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Abstract

This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue (ex-
tracellular matrix, ECM). The model consists of a parabolic chemotaxis-haptotaxis
PDE describing the evolution of cancer cell density, a parabolic PDE governing the
evolution of matrix degrading enzyme concentration, and an ordinary differential equa-
tion reflecting the degradation of ECM. Following a recent approach proposed by
Szymańska et al. (Math. Mod. Meth. Appl. Sci. 19, 2009), we assume that the
migration of cancer cells through ECM is more like movement in a porous medium.
Accordingly, we consider the self-diffusion coefficient D(u) of cancer cells to be a non-
linear function generalizing the prototype D(u) = (u+1)m−1 for some m ≥ 1. Under
the assumption that either n ≤ 8 and m > (2n2 + 4n − 4)/(n2 + 4n), or n ≥ 9 and
m > (2n2 + 3n+ 2−

√

8n(n+ 1))/(n2 + 2n) (where n denotes the space dimension),
and in presence of logistic dampening of cancer cell densities, the global existence of
a unique classical solution to the model is proved by developing some Lp-estimate
techniques that appear to be new in the context of chemotaxis-haptotaxis systems.
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1 Introduction

Cancer invasion consists of several important steps involving different biological mecha-
nisms, and a variety of mathematical models has been developed for various aspects of
cancer invasion (see [2, 6, 7, 14], for instance). Gatenby and Gawlinski ([15]) proposed
a reaction-diffusion population competition model to study how the tumor invades the
surrounding normal tissue, the so-called extracellular matrix (ECM). They suggested that
tumor cells create an acidic environment toxic to normal tissue, and that high acidity leads
to the death of the normal tissue, which provides space for tumor cells to proliferate and
invade into the surrounding tissue. Perumpanani and Byrne ([34]) experimentally found
that ECM heterogeneity affects invasion. They established a model under the assump-
tions that ECM is degraded by proteases; in addition to random diffusion, the migration
of tumor cells is biased towards a gradient of the non-diffusible ECM, which is referred
to as haptotaxis; the protease production is proportional to the product of the tumor cell
density and the collagen gel concentration. Chaplain and Anderson ([5]) also proposed
a haptotaxis model of cancer invasion which is slightly different from the model in [34].
They assume that ECM is degraded by matrix degrading enzymes (MDEs) produced by
cancer cells; in addition to random diffusion, the movement of tumor cells is directed by
haptotaxis. Chaplain and Lolas ([7]) further suggested that, in addition to random diffu-
sion and haptotactic movement, the migration of cancer cells is biased towards a gradient
of the diffusible MDEs, a process known as chemotaxis. Besides, the proliferation of tumor
cells and the remodeling of ECM are incorporated in the model of Chaplain and Lolas.
Recently, Gerisch and Chaplain ([16]) proposed a non-local model which accounts for the
important role of cell-cell adhesion in the tumor invasion process. Very recently, Chaplain
et al. ([6]) adopted the approach in [16] and derived a PDE model of cancer invasion with
two non-local integral terms for both cell-cell and cell-matrix adhesion. We mention that
Szymańska et al. ([37]) developed another non-local model which studies the role of non-
local kinetic terms modeling competition for space and degradation, and that Lachowicz
([25, 26]) constructed some microscopic models for tumor invasion and established some
connections of his microscopic model in [26] to the macroscopic model in [5].

From a mathematical point of view, most of the frequently discussed models of can-
cer invasion belong to one of the categories of haptotaxis-only models (such as those in
[5, 34]), chemotaxis-haptotaxis models (see [7], for instance), and non-local PDE models
([6, 16, 37]. Walker and Webb ([45]) examined the global existence of a unique solu-
tion to the haptotaxis-only models in [5]; Marciniak-Czochra and Ptashnyk ([30]) proved
the uniform boundedness of solutions to the haptotaxis-only model from [5]. Liţcanu and
Morales-Rodrigo ([29]) studied the asymptotic behavior of solutions to the haptotaxis-only
model in [34] by refining their previous techniques developed in [28]. Tao and Wang ([41])
and Tao ([39]) studied the global existence of solutions to the chemotaxis-haptotaxis model
from [7] for large logistic growth rate of cells in dimension 3 and for any positive logistic
growth rate in dimension 2, respectively; Tao and Wang ([40]) also proved the global ex-
istence and boundedness of solutions to a simplified version of the chemotaxis-haptotaxis
model proposed in [7]. Szymańska et al. ([37]) and Chaplain et al. ([6]) examined the
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global existence of solutions to their respective non-local models. Here we should note
that the question of global existence for the chemotaxis-haptotaxis model suggested in
[7] remains open for small positive logistic growth rate of cells in dimension 3. As far
as we know, there are only few results on the asymptotic behavior of solutions to the
chemotaxis-haptotaxis model in [7].

Except for that in [15], all models mentioned above considered the cancer cell random
motility, denoted by D, to be a constant, which leads to linear isotropic diffusion. As
emphasized in the discussion section in [37], however, from a physical point of view mi-
gration of the cancer cells through the ECM should rather be regarded like movement
in a porous medium, and so we are led to considering the cell motility D a nonlinear
function of the cancer cell density, D ≡ D(u), where we have in mind the specific choice
D(u) = D0(u + ε0)

m−1,m ≥ 1, ε0 > 0, D0 > 0. Here the assumption that ε0 be positive
excludes the degeneracy of the cell diffusion, reflecting that cancer cells at small densities
will still undergo diffusion. This paper will focus on studying the relationship between
the exponent m and the global existence of solutions to an accordingly modified variant
of the Chaplain-Lolas chemotaxis-haptotaxis model of cancer invasion ([7]) with porous
medium-type diffusion of cells.

