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Abstract

The initial-value problem for

ut = −∆2u− µ∆u− λ∆|∇u|2 + f(x) (⋆)

is studied under the conditions ∂
∂ν
u = ∂

∂ν
∆u = 0 on the boundary of a bounded con-

vex domain Ω ⊂ R
n with smooth boundary. This problem arises in the modeling of

the evolution of a thin surface when exposed to molecular beam epitaxy. Correspond-
ingly the physically most relevant spatial setting is obtained when n = 2, but previous
mathematical results appear to concentrate on the case n = 1.
In this work it is proved that when n ≤ 3, µ ≥ 0, λ > 0 and f ∈ L∞(Ω) satisfies
∫

Ω
f ≥ 0, for each prescribed initial distribution u0 ∈ L∞(Ω) fulfilling

∫

Ω
u0 ≥ 0,

there exists at least one global weak solution u ∈ L2
loc([0,∞);W 1,2(Ω)) satisfying

∫

Ω
u(·, t) ≥ 0 for a.e. t > 0, and moreover it is shown that this solution can be ob-

tained through a Rothe-type approximation scheme.
Furthermore, under an additional smallness condition on µ and ‖f‖L∞(Ω) it is shown
that there exists a bounded set S ⊂ L1(Ω) which is absorbing for (⋆) in the sense that
for any such solution we can pick T > 0 such that e2λu(·,t) ∈ S for all t > T , provided
that Ω is a ball and u0 and f are radially symmetric with respect to x = 0. This
partially extends similar absorption results known in the spatially one-dimensional
case.
The techniques applied to derive appropriate compactness properties via a priori es-
timates include straightforward testing procedures which lead to integral inequalities
involving, for instance, the functional

∫

Ω
e2λudx, but also the use of a maximum prin-

ciple for second-order elliptic equations.
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1 Introduction

In this work we study the fourth order parabolic equation

ut = −∆2u− µ∆u− λ∆|∇u|2 + f(x) (1.1)

for the unknown function u = u(x, t), where µ ≥ 0 and λ > 0 are given parameters and f
is a prescribed function depending on the spatial variable only.

This evolution equation is used as a model for the growth of thin surfaces when exposed to
molecular beam epitaxy; in this context, u(x, t) can either represent the absolute thickness
of the film, or rather the relative surface height, that is, the deviation of the film height
at the point x from the mean film thickness at time t. The model incorporates the linear
effects of surface diffusion ([13], [18]) and so-called Schwoebel barriers ([24]), reflected by
the biharmonic term −∆2 and the second-order backward diffusion term −µ∆u in (1.1),
respectively. Apart from that, the nonlinear term −λ∆|∇u|2 accounts for the presence of
an energy barrier that particles need to cross before they diffuse ([15]). Finally, in (1.1)
it is assumed that the surface is exposed to an external source in the form of a molecular
beam that is supposed to be constant in time but possibly inhomogeneous in space. Fur-
ther details on the model and its physical framework can be found in [24], [17], [23].

Previous work shows that numerical simulations based on (1.1) can be well fitted to ex-
perimental data, and that (1.1) adequately describes the phenomena of coarsening and
roughening that are characteristic for the growth of corresponding surfaces on intermedi-
ate time scales ([23], [25]). The mathematical theory, however, appears to lag somewhat
behind in that satisfactory rigorous analytic results on (1.1) up to now seem to be restricted
to the spatially one-dimensional setting. In order to point out the technical difficulties
related to (1.1), let us briefly comment on some of its basic mathematical features. For
definiteness, here and in the sequel we shall complement (1.1) by initial conditions and
homogeneous boundary conditions of Neumann type, and accordingly consider the initial-
boundary value problem















ut = −∆2u− µ∆u− λ∆|∇u|2 + f(x), x ∈ Ω, t > 0,

∂
∂ν
u = ∂

∂ν
∆u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

in a bounded physical domain Ω ⊂ R
n with smooth boundary, where u0 is a given initial

distribution, and where ∂
∂ν

denotes differentiation with respect to the outward normal ν
on ∂Ω.

A first observation is that the nonlinear term −λ∆|∇u|2 is of lower order as related to the
biharmonic linear diffusion part, whence by standard methods involving well-established
semigroup techniques it is possible to construct local-in-time smooth solutions of (1.2)
whenever the initial data u0 are sufficiently regular. However, in view of the quadratic
growth of this nonlinearity it is a priori not clear whether such solutions can be extended to
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exist for all times, or if finite-time blow-up phenomena may occur. In this respect, a math-
ematical drawback of (1.1) as compared to related surface growth equations appears to be
the lack of a Lyapunov functional involving derivatives of the solution. Indeed, it seems
that the derivation of (1.1) does not immediately suggest any dissipated quantity which
is corresponds to a genuine physical energy. As contrasted to this, when the nonlinearity
Ψ(u) := −∆|∇u|2 in (1.1) is replaced by ∇·(|∇u|2∇u) ([21], [16]), or – as is the case in the

Cahn-Hilliard equation – by ∆(u3) ([20], [19]), or also by ∂2ij(
∂iu∂ju

u
) like in the Derrida-

Lebowitz-Speer-Spohn equation ([11]), ([14]), the availability of corresponding energy-like
dissipative quantities provides natural candidates for the derivation of global properties
of solutions. More sophisticated techniques, though still relying on dissipation of certain
functionals, apply to the Kuramoto-Sivashinsky equation in one dimension, where either
Ψ(u) = −1

2u
2
x or Ψ(u) = −1

2(u
2)x ([19], [9], [22]). The use of energies (and entropies)

is also essential to analytical approaches to related fourth-order parabolic problems with
nonlinear diffusion such as the thin-film equation ut = −∇ · (um∇∆u) ([2], [7]).

Thus first focussing on the question of global solvability, let us recall that in the spatially
one-dimensional setting a basic global-in-time information can be derived from the fact
that in this case the nonlinearity in (1.2) is orthogonal to the solution itself in the sense
of L2(Ω). Indeed, if Ω = (a, b) ⊂ R and f ≡ 0 for simplicity, integrating by parts we have

∫ b

a

(u2x)xxu =
1

3
u3x

∣

∣

∣

b

a
= 0 (1.3)

for any smooth u satisfying ux|∂Ω = 0, and thus formally testing (1.2) by u we obtain that
the exponential bound

∫

Ω
u2(x, t)dx ≤

(

∫

Ω
u20(x)dx

)

· e
µ2

2
t for all t ≥ 0

should hold for any solution of (1.2). In fact, this a priori estimate for solutions in
L∞
loc([0,∞);L2(Ω)) can be used as a starting point for a bootstrap procedure to obtain

higher order regularity properties and finally construct global weak solutions (see [25] and
[3] for a stochastic variant of (1.2)). However, when n ≥ 2 a similar reasoning is impossible
due to the lack of an appropriate analogue of (1.3), and thus the question whether or not
(1.2) admits global solutions appears to be open in the higher-dimensional framework.

The first of our main results addresses this problem in space dimensions n ≤ 3. On the
one hand it asserts the existence of a global solution to (1.2) in the sense of Definition 2.1
below, and on the other hand makes sure that this solution can be numerically obtained
by a Rothe-type approximation scheme.

Theorem 1.1 Assume that Ω ⊂ R
n is a bounded convex domain in R

n, n ≤ 3, and that
µ ≥ 0 and λ > 0. Also suppose that u0 ∈ L∞(Ω) and f ∈ L∞(Ω) fulfill

∫

Ω u0 ≥ 0
and

∫

Ω f ≥ 0. Then (1.2) possesses at least one global weak solution u that satisfies
∫

Ω u(x, t)dx ≥ 0 for a.e. t > 0.

This solution can be obtained as the limit of a sequence of functions û(τ) determined by
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solutions of the Rothe scheme (2.2), (2.4) below in the sense that û(τ) → u holds in
L2
loc([0,∞);W 1,2(Ω)) and a.e. in Ω × (0,∞) along an appropriate sequence of numbers

τ = τj ց 0.
Furthermore, this solution has the additional regularity property eλu ∈ L2

loc([0,∞);W 2,2(Ω))

with ∂
∂ν
eλu = 0 on ∂Ω, and we have eλû

(τ)
⇀ eλu in L2

loc([0,∞);W 2,2(Ω)) as τ = τj ց 0.

Let us remark here that since (1.2) is invariant under the Galilean transformation u 7→
u − a − bt for any real a and b, the assumptions

∫

Ω f ≥ 0 and
∫

Ω u0 ≥ 0 do not restrict
the generality of the above statement which of course is to be read as referring to u as
the relative film height. In fact, if u0 and f are arbitrary functions from L∞(Ω), then
ũ0 := u0 − a and f̃ := f − b with a := 1

|Ω|

∫

Ω u0 and b := 1
|Ω|

∫

Ω f satisfy
∫

Ω ũ0 =
∫

Ω f̃ = 0,
and hence an application of Theorem 1.1 yields a corresponding solution ũ which can be
transformed to a solution u of the original problem via the relation ũ = u− a− bt.

Concerning the qualitative behavior of solutions, the one-dimensional version of (1.2)
again possesses a favorable absorption property which underlines the stabilizing effect of
the nonlinearity as opposed to the destabilizing second-order backward diffusive term:
Namely, in [25] it was shown that when n = 1 and f ≡ 0, (1.2) possesses a bounded
absorbing set in the sense that there exist a bounded set S ⊂ L1(Ω) and a diffeomorphism
Φ : R → (0,∞) such that for any of the weak solutions u constructed there, the function
Φ(u(·, t)) belongs to S for all sufficiently large t. This diffeomorphism asymptotically
behaves according to Φ(u) ≃ eβu as u → −∞ and Φ(u) ≃ up as u → +∞, where p > 1
and β ∈ (0, 83) are arbitrary. In particular, this indicates that the positive part of each
solution will eventually enjoy some boundedness property, whereas the emergence of peaks
in the negative part is not ruled out. This is in good accordance with numerical simulations
([25]) and provides motivation for the study of blow-up properties of solutions possibly
evolving into singularities in their negative part ([6]).

It is the second goal of the present work to establish an analogue of the latter absorption
result in higher space dimensions. For technical reasons, our procedure requires that
besides the above hypotheses we assume the spatial framework to be radially symmetric.
We also need a smallness condition on both µ and the size of f , and as before we simplify
the setting by assuming

∫

Ω u0 =
∫

Ω f = 0.

Theorem 1.2 Suppose that n ≤ 3 and that Ω = BR(0) ⊂ R
n for some R > 0. Then for

any λ > 0 there exist c > 0 and C > 0 with the following property: For all f ∈ L∞(Ω) and
u0 ∈ L∞(Ω) that are radially symmetric with respect to x = 0 and fulfill

∫

Ω f =
∫

Ω u0 = 0,
and each µ ≥ 0 such that

‖f‖L∞(Ω) + µ2 ≤ c, (1.4)

the problem (1.2) possesses at least one global weak solution u that is radially symmetric
and satisfies

∫

Ω u(x, t)dx = 0 for a.e. t > 0, and moreover there exists T > 0, possibly
depending on u, such that

∫

Ω
e2λu(x,t)dx ≤ C for a.e. t > T (1.5)
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and
∫ t+1

t

∫

Ω
e2λu

(

|D2u|2 + |∇u|4
)

≤ C for all t > T. (1.6)

Furthermore, any sequence (tj)j∈N of numbers tj → ∞ contains a subsequence (tji)i∈N
along which

∫ tji+1

tji

eλu(·,t)dt ⇀ w in W 2,2(Ω) (1.7)

and
∫ tji+1

tji

eλu(·,t)dt→ w uniformly in Ω̄ (1.8)

holds as i→ ∞ with some w ∈W 2,2(Ω) satisfying ∂
∂ν
w = 0 on ∂Ω.

We point out that it still remains an open problem whether or not (1.2) possesses solutions
which blow up in finite time, even in the one-dimensional setting. Although it is not clear
whether such solutions are meaningful in the applications, for both estimating the precise
validity of the model (1.2) and obtaining refined numerical approximation statements it
would be useful to either exclude or confirm the possibility of singularity formation. In any
event, both numerical evidence in one space dimension ([25]) and formal considerations
(see (1.10) and [6]) suggest that if u blows up in L∞(Ω) in finite time then the negative
part u− is a more likely candidate for becoming unbounded than u+.

