to three genotypes aa, aA and AA; the birth and death rates are constant but it is
assumed that the death rate depends on the genotype, contrary to the birth rate. Namely,
individuals AA are endowed with a lower death rate than aa, thus making the genotype
AA a priori advantageous. We here concentrate on the case when this character is fully
recessive, the heterozygote individuals aA being assumed to have the same death rate as
aa. We investigate the asymptotic behavior of solutions of the corresponding nonlinear
reaction-diffusion system (0.1) satisfied by the three genotype densities, posed in the whole
Euclidean space R

n. Our main concern is to determine under which conditions are some
of the genotypes outperformed by the others in that their relative frequencies decay to 0
in large time.

It can be seen that in the non-diffusive (spatially homogeneous) case, and also in the case
of a bounded domain with no-flux boundary conditions, the disadvantageous gene a is
always eliminated in the large time limit. The main outcome of this paper is that this
need no longer be the case in the presence of diffusion in the whole space, and that a
key role is played by the space dimension. Namely, for dimensions n ≤ 2, when the birth
rate exceeds a certain threshold value, we prove that the disadvantageous gene a is still
always eliminated in the large time limit. But on the contrary, for n ≥ 3, there exist
initial distributions for which the advantageous gene A ultimately disappears. Moreover,
we show that, at the threshold value of the birth rate, the cut-off dimension shifts from
n = 2 to n = 6, and that below the threshold no dimensional influence any longer occurs.

Our results seem to be the first rigorous ones of this type for the full system and they
solve a problem which seems to have been open since the celebrated work of Aronson
and Weinberger ([1], [2]). Indeed, due to the apparent difficulty to study the full system,
attempt has been made in their work (see also [4]) to reduce the question to the study of
a simpler scalar equation of the Fisher-KPP type zt = ∆z+ f(z), that they derived as an
approximation of the full system, and where z is now expected to represent the frequency
of the allele A. More precisely, if in the full system the selection is weak, the birth rate
is large and the spatial inhomogeneity is suitably small initially, then on a (suitable) long
time scale the frequency of the allele A remains close to the solution z of the scalar equation
with same initial data. Aronson and Weinberger also proved that, for n ≤ 2 any nontrivial
solution of the scalar equation converges to 1, whereas for n ≥ 3 the solution converges
to 0 for suitably small initial data. We thus see that the Fisher approximation partially
reflects some of the qualitative features of the full system.

A first step in our proofs was to transform the system by considering as two of the new
dependent variables the respective densities of the alleles a and A, multiplied by a suitable
exponential time factor. Whereas the original system was neither cooperative nor compet-
itive, it turned out that a certain sub-system became cooperative after this transformation,
thus making more PDE techniques available. Our proofs were then based on a suitable
combination of comparison arguments based on the maximum principle, semigroup tech-
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niques (variation-of-constant formula and heat kernel estimates), differential inequalities,
test function and monotonicity arguments.

Although the above dimension-dependent effects occur only when the problem is consid-
ered in the entire space, it is to be expected that if the habitat is bounded but large, then
the space dimension will play a corresponding role for the selection process on large but
finite time scales. In particular, we suspect that in the case n ≥ 3, even when considered
in large but bounded domains the system may exhibit quite a rich dynamical structure on
intermediate time scales, possibly including phenomena such as metastability. Questions
of this type go beyond the scope of this paper.
We also leave it as an open problem whether in cases other than the fully recessive one,
given by (0.4), the Fisher approximation (cf. (0.2)) gives a qualitatively correct description
of the asymptotic behavior for system (0.1) in respect of large time selection.
Another interesting question is whether the use of (0.2) can be given deeper rigorous
justification by providing further qualitative parallels to (0.1) such as, for instance, the
occurrence of wave-like solutions, which are known to exist for ut = ∆u+u2(1−u) ([13]).
Our proofs depend very much on the assumption that diffusivities are the same for all
three genotypes. We do not know whether our results may be extended in any way to the
case of different diffusivities.

4 Appendix: The case of bounded domains

As mentioned in the introduction, the influence of the dimension in Theorems 0.1 and 0.2
is an effect caused by the diffusion and the fact that the physical domain is the entire
space R

n. In order to confirm this rigorously, let us consider the analogue of (0.7) in a
bounded domain Ω ⊂ R

n with no-flux boundary conditions:































































ut = ∆u− ru+
r

ρ

(

u+
1

2
v
)2
, x ∈ Ω, t > 0,

vt = ∆v − rv +
r

ρ

(

u+
1

2
v
)(

w +
1

2
v
)

, x ∈ Ω, t > 0,

wt = ∆w + (β − r)w +
r

ρ

(

w +
1

2
v
)2
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(4.1)

where ν denotes the outer normal vector on ∂Ω. The following result asserts that for any
positive r and β, all solutions with v0 + w0 6≡ 0 satisfy the analogue of (0.11).

Proposition 4.1 Let Ω ⊂ R
n be a bounded domain with smooth boundary, and assume

that u0, v0 and w0 are nonnegative and continuous in Ω̄ with v0 + w0 6≡ 0. Then the
solution of (0.7) in Ω × (0,∞) satisfies u/ρ → 0, v/ρ → 0 and w/ρ → 1 as t → ∞,
uniformly with respect to x ∈ Ω.

23



Proof. Recall that the functions ϕ, ψ are defined through the transformation (0.17)
and that the differential equations in (0.18)-(0.20) are now satisfied in Ω × (0,∞) with
Neumann boundary conditions. By the maximum principle we have ϕ ≤ A := ‖ϕ(·, 0)‖∞,

hence u and v are bounded in Ω × (0,∞). It thus suffices to show that min
x∈Ω

ψ(x, t) → ∞

as t→ ∞.
Now, since ψ(·, 0) 6≡ 0, it follows easily from the strong and the Hopf maximum principles
that, for given t0 > 0, w(·, t0) ≥ c > 0 in Ω. By the comparison principle for the
cooperative system satisfied by (ψ,w), we deduce that ψ(·, t) ≥ ψ(t), w(·, t) ≥ w(t) for all
t ≥ t0, where (ψ,w) is the solution of ODE system

ψ′ = βw, t > t0, (4.2)

w′ = (β − r)w + r ·
ψ2

ψ +A
, t > t0, (4.3)

ψ(t0) = 0, w(t0) = c. (4.4)

By (4.2), we have ψ(t) → L as t→ ∞ with some limit L ≤ ∞. Therefore we shall be done
if we show L = ∞. Assume for the sake of contradiction that L <∞, set c0 := L+A and
fix b > 0 so large that bβ > r − β. Then we obtain

(w + bψ)′≥
r

c0
ψ2 ≥

r

c0(1 + b)2
(w + bψ)2, t > t0, (4.5)

due to w + bψ ≤ (1 + b)ψ. However, since w(t0) > 0, this leads to the absurd conclusion
that w + bψ should blow up in finite time. Therefore L = ∞ and the proof is completed.
�
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