To be more precise, following [7] we consider a coupled system of differential equations for
the three unknown functions representing the cancer cell density u = u(x, t), the MDE
concentration v = v(x, t) and the ECM density w = w(x, t), where the evolution of the
cell density is governed by

ut =

porous medium diffusion
︷ ︸︸ ︷

∇ · (D(u)∇u) −
chemotaxis

︷ ︸︸ ︷

χ∇ · (u∇v) −
haptotaxis

︷ ︸︸ ︷

ξ∇ · (u∇w) +
proliferation
︷ ︸︸ ︷

uf(u,w) . (1.1)

Here, D(u) describes the density-dependent motility of cancer cells through the ECM,
χ and ξ measure the chemotactic and haptotactic sensitivities, respectively, and f(u,w)
denotes the proliferation rate of the cells, which will be assumed to be of logistic type
(cf. (1.6) below).
The MDE concentration is supposed to be influenced by diffusion, degradation, and pro-
duction by cancer cells. Hence, the equation for the MDE concentration reads ([7])

vt =

diffusion
︷ ︸︸ ︷

Dv∆v +

production
︷︸︸︷
αu −

decay
︷︸︸︷

βv , (1.2)

with positive constants Dv, α and β.
Recalling that the ECM can be regarded as static in the sense that it does not diffuse,
we may assume that its evolution is governed only by degradation through MDEs upon
contact. Following [5, 34, 41, 45], we neglect any remodeling of the ECM and thus obtain
the equation

wt = −
degradation

︷︸︸︷
ηvw , (1.3)

for the ECM, with some positive degradation rate η.

Since the analysis in this paper will not specifically depend on the positive rate constants
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except m, χ, ξ, and µ in (1.1)-(1.3), for notational simplicity we may and will assume
throughout that Dv = α = β = η = 1. Thus, closing the system by convenient boundary
conditions we shall subsequently consider the problem







ut = ∇ · (D(u)∇u)− χ∇ · (u∇v)− ξ∇ · (u∇w) + uf(u,w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.4)

in a bounded domain Ω ⊂ R
n, n ≥ 1, with smooth boundary, where ∂ν denotes differenti-

ation with respect to the outward normal on ∂Ω. The functions u0, v0 and w0 are assumed
to be nonnegative and to satisfy some smoothness assumptions to be specified below, and
for simplicity we shall require throughout that

∂νw0 = 0 for all x ∈ ∂Ω, (1.5)

which, for instance, will clearly be satisfied if the initial ECM distribution w0 has compact
support in Ω. The diffusivity D and the source term f are supposed to generalize the
prototypes

D(u) = (u+ 1)m−1 and f(u,w) = µ(1− u− w), u ≥ 0, w ≥ 0. (1.6)

More precisely, we shall require that

D ∈ C2([0,∞)) and f ∈ C1([0,∞)× [0,∞)), (1.7)

that
D(0) > 0, (1.8)

and that there exist m ≥ 1, δ > 0, κ > 0 and µ > 0 such that

D(u) ≥ δum−1 for all u ≥ 0 (1.9)

and
f(u,w) ≤ κ− µu for all u ≥ 0 and w ≥ 0. (1.10)

Under these assumptions, the main results of this paper can be stated as follows.

Theorem 1.1 Let χ > 0 and ξ ≥ 0, and suppose that D and f satisfy (1.7), (1.8) and
(1.10) with some positive constants κ and µ. Moreover, assume that D satisfies (1.9) with
some m ≥ 1 fulfilling

m >







2n2+4n−4
n(n+4) if n ≤ 8,

2n2+3n+2−
√

8n(n+1)

n(n+2) if n ≥ 9,
(1.11)

and some δ > 0. Then for any triple (u0, v0, w0) ∈ W 1,∞(Ω) × W 1,∞(Ω) × W 2,∞(Ω)
of nonnegative functions fulfilling (1.5), the problem (1.4) has at least one nonnegative
classical solution which is global in time.
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Unfortunately we have to leave open here the question whether the global solutions of (1.4)
constructed above are bounded. Although Theorem 1.1 rules out blow-up in finite time,
we suspect that uniform-in-time boundedness cannot be expected in this case, because the
absence of diffusion in the third equation in (1.4) entails that ∇w should have a memory
of ∇v over a historical time interval [0, t] (see (2.9)).

The three-component chemotaxis-haptotaxis model (1.4) can be regarded as an extension
of the celebrated two-component chemotaxis model proposed in 1970 by Keller and Segel
[22]. This Keller-Segel model has greatly been extended and studied in the last three
decades, and one striking feature of Keller-Segel type models is the possibility of admitting
unbounded solutions under various sets of assumptions on model ingredients such as self-
diffusivities, cross-diffusivities, the space dimension, or also the total mass of cells (see
[17, 31, 21, 3, 8, 12, 48, 36, 35], for instance). A ‘chemotactic collapse’ of this type is
frequently interpreted as predicting a spatial aggregation of cells which indeed occurs in
some biologically relevant phenomena such as the aggregation of certain types of bacteria
([18, 22]). However, a number of different biological processes occurs after an initial
aggregation mechanism ([18, 19, 22]). From such considerations, it seems necessary to
develop some chemotaxis models which mathematically exclude blow-up. Some recent
studies show that nonlinear chemotactic sensitivity functions ([4, 8, 19, 20, 50]), nonlinear
(self-)diffusion ([9, 23, 24, 38]), or also logistic dampening ([33, 47, 44, 39, 43, 46]) may
prevent blow-up of solutions.

The second goal of the present paper is to investigate in how far the interplay between
effects of the latter two types can rule out finite-time blow-up. To this end, we observe that
setting ξ = 0 in (1.4) leads to a discoupled system one part of which is the two-component
parabolic-parabolic chemotaxis system with porous medium-type diffusion given by







ut = ∇ · (D(u)∇u)− χ∇ · (u∇v) + ug(u), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.12)

where in accordance with our assumptions on f , g := f(·, 0) belongs to C1([0,∞) and
satisfies

g(u) ≤ κ− µu for all u ≥ 0 (1.13)

with some κ > 0 and µ > 0.