We also leave untouched here the question of uniqueness of solutions to (1.2), which is
to be expected when solutions are required to lie in suitable classes of sufficiently regular
functions (cf. [6] for a detailed discussion in a one-dimensional setting). We believe,
however, that our notion of solution (Definition 2.1) is too weak to enforce uniqueness.

Another open problem is whether or not solutions of (1.2) stabilize on large time scales.
Our result in Theorem 1.2 provides a rather weak affirmative statement in this direction,
but this is probably far from optimal. In particular it would be interesting to know
whether or not restrictions on the size of µ and f are really necessary. It seems that
even the structure of the set of steady states for (1.2) is unknown. Some results for the
one-dimensional case are contained in [6] (cf. also [5] for a stochastic analogue).

Our procedure is organzied in such a way that the proofs of existence and approximation
by the Rothe scheme are closely linked to each other. It is an interesting mathematical
question whether the mere existence of weak solutions can alternatively be obtained by a
different approach based on approximation by suitably regularized parabolic problems. For
instance, when the quadratic nonlinearity in (1.1) is truncated, it seems that no estimate
in the flavor of (1.10) is valid any longer, so that it is not clear whether solutions of the
corresponding approximate problems in fact converge to a solution of (1.1). We cannot
exclude that in this sense, in higher dimensions the equation (1.1) plays a special role
among all its neighboring equations.

Let us finally mention that we expect most of our techniques to apply also to the case
when the Neumann boundary conditions are replaced by periodic boundary conditions;
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as then the boundary integral in (1.9) formally disappears, the analysis should even be
simplified in some places. However, we do not know if corresponding results can achieved
for the corresponding Cauchy problem in R

n under suitable spatial decay conditions.

1.1 Outline of the strategy

Since the proofs of these main results are technically quite involved, before going in medias
res let us briefly outline our approach. The proof of Theorem 1.1 is based on semi-discrete
versions of the identities

d

dt

∫

Ω
u(x, t)dx = −λ

∫

∂Ω

∂

∂ν
|∇u|2 +

∫

Ω
f for all t > 0 (1.9)

and

1

2λ

d

dt

∫

Ω
e2λu(x,t)dx+2λ

∫

Ω
e2λu|D2u|2 = −µ

∫

Ω
e2λu∆u+

∫

Ω
e2λuf for all t > 0 (1.10)

which are formally obtained when testing (1.2) against ϕ ≡ 1 and ϕ = e2λu, respec-
tively (cf. Lemma 2.2 below). Here we shall use the convexity of Ω in deriving from
(1.9) that t 7→

∫

Ω u(x, t)dx is nondecreasing and hence nonnegative. Since (1.10) states

that
∫

Ω e
2λu(x,t)dx grows at most exponentially with time, this shows boundedness of

‖u(·, t)‖L1(Ω) ≡ 2
∫

Ω u+(·, t) −
∫

Ω u(·, t) in bounded time intervals, and moreover from
(1.10) we infer some higher regularity in each of the sets {u > c} for c ∈ R. In order to
control ∇u also in regions where possibly u is small, let us test (1.2) by A−1(u−u), where
u := 1

|Ω|

∫

Ω u and A denotes the realization of −∆ in the subspace of functions in L2(Ω)
having zero average. This formally yields

1

2

d

dt

∫

Ω
|A− 1

2 (u−u)|2+
∫

Ω
|∇u|2 = λ

∫

Ω
u|∇u|2+µ

∫

Ω
u2+

∫

Ω
f ·A−1(u−u) for all t > 0,

(1.11)
and indeed a corresponding semi-discrete version will be provided by Lemma 2.6. Since
here the first term on the right can be bounded from above by a term involving the second
integral on the left of (1.10), this will lead to an estimate for ∇u in L2

loc([0,∞);L2(Ω))
(Lemma 3.1). In a final step, the resulting weak compactness property of ∇u can be
turned into strong compactness, where again (1.10) and (1.11) will be utilized (Lemma
3.3).
Finally, Theorem 1.2 will rely on (1.10) and a Morrey’s inequality which in the present
situation will allow for estimating the right-hand side of (1.10) by a negative multiple of
∫

Ω e
2λu modulo an additive constant. Here it will be used that in the radial framework

the conditions
∫

Ω f = 0 and
∫

Ω u0 = 0 will ensure that
∫

Ω u(x, t)dx = 0, and hence u(·, t)
must maintain at least one zero for all times.
As a technical detail possibly worth being announced, let us mention that in proving
solvability of the elliptic problems occurring in our Rothe-type approximation scheme for
(1.2) (see (2.2)), one main step will consist of deriving a one-sided bound by means of an
elliptic comparison argument (see Lemma 2.7). Although, of course, the corresponding full
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fourth-order problem does not allow for a maximum principle, it is essentially an implicitly
performed reduction to a second-order system that will enable us to apply this powerful
tool.

2 A semi-discrete approximation

Throughout this paper we shall pursue the following concept of weak solutions in which,
roughly speaking, as many derivatives as possible are carried over to test functions. There-
fore the notion very weak solution would be slightly more adequate, but we refrain from
distinguishing different solution concepts here.

Definition 2.1 Let µ ∈ R and λ ∈ R, and assume that f ∈ L1(Ω) and u0 ∈ L1(Ω).
Then by a global weak solution of (1.2) we mean a function u ∈ L2

loc([0,∞);W 1,2(Ω)) that
satisfies

∫ ∞

0

∫

Ω
uϕt+

∫

Ω
u0ϕ(·, 0) =

∫ ∞

0

∫

Ω
u∆2ϕ+µ

∫ ∞

0

∫

Ω
u∆ϕ+λ

∫ ∞

0

∫

Ω
|∇u|2∆ϕ−

∫ ∞

0

∫

Ω
fϕ

(2.1)
for all ϕ ∈ C∞

0 (Ω̄× [0,∞)) fulfilling ∂
∂ν
ϕ = ∂

∂ν
∆ϕ = 0 on ∂Ω.

In order to construct a solution of (1.2), we shall follow [25] and employ a Rothe-type ap-
proximation procedure based on a discretization of (1.2) with respect to the time variable:
For τ ∈ (0, 1), we consider the sequence of elliptic boundary value problems given by







u
(τ)
k

−u
(τ)
k−1

τ
= −∆2u

(τ)
k − µ∆u

(τ)
k − λ∆|∇u(τ)k |2 + f, x ∈ Ω

∂
∂ν
u
(τ)
k = ∂

∂ν
∆u

(τ)
k = 0, x ∈ ∂Ω,

(2.2)

for k = 1, 2, ..., where (u
(τ)
0 )τ∈(0,1) is a family of functions approximating u0 as τ ց 0 in

the sense that the following requirements are fulfilled, which shall collectively be refererred
to as (H1) in the sequel, and which implicitly require that u0 ∈ L∞(Ω).

(H1a) For all τ ∈ (0, 1), the function u
(τ)
0 belongs to W 2,∞(Ω) and satisfies

∫

Ω u
(τ)
0 =

∫

Ω u0.

(H1b) We have u
(τ)
0 → u0 a.e. in Ω as τ ց 0 and supτ∈(0,1) ‖u

(τ)
0 ‖L∞(Ω) <∞.

(H1c) As τ ց 0, we have τ‖u(τ)0 ‖2
W 1,2(Ω) → 0.

Our plan is to assert solvability of (2.2) and at the same time prepare τ -independent
estimates for the corresponding continuous and step-type Rothe functions u(τ) and û(τ)

defined by

u(τ)(x, t) :=
(

k − t

τ

)

· u(τ)k−1(x) +
( t

τ
− (k − 1)

)

· u(τ)k (x) (2.3)

and
û(τ)(x, t) := u

(τ)
k (x), (2.4)
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respectively, for x ∈ Ω and t ∈ [(k − 1)τ, kτ), k = 1, 2, ....
For fixed τ > 0 and k ≥ 1, (2.2) is conveniently rewritten as

{

∆2u+ 1
τ
u = −µ∆u− λ∆|∇u|2 + 1

τ
v + f, x ∈ Ω,

∂
∂ν
u = ∂

∂ν
∆u = 0, x ∈ ∂Ω,

(2.5)

where v := u
(τ)
k−1 is supposed to be given and u := u

(τ)
k is the unknown.

It turns out that an appropriate setting for studying the semilinear problem (2.5) is made
up by the following fixed point framework: Let us fix p > n and set

Xp :=W
3,p
N (Ω) :=

{

w ∈W 3,p(Ω)
∣

∣

∣

∂

∂ν
w = 0 on ∂Ω

}

. (2.6)

Then Xp →֒ C2(Ω̄), and hence for fixed v ∈ L∞(Ω) the nonlinear operator Nv defined by

Nvu := −µ∆u− λ∆|∇u|2 + 1

τ
v + f, u ∈ Xp, (2.7)

is continuous from Xp into Lp(Ω). Next, as is well-known ([10]), the linear operator L
defined by

Lu := ∆2u+
1

τ
u (2.8)

acts as a homeomorphism from W
4,p
N (Ω) := {w ∈ W 4,p(Ω) | ∂

∂ν
w = ∂

∂ν
∆w = 0 on ∂Ω} to

Lp(Ω), and in particular its inverse L−1 exists and is bounded from Lp(Ω) into W 4,p
N (Ω).

Thereby looking for a solution u ∈ W
4,p
N (Ω) of (2.5) becomes equivalent to finding a

solution u ∈ Xp of
u = L−1Nvu, (2.9)

that is, a fixed point of the operator F := L−1Nv when regarded as a mapping from
Xp into itself. Evidently, F is continuous, and since Xp →֒ C2(Ω̄) implies that Nv maps
bounded sets from Xp into bounded sets in Lp(Ω), it follows that F maps bounded sets

from Xp into bounded sets in W 4,p
N (Ω) and hence into compact sets in Xp.

Our goal is to apply the Leray-Schauder fixed point theorem, which in the present context
will assert the existence of a solution to (2.9) as soon as we can show that the set

⋃

θ∈(0,1]

Fix(θ · L−1Nv) ≡
{

u ∈ Xp

∣

∣

∣
∃ θ ∈ (0, 1] such that u = θ · L−1Nvu

}

(2.10)

is bounded in Xp. This will be achieved through a series of steps, which are organzied as
follows: In the next Section 2.1 we shall provide some a priori estimates on solutions of the
equation u = θ ·L−1Nvu which are independent of θ ∈ (0, 1] and τ ∈ (0, 1). In Section 2.2
we proceed to derive further estimates for such solutions which may depend on τ but not
on θ. Combining both types of estimates will enable us to infer the desired boundedness
result for the set in (2.10) and thereby establish solvability of (2.2) for τ ∈ (0, τ⋆) and some
sufficiently small τ⋆ > 0. After that, going back to Section 2.1 and applying its results to
the particular choice θ = 1, we will obtain τ -independent estimates and hence favorable
compactness properties of the families (u(τ))τ∈(0,τ⋆) and (û(τ))τ∈(0,τ⋆) in (2.3) and (2.4).
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2.1 Basic a priori estimates

Let us start by recalling from [7] the following identity which can be obtained upon inte-
gration by parts, and which plays the role of a higher-dimensional analogue of (1.3).

Lemma 2.1 Let u ∈ C2(Ω̄) be such that ∂
∂ν
u = 0 on ∂Ω. Then for all ρ ∈ C2(R) we have

∫

Ω
ρ′(u)|∇u|2∆u = −2

3

∫

Ω
ρ(u)|∆u|2 + 2

3

∫

Ω
ρ(u)|D2u|2 − 1

3

∫

Ω
ρ′′(u)|∇u|4

−1

3

∫

∂Ω
ρ(u) · ∂

∂ν
|∇u|2.

We now state a useful identity for solutions of (2.2) that will serve as a starting point for
most of our estimates.