It is known that in the linear diffusion case D ≡ 1, all solutions of (1.12) are global in time
and bounded when either n ≥ 3 and µ > 0 is sufficiently large ([47]), or n = 2 and µ > 0
is arbitrary ([33]). Similar conclusions apply to a simplified variant of (1.12) obtained on
replacing the second PDE by the elliptic equation 0 = ∆v − v + u ([44]). By weakening
the solution concept, it is possible to construct certain global-in-time generalized solutions
under the relaxed requirement that merely g(u) ≤ κ − uα holds for all u ≥ 0 and some
κ > 0 and α > n−1

n
([46]). In the recent work [32], such a generalized logistic growth term

has been considered along with D ≡ 1 and the second equation in (1.12) replaced with
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vt = δv − v + uβ with some β ≤ 1.

Under the assumption g(u) ≡ 0, Sugiyama [38] considered (1.12), inter alia, in the entire
space Ω = R

n, n ≥ 1, and proved global existence of (weak) solutions whenever m ≥ 2,
provided that the initial data satisfy some mild smoothness and decay hypotheses. The
corresponding problem (1.12) in bounded domains Ω ⊂ R

n, n ≥ 2 with g ≡ 0 was taken
up by Kowalczyk and Szymańska in [24], where it was shown that in this case the weaker
condition m > 3 − 4

n
is already sufficient to ensure global existence of solutions for all

sufficiently smooth initial data. We should point out that the two works [38, 24] at the
same time provide uniform-in-time boundedness of solutions in (1.12), and that in this
respect the condition m > 2− 2

n
found in the recent work [42] is optimal, because in [49]

it has been shown that if D(u) = (u+1)2−
2
n
−ε for some ε > 0, g ≡ 0 and Ω is a ball, then

(1.12) possesses some unbounded solutions.

In respect of global solvability for the chemotaxis-growth system (1.12), taking ξ = 0 in
Theorem 1.1 we immediately obtain the following.

Corollary 1.2 Let χ > 0, and let D ∈ C2([0,∞)) satisfy (1.8) and (1.9) with some
δ > 0 and m ≥ 1 such that (1.11) holds. Moreover, assume that g ∈ C1([0,∞)) fulfills
(1.13) with positive constants κ and µ. Then for all nonnegative u0 ∈ W 1,∞(Ω) and
v0 ∈W 1,∞(Ω), the problem (1.12) has at least one global classical solution (u, v) for which
both u and v are nonnegative in Ω× (0,∞).

Observe that in the physically relevant space dimension n = 3, Theorem 1.1 and Corollary
1.2 assert global existence in both (1.4) and (1.12) whenever

m >
26

21
.

Let us finally mention that at the cost of some additional technical expense, all of our
results can be carried over also the degenerate borderline case

D(u) = um−1, u ≥ 0, (1.14)

withm > 1 satisfying (1.11), in which the self-diffusion term in the first equation in (1.4) is
precisely of porous medium-type. Indeed, since in all our estimates to be given in Section
3 below the dependence on D is only measured through m and δ in (1.9), performing the
standard approximation of D(u) = um−1 by Dε(u) = (u + ε)m−1 we can derive uniform
estimates for the corresponding approximate solutions (uε, vε, wε) in L∞(Ω × (0, T )) for
each fixed T > 0. These can be used to derive compactness properties which allow for
taking ε→ 0 and end up with a nonnegative triple (u, v, w) which solves (1.4) in the nat-
ural weak sense. In order to keep the presentation as transparent as possible, we refrain
from giving details on this here, but rather refer to [24, 38] for a similar reasoning.
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2 Local existence

We shall use a straightforward fixed point argument to prove local existence of solutions to
the system (1.4), as well as a standard extensibility criterion. Since both v and w enter the
first PDE in (1.4) through their derivatives, even up to order two, we cannot expect such
a criterion to involve zero-order norms, such as ‖ · ‖L∞(Ω), of these compenents. It turns
out here, however, that as in the case of pure chemotaxis systems (cf. [20], for instance)
no second-order derivatives of v need to be controlled in order to extend a solution, and
that the same is true for w.

Lemma 2.1 Let χ > 0, ξ ≥ 0, let D and f satisfy (1.7) and (1.8), and suppose that
u0 ∈ W 1,∞(Ω), v0 ∈ W 1,∞(Ω) and w0 ∈ W 2,∞(Ω) are nonnegative and such that (1.5)
holds. Then there exist Tmax ∈ (0,∞] and a triple (u, v, w) of functions from C0(Ω̄ ×
[0, Tmax))∩C2,1(Ω× (0, Tmax)) solving (1.4) classically in Ω× (0, Tmax). These functions
satisfy the inequalities

u ≥ 0, v ≥ 0 and 0 ≤ w ≤ ‖w0‖L∞(Ω) in Ω× (0, Tmax), (2.1)

and moreover we have the following dichotomy:

Either Tmax = ∞, or lim sup
tրTmax

(

‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)

= ∞.

(2.2)

Proof. With T > 0 small to be fixed below, in the space X := L∞(Ω × (0, T )) we
consider the closed bounded convex subset

S :=
{

u ∈ X
∣
∣
∣ 0 ≤ u ≤M + 1 a.e. in Ω× (0, T )

}

with M := ‖u0‖L∞(Ω). For u ∈ S, we let Fu ≡ u denote the solution of






ut = ∇ · (D̂(u)∇u)− χ∇ · (u∇v)− ξ∇ · (u∇w) + uf̂(u,w), x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(2.3)

where

D̂(z) :=







D(0) if z < 0,

D(z) if 0 ≤ z ≤M + 1,

D(M + 1) if z > M + 1,

(2.4)

and

f̂(z, w) :=







f(0, w) if z < 0,

f(z, w) if 0 ≤ z ≤M + 1,

f(M + 1, w) if z > M + 1,

(2.5)

and where v and w are the solutions of






vt = ∆v − v + û(x, t), x ∈ Ω, t > 0,

∂νv(x, t) = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x), x ∈ Ω,

(2.6)
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and {

wt = −vw, x ∈ Ω, t > 0,

w(x, 0) = w0(x), x ∈ Ω,
(2.7)

with

û(x, t) :=

{

u(x, t) if x ∈ Ω and t ∈ (0, T ),

0 if x ∈ Ω and t ≥ T.
(2.8)

Standard parabolic theory states that this decoupled system has globally defined weak
solution triple u, v, w, and if we pick any q > n+2

2 , then thanks to linear parabolic regularity
results ([10]) we know that the a priori estimate

‖∇v‖Lq(Ω×(0,1)) ≤ c1

holds with some c1 > 0 which, as all constants c2, c3, ... appearing below, is allowed to
depend on M = ‖u0‖L∞(Ω), ‖v0‖W 1,∞(Ω) and ‖w0‖W 1,∞(Ω) only. Since (2.7) is explicitly
solved according to

w(x, t) = w0(x) · e
∫ t

0 v(x,s)ds, x ∈ Ω, t > 0, (2.9)

from this we also gain that

‖∇w‖Lq(Ω×(0,1)) ≤ c2

is valid with some c2 > 0. Therefore the PDE in (2.3) can be rewritten in the form

ut = ∇ ·
(

D̂(u)∇u+ g(x, t)u
)

+ f̂(u), x ∈ Ω, t > 0,

where ‖g‖Lq(Ω×(0,1)) ≤ c3 for some c3 > 0. Consequently, parabolic theory first pro-
vides a constant c4 > 0 such that ‖u‖L∞(Ω×(0,1)) ≤ c4, and then yields c5 > 0 sat-
isfying ‖u‖

Cα,α2 (Ω̄×[0,1])
≤ c5. (In fact, these statements are implicitly proved in [27,

Theorem V.2.1] and in [27, Theorem V.1.1], respectively, but stated there only for the
case of Dirichlet rather than Neumann boundary conditions.) In particular, this im-
plies that ‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c5t

α
2 for all t ∈ (0, 1), and hence proves that

‖u‖L∞(Ω×(0,T )) ≤ M + 1 if T ∈ (0, 1) was chosen small enough such that c5T
α
2 ≤ 1.

We conclude that for such T , F maps S into itself, and since a straightforward reasoning
shows that F is continuous and F (S) is compact in X, the Schauder fixed point theorem
ensures the existence of a fixed point u ∈ S of F . Recalling (2.4), (2.5) and (2.8) and
once again invoking parabolic regularity theory, we easily see that u, along with the corre-
sponding solutions v and w of (2.6) and (2.7), indeed solves (1.4) classically in Ω× (0, T ).
The property (2.2) now results upon a standard extendibility argument, because our above
choice of T only depends on the norm of the initial data in L∞(Ω)×W 1,∞(Ω)×W 1,∞(Ω).
Moreover, (2.1) is an immediate consequence of the parabolic comparison principle and
the formula (2.9). �
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3 Proof of the main results

Throughout the sequel we let (u, v, w) denote the maximally extended classical solution of
(1.4) obtained in Lemma 2.1. Our approach towards proving its global existence is based
on a contradictory argument: Assuming that (u, v, w) be not global in time, from (2.2) we
would know that either u or v must be unbounded in Ω × (0, Tmax). In a series of steps
we shall show that this does not occur.

3.1 Interpolation inequalities

The following lemma will be used in a testing procedure in Lemma 3.5 to estimate inte-
grals involving high powers of the first component u in terms of a corresponding integral
stemming from a diffusive term in (1.4), provided that u is a priori known to be bounded
in some space L∞((0, Tmax);L

p(Ω)). The proof combines the inequalities of Young and
Gagliardo-Nirenberg in a straightforward way.

Lemma 3.1 Let m ≥ 1. Assume that Tmax < ∞, and that there exist p ≥ 1 and c > 0
such that ∫

Ω
up(t) ≤ c for all t ∈ (0, Tmax). (3.1)

Then for each γ ≥ 1 and any number q ≥ 1 fulfilling

q ≤ 2p

n
+m+ γ − 1 (3.2)

and
(n− 2)q ≤ n(m+ γ − 1), (3.3)

one can pick C > 0 such that
∫

Ω
uq(t) ≤ C ·

(∫

Ω
um+γ−3(t)|∇u(t)|2 + 1

)

for all t ∈ (0, Tmax).

Proof. We may assume q > p. By (3.3), we have 2q
m+γ−1 ≤ 2n

(n−2)+
and hence know that

W 1
2 (Ω) is continuously embedded into L

2q
m+γ−1 (Ω). We can therefore apply the Gagliardo-

Nirenberg inequality ([13]) to find c1 > 0 such that
∫

Ω
uq(t) = ‖u

m+γ−1
2 (t)‖

2q
m+γ−1

L
2q

m+γ−1 (Ω)

≤ c1‖∇u
m+γ−1

2 (t)‖
2q

m+γ−1
·a

L2(Ω)
· ‖u

m+γ−1
2 (t)‖

2q
m+γ−1

·(1−a)

L
2p

m+γ−1 (Ω)

+c1‖u
m+γ−1

2 (t)‖
2q

m+γ−1

L
2p

m+γ−1 (Ω)
for all t ∈ (0, Tmax) (3.4)

is valid with a ∈ (0, 1] determined by

−n(m+ γ − 1)

2q
=

(

1− n

2

)

a− n(m+ γ − 1)

2p
(1− a),
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that is, with

a =

n(m+γ−1)
2 · (1

p
− 1

q
)

1− n
2 + n(m+γ−1)

2p

.

Thus, from (3.4) and (3.1) we obtain
∫

Ω
uq(t) ≤ c1 · ‖∇u

m+γ−1
2 (t)‖

2q
m+γ−1

·a

L2(Ω)
· c

q
p
(1−a) + c1 · c

q
p for all t ∈ (0, Tmax). (3.5)

Since
(

1− n

2
+
n(m+ γ − 1)

2p

)

· q

m+ γ − 1
· a =

nq

2p
− n

2

≤ n

2
·
( 2

n
+
m+ γ − 1

p

)

− n

2

= 1− n

2
+
n(m+ γ − 1)

2p

due to (3.2), it follows that

b :=
2q

m+ γ − 1
· a ≤ 2.