Lemma 2.2 Let µ ≥ 0, λ > 0, τ > 0, v ∈ L∞(Ω) and f ∈ L1(Ω), and suppose that for
some θ > 0, u ∈W 4,2(Ω) ∩ C2(Ω̄) is a solution of

{

u−θv
τ

= −∆2u− θµ∆u− θλ∆|∇u|2 + θf(x), x ∈ Ω,

∂
∂ν
u = ∂

∂ν
∆u = 0, x ∈ ∂Ω.

(2.11)

Then the identities
∫

Ω
u = θ

∫

Ω
v − θλτ

∫

∂Ω

∂

∂ν
|∇u|2 + θτ

∫

Ω
f (2.12)

and
∫

Ω
ue2θλu + 2θλτ

∫

Ω
e2θλu|D2u|2 = −θµτ

∫

Ω
e2θλu∆u+ θ

∫

Ω
ve2θλu + θτ

∫

Ω
fe2θλu (2.13)

hold.

Proof. In view of the boundary conditions in (2.11), (2.12) immediately results upon
an integration of the PDE in (2.11).
To obtain (2.13), we let φ(s) := e2θλs for s ∈ R and test (2.11) by φ(u) to find

1

τ

∫

Ω
uφ(u)− θ

τ

∫

Ω
vφ(u) = −

∫

Ω
φ(u)∆2u− θµ

∫

Ω
φ(u)∆u− θλ

∫

Ω
φ(u)∆|∇u|2

+θ

∫

Ω
φ(u)f. (2.14)

Here, integrating by parts we see that

−
∫

Ω
φ(u)∆2u = −

∫

Ω
∆φ(u)∆u−

∫

∂Ω
φ(u)

∂

∂ν
∆u+

∫

∂Ω
φ′(u)∆u

∂

∂ν
u (2.15)

and

−θλ
∫

Ω
φ(u)∆|∇u|2 = −θλ

∫

Ω
|∇u|2∆φ(u)−θλ

∫

∂Ω
φ(u)

∂

∂ν
|∇u|2+θλ

∫

∂Ω
φ′(u)|∇u|2 ∂

∂ν
u.

(2.16)

9



Since ∂
∂ν
u = ∂

∂ν
∆u = 0 on ∂Ω, and since

∆φ(u) = φ′(u)∆u+ φ′′(u)|∇u|2,

from (2.14)-(2.16) we thus obtain

1

τ

∫

Ω
uφ(u)− θ

τ

∫

Ω
vφ(u) = −

∫

Ω
φ′(u)|∆u|2 −

∫

Ω

[

φ′′(u) + θλφ′(u)
]

· |∇u|2∆u

−θλ
∫

Ω
φ′′(u)|∇u|4 − θµ

∫

Ω
φ(u)∆u− θλ

∫

∂Ω
φ(u)

∂

∂ν
|∇u|2

+θ

∫

Ω
φ(u)f. (2.17)

An application of Lemma 2.1 to ρ(s) := φ′(s) + θλφ(s) shows that

−
∫

Ω

[

φ′′(u) + θλφ′(u)
]

· |∇u|2∆u =
2

3

∫

Ω

[

φ′(u) + θλφ(u)
]

· |∆u|2

−2

3

∫

Ω

[

φ′(u) + θλφ(u)
]

· |D2u|2

+
1

3

∫

Ω

[

φ′′′(u) + θλφ′′(u)
]

· |∇u|4

+
1

3

∫

∂Ω

[

φ′(u) + θλφ(u)
]

· ∂
∂ν

|∇u|2,

which inserted into (2.17) yields

1

τ

∫

Ω
uφ(u)− θ

τ

∫

Ω
vφ(u) =

∫

Ω

[

− 1

3
φ′(u) +

2

3
θλφ(u)

]

· |∆u|2

−
∫

Ω

[2

3
φ′(u) +

2

3
θλφ(u)

]

· |D2u|2

+

∫

Ω

[1

3
φ′′′(u)− 2

3
θλφ′′(u)

]

· |∇u|4

−θµ
∫

Ω
φ(u)∆u

+

∫

∂Ω

[1

3
φ′(u)− 2

3
θλφ(u)

]

· ∂
∂ν

|∇u|2

+θ

∫

Ω
φ(u)f. (2.18)

Since by definition of φ we have

1

3
φ′ ≡ 2

3
θλφ and

1

3
φ′′′ ≡ 2

3
θλφ′′ on R

and

2

3
φ′(s) +

2

3
θλφ(s) = 2θλe2θλs for all s ∈ R,

10



(2.18) is equivalent to (2.13). ////

In order to cope with the boundary integral in (2.12), we remember the following fact ([7])
which is the reason for our convexity requirement.

Lemma 2.3 Suppose that Ω is convex, and that u ∈ C2(Ω̄) satisfies ∂
∂ν
u = 0 on ∂Ω.

Then

∂

∂ν
|∇u|2 ≤ 0 on ∂Ω.

The next lemma will ensure that the term on the left-hand side of (2.13) in fact can be
used to gain a certain control of the first-oder spatial derivative of u.

Lemma 2.4 Suppose that u ∈ C2(Ω̄) satisfies ∂
∂ν
u = 0 on ∂Ω. Then for all α > 0 we

have
∫

Ω
eαu|∇u|4 ≤ dn

α2

∫

Ω
eαu|D2u|2 (2.19)

with dn := (2 +
√
n)2.

Proof. Integrating by parts, we see that

∫

Ω
eαu|∇u|4 =

1

α

∫

Ω
|∇u|2∇eαu · ∇u

= − 1

α

∫

Ω
eαu∇u · ∇|∇u|2 − 1

α

∫

Ω
eαu|∇u|2∆u, (2.20)

because ∂
∂ν
u = 0 on ∂Ω. Since ∇|∇u|2 = 2D2u · ∇u, we can invoke Hölder’s inequality to

estimate

− 1

α

∫

Ω
eαu∇u · ∇|∇u|2 ≤ 2

α

(
∫

Ω
eαu|∇u|4

)
1
2

·
(
∫

Ω
eαu|D2u|2

)
1
2

and moreover

− 1

α

∫

Ω
eαu|∇u|2∆u ≤ 1

α

(
∫

Ω
eαu|∇u|4

)
1
2

·
(
∫

Ω
eαu|∆u|2

)
1
2

.

Thus, from the elementary pointwise inequality |∆u|2 ≤ n|D2u|2 and (2.20) we infer that

∫

Ω
eαu|∇u|4 ≤

( 2

α
+

√
n

α

)

·
(
∫

Ω
eαu|∇u|4

)
1
2

·
(
∫

Ω
eαu|D2u|2

)
1
2

,

which immediately results in (2.19). ////

Collecting the above three lemmata, we can establish a weighted a priori estimate for
solutions of (2.11).
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Lemma 2.5 Suppose that Ω is convex, that λ > 0, and that f ∈ L∞(Ω) satisfies
∫

Ω f ≥ 0.
Then there exist positive constants k, K and C such that if for some µ ≥ 0, τ ∈ (0, 1),
θ ∈ (0, 1] and v ∈ L∞(Ω) with

∫

Ω v ≥ 0, we are given a solution u ∈ W 4,2(Ω) ∩ C2(Ω̄) of
(2.11), then the estimate

(

1−K(‖f‖L∞(Ω) + µ2)θτ
)

·
∫

Ω
e2θλu + kθτ

∫

Ω
e2θλu|D2u|2 + kθ3τ

∫

Ω
e2θλu|∇u|4

≤
∫

Ω
e2θλv (2.21)

is valid, and if in addition τ < τ0 :=
1

2K(‖f‖L∞(Ω)+µ2)
then furthermore

‖u‖L1(Ω) ≤
C

θ
· e2θλ‖v‖L∞(Ω) (2.22)

holds. Moreover, for any such solution we have

∫

Ω
u ≥ 0. (2.23)

Proof. Following [1], we observe that by convexity of Φ(s) := e2θλs, s ∈ R, we have
the pointwise inequality

Φ(u)− Φ(v) ≤ Φ′(u) · (u− v) in Ω,

which yields

∫

Ω
e2θλu −

∫

Ω
e2θλv ≤ 2θλ

∫

Ω
ue2θλu − 2θλ

∫

Ω
ve2θλu

or, equivalently,

θ

∫

Ω
ve2θλu ≤ θ

∫

Ω
ue2θλu − 1

2λ

∫

Ω
e2θλu +

1

2λ

∫

Ω
e2θλv.

Therefore (2.13) upon an integration by parts entails

(1− θ) ·
∫

Ω
ue2θλu +

1

2λ

∫

Ω
e2θλu + 2θλτ

∫

Ω
e2θλu|D2u|2

≤ −θµτ
∫

Ω
e2θλu∆u+

1

2λ

∫

Ω
e2θλv + θτ

∫

Ω
e2θλuf

≤ 2θ2λµτ

∫

Ω
e2θλu|∇u|2 + 1

2λ

∫

Ω
e2θλv + θτ‖f‖L∞(Ω) ·

∫

Ω
e2θλu.

In view of the estimate

θλτ

∫

Ω
e2θλu|D2u|2 ≥ 4θ3λ3τ

dn

∫

Ω
e2θλu|∇u|4

12



asserted by Lemma 2.4, upon a multiplication by 2λ we immediately obtain

2λ(1− θ)

∫

Ω
ue2θλu + (1− 2θλ‖f‖L∞(Ω)τ) ·

∫

Ω
e2θλu

+2θλ2τ

∫

Ω
e2θλu|D2u|2 + 8θ3λ4τ

dn

∫

Ω
e2θλu|∇u|4

≤ 4θ2λ2µτ

∫

Ω
e2θλu|∇u|2 +

∫

Ω
e2θλv, (2.24)

where by Young’s inequality

4θ2λ2µτ

∫

Ω
e2θλu|∇u|2 ≤ 4θ3λ4τ

dn

∫

Ω
e2θλu|∇u|4 + θµ2τdn

∫

Ω
e2θλu. (2.25)

Now since Ω is convex and ∂
∂ν
u = 0 on ∂Ω, we have ∂

∂ν
|∇u|2 ≤ 0 on ∂Ω by Lemma 2.3,

and hence (2.12) implies that (2.23) holds, because
∫

Ω u ≥ θ
∫

Ω v + θτ
∫

Ω f ≥ 0 according
to our assumptions on v and f . Therefore, using that e2θλu ≤ 1 if and only if u ≤ 0, we
obtain

∫

Ω
ue2θλu =

∫

{u>0}
ue2θλu +

∫

{u<0}
ue2θλu

≥
∫

{u>0}
ue2θλu +

∫

{u<0}
u

=

∫

{u>0}
ue2θλu +

∫

Ω
u−

∫

{u>0}
u

≥
∫

{u>0}
ue2θλu −

∫

{u>0}
u

=

∫

{u>0}
u · (e2θλu − 1)

≥ 0,

and thus for θ ∈ (0, 1], (2.21) easily results from (2.24) and (2.25) upon appropriate choices
of k and K.
Finally, if τ < τ0 then from (2.21) we obtain that

1

2

∫

Ω
e2θλu ≤

∫

Ω
e2θλv ≤ |Ω| · e2λ‖v‖L∞(Ω) .

Since e2θλu+ ≥ 2θλu+ and, by (2.23), ‖u‖L1(Ω) =
∫

{u>0} u −
∫

{u<0} u ≤ 2
∫

Ω u+, we see

that (2.22) will be valid if we pick C := |Ω|
λ
. ////

For what follows, let us recall the well-known fact that the operator A := −∆ is self-
adjoint in L2

⊥(Ω) := {w ∈ L2(Ω) |
∫

Ωw = 0}, with domain of definition given by D(A) =

W
2,2
N,⊥(Ω) :=W

2,2
N (Ω)∩L2

⊥(Ω), and that its discrete spectrum σ(A) lies on the positive real
axis σ(A) ⊂ (0,∞). In particular, A posesses self-adjoint real powers Aα for any α ∈ R,
and Aα is bounded from L2

⊥(Ω) into L
2
⊥(Ω) whenever α < 0.
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Lemma 2.6 Let τ > 0, and assume that v ∈ L2(Ω) and f ∈ L2(Ω) are such that
∫

Ω v ≥ 0
and

∫

Ω f ≥ 0. Suppose that for some θ > 0, u ∈W 4,2(Ω) is a solution of (2.11). Then for
all η > 0, the estimate

(1− θ2µ2τ − ητ)

∫

Ω
|A− 1

2 (u− u)|2 + τ

∫

Ω
|∇u|2 − 2θλτ

∫

Ω
u|∇u|2

≤ θ2
∫

Ω
|A− 1

2 (v − v)|2 + θτ

η

∫

Ω
|A− 1

2 (f − f)|2(2.26)

holds, where we have set w := 1
|Ω|

∫

Ωw for w ∈ L1(Ω).