Therefore (3.5) easily yields
∫

Ω
uq(t) ≤ c2‖∇u

m+γ−1
2 (t)‖2L2(Ω) + c2 for all t ∈ (0, Tmax)

with some c2 > 0, where we have used Young’s inequality with exponents 2
b
and 2

2−b
if

b < 2. Now the identity

‖∇u
m+γ−1

2 (t)‖2L2(Ω) =
(m+ γ − 1

2

)2
∫

Ω
um+γ−3(t)|∇u(t)|2, t ∈ (0, Tmax),

completes the proof. �

The next lemma recalls a standard interpolation inequality frequently employed in the
study of nonlinear parabolic equations (see [11], for instance), and indicates how it can be
used to derive estimates for the third solution component w.

Lemma 3.2 Suppose that Tmax <∞, and that for some p ≥ 2 we have

‖v(t)‖L∞((0,Tmax);W 1,2(Ω)) ≤ c for all t ∈ (0, Tmax) and ‖v‖Lp((0,Tmax);W 2,p(Ω)) ≤ c
(3.6)

with a positive constant c. Then there exists C > 0 such that
∫ Tmax

0

∫

Ω
|∇v|

(n+2)p
n ≤ C (3.7)

and ∫

Ω
|∇w(t)|

(n+2)p
n ≤ C for all t ∈ (0, Tmax). (3.8)

10



Proof. The estimate in (3.7) follows upon a standard embedding argument involving
the Gagliardo-Nirenberg inequality: Indeed, using (3.6) we see that

∫ T

0
‖∇v(t)‖

(n+2)p
n

L
(n+2)p

n (Ω)
dt ≤ c1

∫ T

0
‖v(t)‖p

W 2,p(Ω)
· ‖v(t)‖

2p
n

W 1,2(Ω)
dt ≤ c2

with certain constants c1 > 0 and c2 > 0.
In order to derive the claimed bound for ∇w, we note that the ODE wt = −vw can be
solved to yield the explicit representation

w(x, t) = w0(x) · e−
∫ t

0 v(x,s)ds, x ∈ Ω, t ∈ (0, Tmax).

Therefore,

∇w(x, t) = e−
∫ t

0 v(x,s)ds ·
{

∇w0(x)− w0(x) ·
∫ t

0
∇v(x, s)ds

}

for all x ∈ Ω and t ∈ (0, Tmax).

Now using (3.7), this easily proves (3.8) upon an integration over x ∈ Ω. �

3.2 Elementary preparations for a bootstrap argument

The following lemma provides some elementary material that will be essential to our
bootstrap procedure. It essentially makes use of our overall assumption that m satisfy
(1.11).

Lemma 3.3 Suppose that m ≥ 1 satisfies (1.11), and let

ϕ1(x) :=
(m− 1) ·

[

(n+ 2)x+ 2
]

+ (n+2)x(x+1)
n

− 2x

n
, x ∈ R.

Moreover, set

x0 :=







1 if n ≤ 3,

n2 − n− 2

n+ 2
if n ≥ 4,

and

ϕ2(x) :=







(m− 1) ·
[

(n2 + n− 2)x+ n− 2
]

n2 − n− 2− (n+ 2)x
if x ∈ [1, x0),

+∞ if x ≥ x0,

(3.9)

and finally let
φ(x) := min{ϕ1(x), ϕ2(x)}, x ≥ 1. (3.10)

Then
φ(x) > x for all x ∈ [1,+∞). (3.11)

11



Proof. We define

ψ1(x) :=
n2

n+ 2
· (ϕ1(x)− x), x ∈ R,

and claim that thanks to (1.11) we have

ψ1(x) > 0 for all x ≥ 1. (3.12)

To verify this, we rewrite ψ1 according to

ψ1(x) = x2 +
[

(m− 2)n+ 1
]

· x+
2(m− 1)n

n+ 2
, x ∈ R,

and compute

ψ1(1) = 1 + (m− 2)n+ 1 +
2(m− 1)n

n+ 2

= (m− 1) · n
2 + 4n

n+ 2
+ 2− n. (3.13)

Now if n ≤ 8 then (1.11) says that

m− 1 >
n2 − 4

n2 + 4n
, (3.14)

and hence we obtain from (3.13) that

ψ1(1) >
n2 − 4

n+ 2
+ 2− n = 0.

Since moreover

ψ′
1(x) = 2x+ (m− 2)n+ 1, x ∈ R,

and accordingly

ψ′
1(1) = 2 + (m− 2)n+ 1

>
n2 − 4

n+ 4
+ 3− n

=
8− n

n+ 4

by (3.14), we conclude from the convexity of ψ1 that (3.12) holds whenever n ≤ 8.
In the case n ≥ 9, (1.11) tells us that

m− 1 >
n2 + n+ 2−

√

8n(n+ 1)

n2 + 2n
. (3.15)
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Here we note that

n− 3

n
>

n2 − 4

n2 + 4n
and

n− 3

n
>
n2 + n+ 2−

√

8n(n+ 1)

n2 + 2n
for n ≥ 9,

from which we obtain

ψ1(1) =
n2 + 4n

n+ 2

[

(m− 1)− n2 − 4

n2 + 4n

]

> 0 and ψ′
1(1) = n

[

(m− 1)− n− 3

n

]

≥ 0

in the case m− 1 ≥ n−3
n

, and hence immediately arrive at (3.12) by the convexity of ψ1 in
this case. We thus only need to consider those m for which both (3.15) and m− 1 < n−3

n

hold. Observing that ψ1 attains its minimum over R at xm := (2−m)n−1
2 , and computing

ψ1(xm) = −1

4
·
[

(1−m)n+ n− 1
]2

+
2(m− 1)n

n+ 2

=
n2

4
·
{

8n(n+ 1)

n2(n+ 2)2
−

[

m− 1− n2 + n+ 2

n(n+ 2)

]2
}

,

we easily see that for such m we have ψ1(x) > 0 for all x ∈ R.