Proof. Since u−u ∈ L2
⊥(Ω), we may apply A−1 to u−u and test (2.11) by A−1(u−u)

to obtain

1

τ

∫

Ω
u ·A−1(u− u)− θ

τ

∫

Ω
v ·A−1(u− u) = −

∫

Ω
∆2u ·A−1(u− u)

−θµ
∫

Ω
∆u ·A−1(u− u)

−θλ
∫

Ω
∆|∇u|2 ·A−1(u− u)

+θ

∫

Ω
f ·A−1(u− u). (2.27)

Here, using that −∆u = −∆(u− u) = A(u− u) and integrating by parts, we find

−
∫

Ω
∆2u ·A−1(u− u) =

∫

Ω
∆(u− u) · (u− u) = −

∫

Ω
|∇(u− u)|2 = −

∫

Ω
|∇u|2, (2.28)

and similarly we have

−θµ
∫

Ω
∆u ·A−1(u− u) = θµ

∫

Ω
A(u− u) ·A−1(u− u)

= θµ

∫

Ω
A

1
2 (u− u) ·A− 1

2 (u− u),

because A− 1
2 is self-adjoint. Hence, by Young’s inequality and the identity ‖A 1

2w‖L2(Ω) =
‖∇w‖L2(Ω) for w ∈ L2

⊥(Ω),

−θµ
∫

Ω
∆u ·A−1(u− u) ≤ 1

2

∫

Ω
|A 1

2 (u− u)|2 + θ2µ2

2

∫

Ω
|A− 1

2 (u− u)|2

=
1

2

∫

Ω
|∇u|2 + θ2µ2

2

∫

Ω
|A− 1

2 (u− u)|2. (2.29)

Similarly, since
∫

ΩA
−1(u− u) = 0, for any η > 0 we have

θ

∫

Ω
f ·A−1(u− u) = θ

∫

Ω
(f − f) ·A−1(u− u)

= θ

∫

Ω
A− 1

2 (f − f) ·A− 1
2 (u− u)

≤ η

2

∫

Ω
|A− 1

2 (u− u)|2 + θ2

2η

∫

Ω
|A− 1

2 (f − f)|2. (2.30)
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Moreover,

−θλ
∫

Ω
∆|∇u|2A−1(u− u) = −θλ

∫

Ω
∆
(

|∇u|2 − |∇u|2
)

·A−1(u− u)

= θλ

∫

Ω

(

|∇u|2 − |∇u|2
)

· (u− u)

= θλ

∫

Ω
u|∇u|2 − θλ

|Ω|

(
∫

Ω
u

)

·
(
∫

Ω
|∇u|2

)

− θλ

|Ω|

(
∫

Ω
|∇u|2

)

·
(
∫

Ω
(u− u)

)

.

Since
∫

Ω(u − u) = 0, and since
∫

Ω v ≥ 0 and
∫

Ω f ≥ 0 imply that
∫

Ω u ≥ 0 in view of
Lemma 2.2 and Lemma 2.3, from this we obtain that

−θλ
∫

Ω
∆|∇u|2 ·A−1(u− u) ≤ θλ

∫

Ω
u|∇u|2. (2.31)

Finally, on the left-hand side of (2.27) we again use that A− 1
2 is self-adjoint and that

∫

ΩA
−1(u− u) = 0 in computing

1

τ

∫

Ω
u ·A−1(u− u) =

1

τ

∫

Ω
(u− u) ·A−1(u− u)

=
1

τ

∫

Ω
|A− 1

2 (u− u)|2 (2.32)

and

θ

τ

∫

Ω
v ·A−1(u− u) =

θ

τ

∫

Ω
(v − v) ·A−1(u− u)

=
θ

τ

∫

Ω
A− 1

2 (v − v) ·A− 1
2 (u− u).

Therefore another application of Young’s inequality shows that

θ

τ

∫

Ω
v ·A−1(u− u) ≤ 1

2τ

∫

Ω
|A− 1

2 (u− u)|2 + θ2

2τ

∫

Ω
|A− 1

2 (v − v)|2,

which together with (2.28)-(2.32) inserted into (2.27) immediately yields (2.26) upon a
multiplictaion by 2τ . ////

2.2 Solvability of the semi-discrete problem

In this part our purpose is to fix τ and assert solvability of (2.5) by proving boundedness
of the set in (2.10). For this purpose we provide further estimates for solutions of (2.11)
which, unlike those previously obtained, may depend on τ .
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The following uniform lower bound will be essential in turning the estimates in Lemma 2.5
into corresponding estimates without weights. It may be worth emphasizing that despite
the lack of comparison for the full fourth-order problem (2.11) our argument strongly relies
on comparison techniques. The underlying idea how this can be made possible is based
upon a splitting of (2.11) into two second-order elliptic problems.

Lemma 2.7 Let µ ≥ 0, λ > 0, and suppose that Ω is convex and that f ∈ L∞(Ω) is such
that

∫

Ω f ≥ 0. Then there exists τ1 > 0 with the following property: For any τ ∈ (0, τ1) and
each v ∈ L∞(Ω) satisfying

∫

Ω v ≥ 0 one can find c > 0 such that if u ∈ W 4,2(Ω) ∩ C2(Ω̄)
is a solution of (2.11) for some θ ∈ (0, 1] then

u(x) ≥ − c
θ

for all x ∈ Ω. (2.33)

Proof. We fix any τ1 ∈ (0, 1) such that µ2τ1 ≤ 1 and τ1 ≤ τ0 with τ0 as in Lemma 2.5,
and observe that τ1 can be chosen independent of v. Then using that v and f belong to
L∞(Ω) together with the continuity of A− 1

2 as an operator in L2
⊥(Ω), from Lemma 2.6 we

obtain that whenever τ < τ1,
∫

Ω
|∇u|2 ≤ 2θλ

∫

Ω
u|∇u|2 + c1 ≤ 2θλ

∫

Ω
u+|∇u|2 + c1 (2.34)

with c1, as all constants c2, c3, ... appearing below, possibly depending on τ and on
µ, λ, ‖v‖L∞(Ω) and ‖f‖L∞(Ω). In order to estimate the rightmost integral in (2.34) from
above, we note that as a particular consequence of Lemma 2.5 we have

∫

Ω
e2θλu|∇u|4 ≤ c2

θ3

for some c2 > 0, because τ < τ0. By Hölder’s inequality,

∫

Ω
u+|∇u|2 ≤

(
∫

Ω
e2θλu|∇u|4

)
1
2

·
(
∫

Ω
u2+e

−2θλu

)
1
2

,

so that since s2e−2θλs ≤ ( 1
θλe

)2 for all s ≥ 0, we find that

∫

Ω
u+|∇u|2 ≤

c3

θ
5
2

and hence, by (2.34), that
∫

Ω
|∇u|2 ≤ c4

θ
3
2

(2.35)

are valid, where c3 and c4 are appropriately large constants. Our goal is to derive (2.33)
from this and the estimate

‖u‖L1(Ω) ≤
c5

θ
, (2.36)

the latter guaranteed by (2.22) in Lemma 2.5 for some c5 > 0. To this end, we introduce

g(x) := sign (∆u(x))− sign (∆u), x ∈ Ω,
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where bars again indicate spatial averages. Then clearly g ∈ L∞(Ω) with ‖g‖L∞(Ω) ≤ 2
and

∫

Ω g = 0, and consequently the problem











−∆w = g, x ∈ Ω,
∂
∂ν
w = 0, x ∈ ∂Ω,

∫

Ωw = 0,

has a unique solution w ∈W 2,2(Ω) ∩ L∞(Ω) satisfying

‖w‖L∞(Ω) ≤ c6 (2.37)

for some c6 > 0. Testing (2.11) by ŵ := w + c6 yields

1

τ

∫

Ω
uŵ − θ

τ

∫

Ω
vŵ = −

∫

Ω
∆2u · ŵ − θµ

∫

Ω
∆u · ŵ − θλ

∫

Ω
∆|∇u|2 · ŵ + θ

∫

Ω
fŵ

= −
∫

Ω
∆u∆ŵ − θµ

∫

Ω
u∆ŵ − θλ

∫

Ω
|∇u|2∆ŵ

−θλ
∫

∂Ω

∂

∂ν
|∇u|2 · ŵ + θ

∫

Ω
fŵ,

because ∂
∂ν
u = ∂

∂ν
∆u = ∂

∂ν
ŵ = 0 on ∂Ω. Since ŵ was constructed in such a way that

ŵ ≥ 0, and since thanks to the convexity of Ω we have ∂
∂ν
|∇u|2 ≤ 0 on ∂Ω by Lemma 2.3,

the second last term is nonnegative. Using that −∆ŵ = −∆w = g, we thus infer that

1

τ

∫

Ω
uŵ − θ

τ

∫

Ω
vŵ ≥

∫

Ω
|∆u| −

(

sign (∆u)
)

·
∫

Ω
∆u

−θµ
∫

Ω
ug − θλ

∫

Ω
|∇u|2g + θ

∫

Ω
fŵ.

Since
∫

Ω∆u =
∫

∂Ω
∂
∂ν
u = 0 and |g| ≤ 2, by (2.35) and (2.36) we therefore conclude

∫

Ω
|∆u| ≤ 1

τ
u(w + c6)−

θ

τ

∫

Ω
v(w + c6)

+θµ

∫

Ω
ug + θλ

∫

Ω
|∇u|2g − θ

∫

Ω
f(w + c6)

≤ 2c6
τ

· c5
θ

+
2θc6|Ω|
τ

· ‖v‖L∞(Ω)

+2θµ · c5
θ

+ 2θλ · c4
θ

3
2

+ 2c6|Ω| · ‖f‖L∞(Ω)

≤ c7

θ
(2.38)

with suitably large c7. Now going back to (2.11), we see that z := ∆u + θµu + θλ|∇u|2
satisfies

{

−∆z = h := u−θv
τ

− θf, x ∈ Ω,
∂
∂ν
z = θλ ∂

∂ν
|∇u|2 ≤ 0, x ∈ ∂Ω,

(2.39)
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and as a particular consequence of (2.35), (2.36) and (2.38) we now know that

∫

Ω
z+ ≤

∫

Ω
|z| ≤ c7

θ
+ θµ · c5

θ
+ θλ · c4

θ
3
2

≤ c8

θ

with some c8 > 0. Picking any integer q > n
2 , from the one-sided pointwise estimate

e2θλu+ ≥ (2θλu+)
q

q!

and Lemma 2.5 we easily derive that when τ < τ0,

(2θλ)q

q!

∫

Ω
u
q
+ ≤ 2

∫

Ω
e2θλv ≤ c9,

which implies that

‖h+‖Lq(Ω) ≤
c10

θ

with certain c9 > 0 and c10 > 0.
An application of Lemma 5.1 from the appendix to (2.39) (with a := a0 := 0) shows that

z ≤ c11(‖z+‖L1(Ω) + ‖h+‖Lq(Ω)) ≤
c12

θ

for positive c11 and c12, and hence the definition of z yields

−∆(−u) = ∆u ≤ θµ · (−u)− θλ|∇u|2 + c12

θ

≤ θµ · (−u) + c12

θ
.

Once more invoking Lemma 5.1, now with a0 := µ and a := θµ, we infer that there exists
c13 > 0 such that

−u(x) ≤ c13

(

‖u‖L1(Ω) +
c12

θ

)

for all x ∈ Ω.

In view of (2.36), this establishes (2.33). ////

With the above lemma at hand, we are now ready to prove an a priori estimate, depending
on τ but not on θ, for solutions of (2.11).

Lemma 2.8 Suppose that n ≤ 3 and that Ω is convex, and let µ ≥ 0, λ > 0 and f ∈ L∞(Ω)
be such that

∫

Ω f ≥ 0. Let τ ∈ (0,min{τ0, τ1}) with τ0 > 0 and τ1 > 0 as provided by
Lemma 2.5 and Lemma 2.7, respectively. Then for each v ∈ L∞(Ω) satisfying

∫

Ω v ≥ 0
there exists c > 0 such that whenever u ∈ W 4,2(Ω) is a solution of (2.11) for some
θ ∈ (0, 1], we have

‖u‖W 3,∞(Ω) ≤ c. (2.40)
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Proof. Throughout the proof, all appearing constants may depend on n,Ω, µ, λ, τ, v
and f , but neither on θ nor on the solution u in question. Our argument will follow a
bootstrap procedure, deriving from Lemma 2.5 and Lemma 2.7 estimates which will then
be used to successively improve themselves.
Step 1. Let us first make sure that there exists c1 > 0 such that

‖u‖W 2,2(Ω) ≤
c1

θ
1
2

(2.41)

holds for any such solution.
To see this, we note that since τ < τ0, from (2.21) and (2.22) we infer the existence of
c2 > 0 such that

θ

∫

Ω
e2θλu|D2u|2 ≤ c2 and θ3

∫

Ω
e2θλu|∇u|4 ≤ c2. (2.42)

In particular, this implies the one-sided estimate

2θλ

∫

Ω
u|D2u|2 ≤ c2

θ
, (2.43)

because ez ≥ z for all z ∈ R. Apart from that, Lemma 2.7 ensures that

u ≥ −c3
θ

in Ω (2.44)

for some c3 > 0, so that the factors e2θλu in (2.42) enjoy a uniform positive bound from
below, and hence we also have

∫

Ω
|D2u|2 ≤ c4

θ
and

∫

Ω
|∇u|4 ≤ c4

θ3
(2.45)

for some c4 > 0 which, as we once more emphasize, will certainly depend on τ .
Now in order to obtain (2.41), we multiply (2.11) by u and integrate by parts to see that

∫

Ω
|∆u|2 + 1

τ

∫

Ω
u2 = −θµ

∫

Ω
u∆u− θλ

∫

Ω
u∆|∇u|2

+
θ

τ

∫

Ω
uv + θ

∫

Ω
uf. (2.46)

Here, using Young’s inequality and (2.45) we easily find that

−θµ
∫

Ω
u∆u+

θ

τ

∫

Ω
uv + θ

∫

Ω
uf ≤ 1

2τ

∫

Ω
u2 + c5θ

2
(

∫

Ω
|∆u|2 +

∫

Ω
v2 +

∫

Ω
f2

)

≤ 1

2τ

∫

Ω
u2 + c6 (2.47)

with certain c5 > 0 and c6 > 0. In the second integral on the right of (2.46), we split

∆|∇u|2 = 2|D2u|2 + 2∇u · ∇∆u (2.48)
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and integrate by parts in the resulting latter integral. In view of (2.43), (2.45) and the
Hölder inequality we then obtain

I := −2θλ

∫

Ω
u∇u · ∇∆u

= 2θλ

∫

Ω
|∇u|2∆u+ 2θλ

∫

Ω
u|∆u|2

≤ 2θλ

(
∫

Ω
|∇u|4

)
1
2

·
(
∫

Ω
|∆u|2

)
1
2

+ 2θλ

∫

Ω
u|∆u|2

≤ 2θλ ·
( c4

θ3

)
1
2 ·

(nc4

θ

)
1
2
+
nc2

θ
,

because |∆u|2 ≤ n|D2u|2. Therefore using (2.44) we find that

−θλ
∫

Ω
u∆|∇u|2 = −2θλ

∫

Ω
u|D2u|2 + I

≤ 2λc3 ·
∫

Ω
|D2u|2 + I

≤ c7

θ

with suitable c7 > 0, and thus (2.46) and (2.47) show that

∫

Ω
|∆u|2 + 1

2τ

∫

Ω
u2 ≤ c6 +

c7

θ
,

whereupon (2.41) follows.

Step 2. We next claim that one can find c8 > 0 such that

‖u‖W 3,2(Ω) ≤
c8

θ
1
2

. (2.49)

Indeed, multiplying (2.11) by ∆u and integrating by parts we see that

∫

Ω
|∇∆u|2 + 1

τ

∫

Ω
|∇u|2 = θµ

∫

Ω
|∆u|2 + θλ

∫

Ω
∆|∇u|2∆u

−θ
τ

∫

Ω
v∆u− θ

∫

Ω
f∆u, (2.50)

where again by Young’s inequality and (2.41) we obtain c9 > 0 such that

θµ

∫

Ω
|∆u|2 − θ

τ

∫

Ω
v∆u− θ

∫

Ω
f∆u ≤

(

θµ+
θ2

2τ2
+
θ2

2

)

·
∫

Ω
|∆u|2 + 1

2

∫

Ω
v2 +

1

2

∫

Ω
f2

≤ c9. (2.51)
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Once more using (2.48) and integrating by parts, we have

θλ

∫

Ω
∆|∇u|2∆u = 2θλ

∫

Ω
|D2u|2∆u+ 2θλ

∫

Ω
(∇u · ∇∆u)∆u

= 2θλ

∫

Ω
|D2u|2∆u− θλ

∫

Ω
(∆u)3

≤ c10θ‖u‖3W 2,3(Ω)

for some c10 > 0. Since n ≤ 3, by the Gagliardo-Nirenberg inequality ([10]) and Young’s
inequality we can interpolate

c10θ‖u‖3W 2,3(Ω) ≤ c11θ
(

‖∇∆u‖
n
2

L2(Ω)
· ‖u‖

6−n
2

W 2,2(Ω)
+ ‖u‖3W 2,2(Ω)

)

≤ 1

2
‖∇∆u‖2L2(Ω) + c12

(

θ
4

4−n · ‖u‖
2(6−n)
4−n

W 2,2(Ω)
+ θ‖u‖3W 2,2(Ω)

)

with certain positive constants c11 and c12. Recalling the outcome of Step 1, we infer that

θλ

∫

Ω
∆|∇u|2∆u ≤ 1

2

∫

Ω
|∇∆u|2 + c12

(

c
2(6−n)
4−n

1 θ
n−2
4−n + c31θ

− 1
2

)

≤ 1

2

∫

Ω
|∇∆u|2 + c13

θ
1
2

holds with some constant c13, whence (2.49) easily results from (2.50), (2.51) and (2.41).

Step 3. We are now in the position to prove that there exists c14 > 0 such that

‖u‖W 4,2(Ω) ≤ c14. (2.52)

To this end, we observe that in the rearranged version of (2.11),

∆2u+
1

τ
u = −θµ∆u− 2θλ|D2u|2 − 2θλ∇u · ∇∆u+

θ

τ
v + θf =: g, (2.53)

we can find c15 > 0 such that

∥

∥

∥
− θµ∆u+

θ

τ
v + θf

∥

∥

∥

L2(Ω)
≤ c15

by (2.45), and such that moreover

∥

∥

∥
− 2θλ|D2u|2

∥

∥

∥

L2(Ω)
= 2θλ‖D2u‖2L4(Ω) ≤ c15θ‖u‖2W 3,2(Ω) ≤ c28c15

and

‖ − 2θλ∇u · ∇∆u‖L2(Ω) ≤ 2θλ‖∇u‖L∞(Ω) · ‖∇∆u‖L2(Ω) ≤ c15θ‖u‖2W 3,2(Ω) ≤ c28c15

hold, where we have used that since n ≤ 3 we have the embeddingsW 3,2(Ω) →֒W 2,6(Ω) →֒
W 1,∞(Ω). This provides a θ-independent bound for g in L2(Ω), and thus standard elliptic
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regularity theory ([10]) applied to (2.53) establishes (2.52).

Step 4. In a final step, we can now show that

‖u‖W 4,6(Ω) ≤ c16 (2.54)

is valid with some c16 > 0, which will prove the lemma in view of the embedding
W 4,6(Ω) →֒W 3,∞(Ω).
To verify (2.54), we proceed as in Step 3: Going back to (2.53), using (2.52) and the fact
that W 4,2(Ω) →֒W 3,6(Ω) →֒W 2,∞(Ω), we can now estimate

∥

∥

∥
− 2θλ|D2u|2

∥

∥

∥

L6(Ω)
= 2θλ‖D2u‖2L12(Ω) ≤ c17‖u‖2W 4,2(Ω) ≤ c214c17

and

‖ − 2θλ∇u · ∇∆u‖L6(Ω) ≤ 2θλ‖∇u‖L∞(Ω) · ‖∇∆u‖L6(Ω) ≤ c17‖u‖2W 4,2(Ω) ≤ c214c17

for any θ ∈ (0, 1] and some c17 > 0. This easily leads to a uniform bound for g in L6(Ω)
and thereby proves (2.54) upon one more application of elliptic estimates to (2.53). ////

As an immediate consequence we obtain solvability of the Rothe scheme (2.2).

Lemma 2.9 Let n ≤ 3 and Ω be convex, and let p > n. Then for any µ ≥ 0, λ > 0
and f ∈ L∞(Ω) satisfying

∫

Ω f ≥ 0 there exists τ⋆ ∈ (0, 1) with the following property: If
τ ∈ (0, τ⋆) and v ∈ L∞(Ω) satisfies

∫

Ω v ≥ 0, then

⋃

θ∈(0,1]

Fix(θ · L−1Nv) is bounded in Xp, (2.55)

where L,Nv and Xp are defined in (2.8) (2.7) and (2.6), respectively.
Furthermore, under these conditions the problem (2.5) possesses at least one solution u ∈
W 4,p(Ω) that satisfies

∫

Ω u ≥ 0.

Proof. Let c denote the constant provided by Lemma 2.8, and let τ⋆ := min{τ0, τ1}
with τ0 and τ1 as in Lemma 2.5 and Lemma 2.7, respectively. Suppose that u ∈ Xp sat-
isfies u = θ · L−1Nu for some θ ∈ (0, 1]. By the regularizing properties of L−1 we then
actually have u ∈ W 4,2(Ω), so that Lemma 2.8 along with the Hölder inequality implies

that ‖u‖W 3,p(Ω) ≤ c|Ω|
1
p , which proves (2.55).

According to the continuity and compactness properties of the mappings L−1Nv, from
(2.55) and the Leray-Schauder fixed point theorem ([27]) we immediately infer the ex-
istence of a solution u ∈ Xp of the equation u = L−1Nvu. Since p > n implies that
W 3,p(Ω →֒W 2,∞(Ω), it follows from the definition of Nv that Nvu ∈ Lp(Ω), and hence we
actually have u = L−1Nvu ∈ W 4,p(Ω) by elliptic regularity theory. Finally, the nonnega-
tivity of

∫

Ω u is asserted by Lemma 2.5. ////
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Corollary 2.10 Suppose that n ≤ 3, that Ω ⊂ R
n is a bounded convex domain with

smooth boundary, and that p > n. Moreover, assume that µ ≥ 0, λ > 0, that u0 ∈ L∞(Ω)
and f ∈ L∞(Ω) are such that

∫

Ω u0 ≥ 0 and
∫

Ω f ≥ 0, and that we are given a family

(u
(τ)
0 )τ∈(0,1) which satisfies (H1). Then there exists τ⋆ ∈ (0, 1) such that for each τ ∈ (0, τ⋆),

the scheme (2.2) admits at least one solution sequence (u
(τ)
k )k∈{1,2,...} ⊂W 4,p(Ω) for which

we have
∫

Ω u
(τ)
k ≥ 0, k = 1, 2, ....