Having thereby asserted (3.12), as a consequence we note that

ϕ1(x) > x for all x ≥ 1. (3.16)

As to ϕ2, we consider the case n ≥ 4 only and, proceeding similarly, let

ψ2(x) := (m− 1)
[

(n2 + n− 2)x+ n− 2
]

− x ·
[

n2 − n− 2− (n+ 2)x
]

, x ≥ 1,

so that

ψ′
2(x) = 2(n+ 2)x+m(n2 + n− 2)− 2n2 + 4, x ≥ 1.

Now by straightforward estimates using
√

8n(n+ 1) <
√
8(n + 1) when n ≥ 9, it can

easily be checked that (1.11) implies

m >
2n2 − 8

n2 + 2n− 4
and m >

2n2 − 2n− 8

n2 + n− 2
.

We thus have

ψ2(1) = m(n2 + 2n− 4)− 2n2 + 8 > 0

and

ψ′
2(1) = m(n2 + n− 2)− 2n2 + 2n+ 8 > 0.

By convexity of ψ2, we conclude that ψ2 is positive on [1,∞). This yields

ϕ2(x) > x for all x ≥ 1,

and thus, in conjunction with (3.16), proves that φ, as defined through (3.10), satisfies
(3.11). �
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3.3 Iterative improvement of bounds in L
γ(Ω)

As a first step towards proving boundedness of our solution, let us collect some basic
estimates for u and v in comparatively large function spaces.

Lemma 3.4 Suppose that Tmax <∞. Then there exists C > 0 such that

‖u‖L∞((0,Tmax);L1(Ω)) ≤ C, (3.17)

‖u‖L2((0,Tmax);L2(Ω)) ≤ C, (3.18)

‖v‖L∞((0,Tmax);W 1,2(Ω)) ≤ C and (3.19)

‖v‖L2((0,Tmax);W 2,2(Ω)) ≤ C. (3.20)

Proof. Integrating the first equation in (1.4) in view of (1.10) yields

d

dt

∫

Ω
u =

∫

Ω
uf(u,w) ≤ κ

∫

Ω
u− µ

∫

Ω
u2 ≤ κ2

2µ
|Ω| − µ

2

∫

Ω
u2 for all t ∈ (0, Tmax),

which on another integration with respect to t immediately gives (3.17) and (3.18). Next,
testing the second equation in (1.4) by −∆v and using Young’s inequality we obtain

1

2

d

dt

∫

Ω
|∇v|2 +

∫

Ω
|∇v|2 +

∫

Ω
|∆v|2 = −

∫

Ω
u∆v ≤ 1

2

∫

Ω
|∆v|2 + 1

2

∫

Ω
u2

for all t ∈ (0, Tmax). Integrated in time, in view of (3.18) this shows that

∫

Ω
|∇v(t)|2 ≤ c1 for all t ∈ (0, Tmax) and

∫ Tmax

0

∫

Ω
|∆v|2 ≤ c1 (3.21)

holds with some c1 > 0. Since moreover

d

dt

∫

Ω
v = −

∫

Ω
v +

∫

Ω
u for all t ∈ (0, Tmax)

by simple integration of the second equation in (1.4), recalling (3.17) we see that v is
bounded in L∞((0, Tmax);L

1(Ω)) Therefore (3.21) immediately entails (3.19) and (3.20)
thanks to the equivalence of ‖·‖W 2

2 (Ω) to ‖∆(·)‖L2(Ω)+‖∇(·)‖L2(Ω)+‖·‖L1(Ω) for functions

satisfying homogeneous Neumann boundary conditions ([13]). �

The following lemma can be used to improve our knowledge on integrability of u, provided
that m satisfies (1.11). Its repeated application will form the core of our regularity proof.

Lemma 3.5 Let m ≥ 1 be such that (1.11) holds, and let φ denote the function introduced
in Lemma 3.3. Suppose that Tmax <∞, and there exist β ≥ 1 and c > 0 such that

∫

Ω
uβ(t) ≤ c for all t ∈ (0, Tmax) (3.22)

and ∫ Tmax

0

∫

Ω
uβ+1 ≤ c. (3.23)
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Then for all γ ∈ [1,∞) satisfying γ ≤ φ(β) there exists C > 0 such that
∫

Ω
uγ(t) ≤ C for all t ∈ (0, Tmax) (3.24)

and ∫ Tmax

0

∫

Ω
uγ+1 ≤ C. (3.25)

Proof. Multiplying the first equation in (1.4) by uγ−1 and integrating in space we
obtain

1

γ

d

dt

∫

Ω
uγ + (γ − 1)

∫

Ω
D(u)uγ−2|∇u|2 = (γ − 1)χ

∫

Ω
uγ−1∇u · ∇v

+(γ − 1)ξ

∫

Ω
uγ−1∇u · ∇w

+

∫

Ω
uγf(u,w) (3.26)

for all t ∈ (0, Tmax). Since by (1.10) and Young’s inequality,
∫

Ω
uγf(u,w) ≤ κ

∫

Ω
uγ − µ

∫

Ω
uγ+1

≤ −µ
2

∫

Ω
uγ+1 + c1 for all t ∈ (0, Tmax)

holds with some c1 > 0, in view of (1.9) we obtain the estimate

1

γ

d

dt

∫

Ω
uγ + (γ − 1)δ

∫

Ω
um+γ−3|∇u|2 + µ

2

∫

Ω
uγ+1 ≤ (γ − 1)χ

∫

Ω
uγ−1∇u · ∇v

+(γ − 1)ξ

∫

Ω
uγ−1∇u · ∇w + c1 (3.27)