Proof. Let τ⋆ ∈ (0, 1) denote the constant provided by Lemma 2.9. Then since

u
(τ)
0 ∈ L∞(Ω) satisfies

∫

Ω u
(τ)
0 ≥ 0 by (H1), we may apply Lemma 2.9 to obtain that

whenever τ ∈ (0, τ⋆), the problem (2.2) for k = 1 has at least one solution u
(τ)
1 ∈W 4,p(Ω)

with
∫

Ω u
(τ)
1 ≥ 0. Due to the latter property, and since of course u

(τ)
1 ∈ W 4,p(Ω) implies

u
(τ)
1 ∈ L∞(Ω), the same argument applies to yield solvability of (2.2) also for k = 2. Thus,

an inductive argument and an application of Lemma 2.9 complete the proof. ////

Remark. Note that since the constant τ⋆ in Lemma 2.9 does not depend on v, it is
possible to avoid the situation that different choices of τ , say, τ = τk, k = 1, 2, ..., are
necessary in each step in (2.2). This evidently rules out the possibility that the obtained
Rothe functions defined by (2.3) and (2.4) cease to exist beyond some finite time.

3 Estimates independent of τ

In order to take τ ց 0, we proceed to derive estimates for the family of Rothe functions
defined by (2.3) and (2.4).

Lemma 3.1 Let n ≤ 3, Ω be convex, p > n, µ ≥ 0, λ > 0, and suppose that u0 ∈ L∞(Ω)

and f ∈ L∞(Ω) are such that
∫

Ω u0 ≥ 0 and
∫

Ω f ≥ 0. Given a familiy (u
(τ)
0 )τ∈(0,1)

satisfying (H1), let τ⋆ ∈ (0, 1) and, for τ ∈ (0, τ⋆), (u
(τ)
k )k∈{1,2,...} ⊂W 4,p(Ω) be as provided

by Corollary 2.10. Then for all T > 0 there exists C > 0 such that the corresponding Rothe
functions defined by (2.3) and (2.4) satisfy

∫

Ω
e2λû

(τ)(x,t)dx ≤ C for all t ∈ [0, T ], (3.1)

∫ T

0

∫

Ω
e2λû

(τ) |D2û(τ)|2 ≤ C, and (3.2)

∫ T

0

∫

Ω
e2λû

(τ) |∇û(τ)|4 ≤ C (3.3)

as well as

∫ T

0

∫

Ω
|∇û(τ)|2 ≤ C, (3.4)
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∫ T

0

∫

Ω
|û(τ)| · |∇û(τ)|2 ≤ C and (3.5)

∫ T

0

∫

Ω
|∇u(τ)|2 ≤ C (3.6)

whenever τ ∈ (0, τ⋆).

Proof. According to Lemma 2.5 applied to θ = 1, there exist c1 > 0 and c2 > 0 such
that

∫

Ω
e2λu

(τ)
k −

∫

Ω
e2λu

(τ)
k−1 + c1τ

∫

Ω
e2λu

(τ)
k |D2u

(τ)
k |2 + c1τ

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

≤ c2τ

∫

Ω
e2λu

(τ)
k (3.7)

holds for all k ≥ 1. Here, ignoring nonnegative terms we first obtain that ak :=
∫

Ω e
2λu

(τ)
k

satisfies
ak − ak−1 ≤ c2τak for all k ≥ 1. (3.8)

By an elementary discrete Gronwall-type inequality, if c2τ ≤ 1
2 this implies

ak ≤ a0 · (1− c2τ)
−k for all k ≥ 1

and hence

ak ≤ a0 · e2c2kτ for all k ≥ 1,

because (1− z)−k ≤ e2kz for all z ∈ [0, 12 ]. If we fix τ ∈ (0, 1) and take Nτ ∈ N such that
T ≤ Nτ · τ < T + 1, this yields

∫

Ω
e2λu

(τ)
k ≤ c3 :=

(

sup
τ∈(0,1)

∫

Ω
e2λu

(τ)
0

)

· e2c2(T+1) for all k ∈ {0, ..., Nτ} (3.9)

and thereby proves (3.1) in view of (H1b). Now going back to (3.7), upon summing up
over k ∈ {1, ..., Nτ}, using (3.9) we find

∫

Ω
e2λu

(τ)
Nτ + c1τ ·

Nτ
∑

k=1

∫

Ω
e2λu

(τ)
k |D2u

(τ)
k |2 + c1τ ·

Nτ
∑

k=1

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

≤
∫

Ω
e2λu

(τ)
0 + c2τ ·

Nτ
∑

k=1

∫

Ω
e2λu

(τ)
k

≤ c3 · (1 + c2 · (T + 1)), (3.10)

which implies (3.2) and (3.3).
Proceeding similarly, from an application of Lemma 2.6 to θ = 1 and arbitrary η > 0 we
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obtain that for some c4 > 0 we have
∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
k − u

(τ)
k

)
∣

∣

∣

2
−

∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
k−1 − u

(τ)
k−1

)
∣

∣

∣

2
+ τ

∫

Ω
|∇u(τ)k |2

≤ c4τ

(

1 +

∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
k − u

(τ)
k

)∣

∣

∣

2
)

+2λτ

∫

Ω
u
(τ)
k |∇u(τ)k |2. (3.11)

Here, the last integral can be estimated by using the inequality ez ≥ z for z ∈ R, leading
to

Ik := 2λτ

∫

Ω
u
(τ)
k |∇u(τ)k |2 ≤ τ

∫

Ω
e2λu

(τ)
k |∇u(τ)k |2

≤ τ

2

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4 + τ

2

∫

Ω
e2λu

(τ)
k (3.12)

in view of Young’s inequality. Therefore, (3.12) shows that defining bk :=
∫

Ω |A− 1
2 (u

(τ)
k −

u
(τ)
k )|2, from (3.11) we thus obtain

bk − bk−1 ≤ c4τbk +Bk for all k ≥ 1,

where Bk := c4τ + Ik and hence, thanks to (3.9), (3.10) and (3.12),

B :=

Nτ
∑

k=1

Bk ≤ c5 (3.13)

with some c5 > 0 independent of τ . Again using a discrete Gronwall inequality, which can
easily be derived by induction, from this we infer that

bk ≤ (1− c4τ)
−k · b0 +

k
∑

l=1

(1− c4τ)
l−k−1Bl for all k ≥ 1,

which if c4τ ≤ 1
2 implies

bk ≤ e2c4kτ · b0 +
k

∑

l=1

e2c4(k+1−l)τBl for all k ≥ 1.

This proves that

∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
k − u

(τ)
k

)
∣

∣

∣

2
≤ c6 :=

(

sup
τ∈(0,1)

∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
0 − u

(τ)
0

)
∣

∣

∣

2
)

· e2c4(T+1)

+Be2c4(T+1) for all k ∈ {0, ..., Nτ}, (3.14)
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and thus from (3.11) we infer

∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
Nτ

− u
(τ)
Nτ

)
∣

∣

∣

2
+ τ ·

Nτ
∑

k=1

∫

Ω
|∇u(τ)k |2 − 2λτ ·

Nτ
∑

k=1

u
(τ)
k |∇u(τ)k |2

≤
∫

Ω

∣

∣

∣
A− 1

2

(

u
(τ)
0 − u

(τ)
0

)
∣

∣

∣

2
+ c4τ ·

Nτ
∑

k=1

∣

∣

∣
A− 1

2

(

u
(τ)
k − u

(τ)
k

)
∣

∣

∣

2

+c4τ ·Nτ

≤ c6 ·
(

1 + 2c4(T + 1)
)

. (3.15)

In view of (3.12) and (3.13), this establishes (3.4) and (3.5). Moreover, since

Nτ
∑

k=1

∫ kτ

(k−1)τ
|∇u(τ)|2 =

Nτ
∑

k=1

∫ kτ

(k−1)τ

∫

Ω

∣

∣

∣

(

k − t

τ

)

· ∇u(τ)k−1 +
( t

τ
− (k − 1)

)

· ∇u(τ)k

∣

∣

∣

2

≤ 2τ ·
Nτ
∑

k=1

∫

Ω
|∇u(τ)k−1|2 + 2τ ·

Nτ
∑

k=1

∫

Ω
|∇u(τ)k |2

≤ 4τ ·
Nτ
∑

k=1

∫

Ω
|∇u(τ)k |2 + 2τ

∫

Ω
|∇u(τ)0 |2,

from (3.15) and (H1c) we finally also obtain (3.6). ////

By standard compactness arguments, the above boundedness properties allow for the
extraction of suitably converging subsequences.

Lemma 3.2 Under the assumptions of Lemma 3.1, there exist (τj)j∈N ⊂ (0, 1) and a
function u ∈ L2

loc([0,∞);W 1,2(Ω)) such that τj ց 0 as j → ∞ and

u(τ) → u and û(τ) → u in L2
loc([0,∞);L2(Ω)) and a.e. in Ω× (0,∞) (3.16)

and
û(τ) ⇀ u in L2

loc([0,∞);W 1,2(Ω)) (3.17)

as τ = τj ց 0.

Proof. Let T > 0. By (3.1), (3.4), (3.6) and the fact that
∫

Ω u
(τ)
k ≥ 0 for all k ≥ 0,

(û(τ))τ∈(0,τ⋆) and (u(τ))τ∈(0,τ⋆) are bounded in L2((0, T );W 1,2(Ω)). (3.18)

We claim that moreover

(∂tu
(τ))τ∈(0,τ⋆) is bounded in L1

(

(0, T ); (Wm,2
0 (Ω))⋆

)

, (3.19)

holds, where m ∈ N is large enough such that the Hilbert space Wm,2
0 (Ω) is continuously

embedded into W 2,∞(Ω). In fact, rewriting (2.2) in the form

∂tu
(τ) = −∆2û(τ) − µ∆û(τ) − λ∆|∇û(τ)|2 + f, (3.20)
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and testing this by an arbitrary ψ ∈ C∞
0 (Ω) we obtain

∫

Ω
∂tu

(τ)(·, t) · ψ = −
∫

Ω
û(τ)∆2ψ − µ

∫

Ω
û(τ)∆ψ − λ

∫

Ω
|∇û(τ)|2∆ψ +

∫

Ω
fψ

for t ∈ (0, T ) \ {kτ | k ∈ N}, because ∂
∂ν
û(τ) = ∂

∂ν
∆û(τ) = 0. Since

∣

∣

∣
−
∫

Ω
û(τ)(·, t)∆2ψ

∣

∣

∣
≤ ‖û(τ)(·, t)‖L2(Ω) · ‖∆2ψ‖L2(Ω),

∣

∣

∣
− µ

∫

Ω
û(τ)(·, t)∆ψ

∣

∣

∣
≤ µ‖û(τ)(·, t)‖L2(Ω) · ‖∆ψ‖L2(Ω),

∣

∣

∣
− λ

∫

Ω
|∇û(τ)|2∆ψ

∣

∣

∣
≤ λ‖∇û(τ)(·, t)‖2L2(Ω) · ‖∆ψ‖L∞(Ω) and

∣

∣

∣

∫

Ω
fψ

∣

∣

∣
≤ ‖f‖L2(Ω) · ‖ψ‖L2(Ω),

and since ‖∆ψ‖L∞(Ω) ≤ c1‖ψ‖Wm,2(Ω) for some c1 > 0 according to our assumption on m,
we infer that there exists c2 > 0 such that

∣

∣

∣
∂tu

(τ)(·, t) · ψ
∣

∣

∣
≤ c2(1 + ‖û(τ)(·, t)‖2W 1,2(Ω)) · ‖ψ‖Wm,2(Ω)

and hence
∥

∥

∥
∂tu

(τ)(·, t)
∥

∥

∥

(Wm,2
0 (Ω))⋆

≤ c2(1 + ‖û(τ)(·, t)‖2W 1,2(Ω)) for a.e. t > 0.

In view of (3.18), this immediately yields (3.19). As a consequence, the Aubins-Lions
lemma ([26]) states that (u(τ))τ∈(0,τ⋆) is relatively compact with respect to the strong

topology in L2((0, T );L2(Ω)). Thus, along a suitable sequence τj ց 0 we have u(τ) → u

in L2
loc([0,∞);L2(Ω)). Now (3.16) and (3.17) easily follow from this, the technical Lemma

5.2 below and (3.18). ////

In order to be prepared for an adequate limit process τ = τj ց 0 in the nonlinear term in
(1.2), we shall require the following statement on strong compactness of (∇û(τ))τ∈(0,τ⋆) in
L2
loc([0,∞);L2

loc(Ω)).