for all t ∈ (0, Tmax). Here, again by Young’s inequality,

(γ − 1)χ

∫

Ω
uγ−1∇u · ∇v ≤ (γ − 1)δ

4

∫

Ω
um+γ−3|∇u|2 + c2

∫

Ω
u−m+γ+1|∇v|2 (3.28)

and

(γ − 1)λ

∫

Ω
uγ−1∇u · ∇w ≤ (γ − 1)δ

4

∫

Ω
um+γ−3|∇u|2 + c2

∫

Ω
u−m+γ+1|∇w|2 (3.29)

hold with a certain c2 > 0 for all t ∈ (0, Tmax). In order to further estimate the respective
second terms on the right hand sides of (3.28) and (3.29) in an effective manner, let us first
note that according to parabolic regularity theory in Sobolev spaces ([10]), our assumption
(3.23) ensures that v is bounded in Lβ+1((0, Tmax);W

2,β+1(Ω)). Therefore an application
of Lemma 3.2 shows that ∫ Tmax

0

∫

Ω
|∇v|

(n+2)(β+1)
n ≤ c3 (3.30)
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and ∫

Ω
|∇w(t)|

(n+2)(β+1)
n ≤ c3 for all t ∈ (0, Tmax) (3.31)

are valid with some c3 > 0. Accordingly, let us estimate the integrals in question by
invoking Young’s inequality with the conjugate exponents (n+2)(β+1)

(n+2)(β+1)−2n and (n+2)(β+1)
2n ,

observing that the latter is greater than one since β ≥ 1. We thereby see that for arbitrary
ε > 0,

c2

(∫

Ω
u−m+γ+1|∇v|2 +

∫

Ω
u−m+γ+1|∇w|2

)

≤ ε

∫

Ω
u
(−m+γ+1)·

(n+2)(β+1)
(n+2)(β+1)−2n

+c4ε
−θ ·

(∫

Ω
|∇v|

(n+2)(β+1)
n +

∫

Ω
|∇w|

(n+2)(β+1)
n

)

(3.32)

holds for all t ∈ (0, Tmax) and some c4 > 0 with θ := (n+2)(β+1)−2n
2n .

We next claim that our restriction γ ≤ φ(β) ensures that

q := (−m+ γ + 1) · (n+ 2)(β + 1)

(n+ 2)(β + 1)− 2n

satisfies both

q ≤ 2β

n
+m+ γ − 1 (3.33)

and
(n− 2)q ≤ n(m+ γ − 1). (3.34)

Indeed, (3.33) is equivalent to saying that I1(γ) ≤ 0, where

I1(x) := (−m+ x+ 1)(n+ 2)(β + 1)−
(2β

n
+m+ x− 1

)

·
[

(n+ 2)(β + 1)− 2n
]

= 2nx−
{

2(m− 1)
[

(n+ 2)β + 2
]

+
2(n+ 2)β(β + 1)

n
− 4β

}

, x ≥ 1.

Here, noting that I1(x) is increasing in x ≥ 1, according to the definitions of φ and ϕ1 in
Lemma 3.3, we see that

I1(γ) ≤ I1(φ(β)) ≤ I1(ϕ1(β)) = 0. (3.35)

This yields (3.33).
As to (3.34), we note that we evidently may restrict ourselves to the case n ≥ 2, in which
we need to show that I2(γ) ≤ 0, where

I2(x) := (n− 2)(−m+ x+ 1)(n+ 2)(β + 1)− n(m+ x− 1)
[

(n+ 2)(β + 1)− 2n
]

= 2
{

n2 − n− 2− (n+ 2)β
}

· x− 2(m− 1)
{

(n2 + n− 2)β + n− 2
}

, x ≥ 1.
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Now if J2 := n2 − n − 2 − (n + 2)β is positive, we have β < n2−n−2
n+2 and thus necessarily

n ≥ 4, because β ≥ 1. Recalling the notation from Lemma 3.3, in this case we thus know
that β < x0 and hence

I2(x) = 2J2 ·
(

x− ϕ2(β)
)

≤ 2J2 ·
(

φ(β)− ϕ2(β)
)

≤ 0 for all x ∈ [1, φ(β)],

because φ ≤ ϕ2. In particular, this means that

I2(γ) ≤ 0 if J2 > 0. (3.36)

On the other hand, if J2 ≤ 0 then

I2(x) ≤ −2(m− 1)
{

(n2 + n− 2)β + n− 2
}

for all x ≥ 1,

which in view of our assumptions m ≥ 1 and β ≥ 1 can be combined so as to yield

I2(x) ≤ −2(m− 1)
{

n2 + 2(n− 2)
}

≤ 0 for all x ≥ 1,

because we presently only consider n ≥ 2. Together with (3.36) this proves that I2(γ) ≤ 0.

Having thereby established (3.33) and (3.34), using (3.22) we may apply Lemma 3.1 with
p := β to obtain

∫

Ω
u
(−m+γ+1)·

(n+2)(β+1)
(n+2)(β+1)−2n ≤ c5

∫

Ω
um+γ−3|∇u|2 + c6 for all t ∈ (0, Tmax)

with appropriately large c5 > 0 and c6 > 0. Upon fixing ε := (γ−1)δ
4c5

now, from (3.32) we
consequently derive

c2

(∫

Ω
u−m+γ+1|∇v|2 +

∫

Ω
u−m+γ+1|∇w|2

)

≤ (γ − 1)δ

4

∫

Ω
um+γ−3|∇u|2 + (γ − 1)δc6

4c5

+c6 ·
( 4c5
(γ − 1)δ

)θ

·
(∫

Ω
|∇v|

(n+2)(β+1)
n +

∫

Ω
|∇w|

(n+2)(β+1)
n

)

(3.37)

for all t ∈ (0, Tmax). All in all, collecting (3.27), (3.28), (3.29), (3.30), (3.31) and (3.37)
we conclude that