Lemma 3.3 Under the assumptions from Lemma 3.1,

∇û(τ) → ∇u in L2
loc([0,∞);L2(Ω)) as τ = τj ց 0 (3.21)

holds, where (τj)j∈N ⊂ (0, τ⋆) is the sequence provided by Lemma 3.2.

Moreover, we have eλu ∈ L2
loc([0,∞);W 2,2

N (Ω)) and

eλû
(τ)
⇀ eλu in L2

loc([0,∞);W 2,2(Ω)) as τ = τj ց 0. (3.22)
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Proof. Given T > 0, by (3.2), (3.3) and the identity

(eλv)xixj
= λeλvvxixj

+ λ2eλvvxi
vxj

, v ∈W 2,2(Ω) ∩ L∞(Ω), (3.23)

there exists c1 > 0 such that for all sufficiently small τ > 0 we have

∫ T

0

∫

Ω

∣

∣

∣
D2eλû

(τ)
∣

∣

∣

2
≤ c1.

In conjunction with (3.1), this entails that

‖eλû(τ)‖L2((0,T );W 2,2(Ω)) ≤ c2 (3.24)

for some c2 > 0 and all τ small enough.
Now let c3 > 0 be such that, according to Lemma 3.1,

∫ T

0

∫

Ω
|û(τ)| · |∇û(τ)|2 ≤ c3 (3.25)

for small τ . Then, given ε > 0, we fix M > 0 large such that c3
M

< ε
4 , and next pick a

cut-off function ζ ∈ C∞
0 (R) satisfying ζ(s) = 1 for |s| ≤ M and ζ(s) = 0 for |s| ≥ M + 1.

Decomposing

∫ T

0

∫

Ω
|∇û(τ)|2 =

∫ T

0

∫

Ω
ζ(û(τ)) · |∇û(τ)|2 +

∫ T

0

∫

Ω
(1− ζ(û(τ))) · |∇û(τ)|2

=: I1(τ) + I2(τ), (3.26)

from (3.25) we infer that

I2(τ) ≤
∫ T

0

∫

Ω
χ{|û(τ)|≥M} · |∇û(τ)|2

≤ 1

M
·
∫ T

0

∫

Ω
|û(τ)| · |∇û(τ)|2

≤ c3

M

≤ ε

4
(3.27)

for small τ . Recalling that

û(τ) → u a.e. in Ω× (0, T ) as τ = τj ց 0 (3.28)

due to Lemma 3.2, from the dominated convergence theorem we obtain that 1−ζ(û(τ)) →
1− ζ(u) in L2(Ω× (0, T )), which together with (3.17) ensures that

√

1− ζ(û(τ))∇û(τ) ⇀
√

1− ζ(u)∇u in L2(Ω × (0, T )) as τ = τj ց 0. Thus, by lower semicontinuity of the L2

norm with respect to weak convergence, (3.27) entails that also

I2(0) :=

∫ T

0

∫

Ω
(1− ζ(u))|∇u|2 ≤ ε

4
. (3.29)
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As to I1(τ), writing

H(s) :=
1

λ

∫ s

−∞
e−λσζ(σ)dσ, s ∈ R, (3.30)

we have

I1(τ) =

∫ T

0

∫

Ω

( 1

λ
e−λû(τ)

ζ(û(τ))∇û(τ)
)

·
(

λeλû
(τ)∇û(τ)

)

=

∫ T

0

∫

Ω
∇H(û(τ)) · ∇eλû(τ)

= −
∫ T

0

∫

Ω
H(û(τ))∆eλû

(τ)
(3.31)

upon an integration by parts, because ∂
∂ν
eλû

(τ)
= 0 on ∂Ω. As a consequence of (3.24),

(eλû
(τ)

)τ∈(τj)j∈N
is weakly precompact in L2((0, T );W 2,2

N (Ω)), and by (3.28) we obtain that

whenever (τji)i∈N ⊂ (τj)j∈N is such that eλu
(τ)
⇀ z in L2((0, T );W 2,2

N (Ω)) as τ = τji ց 0,
we must have z = eλu by Egorov’s theorem. This implies that

eλu ∈ L2((0, T );W 2,2
N (Ω)) and eλû

(τ)
⇀ eλu in L2((0, T );W 2,2

N (Ω)) (3.32)

along the whole sequence τ = τj ց 0.
Next, from the definition (3.30) of H and the construction of ζ we know that 0 ≤ H ≤
c4 := 1

λ
· 2(M + 1) · eλ(M+1) on R, which combined with the fact that H(û(τ)) → H(u)

a.e. in Ω× (0, T ) as τ = τj ց 0 by (3.28) guarantees that
∫ T

0

∫

ΩH
2(û(τ)) →

∫ T

0

∫

ΩH
2(u)

and in particular
H(û(τ)) → H(u) in L2(Ω× (0, T )) (3.33)

as τ = τj ց 0. It follows from (3.32) and (3.33) that in (3.31) we may safely go to the
limit to find that

I1(τ) → −
∫ T

0

∫

Ω
H(u)∆eλu as τ = τj ց 0. (3.34)

However, since eλu ∈ L2((0, T );W 2,2
N (Ω)), we have ∂

∂ν
eλu = 0 on ∂Ω and therefore we may

integrate by parts on the right-hand side of (3.34) to infer that in fact

I1(τ) →
∫ T

0

∫

Ω
∇H(u) · ∇eλu

= λ

∫ T

0

∫

Ω
H ′(u)eλu|∇u|2

=

∫ T

0

∫

Ω
ζ(u)|∇u|2 =: I1(0) as τ = τj ց 0 (3.35)

in view of (3.30). All in all, from (3.26), (3.27), (3.29) and (3.35) we obtain that
∣

∣

∣

∣

∫ T

0

∫

Ω
|∇û(τ)|2 −

∫ T

0

∫

Ω
|∇u|2

∣

∣

∣

∣

=
∣

∣

∣
I1(τ) + I2(τ)− I1(0)− I2(0)

∣

∣

∣

≤ ε

2
+ |I1(τ)− I1(0)|

< ε
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whenever τ ∈ (τj)j∈N is sufficiently small, and therefore conclude that ∇û(τ) → ∇u in
L2(Ω× (0, T )), which proves the lemma. ////

We are now ready for the proof of our main statement on existence and approximation of
global weak solutions to (1.2).

Proof (of Theorem 1.1). We let (τj)j∈N ⊂ (0, 1) be as provided by Lemma 3.2. Then
a straightforward testing procedure applied to (2.2) yields

∫ ∞

0

∫

Ω
u(τ)ϕt +

∫

Ω
u
(τ)
0 ϕ(·, 0) =

∫ ∞

0

∫

Ω
û(τ)∆2ϕ+ µ

∫ ∞

0

∫

Ω
û(τ)∆ϕ

+λ

∫ ∞

0

∫

Ω
|∇û(τ)|2∆ϕ−

∫ ∞

0

∫

Ω
fϕ

for all ϕ ∈ C∞
0 (Ω̄× [0,∞)) fulfilling ∂

∂ν
ϕ = ∂

∂ν
∆ϕ = 0 on ∂Ω. Here, in view of Lemma 3.2,

Lemma 3.3 and (H1b) we may let τ = τj ց 0 separately in each integral to conclude that
u indeed satisfies (2.1). Finally, from Corollary 2.10) we obtain

∫

Ω u(·, t) ≥ 0 for a.e. t > 0,
whereas the statements involving eλu are immediate consequences of (3.32). ////

4 Large time behavior of radial solutions

Without further preparations we can immediately proceed to the proof of our result on the
existence of absorbing sets. In order to shorten notation, we shall throughout abbreviate
the phrase ‘radially symmetric with respect to x = 0’ by simply saying ‘radial’.

Proof (of Theorem 1.2). Our goal is to refine the first part of the proof of Lemma 3.1
and thereby derive an improved version of (3.8) under the present assumptions.
To this end, we first observe that since u0 and f are radial, we may assume that the same

holds for u
(τ)
0 , τ ∈ (0, 1). Then restricting all the above considerations to the respective

subclasses of radial functions, we clearly obtain that (2.2) admits at least one radial

solution sequence (u
(τ)
k )k∈{1,2,...} whenever τ ∈ (0, 1) is sufficiently small. Moreover, the

radial symmetriy along with the boundary condition ∂
∂ν
u
(τ)
k = 0 on ∂Ω implies that even

∇u(τ)k = 0 on ∂Ω and hence ∂
∂ν
|∇u(τ)k |2 vanishes on ∂Ω. Thus, Lemma 2.2 ensures that

∫

Ω u
(τ)
k = 0 for all k ≥ 1, so that in particular

for all τ ∈ (0, 1) and k ≥ 1 there exists x
(τ)
k ∈ Ω̄ such that u

(τ)
k

(

x
(τ)
k

)

≤ 0. (4.1)

Now by Lemma 2.5, there exist c1 > 0 and c2 > 0 such that for small τ we have
∫

Ω
e2λu

(τ)
k −

∫

Ω
e2λu

(τ)
k−1 + c1τ

∫

Ω
e2λu

(τ)
k |D2u

(τ)
k |2 + c1τ

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

≤ c2(‖f‖L∞(Ω) + µ2)τ ·
∫

Ω
e2λu

(τ)
k for all k ≥ 1. (4.2)
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Here we use that as a consequence of the fact that n ≤ 3, Morrey’s inequality implies that

|v(x)− v(y)| ≤ c3

(

∫

Ω
|∇v|4

)
1
4

for all x ∈ Ω̄ and y ∈ Ω̄,

is valid with some c3 > 0 for each v ∈W 1,4(Ω). We apply this to v := e
λ
2
u
(τ)
k and y := x

(τ)
k

to achieve the estimate

e
λ
2
u
(τ)
k

(x) ≤ 1 + c3 ·
λ

2
·
(

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

)
1
4

and therefore
∫

Ω
e2λu

(τ)
k ≤ c4

(

1 +

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

)

with some c4 > 0. Accordingly, (4.2) shows that there exist c5 > 0 and c6 > 0 such that
if we require

c2(‖f‖L∞(Ω) + µ2) · c4 ≤
c1

4
, (4.3)

then
∫

Ω
e2λu

(τ)
k −

∫

Ω
e2λu

(τ)
k−1 + c1τ

∫

Ω
e2λu

(τ)
k |D2u

(τ)
k |2 + c1

2
τ

∫

Ω
e2λu

(τ)
k |∇u(τ)k |4

≤ −c5τ
∫

Ω
e2λu

(τ)
k + c6τ for all k ≥ 1. (4.4)

In particular, for ak :=
∫

Ω e
2λu

(τ)
k , k ∈ {0, 1, 2, ...}, instead of (3.8) we now have

ak − ak−1 ≤ −c5τak + c6τ for all k ≥ 1,

whence by a straightforward induction

ak ≤ a0

(1 + c5τ)k
+ c6τ ·

k
∑

j=1

1

(1 + c5τ)j

=
a0

(1 + c5τ)k
+
c6

c5

(

1− 1

(1 + c5τ)k

)

for all k ≥ 1.

Since 1 + z ≥ e
z
2 whenever 0 ≤ z ≤ 2 ln 2, this shows that if τ ≤ 2 ln 2

c5
then

∫

Ω
e2λu

(τ)
k ≤

(

sup
τ∈(0,1)

∫

Ω
e2λu

(τ)
0

)

· e−
c5
2
kτ +

c6

c5
for all k ≥ 1. (4.5)

With (τj)j∈N as provided by Theorem 1.1, we let τ = τj ց 0 in (4.5) and thereby easily
verify (1.5) for any C ≥ 2 c6

c5
and sufficiently large T .

In order to obtain (1.6), we let t > T be given and fix k2 > k1 > 1 such that

T ≤ k1τ ≤ t < (k1 + 1)τ < (k2 − 1)τ < t+ 1 ≤ k2τ,
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which is possible whenever τ > 0 is sufficiently small. Proceeding similarly to the proof of
Lemma 3.1, we sum up in (4.4) to find

∫

Ω
e
2λu

(τ)
k2 + c1τ ·

k2
∑

j=k1

∫

Ω
e2λu

(τ)
j |D2u

(τ)
j |2 + c1

2
τ ·

k2
∑

j=k1

∫

Ω
e2λu

(τ)
j |∇u(τ)j |4

≤
∫

Ω
e
2λu

(τ)
k1 + c6τ · (k2 − k1).

In view of (4.5) and the fact that (k2 − k1)τ < 1+ 2τ , upon taking τ ց 0 along a suitable
sequence this easily leads to (1.6) if we adequately enlarge C.

Now the convergence statements (1.7) and (1.8) are straightforward consequences of (1.5)
and (1.6): Given a sequence of numbers tj → ∞, for j ∈ N we let

wj(x) :=

∫ tj+1

tj

eλu(x,t)dt, x ∈ Ω.

Then by the Hölder inequality we have
∫

Ω
w2
j ≤

∫

Ω

(

∫ tj+1

tj

e2λu(x,t)dt
)

dx ≤ C for all j ∈ N

due to (1.5). Moreover, using the identity (3.23) above and (1.6) we find
∫

Ω
|D2wj |2 ≤ c7

∫ tj+1

tj

∫

Ω
e2λu

(

|D2u|2 + |∇u|4
)

≤ c7C for all j ∈ N.

This shows that (wj)j∈N is bounded in W 2,2(Ω) and hence we have (1.7) along a suitable

subsequence with some w ∈ W
2,2
N (Ω). Since W 2,2(Ω) is compactly embedded into C0(Ω̄)

again because of the fact that n ≤ 3, this at the same time entails (1.8). ////

5 Appendix

5.1 One-sided uniform estimates implied by second-order elliptic in-

equalities

The following lemma basically is a variant of [12, Theorem 8.15]. Since we could not find a
precise reference but essentially need the statement in its form presented here, we include
a short proof for the reader’s convenience.

Lemma 5.1 Let Ω ⊂ R
n be a bounded domain with smooth boundary, and let a0 ≥ 0 and

q > max{1, n2 }. Then there exists a constant c > 0 such that if g ∈ Lq(Ω) and w ∈ C2(Ω̄)
satisfy

{

−∆w ≤ aw + g, x ∈ Ω,
∂
∂ν
w ≤ 0, x ∈ ∂Ω

(5.1)
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for some a ∈ [0, a0], then

w(x) ≤ c ·
(

‖w+‖L1(Ω) + ‖g+‖Lq(Ω)

)

. (5.2)

Proof. Since q > 1, the operator −∆+ 1 acts as a homeomorphism from W
2,q
N (Ω) =

{z ∈W 2,q(Ω) | ∂
∂ν
z = 0 on ∂Ω} onto Lq(Ω) and hence there exists c1 > 0 such that

‖(−∆+ 1)−1g‖W 2,q(Ω) ≤ c1‖g‖Lq(Ω) for all g ∈ Lq(Ω). (5.3)

Moreover, the additional assumption q > n
2 guarantees that W 2,q(Ω) →֒ L∞(Ω), so that

‖z‖L∞(Ω) ≤ c2‖z‖W 2,q(Ω) for all z ∈W 2,q(Ω) (5.4)

is valid with some c2 > 0. Now (5.1) implies that

−∆w + w ≤ (a+ 1)w + g ≤ (a0 + 1)w+ + g+ in Ω. (5.5)

Thus, if we let z ∈W 2,q(Ω) denote the solution of

{

−∆z + z = (a0 + 1)w+ + g+, x ∈ Ω,
∂
∂ν
z = 0, x ∈ ∂Ω,

(5.6)

then

‖z‖W 2,q(Ω) ≤ c1

(

(a0 + 1)‖w+‖Lq(Ω) + ‖g+‖Lq(Ω)

)

by (5.3). Since −∆ + 1 under Neumann boundary conditions allows for a comparison
principle, (5.5) and (5.6) entail that w ≤ z in Ω, whence we conclude that

‖w+‖L∞(Ω) ≤ ‖z‖L∞(Ω) ≤ c2‖z‖W 2,q(Ω)

≤ c1c2

(

(a0 + 1)‖w+‖Lq(Ω) + ‖g+‖Lq(Ω)

)

.

Interpolating ‖w+‖Lq(Ω) ≤ η‖w+‖L∞(Ω) + cη‖w+‖L1(Ω) with suitable η > 0 and cη > 0
independent of w, we easily arrive at (5.2). ////

5.2 Estimating the distance between continuous and step-type Rothe

functions

In this section we shall establish a smallness statement on the difference between the
Rothe functions u(τ) and û(τ) from above. Extending this to a slightly more general

setting, we suppose that u
(τ)
k , k = 0, 1, 2, ..., are given elements from a Banach space Y ,

and correspondingly we set

u(τ)(t) :=
(

k − t

τ

)

· u(τ)k−1 +
( t

τ
− (k − 1)

)

· u(τ)k (5.7)
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and
û(τ)(t) := u

(τ)
k (5.8)

for t ∈ [(k − 1)τ, kτ) and k ∈ {1, 2, ...}. Then the following lemma says that relative
compactness of the u(τ) in Lq((0, T );Y ) for some q ∈ [1,∞) (where τ ց 0 along some
sequence) is essentially sufficient to guarantee that û(τ) and u(τ) will not differ too much
in the limit τ = τj ց 0.

Lemma 5.2 Let Y be a Banach space and (τj)j∈N be such that τj ց 0 as j → ∞. Suppose

that for each τ ∈ (τj)j∈N we are given u
(τ)
k ∈ Y, k ∈ {0, 1, 2, ...}, and let u(τ) : [0,∞) → Y

and û(τ) : [0,∞) → Y be defined by (5.7) and (5.8). Then if (u(τ))τ∈(τj)j∈N
is relatively

compact in Lq((0, T );Y ) for some q ∈ [1,∞) and T > 0, and if

τ‖u(τ)0 ‖qY → 0 as τ = τj ց 0, (5.9)

we have
‖u(τ) − û(τ)‖Lq((0,T ′);Y ) → 0 as τ = τj ց 0 (5.10)

for all T ′ ∈ (0, T ).

Proof. Given T ′ < T , for all sufficiently small τ > 0 we can pick Nτ ∈ N such that
T ′ < Nττ ≤ T . Thus, for τ = τj with suitably large j ∈ N, using (2.3) and (2.4) we have

‖u(τ) − û(τ)‖q
Lq((0,T ′);Y ) =

∫ T ′

0
‖u(τ)(t)− û(τ)(t)‖qY dt

≤
∫ Nτ ·τ

0
‖u(τ)(t)− û(τ)(t)‖qY dt

=

Nτ
∑

k=1

∫ kτ

(k−1)τ

∥

∥

∥

kτ − t

τ
(u

(τ)
k − u

(τ)
k−1)

∥

∥

∥

q

Y
dt

=

Nτ
∑

k=1

(
∫ kτ

(k−1)τ

(kτ − t

τ

)q

dt

)

· ‖u(τ)k − u
(τ)
k−1‖

q
Y

=
τ

q + 1
·
Nτ
∑

k=1

‖u(τ)k − u
(τ)
k−1‖

q
Y . (5.11)

In order to show that the right-hand side in (5.11) tends to zero as τ = τj ց 0, let us fix
c1 > 0 large enough such that (1 − z)q ≥ 1

2 − c1z
q for all z ∈ [0, 1]. It can then easily be

checked that ‖x+ y‖qY ≥ 1
2‖x‖

q
Y − c1‖y‖qY for all x ∈ Y and y ∈ Y . Taking now δ ∈ (0, 1)

so small that

c2 :=
δ(1− δ)q

2
− c1δ

q+1 > 0,

we can estimate
∫ T

0
‖u(τ)(t+ τ)− u(τ)(t)‖qY dt
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≥
∫ Nτ ·τ

0
‖u(τ)(t+ τ)− u(τ)(t)‖qY dt

=

Nτ
∑

k=1

∫ kτ

(k−1)τ

∥

∥

∥

t− (k − 1)τ

τ
(u

(τ)
k+1 − u

(τ)
k ) +

kτ − t

τ
(u

(τ)
k − u

(τ)
k−1)

∥

∥

∥

q

Y

≥
Nτ
∑

k=1

∫ kτ

(k−δ)τ

∥

∥

∥

t− (k − 1)τ

τ
(u

(τ)
k+1 − u

(τ)
k ) +

kτ − t

τ
(u

(τ)
k − u

(τ)
k−1)

∥

∥

∥

q

Y

≥
Nτ
∑

k=1

∫ kτ

(k−δ)τ

{

1

2

( t− (k − 1)τ

τ

)q

· ‖u(τ)k+1 − u
(τ)
k ‖qY

−c1 ·
(kτ − t

τ

)q

· ‖u(τ)k − u
(τ)
k−1‖

q
Y

}

dt

≥
Nτ
∑

k=1

{

δτ · 1
2
·
((k − δ)τ − (k − 1)τ

τ

)q

· ‖u(τ)k+1 − u
(τ)
k ‖qY

−δτ · c1 ·
(kτ − (k − δ)τ

τ

)q

· ‖u(τ)k − u
(τ)
k−1‖

q
Y

}

=

Nτ
∑

k=2

{δ(1− δ)qτ

2
− c1δ

q+1τ
}

· ‖u(τ)k − u
(τ)
k−1‖

q
Y

+
δ(1− δ)qτ

2
· ‖u(τ)Nτ+1 − u

(τ)
Nτ

‖qY − c1δ
q+1τ · ‖u(τ)1 − u

(τ)
0 ‖qY

≥ c2τ ·
Nτ
∑

k=1

‖u(τ)k − u
(τ)
k−1‖

q
Y − (c1δ

q+1 + c2)τ · ‖u(τ)1 − u
(τ)
0 ‖qY . (5.12)

Moreover,

∫ τ

0
‖u(τ)(t)‖qY dt =

∫ τ

0

∥

∥

∥

t

τ
(u

(τ)
1 − u

(τ)
0 ) + u

(τ)
0

∥

∥

∥

q

Y
dt

≥
∫ τ

0

{

1

2

( t

τ

)q

· ‖u(τ)1 − u
(τ)
0 ‖qY − c1‖u(τ)0 ‖qY

}

dt

=
τ

2(q + 1)
‖u(τ)1 − u

(τ)
0 ‖qY − c1τ‖u(τ)0 ‖qY . (5.13)

Combining (5.12) with (5.13), we obtain

c2τ ·
Nτ
∑

k=1

‖u(τ)k − u
(τ)
k−1‖

q
Y ≤

∫ T

0
‖u(τ)(t+ τ)− u(τ)(t)‖qY

+c3 ·
(
∫ τ

0
‖u(τ)(t)‖qY dt+ τ‖u(τ)0 ‖qY

)

(5.14)

for some c3 > 0 independent of τ . Since τ‖u(τ)0 ‖qY → 0 as τ = τj ց 0 by (5.9), and
since (u(τ))τ∈(τj)j∈N

is relatively compact in Lq((0, T );Y ), it follows from the Kolmogorov

35



compactness criterion that the right-hand side of (5.14) tends to zero as τ = τj ց 0. In
conjunction with (5.11) this proves the lemma. ////

6 Conclusion

We have considered the higher-dimensional version of a model for surface evolution in pres-
ence of molecular beam epitaxy. As compared to the spatially one-dimensional analogue
that has been studied in the existing literature, this model appears to be more realistic,
but even the basic problem of well-posedness brings about a number of mathematical
obstacles which can not be overcome by methods used in previous work. We have thus
pursued a novel approach that essentially relied on a combination of (1.9) and (1.10) with
the apparently new identity (1.11). A careful analysis has shown that these ingredients,
originally gained in a purely formal manner, indeed are valid in a certain weakened sense,
and that they can be used to establish the existence of a global generalized solution of
(1.2) through a numerically usable approximation scheme under mild conditions on the
initial data.
As an example of how the above tools can be applied to address further questions, we have
shown a stabilization result for solutions of (1.2) under convenient additional assumptions,
essentially requiring radial symmetry.
Of course, this is to be understood only as a first step towards a complete understanding
of the global dynamical properties of (1.2), but we believe that the approach presented
here might offer some new possibilities of how (1.2) can be analyzed rigorously. It is likely
to be expected, for instance, that appropriately localized variants of our estimates can be
used to describe local properties of solutions to a satisfactory extent.
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