1

γ

d

dt

∫

Ω
uγ +

(γ − 1)δ

4

∫

Ω
um+γ−3|∇u|2 + µ

2

∫

Ω
uγ+1 ≤ c7 for all t ∈ (0, Tmax)

is valid with some c7 > 0, which after integration readily yields (3.24) and (3.25) on
choosing C appropriately large. �

Now a bootstrap procedure leads to the following statement on boundedness of u in
L∞((0, Tmax);L

γ(Ω)) for any fixed γ <∞, provided that Tmax <∞.
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Lemma 3.6 Let m ≥ 1 satisfy (1.11), and suppose that Tmax < ∞. Then for all γ ∈
[1,∞) there exists C > 0 such that

∫

Ω
uγ(t) ≤ C for all t ∈ (0, Tmax). (3.38)

Proof. We define a sequence (γk)k∈N ⊂ [1,∞) by setting γ0 := 1 and

γk+1 := φ(γk) for k ≥ 0, (3.39)

where φ is given by (3.10). Then Lemma 3.3 implies that γk+1 = φ(γk) > γk for all k ∈ N,
which entails that γk ր γ∞ as k → ∞ for some γ∞ ≤ ∞. We claim that

γ∞ = ∞. (3.40)

In fact, if γ∞ was finite, then taking k → ∞ in both sides of (3.39) and using the conti-
nuity of function φ would yield the conclusion γ∞ = φ(γ∞). This contradiction to (3.11)
establishes (3.40).
We now repeatedly apply Lemma 3.5 to β := γk and γ := γk+1 for k = 0, ..., k0. Here
we observe that in accordance with (3.39), for the first step the requirements in (3.22)
and (3.23) are asserted by (3.17) and (3.18), whereas for k = 1, ..., k0 we use the respec-
tive outcome of the previous step to guarantee (3.22) and (3.23). We thereby see upon a
straightforward induction that for all k ∈ {0, ..., k0 + 1} there exists ck > 0 such that

∫

Ω
uγk(t) ≤ ck for all t ∈ (0, Tmax). (3.41)

Since γk ր ∞, (3.41) precisely asserts (3.38). �

3.4 L
∞ estimates and proof of the main results

From Lemma 3.6 we can easily derive higher order estimates for v and w.

Lemma 3.7 Letm ≥ 1 satisfy (1.11), and assume that Tmax <∞. Then for all p ∈ [1,∞)
there exists C > 0 such that

‖v‖Lp((0,Tmax);W 2,p(Ω)) ≤ C (3.42)

and
‖w‖Lp((0,Tmax);W 2,p(Ω)) ≤ C. (3.43)

Proof. In view of Lemma 3.6, (3.42) is an immediate consequence of the parabolic
smoothing action in the second PDE in (1.4) ([10]). Now assuming p > 2 without loss
of generality, we apply ∆ to both sides of the third equation in (1.4) and multiply the
resulting identity by |∆w|p−2∆w. After an integration we obtain

1

p

d

dt

∫

Ω
|∆w|p =

∫

Ω
|∆w|p−2∆w · (−v∆w − 2∇v · ∇w − w∆v)

= −
∫

Ω
v|∆w|2 − 2

∫

Ω
(∇v · ∇w)|∆w|p−2∆w

−
∫

Ω
w|∆w|p−2∆w∆v for all t ∈ (0, Tmax). (3.44)
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Here, the first term on the right is non-positive, whereas by Young’s inequality we have

−
∫

Ω
w|∆w|p−2∆w∆v ≤

∫

Ω
|∆w|p + c1

∫

Ω
|∆v|p

and

−2

∫

Ω
(∇v · ∇w)|∆w|p−2∆w ≤

∫

Ω
|∆w|p + c1

∫

Ω
|∇v|p|∇w|p

for all t ∈ (0, Tmax) and some c1 > 0, where we have used that 0 ≤ w ≤ ‖w0‖L∞(Ω) in
Ω× (0, Tmax). Once more by Young’s inequality we find

∫

Ω
|∇v|p|∇w|p ≤ 1

2

∫

Ω
|∇v|2p + 1

2

∫

Ω
|∇w|2p,

so that from (3.44) we altogether infer that

d

dt

∫

Ω
|∆w|p ≤ 2p

∫

Ω
|∆w|p + c2a(t) for all t ∈ (0, Tmax) (3.45)

holds with some c2 > 0 and

a(t) :=

∫

Ω
|∆v|p +

∫

Ω
|∇v|2p +

∫

Ω
|∇w|2p, t ∈ (0, Tmax).

Since (3.42) in conjunction with (3.19) and Lemma 3.2 states that
∫ Tmax

0 a(t)dt is finite,
an integration of (3.45) finally establishes (3.43). �

Now by a standard iteration procedure we immediately obtain boundedness of u in Ω ×
(0, Tmax), provided that Tmax <∞.

Lemma 3.8 Let m ≥ 1 fulfill (1.11), and assume that Tmax <∞. Then there exists c > 0
such that

‖u(t)‖L∞(Ω) ≤ c for all t ∈ (0, Tmax)

and

‖v(t)‖W 1,∞(Ω) + ‖w(t)‖W 1,∞(Ω) ≤ c for all t ∈
(Tmax

2
, Tmax

)

.

Proof. The estimate for u easily follows from Lemma 3.6 and Lemma 3.7 upon an
iteration procedure of Alikakos-Moser type (see [1]; cf. [42, Lemma 4.1] for a version ap-
propriate for the present setting). The statement on v and w is again a direct consequence
of parabolic regularity theory. �

We are now in the position to prove our main results.

Proof (of Theorem 1.1 and Corollary 1.2). Both assertions are immediate conse-
quences of Lemma 3.8 and the extendibility criterion provided by Lemma 2.1. �
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[28] G. Liţcanu and C. Morales-Rodrigo, Global solutions and asymptotic behavior for
a parabolic degenerate coupled system arising from biology, Nonlinear Analysis 72
(2010), 77-98.
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